Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/fs/dlm/lowcomms.c
15109 views
1
/******************************************************************************
2
*******************************************************************************
3
**
4
** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
5
** Copyright (C) 2004-2009 Red Hat, Inc. All rights reserved.
6
**
7
** This copyrighted material is made available to anyone wishing to use,
8
** modify, copy, or redistribute it subject to the terms and conditions
9
** of the GNU General Public License v.2.
10
**
11
*******************************************************************************
12
******************************************************************************/
13
14
/*
15
* lowcomms.c
16
*
17
* This is the "low-level" comms layer.
18
*
19
* It is responsible for sending/receiving messages
20
* from other nodes in the cluster.
21
*
22
* Cluster nodes are referred to by their nodeids. nodeids are
23
* simply 32 bit numbers to the locking module - if they need to
24
* be expanded for the cluster infrastructure then that is its
25
* responsibility. It is this layer's
26
* responsibility to resolve these into IP address or
27
* whatever it needs for inter-node communication.
28
*
29
* The comms level is two kernel threads that deal mainly with
30
* the receiving of messages from other nodes and passing them
31
* up to the mid-level comms layer (which understands the
32
* message format) for execution by the locking core, and
33
* a send thread which does all the setting up of connections
34
* to remote nodes and the sending of data. Threads are not allowed
35
* to send their own data because it may cause them to wait in times
36
* of high load. Also, this way, the sending thread can collect together
37
* messages bound for one node and send them in one block.
38
*
39
* lowcomms will choose to use either TCP or SCTP as its transport layer
40
* depending on the configuration variable 'protocol'. This should be set
41
* to 0 (default) for TCP or 1 for SCTP. It should be configured using a
42
* cluster-wide mechanism as it must be the same on all nodes of the cluster
43
* for the DLM to function.
44
*
45
*/
46
47
#include <asm/ioctls.h>
48
#include <net/sock.h>
49
#include <net/tcp.h>
50
#include <linux/pagemap.h>
51
#include <linux/file.h>
52
#include <linux/mutex.h>
53
#include <linux/sctp.h>
54
#include <linux/slab.h>
55
#include <net/sctp/user.h>
56
#include <net/ipv6.h>
57
58
#include "dlm_internal.h"
59
#include "lowcomms.h"
60
#include "midcomms.h"
61
#include "config.h"
62
63
#define NEEDED_RMEM (4*1024*1024)
64
#define CONN_HASH_SIZE 32
65
66
/* Number of messages to send before rescheduling */
67
#define MAX_SEND_MSG_COUNT 25
68
69
struct cbuf {
70
unsigned int base;
71
unsigned int len;
72
unsigned int mask;
73
};
74
75
static void cbuf_add(struct cbuf *cb, int n)
76
{
77
cb->len += n;
78
}
79
80
static int cbuf_data(struct cbuf *cb)
81
{
82
return ((cb->base + cb->len) & cb->mask);
83
}
84
85
static void cbuf_init(struct cbuf *cb, int size)
86
{
87
cb->base = cb->len = 0;
88
cb->mask = size-1;
89
}
90
91
static void cbuf_eat(struct cbuf *cb, int n)
92
{
93
cb->len -= n;
94
cb->base += n;
95
cb->base &= cb->mask;
96
}
97
98
static bool cbuf_empty(struct cbuf *cb)
99
{
100
return cb->len == 0;
101
}
102
103
struct connection {
104
struct socket *sock; /* NULL if not connected */
105
uint32_t nodeid; /* So we know who we are in the list */
106
struct mutex sock_mutex;
107
unsigned long flags;
108
#define CF_READ_PENDING 1
109
#define CF_WRITE_PENDING 2
110
#define CF_CONNECT_PENDING 3
111
#define CF_INIT_PENDING 4
112
#define CF_IS_OTHERCON 5
113
#define CF_CLOSE 6
114
#define CF_APP_LIMITED 7
115
struct list_head writequeue; /* List of outgoing writequeue_entries */
116
spinlock_t writequeue_lock;
117
int (*rx_action) (struct connection *); /* What to do when active */
118
void (*connect_action) (struct connection *); /* What to do to connect */
119
struct page *rx_page;
120
struct cbuf cb;
121
int retries;
122
#define MAX_CONNECT_RETRIES 3
123
int sctp_assoc;
124
struct hlist_node list;
125
struct connection *othercon;
126
struct work_struct rwork; /* Receive workqueue */
127
struct work_struct swork; /* Send workqueue */
128
};
129
#define sock2con(x) ((struct connection *)(x)->sk_user_data)
130
131
/* An entry waiting to be sent */
132
struct writequeue_entry {
133
struct list_head list;
134
struct page *page;
135
int offset;
136
int len;
137
int end;
138
int users;
139
struct connection *con;
140
};
141
142
static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
143
static int dlm_local_count;
144
145
/* Work queues */
146
static struct workqueue_struct *recv_workqueue;
147
static struct workqueue_struct *send_workqueue;
148
149
static struct hlist_head connection_hash[CONN_HASH_SIZE];
150
static DEFINE_MUTEX(connections_lock);
151
static struct kmem_cache *con_cache;
152
153
static void process_recv_sockets(struct work_struct *work);
154
static void process_send_sockets(struct work_struct *work);
155
156
157
/* This is deliberately very simple because most clusters have simple
158
sequential nodeids, so we should be able to go straight to a connection
159
struct in the array */
160
static inline int nodeid_hash(int nodeid)
161
{
162
return nodeid & (CONN_HASH_SIZE-1);
163
}
164
165
static struct connection *__find_con(int nodeid)
166
{
167
int r;
168
struct hlist_node *h;
169
struct connection *con;
170
171
r = nodeid_hash(nodeid);
172
173
hlist_for_each_entry(con, h, &connection_hash[r], list) {
174
if (con->nodeid == nodeid)
175
return con;
176
}
177
return NULL;
178
}
179
180
/*
181
* If 'allocation' is zero then we don't attempt to create a new
182
* connection structure for this node.
183
*/
184
static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
185
{
186
struct connection *con = NULL;
187
int r;
188
189
con = __find_con(nodeid);
190
if (con || !alloc)
191
return con;
192
193
con = kmem_cache_zalloc(con_cache, alloc);
194
if (!con)
195
return NULL;
196
197
r = nodeid_hash(nodeid);
198
hlist_add_head(&con->list, &connection_hash[r]);
199
200
con->nodeid = nodeid;
201
mutex_init(&con->sock_mutex);
202
INIT_LIST_HEAD(&con->writequeue);
203
spin_lock_init(&con->writequeue_lock);
204
INIT_WORK(&con->swork, process_send_sockets);
205
INIT_WORK(&con->rwork, process_recv_sockets);
206
207
/* Setup action pointers for child sockets */
208
if (con->nodeid) {
209
struct connection *zerocon = __find_con(0);
210
211
con->connect_action = zerocon->connect_action;
212
if (!con->rx_action)
213
con->rx_action = zerocon->rx_action;
214
}
215
216
return con;
217
}
218
219
/* Loop round all connections */
220
static void foreach_conn(void (*conn_func)(struct connection *c))
221
{
222
int i;
223
struct hlist_node *h, *n;
224
struct connection *con;
225
226
for (i = 0; i < CONN_HASH_SIZE; i++) {
227
hlist_for_each_entry_safe(con, h, n, &connection_hash[i], list){
228
conn_func(con);
229
}
230
}
231
}
232
233
static struct connection *nodeid2con(int nodeid, gfp_t allocation)
234
{
235
struct connection *con;
236
237
mutex_lock(&connections_lock);
238
con = __nodeid2con(nodeid, allocation);
239
mutex_unlock(&connections_lock);
240
241
return con;
242
}
243
244
/* This is a bit drastic, but only called when things go wrong */
245
static struct connection *assoc2con(int assoc_id)
246
{
247
int i;
248
struct hlist_node *h;
249
struct connection *con;
250
251
mutex_lock(&connections_lock);
252
253
for (i = 0 ; i < CONN_HASH_SIZE; i++) {
254
hlist_for_each_entry(con, h, &connection_hash[i], list) {
255
if (con->sctp_assoc == assoc_id) {
256
mutex_unlock(&connections_lock);
257
return con;
258
}
259
}
260
}
261
mutex_unlock(&connections_lock);
262
return NULL;
263
}
264
265
static int nodeid_to_addr(int nodeid, struct sockaddr *retaddr)
266
{
267
struct sockaddr_storage addr;
268
int error;
269
270
if (!dlm_local_count)
271
return -1;
272
273
error = dlm_nodeid_to_addr(nodeid, &addr);
274
if (error)
275
return error;
276
277
if (dlm_local_addr[0]->ss_family == AF_INET) {
278
struct sockaddr_in *in4 = (struct sockaddr_in *) &addr;
279
struct sockaddr_in *ret4 = (struct sockaddr_in *) retaddr;
280
ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
281
} else {
282
struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &addr;
283
struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) retaddr;
284
ipv6_addr_copy(&ret6->sin6_addr, &in6->sin6_addr);
285
}
286
287
return 0;
288
}
289
290
/* Data available on socket or listen socket received a connect */
291
static void lowcomms_data_ready(struct sock *sk, int count_unused)
292
{
293
struct connection *con = sock2con(sk);
294
if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
295
queue_work(recv_workqueue, &con->rwork);
296
}
297
298
static void lowcomms_write_space(struct sock *sk)
299
{
300
struct connection *con = sock2con(sk);
301
302
if (!con)
303
return;
304
305
clear_bit(SOCK_NOSPACE, &con->sock->flags);
306
307
if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
308
con->sock->sk->sk_write_pending--;
309
clear_bit(SOCK_ASYNC_NOSPACE, &con->sock->flags);
310
}
311
312
if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
313
queue_work(send_workqueue, &con->swork);
314
}
315
316
static inline void lowcomms_connect_sock(struct connection *con)
317
{
318
if (test_bit(CF_CLOSE, &con->flags))
319
return;
320
if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
321
queue_work(send_workqueue, &con->swork);
322
}
323
324
static void lowcomms_state_change(struct sock *sk)
325
{
326
if (sk->sk_state == TCP_ESTABLISHED)
327
lowcomms_write_space(sk);
328
}
329
330
int dlm_lowcomms_connect_node(int nodeid)
331
{
332
struct connection *con;
333
334
/* with sctp there's no connecting without sending */
335
if (dlm_config.ci_protocol != 0)
336
return 0;
337
338
if (nodeid == dlm_our_nodeid())
339
return 0;
340
341
con = nodeid2con(nodeid, GFP_NOFS);
342
if (!con)
343
return -ENOMEM;
344
lowcomms_connect_sock(con);
345
return 0;
346
}
347
348
/* Make a socket active */
349
static int add_sock(struct socket *sock, struct connection *con)
350
{
351
con->sock = sock;
352
353
/* Install a data_ready callback */
354
con->sock->sk->sk_data_ready = lowcomms_data_ready;
355
con->sock->sk->sk_write_space = lowcomms_write_space;
356
con->sock->sk->sk_state_change = lowcomms_state_change;
357
con->sock->sk->sk_user_data = con;
358
con->sock->sk->sk_allocation = GFP_NOFS;
359
return 0;
360
}
361
362
/* Add the port number to an IPv6 or 4 sockaddr and return the address
363
length */
364
static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
365
int *addr_len)
366
{
367
saddr->ss_family = dlm_local_addr[0]->ss_family;
368
if (saddr->ss_family == AF_INET) {
369
struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
370
in4_addr->sin_port = cpu_to_be16(port);
371
*addr_len = sizeof(struct sockaddr_in);
372
memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
373
} else {
374
struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
375
in6_addr->sin6_port = cpu_to_be16(port);
376
*addr_len = sizeof(struct sockaddr_in6);
377
}
378
memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
379
}
380
381
/* Close a remote connection and tidy up */
382
static void close_connection(struct connection *con, bool and_other)
383
{
384
mutex_lock(&con->sock_mutex);
385
386
if (con->sock) {
387
sock_release(con->sock);
388
con->sock = NULL;
389
}
390
if (con->othercon && and_other) {
391
/* Will only re-enter once. */
392
close_connection(con->othercon, false);
393
}
394
if (con->rx_page) {
395
__free_page(con->rx_page);
396
con->rx_page = NULL;
397
}
398
399
con->retries = 0;
400
mutex_unlock(&con->sock_mutex);
401
}
402
403
/* We only send shutdown messages to nodes that are not part of the cluster */
404
static void sctp_send_shutdown(sctp_assoc_t associd)
405
{
406
static char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
407
struct msghdr outmessage;
408
struct cmsghdr *cmsg;
409
struct sctp_sndrcvinfo *sinfo;
410
int ret;
411
struct connection *con;
412
413
con = nodeid2con(0,0);
414
BUG_ON(con == NULL);
415
416
outmessage.msg_name = NULL;
417
outmessage.msg_namelen = 0;
418
outmessage.msg_control = outcmsg;
419
outmessage.msg_controllen = sizeof(outcmsg);
420
outmessage.msg_flags = MSG_EOR;
421
422
cmsg = CMSG_FIRSTHDR(&outmessage);
423
cmsg->cmsg_level = IPPROTO_SCTP;
424
cmsg->cmsg_type = SCTP_SNDRCV;
425
cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
426
outmessage.msg_controllen = cmsg->cmsg_len;
427
sinfo = CMSG_DATA(cmsg);
428
memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
429
430
sinfo->sinfo_flags |= MSG_EOF;
431
sinfo->sinfo_assoc_id = associd;
432
433
ret = kernel_sendmsg(con->sock, &outmessage, NULL, 0, 0);
434
435
if (ret != 0)
436
log_print("send EOF to node failed: %d", ret);
437
}
438
439
static void sctp_init_failed_foreach(struct connection *con)
440
{
441
con->sctp_assoc = 0;
442
if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
443
if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
444
queue_work(send_workqueue, &con->swork);
445
}
446
}
447
448
/* INIT failed but we don't know which node...
449
restart INIT on all pending nodes */
450
static void sctp_init_failed(void)
451
{
452
mutex_lock(&connections_lock);
453
454
foreach_conn(sctp_init_failed_foreach);
455
456
mutex_unlock(&connections_lock);
457
}
458
459
/* Something happened to an association */
460
static void process_sctp_notification(struct connection *con,
461
struct msghdr *msg, char *buf)
462
{
463
union sctp_notification *sn = (union sctp_notification *)buf;
464
465
if (sn->sn_header.sn_type == SCTP_ASSOC_CHANGE) {
466
switch (sn->sn_assoc_change.sac_state) {
467
468
case SCTP_COMM_UP:
469
case SCTP_RESTART:
470
{
471
/* Check that the new node is in the lockspace */
472
struct sctp_prim prim;
473
int nodeid;
474
int prim_len, ret;
475
int addr_len;
476
struct connection *new_con;
477
sctp_peeloff_arg_t parg;
478
int parglen = sizeof(parg);
479
int err;
480
481
/*
482
* We get this before any data for an association.
483
* We verify that the node is in the cluster and
484
* then peel off a socket for it.
485
*/
486
if ((int)sn->sn_assoc_change.sac_assoc_id <= 0) {
487
log_print("COMM_UP for invalid assoc ID %d",
488
(int)sn->sn_assoc_change.sac_assoc_id);
489
sctp_init_failed();
490
return;
491
}
492
memset(&prim, 0, sizeof(struct sctp_prim));
493
prim_len = sizeof(struct sctp_prim);
494
prim.ssp_assoc_id = sn->sn_assoc_change.sac_assoc_id;
495
496
ret = kernel_getsockopt(con->sock,
497
IPPROTO_SCTP,
498
SCTP_PRIMARY_ADDR,
499
(char*)&prim,
500
&prim_len);
501
if (ret < 0) {
502
log_print("getsockopt/sctp_primary_addr on "
503
"new assoc %d failed : %d",
504
(int)sn->sn_assoc_change.sac_assoc_id,
505
ret);
506
507
/* Retry INIT later */
508
new_con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
509
if (new_con)
510
clear_bit(CF_CONNECT_PENDING, &con->flags);
511
return;
512
}
513
make_sockaddr(&prim.ssp_addr, 0, &addr_len);
514
if (dlm_addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
515
int i;
516
unsigned char *b=(unsigned char *)&prim.ssp_addr;
517
log_print("reject connect from unknown addr");
518
for (i=0; i<sizeof(struct sockaddr_storage);i++)
519
printk("%02x ", b[i]);
520
printk("\n");
521
sctp_send_shutdown(prim.ssp_assoc_id);
522
return;
523
}
524
525
new_con = nodeid2con(nodeid, GFP_NOFS);
526
if (!new_con)
527
return;
528
529
/* Peel off a new sock */
530
parg.associd = sn->sn_assoc_change.sac_assoc_id;
531
ret = kernel_getsockopt(con->sock, IPPROTO_SCTP,
532
SCTP_SOCKOPT_PEELOFF,
533
(void *)&parg, &parglen);
534
if (ret < 0) {
535
log_print("Can't peel off a socket for "
536
"connection %d to node %d: err=%d",
537
parg.associd, nodeid, ret);
538
return;
539
}
540
new_con->sock = sockfd_lookup(parg.sd, &err);
541
if (!new_con->sock) {
542
log_print("sockfd_lookup error %d", err);
543
return;
544
}
545
add_sock(new_con->sock, new_con);
546
sockfd_put(new_con->sock);
547
548
log_print("connecting to %d sctp association %d",
549
nodeid, (int)sn->sn_assoc_change.sac_assoc_id);
550
551
/* Send any pending writes */
552
clear_bit(CF_CONNECT_PENDING, &new_con->flags);
553
clear_bit(CF_INIT_PENDING, &con->flags);
554
if (!test_and_set_bit(CF_WRITE_PENDING, &new_con->flags)) {
555
queue_work(send_workqueue, &new_con->swork);
556
}
557
if (!test_and_set_bit(CF_READ_PENDING, &new_con->flags))
558
queue_work(recv_workqueue, &new_con->rwork);
559
}
560
break;
561
562
case SCTP_COMM_LOST:
563
case SCTP_SHUTDOWN_COMP:
564
{
565
con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
566
if (con) {
567
con->sctp_assoc = 0;
568
}
569
}
570
break;
571
572
/* We don't know which INIT failed, so clear the PENDING flags
573
* on them all. if assoc_id is zero then it will then try
574
* again */
575
576
case SCTP_CANT_STR_ASSOC:
577
{
578
log_print("Can't start SCTP association - retrying");
579
sctp_init_failed();
580
}
581
break;
582
583
default:
584
log_print("unexpected SCTP assoc change id=%d state=%d",
585
(int)sn->sn_assoc_change.sac_assoc_id,
586
sn->sn_assoc_change.sac_state);
587
}
588
}
589
}
590
591
/* Data received from remote end */
592
static int receive_from_sock(struct connection *con)
593
{
594
int ret = 0;
595
struct msghdr msg = {};
596
struct kvec iov[2];
597
unsigned len;
598
int r;
599
int call_again_soon = 0;
600
int nvec;
601
char incmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
602
603
mutex_lock(&con->sock_mutex);
604
605
if (con->sock == NULL) {
606
ret = -EAGAIN;
607
goto out_close;
608
}
609
610
if (con->rx_page == NULL) {
611
/*
612
* This doesn't need to be atomic, but I think it should
613
* improve performance if it is.
614
*/
615
con->rx_page = alloc_page(GFP_ATOMIC);
616
if (con->rx_page == NULL)
617
goto out_resched;
618
cbuf_init(&con->cb, PAGE_CACHE_SIZE);
619
}
620
621
/* Only SCTP needs these really */
622
memset(&incmsg, 0, sizeof(incmsg));
623
msg.msg_control = incmsg;
624
msg.msg_controllen = sizeof(incmsg);
625
626
/*
627
* iov[0] is the bit of the circular buffer between the current end
628
* point (cb.base + cb.len) and the end of the buffer.
629
*/
630
iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
631
iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
632
iov[1].iov_len = 0;
633
nvec = 1;
634
635
/*
636
* iov[1] is the bit of the circular buffer between the start of the
637
* buffer and the start of the currently used section (cb.base)
638
*/
639
if (cbuf_data(&con->cb) >= con->cb.base) {
640
iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb);
641
iov[1].iov_len = con->cb.base;
642
iov[1].iov_base = page_address(con->rx_page);
643
nvec = 2;
644
}
645
len = iov[0].iov_len + iov[1].iov_len;
646
647
r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
648
MSG_DONTWAIT | MSG_NOSIGNAL);
649
if (ret <= 0)
650
goto out_close;
651
652
/* Process SCTP notifications */
653
if (msg.msg_flags & MSG_NOTIFICATION) {
654
msg.msg_control = incmsg;
655
msg.msg_controllen = sizeof(incmsg);
656
657
process_sctp_notification(con, &msg,
658
page_address(con->rx_page) + con->cb.base);
659
mutex_unlock(&con->sock_mutex);
660
return 0;
661
}
662
BUG_ON(con->nodeid == 0);
663
664
if (ret == len)
665
call_again_soon = 1;
666
cbuf_add(&con->cb, ret);
667
ret = dlm_process_incoming_buffer(con->nodeid,
668
page_address(con->rx_page),
669
con->cb.base, con->cb.len,
670
PAGE_CACHE_SIZE);
671
if (ret == -EBADMSG) {
672
log_print("lowcomms: addr=%p, base=%u, len=%u, "
673
"iov_len=%u, iov_base[0]=%p, read=%d",
674
page_address(con->rx_page), con->cb.base, con->cb.len,
675
len, iov[0].iov_base, r);
676
}
677
if (ret < 0)
678
goto out_close;
679
cbuf_eat(&con->cb, ret);
680
681
if (cbuf_empty(&con->cb) && !call_again_soon) {
682
__free_page(con->rx_page);
683
con->rx_page = NULL;
684
}
685
686
if (call_again_soon)
687
goto out_resched;
688
mutex_unlock(&con->sock_mutex);
689
return 0;
690
691
out_resched:
692
if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
693
queue_work(recv_workqueue, &con->rwork);
694
mutex_unlock(&con->sock_mutex);
695
return -EAGAIN;
696
697
out_close:
698
mutex_unlock(&con->sock_mutex);
699
if (ret != -EAGAIN) {
700
close_connection(con, false);
701
/* Reconnect when there is something to send */
702
}
703
/* Don't return success if we really got EOF */
704
if (ret == 0)
705
ret = -EAGAIN;
706
707
return ret;
708
}
709
710
/* Listening socket is busy, accept a connection */
711
static int tcp_accept_from_sock(struct connection *con)
712
{
713
int result;
714
struct sockaddr_storage peeraddr;
715
struct socket *newsock;
716
int len;
717
int nodeid;
718
struct connection *newcon;
719
struct connection *addcon;
720
721
memset(&peeraddr, 0, sizeof(peeraddr));
722
result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
723
IPPROTO_TCP, &newsock);
724
if (result < 0)
725
return -ENOMEM;
726
727
mutex_lock_nested(&con->sock_mutex, 0);
728
729
result = -ENOTCONN;
730
if (con->sock == NULL)
731
goto accept_err;
732
733
newsock->type = con->sock->type;
734
newsock->ops = con->sock->ops;
735
736
result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
737
if (result < 0)
738
goto accept_err;
739
740
/* Get the connected socket's peer */
741
memset(&peeraddr, 0, sizeof(peeraddr));
742
if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
743
&len, 2)) {
744
result = -ECONNABORTED;
745
goto accept_err;
746
}
747
748
/* Get the new node's NODEID */
749
make_sockaddr(&peeraddr, 0, &len);
750
if (dlm_addr_to_nodeid(&peeraddr, &nodeid)) {
751
log_print("connect from non cluster node");
752
sock_release(newsock);
753
mutex_unlock(&con->sock_mutex);
754
return -1;
755
}
756
757
log_print("got connection from %d", nodeid);
758
759
/* Check to see if we already have a connection to this node. This
760
* could happen if the two nodes initiate a connection at roughly
761
* the same time and the connections cross on the wire.
762
* In this case we store the incoming one in "othercon"
763
*/
764
newcon = nodeid2con(nodeid, GFP_NOFS);
765
if (!newcon) {
766
result = -ENOMEM;
767
goto accept_err;
768
}
769
mutex_lock_nested(&newcon->sock_mutex, 1);
770
if (newcon->sock) {
771
struct connection *othercon = newcon->othercon;
772
773
if (!othercon) {
774
othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
775
if (!othercon) {
776
log_print("failed to allocate incoming socket");
777
mutex_unlock(&newcon->sock_mutex);
778
result = -ENOMEM;
779
goto accept_err;
780
}
781
othercon->nodeid = nodeid;
782
othercon->rx_action = receive_from_sock;
783
mutex_init(&othercon->sock_mutex);
784
INIT_WORK(&othercon->swork, process_send_sockets);
785
INIT_WORK(&othercon->rwork, process_recv_sockets);
786
set_bit(CF_IS_OTHERCON, &othercon->flags);
787
}
788
if (!othercon->sock) {
789
newcon->othercon = othercon;
790
othercon->sock = newsock;
791
newsock->sk->sk_user_data = othercon;
792
add_sock(newsock, othercon);
793
addcon = othercon;
794
}
795
else {
796
printk("Extra connection from node %d attempted\n", nodeid);
797
result = -EAGAIN;
798
mutex_unlock(&newcon->sock_mutex);
799
goto accept_err;
800
}
801
}
802
else {
803
newsock->sk->sk_user_data = newcon;
804
newcon->rx_action = receive_from_sock;
805
add_sock(newsock, newcon);
806
addcon = newcon;
807
}
808
809
mutex_unlock(&newcon->sock_mutex);
810
811
/*
812
* Add it to the active queue in case we got data
813
* between processing the accept adding the socket
814
* to the read_sockets list
815
*/
816
if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
817
queue_work(recv_workqueue, &addcon->rwork);
818
mutex_unlock(&con->sock_mutex);
819
820
return 0;
821
822
accept_err:
823
mutex_unlock(&con->sock_mutex);
824
sock_release(newsock);
825
826
if (result != -EAGAIN)
827
log_print("error accepting connection from node: %d", result);
828
return result;
829
}
830
831
static void free_entry(struct writequeue_entry *e)
832
{
833
__free_page(e->page);
834
kfree(e);
835
}
836
837
/* Initiate an SCTP association.
838
This is a special case of send_to_sock() in that we don't yet have a
839
peeled-off socket for this association, so we use the listening socket
840
and add the primary IP address of the remote node.
841
*/
842
static void sctp_init_assoc(struct connection *con)
843
{
844
struct sockaddr_storage rem_addr;
845
char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
846
struct msghdr outmessage;
847
struct cmsghdr *cmsg;
848
struct sctp_sndrcvinfo *sinfo;
849
struct connection *base_con;
850
struct writequeue_entry *e;
851
int len, offset;
852
int ret;
853
int addrlen;
854
struct kvec iov[1];
855
856
if (test_and_set_bit(CF_INIT_PENDING, &con->flags))
857
return;
858
859
if (con->retries++ > MAX_CONNECT_RETRIES)
860
return;
861
862
if (nodeid_to_addr(con->nodeid, (struct sockaddr *)&rem_addr)) {
863
log_print("no address for nodeid %d", con->nodeid);
864
return;
865
}
866
base_con = nodeid2con(0, 0);
867
BUG_ON(base_con == NULL);
868
869
make_sockaddr(&rem_addr, dlm_config.ci_tcp_port, &addrlen);
870
871
outmessage.msg_name = &rem_addr;
872
outmessage.msg_namelen = addrlen;
873
outmessage.msg_control = outcmsg;
874
outmessage.msg_controllen = sizeof(outcmsg);
875
outmessage.msg_flags = MSG_EOR;
876
877
spin_lock(&con->writequeue_lock);
878
879
if (list_empty(&con->writequeue)) {
880
spin_unlock(&con->writequeue_lock);
881
log_print("writequeue empty for nodeid %d", con->nodeid);
882
return;
883
}
884
885
e = list_first_entry(&con->writequeue, struct writequeue_entry, list);
886
len = e->len;
887
offset = e->offset;
888
spin_unlock(&con->writequeue_lock);
889
890
/* Send the first block off the write queue */
891
iov[0].iov_base = page_address(e->page)+offset;
892
iov[0].iov_len = len;
893
894
cmsg = CMSG_FIRSTHDR(&outmessage);
895
cmsg->cmsg_level = IPPROTO_SCTP;
896
cmsg->cmsg_type = SCTP_SNDRCV;
897
cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
898
sinfo = CMSG_DATA(cmsg);
899
memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
900
sinfo->sinfo_ppid = cpu_to_le32(dlm_our_nodeid());
901
outmessage.msg_controllen = cmsg->cmsg_len;
902
903
ret = kernel_sendmsg(base_con->sock, &outmessage, iov, 1, len);
904
if (ret < 0) {
905
log_print("Send first packet to node %d failed: %d",
906
con->nodeid, ret);
907
908
/* Try again later */
909
clear_bit(CF_CONNECT_PENDING, &con->flags);
910
clear_bit(CF_INIT_PENDING, &con->flags);
911
}
912
else {
913
spin_lock(&con->writequeue_lock);
914
e->offset += ret;
915
e->len -= ret;
916
917
if (e->len == 0 && e->users == 0) {
918
list_del(&e->list);
919
free_entry(e);
920
}
921
spin_unlock(&con->writequeue_lock);
922
}
923
}
924
925
/* Connect a new socket to its peer */
926
static void tcp_connect_to_sock(struct connection *con)
927
{
928
int result = -EHOSTUNREACH;
929
struct sockaddr_storage saddr, src_addr;
930
int addr_len;
931
struct socket *sock = NULL;
932
int one = 1;
933
934
if (con->nodeid == 0) {
935
log_print("attempt to connect sock 0 foiled");
936
return;
937
}
938
939
mutex_lock(&con->sock_mutex);
940
if (con->retries++ > MAX_CONNECT_RETRIES)
941
goto out;
942
943
/* Some odd races can cause double-connects, ignore them */
944
if (con->sock) {
945
result = 0;
946
goto out;
947
}
948
949
/* Create a socket to communicate with */
950
result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
951
IPPROTO_TCP, &sock);
952
if (result < 0)
953
goto out_err;
954
955
memset(&saddr, 0, sizeof(saddr));
956
if (dlm_nodeid_to_addr(con->nodeid, &saddr))
957
goto out_err;
958
959
sock->sk->sk_user_data = con;
960
con->rx_action = receive_from_sock;
961
con->connect_action = tcp_connect_to_sock;
962
add_sock(sock, con);
963
964
/* Bind to our cluster-known address connecting to avoid
965
routing problems */
966
memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
967
make_sockaddr(&src_addr, 0, &addr_len);
968
result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
969
addr_len);
970
if (result < 0) {
971
log_print("could not bind for connect: %d", result);
972
/* This *may* not indicate a critical error */
973
}
974
975
make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
976
977
log_print("connecting to %d", con->nodeid);
978
979
/* Turn off Nagle's algorithm */
980
kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
981
sizeof(one));
982
983
result =
984
sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
985
O_NONBLOCK);
986
if (result == -EINPROGRESS)
987
result = 0;
988
if (result == 0)
989
goto out;
990
991
out_err:
992
if (con->sock) {
993
sock_release(con->sock);
994
con->sock = NULL;
995
} else if (sock) {
996
sock_release(sock);
997
}
998
/*
999
* Some errors are fatal and this list might need adjusting. For other
1000
* errors we try again until the max number of retries is reached.
1001
*/
1002
if (result != -EHOSTUNREACH && result != -ENETUNREACH &&
1003
result != -ENETDOWN && result != -EINVAL
1004
&& result != -EPROTONOSUPPORT) {
1005
lowcomms_connect_sock(con);
1006
result = 0;
1007
}
1008
out:
1009
mutex_unlock(&con->sock_mutex);
1010
return;
1011
}
1012
1013
static struct socket *tcp_create_listen_sock(struct connection *con,
1014
struct sockaddr_storage *saddr)
1015
{
1016
struct socket *sock = NULL;
1017
int result = 0;
1018
int one = 1;
1019
int addr_len;
1020
1021
if (dlm_local_addr[0]->ss_family == AF_INET)
1022
addr_len = sizeof(struct sockaddr_in);
1023
else
1024
addr_len = sizeof(struct sockaddr_in6);
1025
1026
/* Create a socket to communicate with */
1027
result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
1028
IPPROTO_TCP, &sock);
1029
if (result < 0) {
1030
log_print("Can't create listening comms socket");
1031
goto create_out;
1032
}
1033
1034
/* Turn off Nagle's algorithm */
1035
kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1036
sizeof(one));
1037
1038
result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
1039
(char *)&one, sizeof(one));
1040
1041
if (result < 0) {
1042
log_print("Failed to set SO_REUSEADDR on socket: %d", result);
1043
}
1044
sock->sk->sk_user_data = con;
1045
con->rx_action = tcp_accept_from_sock;
1046
con->connect_action = tcp_connect_to_sock;
1047
con->sock = sock;
1048
1049
/* Bind to our port */
1050
make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1051
result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1052
if (result < 0) {
1053
log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1054
sock_release(sock);
1055
sock = NULL;
1056
con->sock = NULL;
1057
goto create_out;
1058
}
1059
result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
1060
(char *)&one, sizeof(one));
1061
if (result < 0) {
1062
log_print("Set keepalive failed: %d", result);
1063
}
1064
1065
result = sock->ops->listen(sock, 5);
1066
if (result < 0) {
1067
log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1068
sock_release(sock);
1069
sock = NULL;
1070
goto create_out;
1071
}
1072
1073
create_out:
1074
return sock;
1075
}
1076
1077
/* Get local addresses */
1078
static void init_local(void)
1079
{
1080
struct sockaddr_storage sas, *addr;
1081
int i;
1082
1083
dlm_local_count = 0;
1084
for (i = 0; i < DLM_MAX_ADDR_COUNT - 1; i++) {
1085
if (dlm_our_addr(&sas, i))
1086
break;
1087
1088
addr = kmalloc(sizeof(*addr), GFP_NOFS);
1089
if (!addr)
1090
break;
1091
memcpy(addr, &sas, sizeof(*addr));
1092
dlm_local_addr[dlm_local_count++] = addr;
1093
}
1094
}
1095
1096
/* Bind to an IP address. SCTP allows multiple address so it can do
1097
multi-homing */
1098
static int add_sctp_bind_addr(struct connection *sctp_con,
1099
struct sockaddr_storage *addr,
1100
int addr_len, int num)
1101
{
1102
int result = 0;
1103
1104
if (num == 1)
1105
result = kernel_bind(sctp_con->sock,
1106
(struct sockaddr *) addr,
1107
addr_len);
1108
else
1109
result = kernel_setsockopt(sctp_con->sock, SOL_SCTP,
1110
SCTP_SOCKOPT_BINDX_ADD,
1111
(char *)addr, addr_len);
1112
1113
if (result < 0)
1114
log_print("Can't bind to port %d addr number %d",
1115
dlm_config.ci_tcp_port, num);
1116
1117
return result;
1118
}
1119
1120
/* Initialise SCTP socket and bind to all interfaces */
1121
static int sctp_listen_for_all(void)
1122
{
1123
struct socket *sock = NULL;
1124
struct sockaddr_storage localaddr;
1125
struct sctp_event_subscribe subscribe;
1126
int result = -EINVAL, num = 1, i, addr_len;
1127
struct connection *con = nodeid2con(0, GFP_NOFS);
1128
int bufsize = NEEDED_RMEM;
1129
1130
if (!con)
1131
return -ENOMEM;
1132
1133
log_print("Using SCTP for communications");
1134
1135
result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_SEQPACKET,
1136
IPPROTO_SCTP, &sock);
1137
if (result < 0) {
1138
log_print("Can't create comms socket, check SCTP is loaded");
1139
goto out;
1140
}
1141
1142
/* Listen for events */
1143
memset(&subscribe, 0, sizeof(subscribe));
1144
subscribe.sctp_data_io_event = 1;
1145
subscribe.sctp_association_event = 1;
1146
subscribe.sctp_send_failure_event = 1;
1147
subscribe.sctp_shutdown_event = 1;
1148
subscribe.sctp_partial_delivery_event = 1;
1149
1150
result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1151
(char *)&bufsize, sizeof(bufsize));
1152
if (result)
1153
log_print("Error increasing buffer space on socket %d", result);
1154
1155
result = kernel_setsockopt(sock, SOL_SCTP, SCTP_EVENTS,
1156
(char *)&subscribe, sizeof(subscribe));
1157
if (result < 0) {
1158
log_print("Failed to set SCTP_EVENTS on socket: result=%d",
1159
result);
1160
goto create_delsock;
1161
}
1162
1163
/* Init con struct */
1164
sock->sk->sk_user_data = con;
1165
con->sock = sock;
1166
con->sock->sk->sk_data_ready = lowcomms_data_ready;
1167
con->rx_action = receive_from_sock;
1168
con->connect_action = sctp_init_assoc;
1169
1170
/* Bind to all interfaces. */
1171
for (i = 0; i < dlm_local_count; i++) {
1172
memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1173
make_sockaddr(&localaddr, dlm_config.ci_tcp_port, &addr_len);
1174
1175
result = add_sctp_bind_addr(con, &localaddr, addr_len, num);
1176
if (result)
1177
goto create_delsock;
1178
++num;
1179
}
1180
1181
result = sock->ops->listen(sock, 5);
1182
if (result < 0) {
1183
log_print("Can't set socket listening");
1184
goto create_delsock;
1185
}
1186
1187
return 0;
1188
1189
create_delsock:
1190
sock_release(sock);
1191
con->sock = NULL;
1192
out:
1193
return result;
1194
}
1195
1196
static int tcp_listen_for_all(void)
1197
{
1198
struct socket *sock = NULL;
1199
struct connection *con = nodeid2con(0, GFP_NOFS);
1200
int result = -EINVAL;
1201
1202
if (!con)
1203
return -ENOMEM;
1204
1205
/* We don't support multi-homed hosts */
1206
if (dlm_local_addr[1] != NULL) {
1207
log_print("TCP protocol can't handle multi-homed hosts, "
1208
"try SCTP");
1209
return -EINVAL;
1210
}
1211
1212
log_print("Using TCP for communications");
1213
1214
sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1215
if (sock) {
1216
add_sock(sock, con);
1217
result = 0;
1218
}
1219
else {
1220
result = -EADDRINUSE;
1221
}
1222
1223
return result;
1224
}
1225
1226
1227
1228
static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1229
gfp_t allocation)
1230
{
1231
struct writequeue_entry *entry;
1232
1233
entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1234
if (!entry)
1235
return NULL;
1236
1237
entry->page = alloc_page(allocation);
1238
if (!entry->page) {
1239
kfree(entry);
1240
return NULL;
1241
}
1242
1243
entry->offset = 0;
1244
entry->len = 0;
1245
entry->end = 0;
1246
entry->users = 0;
1247
entry->con = con;
1248
1249
return entry;
1250
}
1251
1252
void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1253
{
1254
struct connection *con;
1255
struct writequeue_entry *e;
1256
int offset = 0;
1257
int users = 0;
1258
1259
con = nodeid2con(nodeid, allocation);
1260
if (!con)
1261
return NULL;
1262
1263
spin_lock(&con->writequeue_lock);
1264
e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1265
if ((&e->list == &con->writequeue) ||
1266
(PAGE_CACHE_SIZE - e->end < len)) {
1267
e = NULL;
1268
} else {
1269
offset = e->end;
1270
e->end += len;
1271
users = e->users++;
1272
}
1273
spin_unlock(&con->writequeue_lock);
1274
1275
if (e) {
1276
got_one:
1277
*ppc = page_address(e->page) + offset;
1278
return e;
1279
}
1280
1281
e = new_writequeue_entry(con, allocation);
1282
if (e) {
1283
spin_lock(&con->writequeue_lock);
1284
offset = e->end;
1285
e->end += len;
1286
users = e->users++;
1287
list_add_tail(&e->list, &con->writequeue);
1288
spin_unlock(&con->writequeue_lock);
1289
goto got_one;
1290
}
1291
return NULL;
1292
}
1293
1294
void dlm_lowcomms_commit_buffer(void *mh)
1295
{
1296
struct writequeue_entry *e = (struct writequeue_entry *)mh;
1297
struct connection *con = e->con;
1298
int users;
1299
1300
spin_lock(&con->writequeue_lock);
1301
users = --e->users;
1302
if (users)
1303
goto out;
1304
e->len = e->end - e->offset;
1305
spin_unlock(&con->writequeue_lock);
1306
1307
if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
1308
queue_work(send_workqueue, &con->swork);
1309
}
1310
return;
1311
1312
out:
1313
spin_unlock(&con->writequeue_lock);
1314
return;
1315
}
1316
1317
/* Send a message */
1318
static void send_to_sock(struct connection *con)
1319
{
1320
int ret = 0;
1321
const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1322
struct writequeue_entry *e;
1323
int len, offset;
1324
int count = 0;
1325
1326
mutex_lock(&con->sock_mutex);
1327
if (con->sock == NULL)
1328
goto out_connect;
1329
1330
spin_lock(&con->writequeue_lock);
1331
for (;;) {
1332
e = list_entry(con->writequeue.next, struct writequeue_entry,
1333
list);
1334
if ((struct list_head *) e == &con->writequeue)
1335
break;
1336
1337
len = e->len;
1338
offset = e->offset;
1339
BUG_ON(len == 0 && e->users == 0);
1340
spin_unlock(&con->writequeue_lock);
1341
1342
ret = 0;
1343
if (len) {
1344
ret = kernel_sendpage(con->sock, e->page, offset, len,
1345
msg_flags);
1346
if (ret == -EAGAIN || ret == 0) {
1347
if (ret == -EAGAIN &&
1348
test_bit(SOCK_ASYNC_NOSPACE, &con->sock->flags) &&
1349
!test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1350
/* Notify TCP that we're limited by the
1351
* application window size.
1352
*/
1353
set_bit(SOCK_NOSPACE, &con->sock->flags);
1354
con->sock->sk->sk_write_pending++;
1355
}
1356
cond_resched();
1357
goto out;
1358
}
1359
if (ret <= 0)
1360
goto send_error;
1361
}
1362
1363
/* Don't starve people filling buffers */
1364
if (++count >= MAX_SEND_MSG_COUNT) {
1365
cond_resched();
1366
count = 0;
1367
}
1368
1369
spin_lock(&con->writequeue_lock);
1370
e->offset += ret;
1371
e->len -= ret;
1372
1373
if (e->len == 0 && e->users == 0) {
1374
list_del(&e->list);
1375
free_entry(e);
1376
continue;
1377
}
1378
}
1379
spin_unlock(&con->writequeue_lock);
1380
out:
1381
mutex_unlock(&con->sock_mutex);
1382
return;
1383
1384
send_error:
1385
mutex_unlock(&con->sock_mutex);
1386
close_connection(con, false);
1387
lowcomms_connect_sock(con);
1388
return;
1389
1390
out_connect:
1391
mutex_unlock(&con->sock_mutex);
1392
if (!test_bit(CF_INIT_PENDING, &con->flags))
1393
lowcomms_connect_sock(con);
1394
return;
1395
}
1396
1397
static void clean_one_writequeue(struct connection *con)
1398
{
1399
struct writequeue_entry *e, *safe;
1400
1401
spin_lock(&con->writequeue_lock);
1402
list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1403
list_del(&e->list);
1404
free_entry(e);
1405
}
1406
spin_unlock(&con->writequeue_lock);
1407
}
1408
1409
/* Called from recovery when it knows that a node has
1410
left the cluster */
1411
int dlm_lowcomms_close(int nodeid)
1412
{
1413
struct connection *con;
1414
1415
log_print("closing connection to node %d", nodeid);
1416
con = nodeid2con(nodeid, 0);
1417
if (con) {
1418
clear_bit(CF_CONNECT_PENDING, &con->flags);
1419
clear_bit(CF_WRITE_PENDING, &con->flags);
1420
set_bit(CF_CLOSE, &con->flags);
1421
if (cancel_work_sync(&con->swork))
1422
log_print("canceled swork for node %d", nodeid);
1423
if (cancel_work_sync(&con->rwork))
1424
log_print("canceled rwork for node %d", nodeid);
1425
clean_one_writequeue(con);
1426
close_connection(con, true);
1427
}
1428
return 0;
1429
}
1430
1431
/* Receive workqueue function */
1432
static void process_recv_sockets(struct work_struct *work)
1433
{
1434
struct connection *con = container_of(work, struct connection, rwork);
1435
int err;
1436
1437
clear_bit(CF_READ_PENDING, &con->flags);
1438
do {
1439
err = con->rx_action(con);
1440
} while (!err);
1441
}
1442
1443
/* Send workqueue function */
1444
static void process_send_sockets(struct work_struct *work)
1445
{
1446
struct connection *con = container_of(work, struct connection, swork);
1447
1448
if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
1449
con->connect_action(con);
1450
set_bit(CF_WRITE_PENDING, &con->flags);
1451
}
1452
if (test_and_clear_bit(CF_WRITE_PENDING, &con->flags))
1453
send_to_sock(con);
1454
}
1455
1456
1457
/* Discard all entries on the write queues */
1458
static void clean_writequeues(void)
1459
{
1460
foreach_conn(clean_one_writequeue);
1461
}
1462
1463
static void work_stop(void)
1464
{
1465
destroy_workqueue(recv_workqueue);
1466
destroy_workqueue(send_workqueue);
1467
}
1468
1469
static int work_start(void)
1470
{
1471
recv_workqueue = alloc_workqueue("dlm_recv",
1472
WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1473
if (!recv_workqueue) {
1474
log_print("can't start dlm_recv");
1475
return -ENOMEM;
1476
}
1477
1478
send_workqueue = alloc_workqueue("dlm_send",
1479
WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1480
if (!send_workqueue) {
1481
log_print("can't start dlm_send");
1482
destroy_workqueue(recv_workqueue);
1483
return -ENOMEM;
1484
}
1485
1486
return 0;
1487
}
1488
1489
static void stop_conn(struct connection *con)
1490
{
1491
con->flags |= 0x0F;
1492
if (con->sock && con->sock->sk)
1493
con->sock->sk->sk_user_data = NULL;
1494
}
1495
1496
static void free_conn(struct connection *con)
1497
{
1498
close_connection(con, true);
1499
if (con->othercon)
1500
kmem_cache_free(con_cache, con->othercon);
1501
hlist_del(&con->list);
1502
kmem_cache_free(con_cache, con);
1503
}
1504
1505
void dlm_lowcomms_stop(void)
1506
{
1507
/* Set all the flags to prevent any
1508
socket activity.
1509
*/
1510
mutex_lock(&connections_lock);
1511
foreach_conn(stop_conn);
1512
mutex_unlock(&connections_lock);
1513
1514
work_stop();
1515
1516
mutex_lock(&connections_lock);
1517
clean_writequeues();
1518
1519
foreach_conn(free_conn);
1520
1521
mutex_unlock(&connections_lock);
1522
kmem_cache_destroy(con_cache);
1523
}
1524
1525
int dlm_lowcomms_start(void)
1526
{
1527
int error = -EINVAL;
1528
struct connection *con;
1529
int i;
1530
1531
for (i = 0; i < CONN_HASH_SIZE; i++)
1532
INIT_HLIST_HEAD(&connection_hash[i]);
1533
1534
init_local();
1535
if (!dlm_local_count) {
1536
error = -ENOTCONN;
1537
log_print("no local IP address has been set");
1538
goto out;
1539
}
1540
1541
error = -ENOMEM;
1542
con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1543
__alignof__(struct connection), 0,
1544
NULL);
1545
if (!con_cache)
1546
goto out;
1547
1548
/* Start listening */
1549
if (dlm_config.ci_protocol == 0)
1550
error = tcp_listen_for_all();
1551
else
1552
error = sctp_listen_for_all();
1553
if (error)
1554
goto fail_unlisten;
1555
1556
error = work_start();
1557
if (error)
1558
goto fail_unlisten;
1559
1560
return 0;
1561
1562
fail_unlisten:
1563
con = nodeid2con(0,0);
1564
if (con) {
1565
close_connection(con, false);
1566
kmem_cache_free(con_cache, con);
1567
}
1568
kmem_cache_destroy(con_cache);
1569
1570
out:
1571
return error;
1572
}
1573
1574