Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/fs/ecryptfs/messaging.c
15109 views
1
/**
2
* eCryptfs: Linux filesystem encryption layer
3
*
4
* Copyright (C) 2004-2008 International Business Machines Corp.
5
* Author(s): Michael A. Halcrow <[email protected]>
6
* Tyler Hicks <[email protected]>
7
*
8
* This program is free software; you can redistribute it and/or
9
* modify it under the terms of the GNU General Public License version
10
* 2 as published by the Free Software Foundation.
11
*
12
* This program is distributed in the hope that it will be useful, but
13
* WITHOUT ANY WARRANTY; without even the implied warranty of
14
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15
* General Public License for more details.
16
*
17
* You should have received a copy of the GNU General Public License
18
* along with this program; if not, write to the Free Software
19
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
20
* 02111-1307, USA.
21
*/
22
#include <linux/sched.h>
23
#include <linux/slab.h>
24
#include <linux/user_namespace.h>
25
#include <linux/nsproxy.h>
26
#include "ecryptfs_kernel.h"
27
28
static LIST_HEAD(ecryptfs_msg_ctx_free_list);
29
static LIST_HEAD(ecryptfs_msg_ctx_alloc_list);
30
static struct mutex ecryptfs_msg_ctx_lists_mux;
31
32
static struct hlist_head *ecryptfs_daemon_hash;
33
struct mutex ecryptfs_daemon_hash_mux;
34
static int ecryptfs_hash_bits;
35
#define ecryptfs_uid_hash(uid) \
36
hash_long((unsigned long)uid, ecryptfs_hash_bits)
37
38
static u32 ecryptfs_msg_counter;
39
static struct ecryptfs_msg_ctx *ecryptfs_msg_ctx_arr;
40
41
/**
42
* ecryptfs_acquire_free_msg_ctx
43
* @msg_ctx: The context that was acquired from the free list
44
*
45
* Acquires a context element from the free list and locks the mutex
46
* on the context. Sets the msg_ctx task to current. Returns zero on
47
* success; non-zero on error or upon failure to acquire a free
48
* context element. Must be called with ecryptfs_msg_ctx_lists_mux
49
* held.
50
*/
51
static int ecryptfs_acquire_free_msg_ctx(struct ecryptfs_msg_ctx **msg_ctx)
52
{
53
struct list_head *p;
54
int rc;
55
56
if (list_empty(&ecryptfs_msg_ctx_free_list)) {
57
printk(KERN_WARNING "%s: The eCryptfs free "
58
"context list is empty. It may be helpful to "
59
"specify the ecryptfs_message_buf_len "
60
"parameter to be greater than the current "
61
"value of [%d]\n", __func__, ecryptfs_message_buf_len);
62
rc = -ENOMEM;
63
goto out;
64
}
65
list_for_each(p, &ecryptfs_msg_ctx_free_list) {
66
*msg_ctx = list_entry(p, struct ecryptfs_msg_ctx, node);
67
if (mutex_trylock(&(*msg_ctx)->mux)) {
68
(*msg_ctx)->task = current;
69
rc = 0;
70
goto out;
71
}
72
}
73
rc = -ENOMEM;
74
out:
75
return rc;
76
}
77
78
/**
79
* ecryptfs_msg_ctx_free_to_alloc
80
* @msg_ctx: The context to move from the free list to the alloc list
81
*
82
* Must be called with ecryptfs_msg_ctx_lists_mux held.
83
*/
84
static void ecryptfs_msg_ctx_free_to_alloc(struct ecryptfs_msg_ctx *msg_ctx)
85
{
86
list_move(&msg_ctx->node, &ecryptfs_msg_ctx_alloc_list);
87
msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_PENDING;
88
msg_ctx->counter = ++ecryptfs_msg_counter;
89
}
90
91
/**
92
* ecryptfs_msg_ctx_alloc_to_free
93
* @msg_ctx: The context to move from the alloc list to the free list
94
*
95
* Must be called with ecryptfs_msg_ctx_lists_mux held.
96
*/
97
void ecryptfs_msg_ctx_alloc_to_free(struct ecryptfs_msg_ctx *msg_ctx)
98
{
99
list_move(&(msg_ctx->node), &ecryptfs_msg_ctx_free_list);
100
if (msg_ctx->msg)
101
kfree(msg_ctx->msg);
102
msg_ctx->msg = NULL;
103
msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_FREE;
104
}
105
106
/**
107
* ecryptfs_find_daemon_by_euid
108
* @euid: The effective user id which maps to the desired daemon id
109
* @user_ns: The namespace in which @euid applies
110
* @daemon: If return value is zero, points to the desired daemon pointer
111
*
112
* Must be called with ecryptfs_daemon_hash_mux held.
113
*
114
* Search the hash list for the given user id.
115
*
116
* Returns zero if the user id exists in the list; non-zero otherwise.
117
*/
118
int ecryptfs_find_daemon_by_euid(struct ecryptfs_daemon **daemon, uid_t euid,
119
struct user_namespace *user_ns)
120
{
121
struct hlist_node *elem;
122
int rc;
123
124
hlist_for_each_entry(*daemon, elem,
125
&ecryptfs_daemon_hash[ecryptfs_uid_hash(euid)],
126
euid_chain) {
127
if ((*daemon)->euid == euid && (*daemon)->user_ns == user_ns) {
128
rc = 0;
129
goto out;
130
}
131
}
132
rc = -EINVAL;
133
out:
134
return rc;
135
}
136
137
/**
138
* ecryptfs_spawn_daemon - Create and initialize a new daemon struct
139
* @daemon: Pointer to set to newly allocated daemon struct
140
* @euid: Effective user id for the daemon
141
* @user_ns: The namespace in which @euid applies
142
* @pid: Process id for the daemon
143
*
144
* Must be called ceremoniously while in possession of
145
* ecryptfs_sacred_daemon_hash_mux
146
*
147
* Returns zero on success; non-zero otherwise
148
*/
149
int
150
ecryptfs_spawn_daemon(struct ecryptfs_daemon **daemon, uid_t euid,
151
struct user_namespace *user_ns, struct pid *pid)
152
{
153
int rc = 0;
154
155
(*daemon) = kzalloc(sizeof(**daemon), GFP_KERNEL);
156
if (!(*daemon)) {
157
rc = -ENOMEM;
158
printk(KERN_ERR "%s: Failed to allocate [%zd] bytes of "
159
"GFP_KERNEL memory\n", __func__, sizeof(**daemon));
160
goto out;
161
}
162
(*daemon)->euid = euid;
163
(*daemon)->user_ns = get_user_ns(user_ns);
164
(*daemon)->pid = get_pid(pid);
165
(*daemon)->task = current;
166
mutex_init(&(*daemon)->mux);
167
INIT_LIST_HEAD(&(*daemon)->msg_ctx_out_queue);
168
init_waitqueue_head(&(*daemon)->wait);
169
(*daemon)->num_queued_msg_ctx = 0;
170
hlist_add_head(&(*daemon)->euid_chain,
171
&ecryptfs_daemon_hash[ecryptfs_uid_hash(euid)]);
172
out:
173
return rc;
174
}
175
176
/**
177
* ecryptfs_exorcise_daemon - Destroy the daemon struct
178
*
179
* Must be called ceremoniously while in possession of
180
* ecryptfs_daemon_hash_mux and the daemon's own mux.
181
*/
182
int ecryptfs_exorcise_daemon(struct ecryptfs_daemon *daemon)
183
{
184
struct ecryptfs_msg_ctx *msg_ctx, *msg_ctx_tmp;
185
int rc = 0;
186
187
mutex_lock(&daemon->mux);
188
if ((daemon->flags & ECRYPTFS_DAEMON_IN_READ)
189
|| (daemon->flags & ECRYPTFS_DAEMON_IN_POLL)) {
190
rc = -EBUSY;
191
printk(KERN_WARNING "%s: Attempt to destroy daemon with pid "
192
"[0x%p], but it is in the midst of a read or a poll\n",
193
__func__, daemon->pid);
194
mutex_unlock(&daemon->mux);
195
goto out;
196
}
197
list_for_each_entry_safe(msg_ctx, msg_ctx_tmp,
198
&daemon->msg_ctx_out_queue, daemon_out_list) {
199
list_del(&msg_ctx->daemon_out_list);
200
daemon->num_queued_msg_ctx--;
201
printk(KERN_WARNING "%s: Warning: dropping message that is in "
202
"the out queue of a dying daemon\n", __func__);
203
ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
204
}
205
hlist_del(&daemon->euid_chain);
206
if (daemon->task)
207
wake_up_process(daemon->task);
208
if (daemon->pid)
209
put_pid(daemon->pid);
210
if (daemon->user_ns)
211
put_user_ns(daemon->user_ns);
212
mutex_unlock(&daemon->mux);
213
kzfree(daemon);
214
out:
215
return rc;
216
}
217
218
/**
219
* ecryptfs_process_quit
220
* @euid: The user ID owner of the message
221
* @user_ns: The namespace in which @euid applies
222
* @pid: The process ID for the userspace program that sent the
223
* message
224
*
225
* Deletes the corresponding daemon for the given euid and pid, if
226
* it is the registered that is requesting the deletion. Returns zero
227
* after deleting the desired daemon; non-zero otherwise.
228
*/
229
int ecryptfs_process_quit(uid_t euid, struct user_namespace *user_ns,
230
struct pid *pid)
231
{
232
struct ecryptfs_daemon *daemon;
233
int rc;
234
235
mutex_lock(&ecryptfs_daemon_hash_mux);
236
rc = ecryptfs_find_daemon_by_euid(&daemon, euid, user_ns);
237
if (rc || !daemon) {
238
rc = -EINVAL;
239
printk(KERN_ERR "Received request from user [%d] to "
240
"unregister unrecognized daemon [0x%p]\n", euid, pid);
241
goto out_unlock;
242
}
243
rc = ecryptfs_exorcise_daemon(daemon);
244
out_unlock:
245
mutex_unlock(&ecryptfs_daemon_hash_mux);
246
return rc;
247
}
248
249
/**
250
* ecryptfs_process_reponse
251
* @msg: The ecryptfs message received; the caller should sanity check
252
* msg->data_len and free the memory
253
* @pid: The process ID of the userspace application that sent the
254
* message
255
* @seq: The sequence number of the message; must match the sequence
256
* number for the existing message context waiting for this
257
* response
258
*
259
* Processes a response message after sending an operation request to
260
* userspace. Some other process is awaiting this response. Before
261
* sending out its first communications, the other process allocated a
262
* msg_ctx from the ecryptfs_msg_ctx_arr at a particular index. The
263
* response message contains this index so that we can copy over the
264
* response message into the msg_ctx that the process holds a
265
* reference to. The other process is going to wake up, check to see
266
* that msg_ctx->state == ECRYPTFS_MSG_CTX_STATE_DONE, and then
267
* proceed to read off and process the response message. Returns zero
268
* upon delivery to desired context element; non-zero upon delivery
269
* failure or error.
270
*
271
* Returns zero on success; non-zero otherwise
272
*/
273
int ecryptfs_process_response(struct ecryptfs_message *msg, uid_t euid,
274
struct user_namespace *user_ns, struct pid *pid,
275
u32 seq)
276
{
277
struct ecryptfs_daemon *uninitialized_var(daemon);
278
struct ecryptfs_msg_ctx *msg_ctx;
279
size_t msg_size;
280
struct nsproxy *nsproxy;
281
struct user_namespace *tsk_user_ns;
282
uid_t ctx_euid;
283
int rc;
284
285
if (msg->index >= ecryptfs_message_buf_len) {
286
rc = -EINVAL;
287
printk(KERN_ERR "%s: Attempt to reference "
288
"context buffer at index [%d]; maximum "
289
"allowable is [%d]\n", __func__, msg->index,
290
(ecryptfs_message_buf_len - 1));
291
goto out;
292
}
293
msg_ctx = &ecryptfs_msg_ctx_arr[msg->index];
294
mutex_lock(&msg_ctx->mux);
295
mutex_lock(&ecryptfs_daemon_hash_mux);
296
rcu_read_lock();
297
nsproxy = task_nsproxy(msg_ctx->task);
298
if (nsproxy == NULL) {
299
rc = -EBADMSG;
300
printk(KERN_ERR "%s: Receiving process is a zombie. Dropping "
301
"message.\n", __func__);
302
rcu_read_unlock();
303
mutex_unlock(&ecryptfs_daemon_hash_mux);
304
goto wake_up;
305
}
306
tsk_user_ns = __task_cred(msg_ctx->task)->user->user_ns;
307
ctx_euid = task_euid(msg_ctx->task);
308
rc = ecryptfs_find_daemon_by_euid(&daemon, ctx_euid, tsk_user_ns);
309
rcu_read_unlock();
310
mutex_unlock(&ecryptfs_daemon_hash_mux);
311
if (rc) {
312
rc = -EBADMSG;
313
printk(KERN_WARNING "%s: User [%d] received a "
314
"message response from process [0x%p] but does "
315
"not have a registered daemon\n", __func__,
316
ctx_euid, pid);
317
goto wake_up;
318
}
319
if (ctx_euid != euid) {
320
rc = -EBADMSG;
321
printk(KERN_WARNING "%s: Received message from user "
322
"[%d]; expected message from user [%d]\n", __func__,
323
euid, ctx_euid);
324
goto unlock;
325
}
326
if (tsk_user_ns != user_ns) {
327
rc = -EBADMSG;
328
printk(KERN_WARNING "%s: Received message from user_ns "
329
"[0x%p]; expected message from user_ns [0x%p]\n",
330
__func__, user_ns, tsk_user_ns);
331
goto unlock;
332
}
333
if (daemon->pid != pid) {
334
rc = -EBADMSG;
335
printk(KERN_ERR "%s: User [%d] sent a message response "
336
"from an unrecognized process [0x%p]\n",
337
__func__, ctx_euid, pid);
338
goto unlock;
339
}
340
if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_PENDING) {
341
rc = -EINVAL;
342
printk(KERN_WARNING "%s: Desired context element is not "
343
"pending a response\n", __func__);
344
goto unlock;
345
} else if (msg_ctx->counter != seq) {
346
rc = -EINVAL;
347
printk(KERN_WARNING "%s: Invalid message sequence; "
348
"expected [%d]; received [%d]\n", __func__,
349
msg_ctx->counter, seq);
350
goto unlock;
351
}
352
msg_size = (sizeof(*msg) + msg->data_len);
353
msg_ctx->msg = kmalloc(msg_size, GFP_KERNEL);
354
if (!msg_ctx->msg) {
355
rc = -ENOMEM;
356
printk(KERN_ERR "%s: Failed to allocate [%zd] bytes of "
357
"GFP_KERNEL memory\n", __func__, msg_size);
358
goto unlock;
359
}
360
memcpy(msg_ctx->msg, msg, msg_size);
361
msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_DONE;
362
rc = 0;
363
wake_up:
364
wake_up_process(msg_ctx->task);
365
unlock:
366
mutex_unlock(&msg_ctx->mux);
367
out:
368
return rc;
369
}
370
371
/**
372
* ecryptfs_send_message_locked
373
* @data: The data to send
374
* @data_len: The length of data
375
* @msg_ctx: The message context allocated for the send
376
*
377
* Must be called with ecryptfs_daemon_hash_mux held.
378
*
379
* Returns zero on success; non-zero otherwise
380
*/
381
static int
382
ecryptfs_send_message_locked(char *data, int data_len, u8 msg_type,
383
struct ecryptfs_msg_ctx **msg_ctx)
384
{
385
struct ecryptfs_daemon *daemon;
386
uid_t euid = current_euid();
387
int rc;
388
389
rc = ecryptfs_find_daemon_by_euid(&daemon, euid, current_user_ns());
390
if (rc || !daemon) {
391
rc = -ENOTCONN;
392
printk(KERN_ERR "%s: User [%d] does not have a daemon "
393
"registered\n", __func__, euid);
394
goto out;
395
}
396
mutex_lock(&ecryptfs_msg_ctx_lists_mux);
397
rc = ecryptfs_acquire_free_msg_ctx(msg_ctx);
398
if (rc) {
399
mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
400
printk(KERN_WARNING "%s: Could not claim a free "
401
"context element\n", __func__);
402
goto out;
403
}
404
ecryptfs_msg_ctx_free_to_alloc(*msg_ctx);
405
mutex_unlock(&(*msg_ctx)->mux);
406
mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
407
rc = ecryptfs_send_miscdev(data, data_len, *msg_ctx, msg_type, 0,
408
daemon);
409
if (rc)
410
printk(KERN_ERR "%s: Error attempting to send message to "
411
"userspace daemon; rc = [%d]\n", __func__, rc);
412
out:
413
return rc;
414
}
415
416
/**
417
* ecryptfs_send_message
418
* @data: The data to send
419
* @data_len: The length of data
420
* @msg_ctx: The message context allocated for the send
421
*
422
* Grabs ecryptfs_daemon_hash_mux.
423
*
424
* Returns zero on success; non-zero otherwise
425
*/
426
int ecryptfs_send_message(char *data, int data_len,
427
struct ecryptfs_msg_ctx **msg_ctx)
428
{
429
int rc;
430
431
mutex_lock(&ecryptfs_daemon_hash_mux);
432
rc = ecryptfs_send_message_locked(data, data_len, ECRYPTFS_MSG_REQUEST,
433
msg_ctx);
434
mutex_unlock(&ecryptfs_daemon_hash_mux);
435
return rc;
436
}
437
438
/**
439
* ecryptfs_wait_for_response
440
* @msg_ctx: The context that was assigned when sending a message
441
* @msg: The incoming message from userspace; not set if rc != 0
442
*
443
* Sleeps until awaken by ecryptfs_receive_message or until the amount
444
* of time exceeds ecryptfs_message_wait_timeout. If zero is
445
* returned, msg will point to a valid message from userspace; a
446
* non-zero value is returned upon failure to receive a message or an
447
* error occurs. Callee must free @msg on success.
448
*/
449
int ecryptfs_wait_for_response(struct ecryptfs_msg_ctx *msg_ctx,
450
struct ecryptfs_message **msg)
451
{
452
signed long timeout = ecryptfs_message_wait_timeout * HZ;
453
int rc = 0;
454
455
sleep:
456
timeout = schedule_timeout_interruptible(timeout);
457
mutex_lock(&ecryptfs_msg_ctx_lists_mux);
458
mutex_lock(&msg_ctx->mux);
459
if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_DONE) {
460
if (timeout) {
461
mutex_unlock(&msg_ctx->mux);
462
mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
463
goto sleep;
464
}
465
rc = -ENOMSG;
466
} else {
467
*msg = msg_ctx->msg;
468
msg_ctx->msg = NULL;
469
}
470
ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
471
mutex_unlock(&msg_ctx->mux);
472
mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
473
return rc;
474
}
475
476
int __init ecryptfs_init_messaging(void)
477
{
478
int i;
479
int rc = 0;
480
481
if (ecryptfs_number_of_users > ECRYPTFS_MAX_NUM_USERS) {
482
ecryptfs_number_of_users = ECRYPTFS_MAX_NUM_USERS;
483
printk(KERN_WARNING "%s: Specified number of users is "
484
"too large, defaulting to [%d] users\n", __func__,
485
ecryptfs_number_of_users);
486
}
487
mutex_init(&ecryptfs_daemon_hash_mux);
488
mutex_lock(&ecryptfs_daemon_hash_mux);
489
ecryptfs_hash_bits = 1;
490
while (ecryptfs_number_of_users >> ecryptfs_hash_bits)
491
ecryptfs_hash_bits++;
492
ecryptfs_daemon_hash = kmalloc((sizeof(struct hlist_head)
493
* (1 << ecryptfs_hash_bits)),
494
GFP_KERNEL);
495
if (!ecryptfs_daemon_hash) {
496
rc = -ENOMEM;
497
printk(KERN_ERR "%s: Failed to allocate memory\n", __func__);
498
mutex_unlock(&ecryptfs_daemon_hash_mux);
499
goto out;
500
}
501
for (i = 0; i < (1 << ecryptfs_hash_bits); i++)
502
INIT_HLIST_HEAD(&ecryptfs_daemon_hash[i]);
503
mutex_unlock(&ecryptfs_daemon_hash_mux);
504
ecryptfs_msg_ctx_arr = kmalloc((sizeof(struct ecryptfs_msg_ctx)
505
* ecryptfs_message_buf_len),
506
GFP_KERNEL);
507
if (!ecryptfs_msg_ctx_arr) {
508
rc = -ENOMEM;
509
printk(KERN_ERR "%s: Failed to allocate memory\n", __func__);
510
goto out;
511
}
512
mutex_init(&ecryptfs_msg_ctx_lists_mux);
513
mutex_lock(&ecryptfs_msg_ctx_lists_mux);
514
ecryptfs_msg_counter = 0;
515
for (i = 0; i < ecryptfs_message_buf_len; i++) {
516
INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].node);
517
INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].daemon_out_list);
518
mutex_init(&ecryptfs_msg_ctx_arr[i].mux);
519
mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
520
ecryptfs_msg_ctx_arr[i].index = i;
521
ecryptfs_msg_ctx_arr[i].state = ECRYPTFS_MSG_CTX_STATE_FREE;
522
ecryptfs_msg_ctx_arr[i].counter = 0;
523
ecryptfs_msg_ctx_arr[i].task = NULL;
524
ecryptfs_msg_ctx_arr[i].msg = NULL;
525
list_add_tail(&ecryptfs_msg_ctx_arr[i].node,
526
&ecryptfs_msg_ctx_free_list);
527
mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
528
}
529
mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
530
rc = ecryptfs_init_ecryptfs_miscdev();
531
if (rc)
532
ecryptfs_release_messaging();
533
out:
534
return rc;
535
}
536
537
void ecryptfs_release_messaging(void)
538
{
539
if (ecryptfs_msg_ctx_arr) {
540
int i;
541
542
mutex_lock(&ecryptfs_msg_ctx_lists_mux);
543
for (i = 0; i < ecryptfs_message_buf_len; i++) {
544
mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
545
if (ecryptfs_msg_ctx_arr[i].msg)
546
kfree(ecryptfs_msg_ctx_arr[i].msg);
547
mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
548
}
549
kfree(ecryptfs_msg_ctx_arr);
550
mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
551
}
552
if (ecryptfs_daemon_hash) {
553
struct hlist_node *elem;
554
struct ecryptfs_daemon *daemon;
555
int i;
556
557
mutex_lock(&ecryptfs_daemon_hash_mux);
558
for (i = 0; i < (1 << ecryptfs_hash_bits); i++) {
559
int rc;
560
561
hlist_for_each_entry(daemon, elem,
562
&ecryptfs_daemon_hash[i],
563
euid_chain) {
564
rc = ecryptfs_exorcise_daemon(daemon);
565
if (rc)
566
printk(KERN_ERR "%s: Error whilst "
567
"attempting to destroy daemon; "
568
"rc = [%d]. Dazed and confused, "
569
"but trying to continue.\n",
570
__func__, rc);
571
}
572
}
573
kfree(ecryptfs_daemon_hash);
574
mutex_unlock(&ecryptfs_daemon_hash_mux);
575
}
576
ecryptfs_destroy_ecryptfs_miscdev();
577
return;
578
}
579
580