Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/fs/eventpoll.c
15109 views
1
/*
2
* fs/eventpoll.c (Efficient event retrieval implementation)
3
* Copyright (C) 2001,...,2009 Davide Libenzi
4
*
5
* This program is free software; you can redistribute it and/or modify
6
* it under the terms of the GNU General Public License as published by
7
* the Free Software Foundation; either version 2 of the License, or
8
* (at your option) any later version.
9
*
10
* Davide Libenzi <[email protected]>
11
*
12
*/
13
14
#include <linux/init.h>
15
#include <linux/kernel.h>
16
#include <linux/sched.h>
17
#include <linux/fs.h>
18
#include <linux/file.h>
19
#include <linux/signal.h>
20
#include <linux/errno.h>
21
#include <linux/mm.h>
22
#include <linux/slab.h>
23
#include <linux/poll.h>
24
#include <linux/string.h>
25
#include <linux/list.h>
26
#include <linux/hash.h>
27
#include <linux/spinlock.h>
28
#include <linux/syscalls.h>
29
#include <linux/rbtree.h>
30
#include <linux/wait.h>
31
#include <linux/eventpoll.h>
32
#include <linux/mount.h>
33
#include <linux/bitops.h>
34
#include <linux/mutex.h>
35
#include <linux/anon_inodes.h>
36
#include <asm/uaccess.h>
37
#include <asm/system.h>
38
#include <asm/io.h>
39
#include <asm/mman.h>
40
#include <asm/atomic.h>
41
42
/*
43
* LOCKING:
44
* There are three level of locking required by epoll :
45
*
46
* 1) epmutex (mutex)
47
* 2) ep->mtx (mutex)
48
* 3) ep->lock (spinlock)
49
*
50
* The acquire order is the one listed above, from 1 to 3.
51
* We need a spinlock (ep->lock) because we manipulate objects
52
* from inside the poll callback, that might be triggered from
53
* a wake_up() that in turn might be called from IRQ context.
54
* So we can't sleep inside the poll callback and hence we need
55
* a spinlock. During the event transfer loop (from kernel to
56
* user space) we could end up sleeping due a copy_to_user(), so
57
* we need a lock that will allow us to sleep. This lock is a
58
* mutex (ep->mtx). It is acquired during the event transfer loop,
59
* during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60
* Then we also need a global mutex to serialize eventpoll_release_file()
61
* and ep_free().
62
* This mutex is acquired by ep_free() during the epoll file
63
* cleanup path and it is also acquired by eventpoll_release_file()
64
* if a file has been pushed inside an epoll set and it is then
65
* close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
66
* It is also acquired when inserting an epoll fd onto another epoll
67
* fd. We do this so that we walk the epoll tree and ensure that this
68
* insertion does not create a cycle of epoll file descriptors, which
69
* could lead to deadlock. We need a global mutex to prevent two
70
* simultaneous inserts (A into B and B into A) from racing and
71
* constructing a cycle without either insert observing that it is
72
* going to.
73
* It is possible to drop the "ep->mtx" and to use the global
74
* mutex "epmutex" (together with "ep->lock") to have it working,
75
* but having "ep->mtx" will make the interface more scalable.
76
* Events that require holding "epmutex" are very rare, while for
77
* normal operations the epoll private "ep->mtx" will guarantee
78
* a better scalability.
79
*/
80
81
/* Epoll private bits inside the event mask */
82
#define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
83
84
/* Maximum number of nesting allowed inside epoll sets */
85
#define EP_MAX_NESTS 4
86
87
#define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
88
89
#define EP_UNACTIVE_PTR ((void *) -1L)
90
91
#define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
92
93
struct epoll_filefd {
94
struct file *file;
95
int fd;
96
};
97
98
/*
99
* Structure used to track possible nested calls, for too deep recursions
100
* and loop cycles.
101
*/
102
struct nested_call_node {
103
struct list_head llink;
104
void *cookie;
105
void *ctx;
106
};
107
108
/*
109
* This structure is used as collector for nested calls, to check for
110
* maximum recursion dept and loop cycles.
111
*/
112
struct nested_calls {
113
struct list_head tasks_call_list;
114
spinlock_t lock;
115
};
116
117
/*
118
* Each file descriptor added to the eventpoll interface will
119
* have an entry of this type linked to the "rbr" RB tree.
120
*/
121
struct epitem {
122
/* RB tree node used to link this structure to the eventpoll RB tree */
123
struct rb_node rbn;
124
125
/* List header used to link this structure to the eventpoll ready list */
126
struct list_head rdllink;
127
128
/*
129
* Works together "struct eventpoll"->ovflist in keeping the
130
* single linked chain of items.
131
*/
132
struct epitem *next;
133
134
/* The file descriptor information this item refers to */
135
struct epoll_filefd ffd;
136
137
/* Number of active wait queue attached to poll operations */
138
int nwait;
139
140
/* List containing poll wait queues */
141
struct list_head pwqlist;
142
143
/* The "container" of this item */
144
struct eventpoll *ep;
145
146
/* List header used to link this item to the "struct file" items list */
147
struct list_head fllink;
148
149
/* The structure that describe the interested events and the source fd */
150
struct epoll_event event;
151
};
152
153
/*
154
* This structure is stored inside the "private_data" member of the file
155
* structure and represents the main data structure for the eventpoll
156
* interface.
157
*/
158
struct eventpoll {
159
/* Protect the access to this structure */
160
spinlock_t lock;
161
162
/*
163
* This mutex is used to ensure that files are not removed
164
* while epoll is using them. This is held during the event
165
* collection loop, the file cleanup path, the epoll file exit
166
* code and the ctl operations.
167
*/
168
struct mutex mtx;
169
170
/* Wait queue used by sys_epoll_wait() */
171
wait_queue_head_t wq;
172
173
/* Wait queue used by file->poll() */
174
wait_queue_head_t poll_wait;
175
176
/* List of ready file descriptors */
177
struct list_head rdllist;
178
179
/* RB tree root used to store monitored fd structs */
180
struct rb_root rbr;
181
182
/*
183
* This is a single linked list that chains all the "struct epitem" that
184
* happened while transferring ready events to userspace w/out
185
* holding ->lock.
186
*/
187
struct epitem *ovflist;
188
189
/* The user that created the eventpoll descriptor */
190
struct user_struct *user;
191
};
192
193
/* Wait structure used by the poll hooks */
194
struct eppoll_entry {
195
/* List header used to link this structure to the "struct epitem" */
196
struct list_head llink;
197
198
/* The "base" pointer is set to the container "struct epitem" */
199
struct epitem *base;
200
201
/*
202
* Wait queue item that will be linked to the target file wait
203
* queue head.
204
*/
205
wait_queue_t wait;
206
207
/* The wait queue head that linked the "wait" wait queue item */
208
wait_queue_head_t *whead;
209
};
210
211
/* Wrapper struct used by poll queueing */
212
struct ep_pqueue {
213
poll_table pt;
214
struct epitem *epi;
215
};
216
217
/* Used by the ep_send_events() function as callback private data */
218
struct ep_send_events_data {
219
int maxevents;
220
struct epoll_event __user *events;
221
};
222
223
/*
224
* Configuration options available inside /proc/sys/fs/epoll/
225
*/
226
/* Maximum number of epoll watched descriptors, per user */
227
static long max_user_watches __read_mostly;
228
229
/*
230
* This mutex is used to serialize ep_free() and eventpoll_release_file().
231
*/
232
static DEFINE_MUTEX(epmutex);
233
234
/* Used to check for epoll file descriptor inclusion loops */
235
static struct nested_calls poll_loop_ncalls;
236
237
/* Used for safe wake up implementation */
238
static struct nested_calls poll_safewake_ncalls;
239
240
/* Used to call file's f_op->poll() under the nested calls boundaries */
241
static struct nested_calls poll_readywalk_ncalls;
242
243
/* Slab cache used to allocate "struct epitem" */
244
static struct kmem_cache *epi_cache __read_mostly;
245
246
/* Slab cache used to allocate "struct eppoll_entry" */
247
static struct kmem_cache *pwq_cache __read_mostly;
248
249
#ifdef CONFIG_SYSCTL
250
251
#include <linux/sysctl.h>
252
253
static long zero;
254
static long long_max = LONG_MAX;
255
256
ctl_table epoll_table[] = {
257
{
258
.procname = "max_user_watches",
259
.data = &max_user_watches,
260
.maxlen = sizeof(max_user_watches),
261
.mode = 0644,
262
.proc_handler = proc_doulongvec_minmax,
263
.extra1 = &zero,
264
.extra2 = &long_max,
265
},
266
{ }
267
};
268
#endif /* CONFIG_SYSCTL */
269
270
271
/* Setup the structure that is used as key for the RB tree */
272
static inline void ep_set_ffd(struct epoll_filefd *ffd,
273
struct file *file, int fd)
274
{
275
ffd->file = file;
276
ffd->fd = fd;
277
}
278
279
/* Compare RB tree keys */
280
static inline int ep_cmp_ffd(struct epoll_filefd *p1,
281
struct epoll_filefd *p2)
282
{
283
return (p1->file > p2->file ? +1:
284
(p1->file < p2->file ? -1 : p1->fd - p2->fd));
285
}
286
287
/* Tells us if the item is currently linked */
288
static inline int ep_is_linked(struct list_head *p)
289
{
290
return !list_empty(p);
291
}
292
293
/* Get the "struct epitem" from a wait queue pointer */
294
static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
295
{
296
return container_of(p, struct eppoll_entry, wait)->base;
297
}
298
299
/* Get the "struct epitem" from an epoll queue wrapper */
300
static inline struct epitem *ep_item_from_epqueue(poll_table *p)
301
{
302
return container_of(p, struct ep_pqueue, pt)->epi;
303
}
304
305
/* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
306
static inline int ep_op_has_event(int op)
307
{
308
return op != EPOLL_CTL_DEL;
309
}
310
311
/* Initialize the poll safe wake up structure */
312
static void ep_nested_calls_init(struct nested_calls *ncalls)
313
{
314
INIT_LIST_HEAD(&ncalls->tasks_call_list);
315
spin_lock_init(&ncalls->lock);
316
}
317
318
/**
319
* ep_events_available - Checks if ready events might be available.
320
*
321
* @ep: Pointer to the eventpoll context.
322
*
323
* Returns: Returns a value different than zero if ready events are available,
324
* or zero otherwise.
325
*/
326
static inline int ep_events_available(struct eventpoll *ep)
327
{
328
return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
329
}
330
331
/**
332
* ep_call_nested - Perform a bound (possibly) nested call, by checking
333
* that the recursion limit is not exceeded, and that
334
* the same nested call (by the meaning of same cookie) is
335
* no re-entered.
336
*
337
* @ncalls: Pointer to the nested_calls structure to be used for this call.
338
* @max_nests: Maximum number of allowed nesting calls.
339
* @nproc: Nested call core function pointer.
340
* @priv: Opaque data to be passed to the @nproc callback.
341
* @cookie: Cookie to be used to identify this nested call.
342
* @ctx: This instance context.
343
*
344
* Returns: Returns the code returned by the @nproc callback, or -1 if
345
* the maximum recursion limit has been exceeded.
346
*/
347
static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
348
int (*nproc)(void *, void *, int), void *priv,
349
void *cookie, void *ctx)
350
{
351
int error, call_nests = 0;
352
unsigned long flags;
353
struct list_head *lsthead = &ncalls->tasks_call_list;
354
struct nested_call_node *tncur;
355
struct nested_call_node tnode;
356
357
spin_lock_irqsave(&ncalls->lock, flags);
358
359
/*
360
* Try to see if the current task is already inside this wakeup call.
361
* We use a list here, since the population inside this set is always
362
* very much limited.
363
*/
364
list_for_each_entry(tncur, lsthead, llink) {
365
if (tncur->ctx == ctx &&
366
(tncur->cookie == cookie || ++call_nests > max_nests)) {
367
/*
368
* Ops ... loop detected or maximum nest level reached.
369
* We abort this wake by breaking the cycle itself.
370
*/
371
error = -1;
372
goto out_unlock;
373
}
374
}
375
376
/* Add the current task and cookie to the list */
377
tnode.ctx = ctx;
378
tnode.cookie = cookie;
379
list_add(&tnode.llink, lsthead);
380
381
spin_unlock_irqrestore(&ncalls->lock, flags);
382
383
/* Call the nested function */
384
error = (*nproc)(priv, cookie, call_nests);
385
386
/* Remove the current task from the list */
387
spin_lock_irqsave(&ncalls->lock, flags);
388
list_del(&tnode.llink);
389
out_unlock:
390
spin_unlock_irqrestore(&ncalls->lock, flags);
391
392
return error;
393
}
394
395
#ifdef CONFIG_DEBUG_LOCK_ALLOC
396
static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
397
unsigned long events, int subclass)
398
{
399
unsigned long flags;
400
401
spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
402
wake_up_locked_poll(wqueue, events);
403
spin_unlock_irqrestore(&wqueue->lock, flags);
404
}
405
#else
406
static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
407
unsigned long events, int subclass)
408
{
409
wake_up_poll(wqueue, events);
410
}
411
#endif
412
413
static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
414
{
415
ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
416
1 + call_nests);
417
return 0;
418
}
419
420
/*
421
* Perform a safe wake up of the poll wait list. The problem is that
422
* with the new callback'd wake up system, it is possible that the
423
* poll callback is reentered from inside the call to wake_up() done
424
* on the poll wait queue head. The rule is that we cannot reenter the
425
* wake up code from the same task more than EP_MAX_NESTS times,
426
* and we cannot reenter the same wait queue head at all. This will
427
* enable to have a hierarchy of epoll file descriptor of no more than
428
* EP_MAX_NESTS deep.
429
*/
430
static void ep_poll_safewake(wait_queue_head_t *wq)
431
{
432
int this_cpu = get_cpu();
433
434
ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
435
ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
436
437
put_cpu();
438
}
439
440
/*
441
* This function unregisters poll callbacks from the associated file
442
* descriptor. Must be called with "mtx" held (or "epmutex" if called from
443
* ep_free).
444
*/
445
static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
446
{
447
struct list_head *lsthead = &epi->pwqlist;
448
struct eppoll_entry *pwq;
449
450
while (!list_empty(lsthead)) {
451
pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
452
453
list_del(&pwq->llink);
454
remove_wait_queue(pwq->whead, &pwq->wait);
455
kmem_cache_free(pwq_cache, pwq);
456
}
457
}
458
459
/**
460
* ep_scan_ready_list - Scans the ready list in a way that makes possible for
461
* the scan code, to call f_op->poll(). Also allows for
462
* O(NumReady) performance.
463
*
464
* @ep: Pointer to the epoll private data structure.
465
* @sproc: Pointer to the scan callback.
466
* @priv: Private opaque data passed to the @sproc callback.
467
*
468
* Returns: The same integer error code returned by the @sproc callback.
469
*/
470
static int ep_scan_ready_list(struct eventpoll *ep,
471
int (*sproc)(struct eventpoll *,
472
struct list_head *, void *),
473
void *priv)
474
{
475
int error, pwake = 0;
476
unsigned long flags;
477
struct epitem *epi, *nepi;
478
LIST_HEAD(txlist);
479
480
/*
481
* We need to lock this because we could be hit by
482
* eventpoll_release_file() and epoll_ctl().
483
*/
484
mutex_lock(&ep->mtx);
485
486
/*
487
* Steal the ready list, and re-init the original one to the
488
* empty list. Also, set ep->ovflist to NULL so that events
489
* happening while looping w/out locks, are not lost. We cannot
490
* have the poll callback to queue directly on ep->rdllist,
491
* because we want the "sproc" callback to be able to do it
492
* in a lockless way.
493
*/
494
spin_lock_irqsave(&ep->lock, flags);
495
list_splice_init(&ep->rdllist, &txlist);
496
ep->ovflist = NULL;
497
spin_unlock_irqrestore(&ep->lock, flags);
498
499
/*
500
* Now call the callback function.
501
*/
502
error = (*sproc)(ep, &txlist, priv);
503
504
spin_lock_irqsave(&ep->lock, flags);
505
/*
506
* During the time we spent inside the "sproc" callback, some
507
* other events might have been queued by the poll callback.
508
* We re-insert them inside the main ready-list here.
509
*/
510
for (nepi = ep->ovflist; (epi = nepi) != NULL;
511
nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
512
/*
513
* We need to check if the item is already in the list.
514
* During the "sproc" callback execution time, items are
515
* queued into ->ovflist but the "txlist" might already
516
* contain them, and the list_splice() below takes care of them.
517
*/
518
if (!ep_is_linked(&epi->rdllink))
519
list_add_tail(&epi->rdllink, &ep->rdllist);
520
}
521
/*
522
* We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
523
* releasing the lock, events will be queued in the normal way inside
524
* ep->rdllist.
525
*/
526
ep->ovflist = EP_UNACTIVE_PTR;
527
528
/*
529
* Quickly re-inject items left on "txlist".
530
*/
531
list_splice(&txlist, &ep->rdllist);
532
533
if (!list_empty(&ep->rdllist)) {
534
/*
535
* Wake up (if active) both the eventpoll wait list and
536
* the ->poll() wait list (delayed after we release the lock).
537
*/
538
if (waitqueue_active(&ep->wq))
539
wake_up_locked(&ep->wq);
540
if (waitqueue_active(&ep->poll_wait))
541
pwake++;
542
}
543
spin_unlock_irqrestore(&ep->lock, flags);
544
545
mutex_unlock(&ep->mtx);
546
547
/* We have to call this outside the lock */
548
if (pwake)
549
ep_poll_safewake(&ep->poll_wait);
550
551
return error;
552
}
553
554
/*
555
* Removes a "struct epitem" from the eventpoll RB tree and deallocates
556
* all the associated resources. Must be called with "mtx" held.
557
*/
558
static int ep_remove(struct eventpoll *ep, struct epitem *epi)
559
{
560
unsigned long flags;
561
struct file *file = epi->ffd.file;
562
563
/*
564
* Removes poll wait queue hooks. We _have_ to do this without holding
565
* the "ep->lock" otherwise a deadlock might occur. This because of the
566
* sequence of the lock acquisition. Here we do "ep->lock" then the wait
567
* queue head lock when unregistering the wait queue. The wakeup callback
568
* will run by holding the wait queue head lock and will call our callback
569
* that will try to get "ep->lock".
570
*/
571
ep_unregister_pollwait(ep, epi);
572
573
/* Remove the current item from the list of epoll hooks */
574
spin_lock(&file->f_lock);
575
if (ep_is_linked(&epi->fllink))
576
list_del_init(&epi->fllink);
577
spin_unlock(&file->f_lock);
578
579
rb_erase(&epi->rbn, &ep->rbr);
580
581
spin_lock_irqsave(&ep->lock, flags);
582
if (ep_is_linked(&epi->rdllink))
583
list_del_init(&epi->rdllink);
584
spin_unlock_irqrestore(&ep->lock, flags);
585
586
/* At this point it is safe to free the eventpoll item */
587
kmem_cache_free(epi_cache, epi);
588
589
atomic_long_dec(&ep->user->epoll_watches);
590
591
return 0;
592
}
593
594
static void ep_free(struct eventpoll *ep)
595
{
596
struct rb_node *rbp;
597
struct epitem *epi;
598
599
/* We need to release all tasks waiting for these file */
600
if (waitqueue_active(&ep->poll_wait))
601
ep_poll_safewake(&ep->poll_wait);
602
603
/*
604
* We need to lock this because we could be hit by
605
* eventpoll_release_file() while we're freeing the "struct eventpoll".
606
* We do not need to hold "ep->mtx" here because the epoll file
607
* is on the way to be removed and no one has references to it
608
* anymore. The only hit might come from eventpoll_release_file() but
609
* holding "epmutex" is sufficient here.
610
*/
611
mutex_lock(&epmutex);
612
613
/*
614
* Walks through the whole tree by unregistering poll callbacks.
615
*/
616
for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
617
epi = rb_entry(rbp, struct epitem, rbn);
618
619
ep_unregister_pollwait(ep, epi);
620
}
621
622
/*
623
* Walks through the whole tree by freeing each "struct epitem". At this
624
* point we are sure no poll callbacks will be lingering around, and also by
625
* holding "epmutex" we can be sure that no file cleanup code will hit
626
* us during this operation. So we can avoid the lock on "ep->lock".
627
*/
628
while ((rbp = rb_first(&ep->rbr)) != NULL) {
629
epi = rb_entry(rbp, struct epitem, rbn);
630
ep_remove(ep, epi);
631
}
632
633
mutex_unlock(&epmutex);
634
mutex_destroy(&ep->mtx);
635
free_uid(ep->user);
636
kfree(ep);
637
}
638
639
static int ep_eventpoll_release(struct inode *inode, struct file *file)
640
{
641
struct eventpoll *ep = file->private_data;
642
643
if (ep)
644
ep_free(ep);
645
646
return 0;
647
}
648
649
static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
650
void *priv)
651
{
652
struct epitem *epi, *tmp;
653
654
list_for_each_entry_safe(epi, tmp, head, rdllink) {
655
if (epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
656
epi->event.events)
657
return POLLIN | POLLRDNORM;
658
else {
659
/*
660
* Item has been dropped into the ready list by the poll
661
* callback, but it's not actually ready, as far as
662
* caller requested events goes. We can remove it here.
663
*/
664
list_del_init(&epi->rdllink);
665
}
666
}
667
668
return 0;
669
}
670
671
static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
672
{
673
return ep_scan_ready_list(priv, ep_read_events_proc, NULL);
674
}
675
676
static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
677
{
678
int pollflags;
679
struct eventpoll *ep = file->private_data;
680
681
/* Insert inside our poll wait queue */
682
poll_wait(file, &ep->poll_wait, wait);
683
684
/*
685
* Proceed to find out if wanted events are really available inside
686
* the ready list. This need to be done under ep_call_nested()
687
* supervision, since the call to f_op->poll() done on listed files
688
* could re-enter here.
689
*/
690
pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
691
ep_poll_readyevents_proc, ep, ep, current);
692
693
return pollflags != -1 ? pollflags : 0;
694
}
695
696
/* File callbacks that implement the eventpoll file behaviour */
697
static const struct file_operations eventpoll_fops = {
698
.release = ep_eventpoll_release,
699
.poll = ep_eventpoll_poll,
700
.llseek = noop_llseek,
701
};
702
703
/* Fast test to see if the file is an evenpoll file */
704
static inline int is_file_epoll(struct file *f)
705
{
706
return f->f_op == &eventpoll_fops;
707
}
708
709
/*
710
* This is called from eventpoll_release() to unlink files from the eventpoll
711
* interface. We need to have this facility to cleanup correctly files that are
712
* closed without being removed from the eventpoll interface.
713
*/
714
void eventpoll_release_file(struct file *file)
715
{
716
struct list_head *lsthead = &file->f_ep_links;
717
struct eventpoll *ep;
718
struct epitem *epi;
719
720
/*
721
* We don't want to get "file->f_lock" because it is not
722
* necessary. It is not necessary because we're in the "struct file"
723
* cleanup path, and this means that no one is using this file anymore.
724
* So, for example, epoll_ctl() cannot hit here since if we reach this
725
* point, the file counter already went to zero and fget() would fail.
726
* The only hit might come from ep_free() but by holding the mutex
727
* will correctly serialize the operation. We do need to acquire
728
* "ep->mtx" after "epmutex" because ep_remove() requires it when called
729
* from anywhere but ep_free().
730
*
731
* Besides, ep_remove() acquires the lock, so we can't hold it here.
732
*/
733
mutex_lock(&epmutex);
734
735
while (!list_empty(lsthead)) {
736
epi = list_first_entry(lsthead, struct epitem, fllink);
737
738
ep = epi->ep;
739
list_del_init(&epi->fllink);
740
mutex_lock(&ep->mtx);
741
ep_remove(ep, epi);
742
mutex_unlock(&ep->mtx);
743
}
744
745
mutex_unlock(&epmutex);
746
}
747
748
static int ep_alloc(struct eventpoll **pep)
749
{
750
int error;
751
struct user_struct *user;
752
struct eventpoll *ep;
753
754
user = get_current_user();
755
error = -ENOMEM;
756
ep = kzalloc(sizeof(*ep), GFP_KERNEL);
757
if (unlikely(!ep))
758
goto free_uid;
759
760
spin_lock_init(&ep->lock);
761
mutex_init(&ep->mtx);
762
init_waitqueue_head(&ep->wq);
763
init_waitqueue_head(&ep->poll_wait);
764
INIT_LIST_HEAD(&ep->rdllist);
765
ep->rbr = RB_ROOT;
766
ep->ovflist = EP_UNACTIVE_PTR;
767
ep->user = user;
768
769
*pep = ep;
770
771
return 0;
772
773
free_uid:
774
free_uid(user);
775
return error;
776
}
777
778
/*
779
* Search the file inside the eventpoll tree. The RB tree operations
780
* are protected by the "mtx" mutex, and ep_find() must be called with
781
* "mtx" held.
782
*/
783
static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
784
{
785
int kcmp;
786
struct rb_node *rbp;
787
struct epitem *epi, *epir = NULL;
788
struct epoll_filefd ffd;
789
790
ep_set_ffd(&ffd, file, fd);
791
for (rbp = ep->rbr.rb_node; rbp; ) {
792
epi = rb_entry(rbp, struct epitem, rbn);
793
kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
794
if (kcmp > 0)
795
rbp = rbp->rb_right;
796
else if (kcmp < 0)
797
rbp = rbp->rb_left;
798
else {
799
epir = epi;
800
break;
801
}
802
}
803
804
return epir;
805
}
806
807
/*
808
* This is the callback that is passed to the wait queue wakeup
809
* mechanism. It is called by the stored file descriptors when they
810
* have events to report.
811
*/
812
static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
813
{
814
int pwake = 0;
815
unsigned long flags;
816
struct epitem *epi = ep_item_from_wait(wait);
817
struct eventpoll *ep = epi->ep;
818
819
spin_lock_irqsave(&ep->lock, flags);
820
821
/*
822
* If the event mask does not contain any poll(2) event, we consider the
823
* descriptor to be disabled. This condition is likely the effect of the
824
* EPOLLONESHOT bit that disables the descriptor when an event is received,
825
* until the next EPOLL_CTL_MOD will be issued.
826
*/
827
if (!(epi->event.events & ~EP_PRIVATE_BITS))
828
goto out_unlock;
829
830
/*
831
* Check the events coming with the callback. At this stage, not
832
* every device reports the events in the "key" parameter of the
833
* callback. We need to be able to handle both cases here, hence the
834
* test for "key" != NULL before the event match test.
835
*/
836
if (key && !((unsigned long) key & epi->event.events))
837
goto out_unlock;
838
839
/*
840
* If we are transferring events to userspace, we can hold no locks
841
* (because we're accessing user memory, and because of linux f_op->poll()
842
* semantics). All the events that happen during that period of time are
843
* chained in ep->ovflist and requeued later on.
844
*/
845
if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
846
if (epi->next == EP_UNACTIVE_PTR) {
847
epi->next = ep->ovflist;
848
ep->ovflist = epi;
849
}
850
goto out_unlock;
851
}
852
853
/* If this file is already in the ready list we exit soon */
854
if (!ep_is_linked(&epi->rdllink))
855
list_add_tail(&epi->rdllink, &ep->rdllist);
856
857
/*
858
* Wake up ( if active ) both the eventpoll wait list and the ->poll()
859
* wait list.
860
*/
861
if (waitqueue_active(&ep->wq))
862
wake_up_locked(&ep->wq);
863
if (waitqueue_active(&ep->poll_wait))
864
pwake++;
865
866
out_unlock:
867
spin_unlock_irqrestore(&ep->lock, flags);
868
869
/* We have to call this outside the lock */
870
if (pwake)
871
ep_poll_safewake(&ep->poll_wait);
872
873
return 1;
874
}
875
876
/*
877
* This is the callback that is used to add our wait queue to the
878
* target file wakeup lists.
879
*/
880
static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
881
poll_table *pt)
882
{
883
struct epitem *epi = ep_item_from_epqueue(pt);
884
struct eppoll_entry *pwq;
885
886
if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
887
init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
888
pwq->whead = whead;
889
pwq->base = epi;
890
add_wait_queue(whead, &pwq->wait);
891
list_add_tail(&pwq->llink, &epi->pwqlist);
892
epi->nwait++;
893
} else {
894
/* We have to signal that an error occurred */
895
epi->nwait = -1;
896
}
897
}
898
899
static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
900
{
901
int kcmp;
902
struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
903
struct epitem *epic;
904
905
while (*p) {
906
parent = *p;
907
epic = rb_entry(parent, struct epitem, rbn);
908
kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
909
if (kcmp > 0)
910
p = &parent->rb_right;
911
else
912
p = &parent->rb_left;
913
}
914
rb_link_node(&epi->rbn, parent, p);
915
rb_insert_color(&epi->rbn, &ep->rbr);
916
}
917
918
/*
919
* Must be called with "mtx" held.
920
*/
921
static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
922
struct file *tfile, int fd)
923
{
924
int error, revents, pwake = 0;
925
unsigned long flags;
926
long user_watches;
927
struct epitem *epi;
928
struct ep_pqueue epq;
929
930
user_watches = atomic_long_read(&ep->user->epoll_watches);
931
if (unlikely(user_watches >= max_user_watches))
932
return -ENOSPC;
933
if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
934
return -ENOMEM;
935
936
/* Item initialization follow here ... */
937
INIT_LIST_HEAD(&epi->rdllink);
938
INIT_LIST_HEAD(&epi->fllink);
939
INIT_LIST_HEAD(&epi->pwqlist);
940
epi->ep = ep;
941
ep_set_ffd(&epi->ffd, tfile, fd);
942
epi->event = *event;
943
epi->nwait = 0;
944
epi->next = EP_UNACTIVE_PTR;
945
946
/* Initialize the poll table using the queue callback */
947
epq.epi = epi;
948
init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
949
950
/*
951
* Attach the item to the poll hooks and get current event bits.
952
* We can safely use the file* here because its usage count has
953
* been increased by the caller of this function. Note that after
954
* this operation completes, the poll callback can start hitting
955
* the new item.
956
*/
957
revents = tfile->f_op->poll(tfile, &epq.pt);
958
959
/*
960
* We have to check if something went wrong during the poll wait queue
961
* install process. Namely an allocation for a wait queue failed due
962
* high memory pressure.
963
*/
964
error = -ENOMEM;
965
if (epi->nwait < 0)
966
goto error_unregister;
967
968
/* Add the current item to the list of active epoll hook for this file */
969
spin_lock(&tfile->f_lock);
970
list_add_tail(&epi->fllink, &tfile->f_ep_links);
971
spin_unlock(&tfile->f_lock);
972
973
/*
974
* Add the current item to the RB tree. All RB tree operations are
975
* protected by "mtx", and ep_insert() is called with "mtx" held.
976
*/
977
ep_rbtree_insert(ep, epi);
978
979
/* We have to drop the new item inside our item list to keep track of it */
980
spin_lock_irqsave(&ep->lock, flags);
981
982
/* If the file is already "ready" we drop it inside the ready list */
983
if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
984
list_add_tail(&epi->rdllink, &ep->rdllist);
985
986
/* Notify waiting tasks that events are available */
987
if (waitqueue_active(&ep->wq))
988
wake_up_locked(&ep->wq);
989
if (waitqueue_active(&ep->poll_wait))
990
pwake++;
991
}
992
993
spin_unlock_irqrestore(&ep->lock, flags);
994
995
atomic_long_inc(&ep->user->epoll_watches);
996
997
/* We have to call this outside the lock */
998
if (pwake)
999
ep_poll_safewake(&ep->poll_wait);
1000
1001
return 0;
1002
1003
error_unregister:
1004
ep_unregister_pollwait(ep, epi);
1005
1006
/*
1007
* We need to do this because an event could have been arrived on some
1008
* allocated wait queue. Note that we don't care about the ep->ovflist
1009
* list, since that is used/cleaned only inside a section bound by "mtx".
1010
* And ep_insert() is called with "mtx" held.
1011
*/
1012
spin_lock_irqsave(&ep->lock, flags);
1013
if (ep_is_linked(&epi->rdllink))
1014
list_del_init(&epi->rdllink);
1015
spin_unlock_irqrestore(&ep->lock, flags);
1016
1017
kmem_cache_free(epi_cache, epi);
1018
1019
return error;
1020
}
1021
1022
/*
1023
* Modify the interest event mask by dropping an event if the new mask
1024
* has a match in the current file status. Must be called with "mtx" held.
1025
*/
1026
static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1027
{
1028
int pwake = 0;
1029
unsigned int revents;
1030
1031
/*
1032
* Set the new event interest mask before calling f_op->poll();
1033
* otherwise we might miss an event that happens between the
1034
* f_op->poll() call and the new event set registering.
1035
*/
1036
epi->event.events = event->events;
1037
epi->event.data = event->data; /* protected by mtx */
1038
1039
/*
1040
* Get current event bits. We can safely use the file* here because
1041
* its usage count has been increased by the caller of this function.
1042
*/
1043
revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
1044
1045
/*
1046
* If the item is "hot" and it is not registered inside the ready
1047
* list, push it inside.
1048
*/
1049
if (revents & event->events) {
1050
spin_lock_irq(&ep->lock);
1051
if (!ep_is_linked(&epi->rdllink)) {
1052
list_add_tail(&epi->rdllink, &ep->rdllist);
1053
1054
/* Notify waiting tasks that events are available */
1055
if (waitqueue_active(&ep->wq))
1056
wake_up_locked(&ep->wq);
1057
if (waitqueue_active(&ep->poll_wait))
1058
pwake++;
1059
}
1060
spin_unlock_irq(&ep->lock);
1061
}
1062
1063
/* We have to call this outside the lock */
1064
if (pwake)
1065
ep_poll_safewake(&ep->poll_wait);
1066
1067
return 0;
1068
}
1069
1070
static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1071
void *priv)
1072
{
1073
struct ep_send_events_data *esed = priv;
1074
int eventcnt;
1075
unsigned int revents;
1076
struct epitem *epi;
1077
struct epoll_event __user *uevent;
1078
1079
/*
1080
* We can loop without lock because we are passed a task private list.
1081
* Items cannot vanish during the loop because ep_scan_ready_list() is
1082
* holding "mtx" during this call.
1083
*/
1084
for (eventcnt = 0, uevent = esed->events;
1085
!list_empty(head) && eventcnt < esed->maxevents;) {
1086
epi = list_first_entry(head, struct epitem, rdllink);
1087
1088
list_del_init(&epi->rdllink);
1089
1090
revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
1091
epi->event.events;
1092
1093
/*
1094
* If the event mask intersect the caller-requested one,
1095
* deliver the event to userspace. Again, ep_scan_ready_list()
1096
* is holding "mtx", so no operations coming from userspace
1097
* can change the item.
1098
*/
1099
if (revents) {
1100
if (__put_user(revents, &uevent->events) ||
1101
__put_user(epi->event.data, &uevent->data)) {
1102
list_add(&epi->rdllink, head);
1103
return eventcnt ? eventcnt : -EFAULT;
1104
}
1105
eventcnt++;
1106
uevent++;
1107
if (epi->event.events & EPOLLONESHOT)
1108
epi->event.events &= EP_PRIVATE_BITS;
1109
else if (!(epi->event.events & EPOLLET)) {
1110
/*
1111
* If this file has been added with Level
1112
* Trigger mode, we need to insert back inside
1113
* the ready list, so that the next call to
1114
* epoll_wait() will check again the events
1115
* availability. At this point, no one can insert
1116
* into ep->rdllist besides us. The epoll_ctl()
1117
* callers are locked out by
1118
* ep_scan_ready_list() holding "mtx" and the
1119
* poll callback will queue them in ep->ovflist.
1120
*/
1121
list_add_tail(&epi->rdllink, &ep->rdllist);
1122
}
1123
}
1124
}
1125
1126
return eventcnt;
1127
}
1128
1129
static int ep_send_events(struct eventpoll *ep,
1130
struct epoll_event __user *events, int maxevents)
1131
{
1132
struct ep_send_events_data esed;
1133
1134
esed.maxevents = maxevents;
1135
esed.events = events;
1136
1137
return ep_scan_ready_list(ep, ep_send_events_proc, &esed);
1138
}
1139
1140
static inline struct timespec ep_set_mstimeout(long ms)
1141
{
1142
struct timespec now, ts = {
1143
.tv_sec = ms / MSEC_PER_SEC,
1144
.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1145
};
1146
1147
ktime_get_ts(&now);
1148
return timespec_add_safe(now, ts);
1149
}
1150
1151
/**
1152
* ep_poll - Retrieves ready events, and delivers them to the caller supplied
1153
* event buffer.
1154
*
1155
* @ep: Pointer to the eventpoll context.
1156
* @events: Pointer to the userspace buffer where the ready events should be
1157
* stored.
1158
* @maxevents: Size (in terms of number of events) of the caller event buffer.
1159
* @timeout: Maximum timeout for the ready events fetch operation, in
1160
* milliseconds. If the @timeout is zero, the function will not block,
1161
* while if the @timeout is less than zero, the function will block
1162
* until at least one event has been retrieved (or an error
1163
* occurred).
1164
*
1165
* Returns: Returns the number of ready events which have been fetched, or an
1166
* error code, in case of error.
1167
*/
1168
static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1169
int maxevents, long timeout)
1170
{
1171
int res = 0, eavail, timed_out = 0;
1172
unsigned long flags;
1173
long slack = 0;
1174
wait_queue_t wait;
1175
ktime_t expires, *to = NULL;
1176
1177
if (timeout > 0) {
1178
struct timespec end_time = ep_set_mstimeout(timeout);
1179
1180
slack = select_estimate_accuracy(&end_time);
1181
to = &expires;
1182
*to = timespec_to_ktime(end_time);
1183
} else if (timeout == 0) {
1184
/*
1185
* Avoid the unnecessary trip to the wait queue loop, if the
1186
* caller specified a non blocking operation.
1187
*/
1188
timed_out = 1;
1189
spin_lock_irqsave(&ep->lock, flags);
1190
goto check_events;
1191
}
1192
1193
fetch_events:
1194
spin_lock_irqsave(&ep->lock, flags);
1195
1196
if (!ep_events_available(ep)) {
1197
/*
1198
* We don't have any available event to return to the caller.
1199
* We need to sleep here, and we will be wake up by
1200
* ep_poll_callback() when events will become available.
1201
*/
1202
init_waitqueue_entry(&wait, current);
1203
__add_wait_queue_exclusive(&ep->wq, &wait);
1204
1205
for (;;) {
1206
/*
1207
* We don't want to sleep if the ep_poll_callback() sends us
1208
* a wakeup in between. That's why we set the task state
1209
* to TASK_INTERRUPTIBLE before doing the checks.
1210
*/
1211
set_current_state(TASK_INTERRUPTIBLE);
1212
if (ep_events_available(ep) || timed_out)
1213
break;
1214
if (signal_pending(current)) {
1215
res = -EINTR;
1216
break;
1217
}
1218
1219
spin_unlock_irqrestore(&ep->lock, flags);
1220
if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1221
timed_out = 1;
1222
1223
spin_lock_irqsave(&ep->lock, flags);
1224
}
1225
__remove_wait_queue(&ep->wq, &wait);
1226
1227
set_current_state(TASK_RUNNING);
1228
}
1229
check_events:
1230
/* Is it worth to try to dig for events ? */
1231
eavail = ep_events_available(ep);
1232
1233
spin_unlock_irqrestore(&ep->lock, flags);
1234
1235
/*
1236
* Try to transfer events to user space. In case we get 0 events and
1237
* there's still timeout left over, we go trying again in search of
1238
* more luck.
1239
*/
1240
if (!res && eavail &&
1241
!(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1242
goto fetch_events;
1243
1244
return res;
1245
}
1246
1247
/**
1248
* ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1249
* API, to verify that adding an epoll file inside another
1250
* epoll structure, does not violate the constraints, in
1251
* terms of closed loops, or too deep chains (which can
1252
* result in excessive stack usage).
1253
*
1254
* @priv: Pointer to the epoll file to be currently checked.
1255
* @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1256
* data structure pointer.
1257
* @call_nests: Current dept of the @ep_call_nested() call stack.
1258
*
1259
* Returns: Returns zero if adding the epoll @file inside current epoll
1260
* structure @ep does not violate the constraints, or -1 otherwise.
1261
*/
1262
static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1263
{
1264
int error = 0;
1265
struct file *file = priv;
1266
struct eventpoll *ep = file->private_data;
1267
struct rb_node *rbp;
1268
struct epitem *epi;
1269
1270
mutex_lock(&ep->mtx);
1271
for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1272
epi = rb_entry(rbp, struct epitem, rbn);
1273
if (unlikely(is_file_epoll(epi->ffd.file))) {
1274
error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1275
ep_loop_check_proc, epi->ffd.file,
1276
epi->ffd.file->private_data, current);
1277
if (error != 0)
1278
break;
1279
}
1280
}
1281
mutex_unlock(&ep->mtx);
1282
1283
return error;
1284
}
1285
1286
/**
1287
* ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1288
* another epoll file (represented by @ep) does not create
1289
* closed loops or too deep chains.
1290
*
1291
* @ep: Pointer to the epoll private data structure.
1292
* @file: Pointer to the epoll file to be checked.
1293
*
1294
* Returns: Returns zero if adding the epoll @file inside current epoll
1295
* structure @ep does not violate the constraints, or -1 otherwise.
1296
*/
1297
static int ep_loop_check(struct eventpoll *ep, struct file *file)
1298
{
1299
return ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1300
ep_loop_check_proc, file, ep, current);
1301
}
1302
1303
/*
1304
* Open an eventpoll file descriptor.
1305
*/
1306
SYSCALL_DEFINE1(epoll_create1, int, flags)
1307
{
1308
int error;
1309
struct eventpoll *ep = NULL;
1310
1311
/* Check the EPOLL_* constant for consistency. */
1312
BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1313
1314
if (flags & ~EPOLL_CLOEXEC)
1315
return -EINVAL;
1316
/*
1317
* Create the internal data structure ("struct eventpoll").
1318
*/
1319
error = ep_alloc(&ep);
1320
if (error < 0)
1321
return error;
1322
/*
1323
* Creates all the items needed to setup an eventpoll file. That is,
1324
* a file structure and a free file descriptor.
1325
*/
1326
error = anon_inode_getfd("[eventpoll]", &eventpoll_fops, ep,
1327
O_RDWR | (flags & O_CLOEXEC));
1328
if (error < 0)
1329
ep_free(ep);
1330
1331
return error;
1332
}
1333
1334
SYSCALL_DEFINE1(epoll_create, int, size)
1335
{
1336
if (size <= 0)
1337
return -EINVAL;
1338
1339
return sys_epoll_create1(0);
1340
}
1341
1342
/*
1343
* The following function implements the controller interface for
1344
* the eventpoll file that enables the insertion/removal/change of
1345
* file descriptors inside the interest set.
1346
*/
1347
SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1348
struct epoll_event __user *, event)
1349
{
1350
int error;
1351
int did_lock_epmutex = 0;
1352
struct file *file, *tfile;
1353
struct eventpoll *ep;
1354
struct epitem *epi;
1355
struct epoll_event epds;
1356
1357
error = -EFAULT;
1358
if (ep_op_has_event(op) &&
1359
copy_from_user(&epds, event, sizeof(struct epoll_event)))
1360
goto error_return;
1361
1362
/* Get the "struct file *" for the eventpoll file */
1363
error = -EBADF;
1364
file = fget(epfd);
1365
if (!file)
1366
goto error_return;
1367
1368
/* Get the "struct file *" for the target file */
1369
tfile = fget(fd);
1370
if (!tfile)
1371
goto error_fput;
1372
1373
/* The target file descriptor must support poll */
1374
error = -EPERM;
1375
if (!tfile->f_op || !tfile->f_op->poll)
1376
goto error_tgt_fput;
1377
1378
/*
1379
* We have to check that the file structure underneath the file descriptor
1380
* the user passed to us _is_ an eventpoll file. And also we do not permit
1381
* adding an epoll file descriptor inside itself.
1382
*/
1383
error = -EINVAL;
1384
if (file == tfile || !is_file_epoll(file))
1385
goto error_tgt_fput;
1386
1387
/*
1388
* At this point it is safe to assume that the "private_data" contains
1389
* our own data structure.
1390
*/
1391
ep = file->private_data;
1392
1393
/*
1394
* When we insert an epoll file descriptor, inside another epoll file
1395
* descriptor, there is the change of creating closed loops, which are
1396
* better be handled here, than in more critical paths.
1397
*
1398
* We hold epmutex across the loop check and the insert in this case, in
1399
* order to prevent two separate inserts from racing and each doing the
1400
* insert "at the same time" such that ep_loop_check passes on both
1401
* before either one does the insert, thereby creating a cycle.
1402
*/
1403
if (unlikely(is_file_epoll(tfile) && op == EPOLL_CTL_ADD)) {
1404
mutex_lock(&epmutex);
1405
did_lock_epmutex = 1;
1406
error = -ELOOP;
1407
if (ep_loop_check(ep, tfile) != 0)
1408
goto error_tgt_fput;
1409
}
1410
1411
1412
mutex_lock(&ep->mtx);
1413
1414
/*
1415
* Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1416
* above, we can be sure to be able to use the item looked up by
1417
* ep_find() till we release the mutex.
1418
*/
1419
epi = ep_find(ep, tfile, fd);
1420
1421
error = -EINVAL;
1422
switch (op) {
1423
case EPOLL_CTL_ADD:
1424
if (!epi) {
1425
epds.events |= POLLERR | POLLHUP;
1426
error = ep_insert(ep, &epds, tfile, fd);
1427
} else
1428
error = -EEXIST;
1429
break;
1430
case EPOLL_CTL_DEL:
1431
if (epi)
1432
error = ep_remove(ep, epi);
1433
else
1434
error = -ENOENT;
1435
break;
1436
case EPOLL_CTL_MOD:
1437
if (epi) {
1438
epds.events |= POLLERR | POLLHUP;
1439
error = ep_modify(ep, epi, &epds);
1440
} else
1441
error = -ENOENT;
1442
break;
1443
}
1444
mutex_unlock(&ep->mtx);
1445
1446
error_tgt_fput:
1447
if (unlikely(did_lock_epmutex))
1448
mutex_unlock(&epmutex);
1449
1450
fput(tfile);
1451
error_fput:
1452
fput(file);
1453
error_return:
1454
1455
return error;
1456
}
1457
1458
/*
1459
* Implement the event wait interface for the eventpoll file. It is the kernel
1460
* part of the user space epoll_wait(2).
1461
*/
1462
SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1463
int, maxevents, int, timeout)
1464
{
1465
int error;
1466
struct file *file;
1467
struct eventpoll *ep;
1468
1469
/* The maximum number of event must be greater than zero */
1470
if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1471
return -EINVAL;
1472
1473
/* Verify that the area passed by the user is writeable */
1474
if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) {
1475
error = -EFAULT;
1476
goto error_return;
1477
}
1478
1479
/* Get the "struct file *" for the eventpoll file */
1480
error = -EBADF;
1481
file = fget(epfd);
1482
if (!file)
1483
goto error_return;
1484
1485
/*
1486
* We have to check that the file structure underneath the fd
1487
* the user passed to us _is_ an eventpoll file.
1488
*/
1489
error = -EINVAL;
1490
if (!is_file_epoll(file))
1491
goto error_fput;
1492
1493
/*
1494
* At this point it is safe to assume that the "private_data" contains
1495
* our own data structure.
1496
*/
1497
ep = file->private_data;
1498
1499
/* Time to fish for events ... */
1500
error = ep_poll(ep, events, maxevents, timeout);
1501
1502
error_fput:
1503
fput(file);
1504
error_return:
1505
1506
return error;
1507
}
1508
1509
#ifdef HAVE_SET_RESTORE_SIGMASK
1510
1511
/*
1512
* Implement the event wait interface for the eventpoll file. It is the kernel
1513
* part of the user space epoll_pwait(2).
1514
*/
1515
SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1516
int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1517
size_t, sigsetsize)
1518
{
1519
int error;
1520
sigset_t ksigmask, sigsaved;
1521
1522
/*
1523
* If the caller wants a certain signal mask to be set during the wait,
1524
* we apply it here.
1525
*/
1526
if (sigmask) {
1527
if (sigsetsize != sizeof(sigset_t))
1528
return -EINVAL;
1529
if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1530
return -EFAULT;
1531
sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1532
sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1533
}
1534
1535
error = sys_epoll_wait(epfd, events, maxevents, timeout);
1536
1537
/*
1538
* If we changed the signal mask, we need to restore the original one.
1539
* In case we've got a signal while waiting, we do not restore the
1540
* signal mask yet, and we allow do_signal() to deliver the signal on
1541
* the way back to userspace, before the signal mask is restored.
1542
*/
1543
if (sigmask) {
1544
if (error == -EINTR) {
1545
memcpy(&current->saved_sigmask, &sigsaved,
1546
sizeof(sigsaved));
1547
set_restore_sigmask();
1548
} else
1549
sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1550
}
1551
1552
return error;
1553
}
1554
1555
#endif /* HAVE_SET_RESTORE_SIGMASK */
1556
1557
static int __init eventpoll_init(void)
1558
{
1559
struct sysinfo si;
1560
1561
si_meminfo(&si);
1562
/*
1563
* Allows top 4% of lomem to be allocated for epoll watches (per user).
1564
*/
1565
max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
1566
EP_ITEM_COST;
1567
BUG_ON(max_user_watches < 0);
1568
1569
/*
1570
* Initialize the structure used to perform epoll file descriptor
1571
* inclusion loops checks.
1572
*/
1573
ep_nested_calls_init(&poll_loop_ncalls);
1574
1575
/* Initialize the structure used to perform safe poll wait head wake ups */
1576
ep_nested_calls_init(&poll_safewake_ncalls);
1577
1578
/* Initialize the structure used to perform file's f_op->poll() calls */
1579
ep_nested_calls_init(&poll_readywalk_ncalls);
1580
1581
/* Allocates slab cache used to allocate "struct epitem" items */
1582
epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
1583
0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1584
1585
/* Allocates slab cache used to allocate "struct eppoll_entry" */
1586
pwq_cache = kmem_cache_create("eventpoll_pwq",
1587
sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
1588
1589
return 0;
1590
}
1591
fs_initcall(eventpoll_init);
1592
1593