Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/fs/exec.c
15109 views
1
/*
2
* linux/fs/exec.c
3
*
4
* Copyright (C) 1991, 1992 Linus Torvalds
5
*/
6
7
/*
8
* #!-checking implemented by tytso.
9
*/
10
/*
11
* Demand-loading implemented 01.12.91 - no need to read anything but
12
* the header into memory. The inode of the executable is put into
13
* "current->executable", and page faults do the actual loading. Clean.
14
*
15
* Once more I can proudly say that linux stood up to being changed: it
16
* was less than 2 hours work to get demand-loading completely implemented.
17
*
18
* Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19
* current->executable is only used by the procfs. This allows a dispatch
20
* table to check for several different types of binary formats. We keep
21
* trying until we recognize the file or we run out of supported binary
22
* formats.
23
*/
24
25
#include <linux/slab.h>
26
#include <linux/file.h>
27
#include <linux/fdtable.h>
28
#include <linux/mm.h>
29
#include <linux/stat.h>
30
#include <linux/fcntl.h>
31
#include <linux/swap.h>
32
#include <linux/string.h>
33
#include <linux/init.h>
34
#include <linux/pagemap.h>
35
#include <linux/perf_event.h>
36
#include <linux/highmem.h>
37
#include <linux/spinlock.h>
38
#include <linux/key.h>
39
#include <linux/personality.h>
40
#include <linux/binfmts.h>
41
#include <linux/utsname.h>
42
#include <linux/pid_namespace.h>
43
#include <linux/module.h>
44
#include <linux/namei.h>
45
#include <linux/mount.h>
46
#include <linux/security.h>
47
#include <linux/syscalls.h>
48
#include <linux/tsacct_kern.h>
49
#include <linux/cn_proc.h>
50
#include <linux/audit.h>
51
#include <linux/tracehook.h>
52
#include <linux/kmod.h>
53
#include <linux/fsnotify.h>
54
#include <linux/fs_struct.h>
55
#include <linux/pipe_fs_i.h>
56
#include <linux/oom.h>
57
#include <linux/compat.h>
58
59
#include <asm/uaccess.h>
60
#include <asm/mmu_context.h>
61
#include <asm/tlb.h>
62
#include "internal.h"
63
64
int core_uses_pid;
65
char core_pattern[CORENAME_MAX_SIZE] = "core";
66
unsigned int core_pipe_limit;
67
int suid_dumpable = 0;
68
69
struct core_name {
70
char *corename;
71
int used, size;
72
};
73
static atomic_t call_count = ATOMIC_INIT(1);
74
75
/* The maximal length of core_pattern is also specified in sysctl.c */
76
77
static LIST_HEAD(formats);
78
static DEFINE_RWLOCK(binfmt_lock);
79
80
int __register_binfmt(struct linux_binfmt * fmt, int insert)
81
{
82
if (!fmt)
83
return -EINVAL;
84
write_lock(&binfmt_lock);
85
insert ? list_add(&fmt->lh, &formats) :
86
list_add_tail(&fmt->lh, &formats);
87
write_unlock(&binfmt_lock);
88
return 0;
89
}
90
91
EXPORT_SYMBOL(__register_binfmt);
92
93
void unregister_binfmt(struct linux_binfmt * fmt)
94
{
95
write_lock(&binfmt_lock);
96
list_del(&fmt->lh);
97
write_unlock(&binfmt_lock);
98
}
99
100
EXPORT_SYMBOL(unregister_binfmt);
101
102
static inline void put_binfmt(struct linux_binfmt * fmt)
103
{
104
module_put(fmt->module);
105
}
106
107
/*
108
* Note that a shared library must be both readable and executable due to
109
* security reasons.
110
*
111
* Also note that we take the address to load from from the file itself.
112
*/
113
SYSCALL_DEFINE1(uselib, const char __user *, library)
114
{
115
struct file *file;
116
char *tmp = getname(library);
117
int error = PTR_ERR(tmp);
118
static const struct open_flags uselib_flags = {
119
.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
120
.acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
121
.intent = LOOKUP_OPEN
122
};
123
124
if (IS_ERR(tmp))
125
goto out;
126
127
file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
128
putname(tmp);
129
error = PTR_ERR(file);
130
if (IS_ERR(file))
131
goto out;
132
133
error = -EINVAL;
134
if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
135
goto exit;
136
137
error = -EACCES;
138
if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
139
goto exit;
140
141
fsnotify_open(file);
142
143
error = -ENOEXEC;
144
if(file->f_op) {
145
struct linux_binfmt * fmt;
146
147
read_lock(&binfmt_lock);
148
list_for_each_entry(fmt, &formats, lh) {
149
if (!fmt->load_shlib)
150
continue;
151
if (!try_module_get(fmt->module))
152
continue;
153
read_unlock(&binfmt_lock);
154
error = fmt->load_shlib(file);
155
read_lock(&binfmt_lock);
156
put_binfmt(fmt);
157
if (error != -ENOEXEC)
158
break;
159
}
160
read_unlock(&binfmt_lock);
161
}
162
exit:
163
fput(file);
164
out:
165
return error;
166
}
167
168
#ifdef CONFIG_MMU
169
/*
170
* The nascent bprm->mm is not visible until exec_mmap() but it can
171
* use a lot of memory, account these pages in current->mm temporary
172
* for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
173
* change the counter back via acct_arg_size(0).
174
*/
175
static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
176
{
177
struct mm_struct *mm = current->mm;
178
long diff = (long)(pages - bprm->vma_pages);
179
180
if (!mm || !diff)
181
return;
182
183
bprm->vma_pages = pages;
184
185
#ifdef SPLIT_RSS_COUNTING
186
add_mm_counter(mm, MM_ANONPAGES, diff);
187
#else
188
spin_lock(&mm->page_table_lock);
189
add_mm_counter(mm, MM_ANONPAGES, diff);
190
spin_unlock(&mm->page_table_lock);
191
#endif
192
}
193
194
static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
195
int write)
196
{
197
struct page *page;
198
int ret;
199
200
#ifdef CONFIG_STACK_GROWSUP
201
if (write) {
202
ret = expand_downwards(bprm->vma, pos);
203
if (ret < 0)
204
return NULL;
205
}
206
#endif
207
ret = get_user_pages(current, bprm->mm, pos,
208
1, write, 1, &page, NULL);
209
if (ret <= 0)
210
return NULL;
211
212
if (write) {
213
unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
214
struct rlimit *rlim;
215
216
acct_arg_size(bprm, size / PAGE_SIZE);
217
218
/*
219
* We've historically supported up to 32 pages (ARG_MAX)
220
* of argument strings even with small stacks
221
*/
222
if (size <= ARG_MAX)
223
return page;
224
225
/*
226
* Limit to 1/4-th the stack size for the argv+env strings.
227
* This ensures that:
228
* - the remaining binfmt code will not run out of stack space,
229
* - the program will have a reasonable amount of stack left
230
* to work from.
231
*/
232
rlim = current->signal->rlim;
233
if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
234
put_page(page);
235
return NULL;
236
}
237
}
238
239
return page;
240
}
241
242
static void put_arg_page(struct page *page)
243
{
244
put_page(page);
245
}
246
247
static void free_arg_page(struct linux_binprm *bprm, int i)
248
{
249
}
250
251
static void free_arg_pages(struct linux_binprm *bprm)
252
{
253
}
254
255
static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
256
struct page *page)
257
{
258
flush_cache_page(bprm->vma, pos, page_to_pfn(page));
259
}
260
261
static int __bprm_mm_init(struct linux_binprm *bprm)
262
{
263
int err;
264
struct vm_area_struct *vma = NULL;
265
struct mm_struct *mm = bprm->mm;
266
267
bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
268
if (!vma)
269
return -ENOMEM;
270
271
down_write(&mm->mmap_sem);
272
vma->vm_mm = mm;
273
274
/*
275
* Place the stack at the largest stack address the architecture
276
* supports. Later, we'll move this to an appropriate place. We don't
277
* use STACK_TOP because that can depend on attributes which aren't
278
* configured yet.
279
*/
280
BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
281
vma->vm_end = STACK_TOP_MAX;
282
vma->vm_start = vma->vm_end - PAGE_SIZE;
283
vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
284
vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
285
INIT_LIST_HEAD(&vma->anon_vma_chain);
286
287
err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
288
if (err)
289
goto err;
290
291
err = insert_vm_struct(mm, vma);
292
if (err)
293
goto err;
294
295
mm->stack_vm = mm->total_vm = 1;
296
up_write(&mm->mmap_sem);
297
bprm->p = vma->vm_end - sizeof(void *);
298
return 0;
299
err:
300
up_write(&mm->mmap_sem);
301
bprm->vma = NULL;
302
kmem_cache_free(vm_area_cachep, vma);
303
return err;
304
}
305
306
static bool valid_arg_len(struct linux_binprm *bprm, long len)
307
{
308
return len <= MAX_ARG_STRLEN;
309
}
310
311
#else
312
313
static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
314
{
315
}
316
317
static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
318
int write)
319
{
320
struct page *page;
321
322
page = bprm->page[pos / PAGE_SIZE];
323
if (!page && write) {
324
page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
325
if (!page)
326
return NULL;
327
bprm->page[pos / PAGE_SIZE] = page;
328
}
329
330
return page;
331
}
332
333
static void put_arg_page(struct page *page)
334
{
335
}
336
337
static void free_arg_page(struct linux_binprm *bprm, int i)
338
{
339
if (bprm->page[i]) {
340
__free_page(bprm->page[i]);
341
bprm->page[i] = NULL;
342
}
343
}
344
345
static void free_arg_pages(struct linux_binprm *bprm)
346
{
347
int i;
348
349
for (i = 0; i < MAX_ARG_PAGES; i++)
350
free_arg_page(bprm, i);
351
}
352
353
static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
354
struct page *page)
355
{
356
}
357
358
static int __bprm_mm_init(struct linux_binprm *bprm)
359
{
360
bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
361
return 0;
362
}
363
364
static bool valid_arg_len(struct linux_binprm *bprm, long len)
365
{
366
return len <= bprm->p;
367
}
368
369
#endif /* CONFIG_MMU */
370
371
/*
372
* Create a new mm_struct and populate it with a temporary stack
373
* vm_area_struct. We don't have enough context at this point to set the stack
374
* flags, permissions, and offset, so we use temporary values. We'll update
375
* them later in setup_arg_pages().
376
*/
377
int bprm_mm_init(struct linux_binprm *bprm)
378
{
379
int err;
380
struct mm_struct *mm = NULL;
381
382
bprm->mm = mm = mm_alloc();
383
err = -ENOMEM;
384
if (!mm)
385
goto err;
386
387
err = init_new_context(current, mm);
388
if (err)
389
goto err;
390
391
err = __bprm_mm_init(bprm);
392
if (err)
393
goto err;
394
395
return 0;
396
397
err:
398
if (mm) {
399
bprm->mm = NULL;
400
mmdrop(mm);
401
}
402
403
return err;
404
}
405
406
struct user_arg_ptr {
407
#ifdef CONFIG_COMPAT
408
bool is_compat;
409
#endif
410
union {
411
const char __user *const __user *native;
412
#ifdef CONFIG_COMPAT
413
compat_uptr_t __user *compat;
414
#endif
415
} ptr;
416
};
417
418
static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
419
{
420
const char __user *native;
421
422
#ifdef CONFIG_COMPAT
423
if (unlikely(argv.is_compat)) {
424
compat_uptr_t compat;
425
426
if (get_user(compat, argv.ptr.compat + nr))
427
return ERR_PTR(-EFAULT);
428
429
return compat_ptr(compat);
430
}
431
#endif
432
433
if (get_user(native, argv.ptr.native + nr))
434
return ERR_PTR(-EFAULT);
435
436
return native;
437
}
438
439
/*
440
* count() counts the number of strings in array ARGV.
441
*/
442
static int count(struct user_arg_ptr argv, int max)
443
{
444
int i = 0;
445
446
if (argv.ptr.native != NULL) {
447
for (;;) {
448
const char __user *p = get_user_arg_ptr(argv, i);
449
450
if (!p)
451
break;
452
453
if (IS_ERR(p))
454
return -EFAULT;
455
456
if (i++ >= max)
457
return -E2BIG;
458
459
if (fatal_signal_pending(current))
460
return -ERESTARTNOHAND;
461
cond_resched();
462
}
463
}
464
return i;
465
}
466
467
/*
468
* 'copy_strings()' copies argument/environment strings from the old
469
* processes's memory to the new process's stack. The call to get_user_pages()
470
* ensures the destination page is created and not swapped out.
471
*/
472
static int copy_strings(int argc, struct user_arg_ptr argv,
473
struct linux_binprm *bprm)
474
{
475
struct page *kmapped_page = NULL;
476
char *kaddr = NULL;
477
unsigned long kpos = 0;
478
int ret;
479
480
while (argc-- > 0) {
481
const char __user *str;
482
int len;
483
unsigned long pos;
484
485
ret = -EFAULT;
486
str = get_user_arg_ptr(argv, argc);
487
if (IS_ERR(str))
488
goto out;
489
490
len = strnlen_user(str, MAX_ARG_STRLEN);
491
if (!len)
492
goto out;
493
494
ret = -E2BIG;
495
if (!valid_arg_len(bprm, len))
496
goto out;
497
498
/* We're going to work our way backwords. */
499
pos = bprm->p;
500
str += len;
501
bprm->p -= len;
502
503
while (len > 0) {
504
int offset, bytes_to_copy;
505
506
if (fatal_signal_pending(current)) {
507
ret = -ERESTARTNOHAND;
508
goto out;
509
}
510
cond_resched();
511
512
offset = pos % PAGE_SIZE;
513
if (offset == 0)
514
offset = PAGE_SIZE;
515
516
bytes_to_copy = offset;
517
if (bytes_to_copy > len)
518
bytes_to_copy = len;
519
520
offset -= bytes_to_copy;
521
pos -= bytes_to_copy;
522
str -= bytes_to_copy;
523
len -= bytes_to_copy;
524
525
if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
526
struct page *page;
527
528
page = get_arg_page(bprm, pos, 1);
529
if (!page) {
530
ret = -E2BIG;
531
goto out;
532
}
533
534
if (kmapped_page) {
535
flush_kernel_dcache_page(kmapped_page);
536
kunmap(kmapped_page);
537
put_arg_page(kmapped_page);
538
}
539
kmapped_page = page;
540
kaddr = kmap(kmapped_page);
541
kpos = pos & PAGE_MASK;
542
flush_arg_page(bprm, kpos, kmapped_page);
543
}
544
if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
545
ret = -EFAULT;
546
goto out;
547
}
548
}
549
}
550
ret = 0;
551
out:
552
if (kmapped_page) {
553
flush_kernel_dcache_page(kmapped_page);
554
kunmap(kmapped_page);
555
put_arg_page(kmapped_page);
556
}
557
return ret;
558
}
559
560
/*
561
* Like copy_strings, but get argv and its values from kernel memory.
562
*/
563
int copy_strings_kernel(int argc, const char *const *__argv,
564
struct linux_binprm *bprm)
565
{
566
int r;
567
mm_segment_t oldfs = get_fs();
568
struct user_arg_ptr argv = {
569
.ptr.native = (const char __user *const __user *)__argv,
570
};
571
572
set_fs(KERNEL_DS);
573
r = copy_strings(argc, argv, bprm);
574
set_fs(oldfs);
575
576
return r;
577
}
578
EXPORT_SYMBOL(copy_strings_kernel);
579
580
#ifdef CONFIG_MMU
581
582
/*
583
* During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
584
* the binfmt code determines where the new stack should reside, we shift it to
585
* its final location. The process proceeds as follows:
586
*
587
* 1) Use shift to calculate the new vma endpoints.
588
* 2) Extend vma to cover both the old and new ranges. This ensures the
589
* arguments passed to subsequent functions are consistent.
590
* 3) Move vma's page tables to the new range.
591
* 4) Free up any cleared pgd range.
592
* 5) Shrink the vma to cover only the new range.
593
*/
594
static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
595
{
596
struct mm_struct *mm = vma->vm_mm;
597
unsigned long old_start = vma->vm_start;
598
unsigned long old_end = vma->vm_end;
599
unsigned long length = old_end - old_start;
600
unsigned long new_start = old_start - shift;
601
unsigned long new_end = old_end - shift;
602
struct mmu_gather tlb;
603
604
BUG_ON(new_start > new_end);
605
606
/*
607
* ensure there are no vmas between where we want to go
608
* and where we are
609
*/
610
if (vma != find_vma(mm, new_start))
611
return -EFAULT;
612
613
/*
614
* cover the whole range: [new_start, old_end)
615
*/
616
if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
617
return -ENOMEM;
618
619
/*
620
* move the page tables downwards, on failure we rely on
621
* process cleanup to remove whatever mess we made.
622
*/
623
if (length != move_page_tables(vma, old_start,
624
vma, new_start, length))
625
return -ENOMEM;
626
627
lru_add_drain();
628
tlb_gather_mmu(&tlb, mm, 0);
629
if (new_end > old_start) {
630
/*
631
* when the old and new regions overlap clear from new_end.
632
*/
633
free_pgd_range(&tlb, new_end, old_end, new_end,
634
vma->vm_next ? vma->vm_next->vm_start : 0);
635
} else {
636
/*
637
* otherwise, clean from old_start; this is done to not touch
638
* the address space in [new_end, old_start) some architectures
639
* have constraints on va-space that make this illegal (IA64) -
640
* for the others its just a little faster.
641
*/
642
free_pgd_range(&tlb, old_start, old_end, new_end,
643
vma->vm_next ? vma->vm_next->vm_start : 0);
644
}
645
tlb_finish_mmu(&tlb, new_end, old_end);
646
647
/*
648
* Shrink the vma to just the new range. Always succeeds.
649
*/
650
vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
651
652
return 0;
653
}
654
655
/*
656
* Finalizes the stack vm_area_struct. The flags and permissions are updated,
657
* the stack is optionally relocated, and some extra space is added.
658
*/
659
int setup_arg_pages(struct linux_binprm *bprm,
660
unsigned long stack_top,
661
int executable_stack)
662
{
663
unsigned long ret;
664
unsigned long stack_shift;
665
struct mm_struct *mm = current->mm;
666
struct vm_area_struct *vma = bprm->vma;
667
struct vm_area_struct *prev = NULL;
668
unsigned long vm_flags;
669
unsigned long stack_base;
670
unsigned long stack_size;
671
unsigned long stack_expand;
672
unsigned long rlim_stack;
673
674
#ifdef CONFIG_STACK_GROWSUP
675
/* Limit stack size to 1GB */
676
stack_base = rlimit_max(RLIMIT_STACK);
677
if (stack_base > (1 << 30))
678
stack_base = 1 << 30;
679
680
/* Make sure we didn't let the argument array grow too large. */
681
if (vma->vm_end - vma->vm_start > stack_base)
682
return -ENOMEM;
683
684
stack_base = PAGE_ALIGN(stack_top - stack_base);
685
686
stack_shift = vma->vm_start - stack_base;
687
mm->arg_start = bprm->p - stack_shift;
688
bprm->p = vma->vm_end - stack_shift;
689
#else
690
stack_top = arch_align_stack(stack_top);
691
stack_top = PAGE_ALIGN(stack_top);
692
693
if (unlikely(stack_top < mmap_min_addr) ||
694
unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
695
return -ENOMEM;
696
697
stack_shift = vma->vm_end - stack_top;
698
699
bprm->p -= stack_shift;
700
mm->arg_start = bprm->p;
701
#endif
702
703
if (bprm->loader)
704
bprm->loader -= stack_shift;
705
bprm->exec -= stack_shift;
706
707
down_write(&mm->mmap_sem);
708
vm_flags = VM_STACK_FLAGS;
709
710
/*
711
* Adjust stack execute permissions; explicitly enable for
712
* EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
713
* (arch default) otherwise.
714
*/
715
if (unlikely(executable_stack == EXSTACK_ENABLE_X))
716
vm_flags |= VM_EXEC;
717
else if (executable_stack == EXSTACK_DISABLE_X)
718
vm_flags &= ~VM_EXEC;
719
vm_flags |= mm->def_flags;
720
vm_flags |= VM_STACK_INCOMPLETE_SETUP;
721
722
ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
723
vm_flags);
724
if (ret)
725
goto out_unlock;
726
BUG_ON(prev != vma);
727
728
/* Move stack pages down in memory. */
729
if (stack_shift) {
730
ret = shift_arg_pages(vma, stack_shift);
731
if (ret)
732
goto out_unlock;
733
}
734
735
/* mprotect_fixup is overkill to remove the temporary stack flags */
736
vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
737
738
stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
739
stack_size = vma->vm_end - vma->vm_start;
740
/*
741
* Align this down to a page boundary as expand_stack
742
* will align it up.
743
*/
744
rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
745
#ifdef CONFIG_STACK_GROWSUP
746
if (stack_size + stack_expand > rlim_stack)
747
stack_base = vma->vm_start + rlim_stack;
748
else
749
stack_base = vma->vm_end + stack_expand;
750
#else
751
if (stack_size + stack_expand > rlim_stack)
752
stack_base = vma->vm_end - rlim_stack;
753
else
754
stack_base = vma->vm_start - stack_expand;
755
#endif
756
current->mm->start_stack = bprm->p;
757
ret = expand_stack(vma, stack_base);
758
if (ret)
759
ret = -EFAULT;
760
761
out_unlock:
762
up_write(&mm->mmap_sem);
763
return ret;
764
}
765
EXPORT_SYMBOL(setup_arg_pages);
766
767
#endif /* CONFIG_MMU */
768
769
struct file *open_exec(const char *name)
770
{
771
struct file *file;
772
int err;
773
static const struct open_flags open_exec_flags = {
774
.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
775
.acc_mode = MAY_EXEC | MAY_OPEN,
776
.intent = LOOKUP_OPEN
777
};
778
779
file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW);
780
if (IS_ERR(file))
781
goto out;
782
783
err = -EACCES;
784
if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
785
goto exit;
786
787
if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
788
goto exit;
789
790
fsnotify_open(file);
791
792
err = deny_write_access(file);
793
if (err)
794
goto exit;
795
796
out:
797
return file;
798
799
exit:
800
fput(file);
801
return ERR_PTR(err);
802
}
803
EXPORT_SYMBOL(open_exec);
804
805
int kernel_read(struct file *file, loff_t offset,
806
char *addr, unsigned long count)
807
{
808
mm_segment_t old_fs;
809
loff_t pos = offset;
810
int result;
811
812
old_fs = get_fs();
813
set_fs(get_ds());
814
/* The cast to a user pointer is valid due to the set_fs() */
815
result = vfs_read(file, (void __user *)addr, count, &pos);
816
set_fs(old_fs);
817
return result;
818
}
819
820
EXPORT_SYMBOL(kernel_read);
821
822
static int exec_mmap(struct mm_struct *mm)
823
{
824
struct task_struct *tsk;
825
struct mm_struct * old_mm, *active_mm;
826
827
/* Notify parent that we're no longer interested in the old VM */
828
tsk = current;
829
old_mm = current->mm;
830
sync_mm_rss(tsk, old_mm);
831
mm_release(tsk, old_mm);
832
833
if (old_mm) {
834
/*
835
* Make sure that if there is a core dump in progress
836
* for the old mm, we get out and die instead of going
837
* through with the exec. We must hold mmap_sem around
838
* checking core_state and changing tsk->mm.
839
*/
840
down_read(&old_mm->mmap_sem);
841
if (unlikely(old_mm->core_state)) {
842
up_read(&old_mm->mmap_sem);
843
return -EINTR;
844
}
845
}
846
task_lock(tsk);
847
active_mm = tsk->active_mm;
848
tsk->mm = mm;
849
tsk->active_mm = mm;
850
activate_mm(active_mm, mm);
851
if (old_mm && tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
852
atomic_dec(&old_mm->oom_disable_count);
853
atomic_inc(&tsk->mm->oom_disable_count);
854
}
855
task_unlock(tsk);
856
arch_pick_mmap_layout(mm);
857
if (old_mm) {
858
up_read(&old_mm->mmap_sem);
859
BUG_ON(active_mm != old_mm);
860
mm_update_next_owner(old_mm);
861
mmput(old_mm);
862
return 0;
863
}
864
mmdrop(active_mm);
865
return 0;
866
}
867
868
/*
869
* This function makes sure the current process has its own signal table,
870
* so that flush_signal_handlers can later reset the handlers without
871
* disturbing other processes. (Other processes might share the signal
872
* table via the CLONE_SIGHAND option to clone().)
873
*/
874
static int de_thread(struct task_struct *tsk)
875
{
876
struct signal_struct *sig = tsk->signal;
877
struct sighand_struct *oldsighand = tsk->sighand;
878
spinlock_t *lock = &oldsighand->siglock;
879
880
if (thread_group_empty(tsk))
881
goto no_thread_group;
882
883
/*
884
* Kill all other threads in the thread group.
885
*/
886
spin_lock_irq(lock);
887
if (signal_group_exit(sig)) {
888
/*
889
* Another group action in progress, just
890
* return so that the signal is processed.
891
*/
892
spin_unlock_irq(lock);
893
return -EAGAIN;
894
}
895
896
sig->group_exit_task = tsk;
897
sig->notify_count = zap_other_threads(tsk);
898
if (!thread_group_leader(tsk))
899
sig->notify_count--;
900
901
while (sig->notify_count) {
902
__set_current_state(TASK_UNINTERRUPTIBLE);
903
spin_unlock_irq(lock);
904
schedule();
905
spin_lock_irq(lock);
906
}
907
spin_unlock_irq(lock);
908
909
/*
910
* At this point all other threads have exited, all we have to
911
* do is to wait for the thread group leader to become inactive,
912
* and to assume its PID:
913
*/
914
if (!thread_group_leader(tsk)) {
915
struct task_struct *leader = tsk->group_leader;
916
917
sig->notify_count = -1; /* for exit_notify() */
918
for (;;) {
919
write_lock_irq(&tasklist_lock);
920
if (likely(leader->exit_state))
921
break;
922
__set_current_state(TASK_UNINTERRUPTIBLE);
923
write_unlock_irq(&tasklist_lock);
924
schedule();
925
}
926
927
/*
928
* The only record we have of the real-time age of a
929
* process, regardless of execs it's done, is start_time.
930
* All the past CPU time is accumulated in signal_struct
931
* from sister threads now dead. But in this non-leader
932
* exec, nothing survives from the original leader thread,
933
* whose birth marks the true age of this process now.
934
* When we take on its identity by switching to its PID, we
935
* also take its birthdate (always earlier than our own).
936
*/
937
tsk->start_time = leader->start_time;
938
939
BUG_ON(!same_thread_group(leader, tsk));
940
BUG_ON(has_group_leader_pid(tsk));
941
/*
942
* An exec() starts a new thread group with the
943
* TGID of the previous thread group. Rehash the
944
* two threads with a switched PID, and release
945
* the former thread group leader:
946
*/
947
948
/* Become a process group leader with the old leader's pid.
949
* The old leader becomes a thread of the this thread group.
950
* Note: The old leader also uses this pid until release_task
951
* is called. Odd but simple and correct.
952
*/
953
detach_pid(tsk, PIDTYPE_PID);
954
tsk->pid = leader->pid;
955
attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
956
transfer_pid(leader, tsk, PIDTYPE_PGID);
957
transfer_pid(leader, tsk, PIDTYPE_SID);
958
959
list_replace_rcu(&leader->tasks, &tsk->tasks);
960
list_replace_init(&leader->sibling, &tsk->sibling);
961
962
tsk->group_leader = tsk;
963
leader->group_leader = tsk;
964
965
tsk->exit_signal = SIGCHLD;
966
967
BUG_ON(leader->exit_state != EXIT_ZOMBIE);
968
leader->exit_state = EXIT_DEAD;
969
write_unlock_irq(&tasklist_lock);
970
971
release_task(leader);
972
}
973
974
sig->group_exit_task = NULL;
975
sig->notify_count = 0;
976
977
no_thread_group:
978
if (current->mm)
979
setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
980
981
exit_itimers(sig);
982
flush_itimer_signals();
983
984
if (atomic_read(&oldsighand->count) != 1) {
985
struct sighand_struct *newsighand;
986
/*
987
* This ->sighand is shared with the CLONE_SIGHAND
988
* but not CLONE_THREAD task, switch to the new one.
989
*/
990
newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
991
if (!newsighand)
992
return -ENOMEM;
993
994
atomic_set(&newsighand->count, 1);
995
memcpy(newsighand->action, oldsighand->action,
996
sizeof(newsighand->action));
997
998
write_lock_irq(&tasklist_lock);
999
spin_lock(&oldsighand->siglock);
1000
rcu_assign_pointer(tsk->sighand, newsighand);
1001
spin_unlock(&oldsighand->siglock);
1002
write_unlock_irq(&tasklist_lock);
1003
1004
__cleanup_sighand(oldsighand);
1005
}
1006
1007
BUG_ON(!thread_group_leader(tsk));
1008
return 0;
1009
}
1010
1011
/*
1012
* These functions flushes out all traces of the currently running executable
1013
* so that a new one can be started
1014
*/
1015
static void flush_old_files(struct files_struct * files)
1016
{
1017
long j = -1;
1018
struct fdtable *fdt;
1019
1020
spin_lock(&files->file_lock);
1021
for (;;) {
1022
unsigned long set, i;
1023
1024
j++;
1025
i = j * __NFDBITS;
1026
fdt = files_fdtable(files);
1027
if (i >= fdt->max_fds)
1028
break;
1029
set = fdt->close_on_exec->fds_bits[j];
1030
if (!set)
1031
continue;
1032
fdt->close_on_exec->fds_bits[j] = 0;
1033
spin_unlock(&files->file_lock);
1034
for ( ; set ; i++,set >>= 1) {
1035
if (set & 1) {
1036
sys_close(i);
1037
}
1038
}
1039
spin_lock(&files->file_lock);
1040
1041
}
1042
spin_unlock(&files->file_lock);
1043
}
1044
1045
char *get_task_comm(char *buf, struct task_struct *tsk)
1046
{
1047
/* buf must be at least sizeof(tsk->comm) in size */
1048
task_lock(tsk);
1049
strncpy(buf, tsk->comm, sizeof(tsk->comm));
1050
task_unlock(tsk);
1051
return buf;
1052
}
1053
EXPORT_SYMBOL_GPL(get_task_comm);
1054
1055
void set_task_comm(struct task_struct *tsk, char *buf)
1056
{
1057
task_lock(tsk);
1058
1059
/*
1060
* Threads may access current->comm without holding
1061
* the task lock, so write the string carefully.
1062
* Readers without a lock may see incomplete new
1063
* names but are safe from non-terminating string reads.
1064
*/
1065
memset(tsk->comm, 0, TASK_COMM_LEN);
1066
wmb();
1067
strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1068
task_unlock(tsk);
1069
perf_event_comm(tsk);
1070
}
1071
1072
int flush_old_exec(struct linux_binprm * bprm)
1073
{
1074
int retval;
1075
1076
/*
1077
* Make sure we have a private signal table and that
1078
* we are unassociated from the previous thread group.
1079
*/
1080
retval = de_thread(current);
1081
if (retval)
1082
goto out;
1083
1084
set_mm_exe_file(bprm->mm, bprm->file);
1085
1086
/*
1087
* Release all of the old mmap stuff
1088
*/
1089
acct_arg_size(bprm, 0);
1090
retval = exec_mmap(bprm->mm);
1091
if (retval)
1092
goto out;
1093
1094
bprm->mm = NULL; /* We're using it now */
1095
1096
set_fs(USER_DS);
1097
current->flags &= ~(PF_RANDOMIZE | PF_KTHREAD);
1098
flush_thread();
1099
current->personality &= ~bprm->per_clear;
1100
1101
return 0;
1102
1103
out:
1104
return retval;
1105
}
1106
EXPORT_SYMBOL(flush_old_exec);
1107
1108
void setup_new_exec(struct linux_binprm * bprm)
1109
{
1110
int i, ch;
1111
const char *name;
1112
char tcomm[sizeof(current->comm)];
1113
1114
arch_pick_mmap_layout(current->mm);
1115
1116
/* This is the point of no return */
1117
current->sas_ss_sp = current->sas_ss_size = 0;
1118
1119
if (current_euid() == current_uid() && current_egid() == current_gid())
1120
set_dumpable(current->mm, 1);
1121
else
1122
set_dumpable(current->mm, suid_dumpable);
1123
1124
name = bprm->filename;
1125
1126
/* Copies the binary name from after last slash */
1127
for (i=0; (ch = *(name++)) != '\0';) {
1128
if (ch == '/')
1129
i = 0; /* overwrite what we wrote */
1130
else
1131
if (i < (sizeof(tcomm) - 1))
1132
tcomm[i++] = ch;
1133
}
1134
tcomm[i] = '\0';
1135
set_task_comm(current, tcomm);
1136
1137
/* Set the new mm task size. We have to do that late because it may
1138
* depend on TIF_32BIT which is only updated in flush_thread() on
1139
* some architectures like powerpc
1140
*/
1141
current->mm->task_size = TASK_SIZE;
1142
1143
/* install the new credentials */
1144
if (bprm->cred->uid != current_euid() ||
1145
bprm->cred->gid != current_egid()) {
1146
current->pdeath_signal = 0;
1147
} else if (file_permission(bprm->file, MAY_READ) ||
1148
bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1149
set_dumpable(current->mm, suid_dumpable);
1150
}
1151
1152
/*
1153
* Flush performance counters when crossing a
1154
* security domain:
1155
*/
1156
if (!get_dumpable(current->mm))
1157
perf_event_exit_task(current);
1158
1159
/* An exec changes our domain. We are no longer part of the thread
1160
group */
1161
1162
current->self_exec_id++;
1163
1164
flush_signal_handlers(current, 0);
1165
flush_old_files(current->files);
1166
}
1167
EXPORT_SYMBOL(setup_new_exec);
1168
1169
/*
1170
* Prepare credentials and lock ->cred_guard_mutex.
1171
* install_exec_creds() commits the new creds and drops the lock.
1172
* Or, if exec fails before, free_bprm() should release ->cred and
1173
* and unlock.
1174
*/
1175
int prepare_bprm_creds(struct linux_binprm *bprm)
1176
{
1177
if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1178
return -ERESTARTNOINTR;
1179
1180
bprm->cred = prepare_exec_creds();
1181
if (likely(bprm->cred))
1182
return 0;
1183
1184
mutex_unlock(&current->signal->cred_guard_mutex);
1185
return -ENOMEM;
1186
}
1187
1188
void free_bprm(struct linux_binprm *bprm)
1189
{
1190
free_arg_pages(bprm);
1191
if (bprm->cred) {
1192
mutex_unlock(&current->signal->cred_guard_mutex);
1193
abort_creds(bprm->cred);
1194
}
1195
kfree(bprm);
1196
}
1197
1198
/*
1199
* install the new credentials for this executable
1200
*/
1201
void install_exec_creds(struct linux_binprm *bprm)
1202
{
1203
security_bprm_committing_creds(bprm);
1204
1205
commit_creds(bprm->cred);
1206
bprm->cred = NULL;
1207
/*
1208
* cred_guard_mutex must be held at least to this point to prevent
1209
* ptrace_attach() from altering our determination of the task's
1210
* credentials; any time after this it may be unlocked.
1211
*/
1212
security_bprm_committed_creds(bprm);
1213
mutex_unlock(&current->signal->cred_guard_mutex);
1214
}
1215
EXPORT_SYMBOL(install_exec_creds);
1216
1217
/*
1218
* determine how safe it is to execute the proposed program
1219
* - the caller must hold ->cred_guard_mutex to protect against
1220
* PTRACE_ATTACH
1221
*/
1222
int check_unsafe_exec(struct linux_binprm *bprm)
1223
{
1224
struct task_struct *p = current, *t;
1225
unsigned n_fs;
1226
int res = 0;
1227
1228
bprm->unsafe = tracehook_unsafe_exec(p);
1229
1230
n_fs = 1;
1231
spin_lock(&p->fs->lock);
1232
rcu_read_lock();
1233
for (t = next_thread(p); t != p; t = next_thread(t)) {
1234
if (t->fs == p->fs)
1235
n_fs++;
1236
}
1237
rcu_read_unlock();
1238
1239
if (p->fs->users > n_fs) {
1240
bprm->unsafe |= LSM_UNSAFE_SHARE;
1241
} else {
1242
res = -EAGAIN;
1243
if (!p->fs->in_exec) {
1244
p->fs->in_exec = 1;
1245
res = 1;
1246
}
1247
}
1248
spin_unlock(&p->fs->lock);
1249
1250
return res;
1251
}
1252
1253
/*
1254
* Fill the binprm structure from the inode.
1255
* Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1256
*
1257
* This may be called multiple times for binary chains (scripts for example).
1258
*/
1259
int prepare_binprm(struct linux_binprm *bprm)
1260
{
1261
umode_t mode;
1262
struct inode * inode = bprm->file->f_path.dentry->d_inode;
1263
int retval;
1264
1265
mode = inode->i_mode;
1266
if (bprm->file->f_op == NULL)
1267
return -EACCES;
1268
1269
/* clear any previous set[ug]id data from a previous binary */
1270
bprm->cred->euid = current_euid();
1271
bprm->cred->egid = current_egid();
1272
1273
if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1274
/* Set-uid? */
1275
if (mode & S_ISUID) {
1276
bprm->per_clear |= PER_CLEAR_ON_SETID;
1277
bprm->cred->euid = inode->i_uid;
1278
}
1279
1280
/* Set-gid? */
1281
/*
1282
* If setgid is set but no group execute bit then this
1283
* is a candidate for mandatory locking, not a setgid
1284
* executable.
1285
*/
1286
if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1287
bprm->per_clear |= PER_CLEAR_ON_SETID;
1288
bprm->cred->egid = inode->i_gid;
1289
}
1290
}
1291
1292
/* fill in binprm security blob */
1293
retval = security_bprm_set_creds(bprm);
1294
if (retval)
1295
return retval;
1296
bprm->cred_prepared = 1;
1297
1298
memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1299
return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1300
}
1301
1302
EXPORT_SYMBOL(prepare_binprm);
1303
1304
/*
1305
* Arguments are '\0' separated strings found at the location bprm->p
1306
* points to; chop off the first by relocating brpm->p to right after
1307
* the first '\0' encountered.
1308
*/
1309
int remove_arg_zero(struct linux_binprm *bprm)
1310
{
1311
int ret = 0;
1312
unsigned long offset;
1313
char *kaddr;
1314
struct page *page;
1315
1316
if (!bprm->argc)
1317
return 0;
1318
1319
do {
1320
offset = bprm->p & ~PAGE_MASK;
1321
page = get_arg_page(bprm, bprm->p, 0);
1322
if (!page) {
1323
ret = -EFAULT;
1324
goto out;
1325
}
1326
kaddr = kmap_atomic(page, KM_USER0);
1327
1328
for (; offset < PAGE_SIZE && kaddr[offset];
1329
offset++, bprm->p++)
1330
;
1331
1332
kunmap_atomic(kaddr, KM_USER0);
1333
put_arg_page(page);
1334
1335
if (offset == PAGE_SIZE)
1336
free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1337
} while (offset == PAGE_SIZE);
1338
1339
bprm->p++;
1340
bprm->argc--;
1341
ret = 0;
1342
1343
out:
1344
return ret;
1345
}
1346
EXPORT_SYMBOL(remove_arg_zero);
1347
1348
/*
1349
* cycle the list of binary formats handler, until one recognizes the image
1350
*/
1351
int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1352
{
1353
unsigned int depth = bprm->recursion_depth;
1354
int try,retval;
1355
struct linux_binfmt *fmt;
1356
1357
retval = security_bprm_check(bprm);
1358
if (retval)
1359
return retval;
1360
1361
retval = audit_bprm(bprm);
1362
if (retval)
1363
return retval;
1364
1365
retval = -ENOENT;
1366
for (try=0; try<2; try++) {
1367
read_lock(&binfmt_lock);
1368
list_for_each_entry(fmt, &formats, lh) {
1369
int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1370
if (!fn)
1371
continue;
1372
if (!try_module_get(fmt->module))
1373
continue;
1374
read_unlock(&binfmt_lock);
1375
retval = fn(bprm, regs);
1376
/*
1377
* Restore the depth counter to its starting value
1378
* in this call, so we don't have to rely on every
1379
* load_binary function to restore it on return.
1380
*/
1381
bprm->recursion_depth = depth;
1382
if (retval >= 0) {
1383
if (depth == 0)
1384
tracehook_report_exec(fmt, bprm, regs);
1385
put_binfmt(fmt);
1386
allow_write_access(bprm->file);
1387
if (bprm->file)
1388
fput(bprm->file);
1389
bprm->file = NULL;
1390
current->did_exec = 1;
1391
proc_exec_connector(current);
1392
return retval;
1393
}
1394
read_lock(&binfmt_lock);
1395
put_binfmt(fmt);
1396
if (retval != -ENOEXEC || bprm->mm == NULL)
1397
break;
1398
if (!bprm->file) {
1399
read_unlock(&binfmt_lock);
1400
return retval;
1401
}
1402
}
1403
read_unlock(&binfmt_lock);
1404
if (retval != -ENOEXEC || bprm->mm == NULL) {
1405
break;
1406
#ifdef CONFIG_MODULES
1407
} else {
1408
#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1409
if (printable(bprm->buf[0]) &&
1410
printable(bprm->buf[1]) &&
1411
printable(bprm->buf[2]) &&
1412
printable(bprm->buf[3]))
1413
break; /* -ENOEXEC */
1414
request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1415
#endif
1416
}
1417
}
1418
return retval;
1419
}
1420
1421
EXPORT_SYMBOL(search_binary_handler);
1422
1423
/*
1424
* sys_execve() executes a new program.
1425
*/
1426
static int do_execve_common(const char *filename,
1427
struct user_arg_ptr argv,
1428
struct user_arg_ptr envp,
1429
struct pt_regs *regs)
1430
{
1431
struct linux_binprm *bprm;
1432
struct file *file;
1433
struct files_struct *displaced;
1434
bool clear_in_exec;
1435
int retval;
1436
1437
retval = unshare_files(&displaced);
1438
if (retval)
1439
goto out_ret;
1440
1441
retval = -ENOMEM;
1442
bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1443
if (!bprm)
1444
goto out_files;
1445
1446
retval = prepare_bprm_creds(bprm);
1447
if (retval)
1448
goto out_free;
1449
1450
retval = check_unsafe_exec(bprm);
1451
if (retval < 0)
1452
goto out_free;
1453
clear_in_exec = retval;
1454
current->in_execve = 1;
1455
1456
file = open_exec(filename);
1457
retval = PTR_ERR(file);
1458
if (IS_ERR(file))
1459
goto out_unmark;
1460
1461
sched_exec();
1462
1463
bprm->file = file;
1464
bprm->filename = filename;
1465
bprm->interp = filename;
1466
1467
retval = bprm_mm_init(bprm);
1468
if (retval)
1469
goto out_file;
1470
1471
bprm->argc = count(argv, MAX_ARG_STRINGS);
1472
if ((retval = bprm->argc) < 0)
1473
goto out;
1474
1475
bprm->envc = count(envp, MAX_ARG_STRINGS);
1476
if ((retval = bprm->envc) < 0)
1477
goto out;
1478
1479
retval = prepare_binprm(bprm);
1480
if (retval < 0)
1481
goto out;
1482
1483
retval = copy_strings_kernel(1, &bprm->filename, bprm);
1484
if (retval < 0)
1485
goto out;
1486
1487
bprm->exec = bprm->p;
1488
retval = copy_strings(bprm->envc, envp, bprm);
1489
if (retval < 0)
1490
goto out;
1491
1492
retval = copy_strings(bprm->argc, argv, bprm);
1493
if (retval < 0)
1494
goto out;
1495
1496
retval = search_binary_handler(bprm,regs);
1497
if (retval < 0)
1498
goto out;
1499
1500
/* execve succeeded */
1501
current->fs->in_exec = 0;
1502
current->in_execve = 0;
1503
acct_update_integrals(current);
1504
free_bprm(bprm);
1505
if (displaced)
1506
put_files_struct(displaced);
1507
return retval;
1508
1509
out:
1510
if (bprm->mm) {
1511
acct_arg_size(bprm, 0);
1512
mmput(bprm->mm);
1513
}
1514
1515
out_file:
1516
if (bprm->file) {
1517
allow_write_access(bprm->file);
1518
fput(bprm->file);
1519
}
1520
1521
out_unmark:
1522
if (clear_in_exec)
1523
current->fs->in_exec = 0;
1524
current->in_execve = 0;
1525
1526
out_free:
1527
free_bprm(bprm);
1528
1529
out_files:
1530
if (displaced)
1531
reset_files_struct(displaced);
1532
out_ret:
1533
return retval;
1534
}
1535
1536
int do_execve(const char *filename,
1537
const char __user *const __user *__argv,
1538
const char __user *const __user *__envp,
1539
struct pt_regs *regs)
1540
{
1541
struct user_arg_ptr argv = { .ptr.native = __argv };
1542
struct user_arg_ptr envp = { .ptr.native = __envp };
1543
return do_execve_common(filename, argv, envp, regs);
1544
}
1545
1546
#ifdef CONFIG_COMPAT
1547
int compat_do_execve(char *filename,
1548
compat_uptr_t __user *__argv,
1549
compat_uptr_t __user *__envp,
1550
struct pt_regs *regs)
1551
{
1552
struct user_arg_ptr argv = {
1553
.is_compat = true,
1554
.ptr.compat = __argv,
1555
};
1556
struct user_arg_ptr envp = {
1557
.is_compat = true,
1558
.ptr.compat = __envp,
1559
};
1560
return do_execve_common(filename, argv, envp, regs);
1561
}
1562
#endif
1563
1564
void set_binfmt(struct linux_binfmt *new)
1565
{
1566
struct mm_struct *mm = current->mm;
1567
1568
if (mm->binfmt)
1569
module_put(mm->binfmt->module);
1570
1571
mm->binfmt = new;
1572
if (new)
1573
__module_get(new->module);
1574
}
1575
1576
EXPORT_SYMBOL(set_binfmt);
1577
1578
static int expand_corename(struct core_name *cn)
1579
{
1580
char *old_corename = cn->corename;
1581
1582
cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
1583
cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);
1584
1585
if (!cn->corename) {
1586
kfree(old_corename);
1587
return -ENOMEM;
1588
}
1589
1590
return 0;
1591
}
1592
1593
static int cn_printf(struct core_name *cn, const char *fmt, ...)
1594
{
1595
char *cur;
1596
int need;
1597
int ret;
1598
va_list arg;
1599
1600
va_start(arg, fmt);
1601
need = vsnprintf(NULL, 0, fmt, arg);
1602
va_end(arg);
1603
1604
if (likely(need < cn->size - cn->used - 1))
1605
goto out_printf;
1606
1607
ret = expand_corename(cn);
1608
if (ret)
1609
goto expand_fail;
1610
1611
out_printf:
1612
cur = cn->corename + cn->used;
1613
va_start(arg, fmt);
1614
vsnprintf(cur, need + 1, fmt, arg);
1615
va_end(arg);
1616
cn->used += need;
1617
return 0;
1618
1619
expand_fail:
1620
return ret;
1621
}
1622
1623
static int cn_print_exe_file(struct core_name *cn)
1624
{
1625
struct file *exe_file;
1626
char *pathbuf, *path, *p;
1627
int ret;
1628
1629
exe_file = get_mm_exe_file(current->mm);
1630
if (!exe_file)
1631
return cn_printf(cn, "(unknown)");
1632
1633
pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
1634
if (!pathbuf) {
1635
ret = -ENOMEM;
1636
goto put_exe_file;
1637
}
1638
1639
path = d_path(&exe_file->f_path, pathbuf, PATH_MAX);
1640
if (IS_ERR(path)) {
1641
ret = PTR_ERR(path);
1642
goto free_buf;
1643
}
1644
1645
for (p = path; *p; p++)
1646
if (*p == '/')
1647
*p = '!';
1648
1649
ret = cn_printf(cn, "%s", path);
1650
1651
free_buf:
1652
kfree(pathbuf);
1653
put_exe_file:
1654
fput(exe_file);
1655
return ret;
1656
}
1657
1658
/* format_corename will inspect the pattern parameter, and output a
1659
* name into corename, which must have space for at least
1660
* CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1661
*/
1662
static int format_corename(struct core_name *cn, long signr)
1663
{
1664
const struct cred *cred = current_cred();
1665
const char *pat_ptr = core_pattern;
1666
int ispipe = (*pat_ptr == '|');
1667
int pid_in_pattern = 0;
1668
int err = 0;
1669
1670
cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
1671
cn->corename = kmalloc(cn->size, GFP_KERNEL);
1672
cn->used = 0;
1673
1674
if (!cn->corename)
1675
return -ENOMEM;
1676
1677
/* Repeat as long as we have more pattern to process and more output
1678
space */
1679
while (*pat_ptr) {
1680
if (*pat_ptr != '%') {
1681
if (*pat_ptr == 0)
1682
goto out;
1683
err = cn_printf(cn, "%c", *pat_ptr++);
1684
} else {
1685
switch (*++pat_ptr) {
1686
/* single % at the end, drop that */
1687
case 0:
1688
goto out;
1689
/* Double percent, output one percent */
1690
case '%':
1691
err = cn_printf(cn, "%c", '%');
1692
break;
1693
/* pid */
1694
case 'p':
1695
pid_in_pattern = 1;
1696
err = cn_printf(cn, "%d",
1697
task_tgid_vnr(current));
1698
break;
1699
/* uid */
1700
case 'u':
1701
err = cn_printf(cn, "%d", cred->uid);
1702
break;
1703
/* gid */
1704
case 'g':
1705
err = cn_printf(cn, "%d", cred->gid);
1706
break;
1707
/* signal that caused the coredump */
1708
case 's':
1709
err = cn_printf(cn, "%ld", signr);
1710
break;
1711
/* UNIX time of coredump */
1712
case 't': {
1713
struct timeval tv;
1714
do_gettimeofday(&tv);
1715
err = cn_printf(cn, "%lu", tv.tv_sec);
1716
break;
1717
}
1718
/* hostname */
1719
case 'h':
1720
down_read(&uts_sem);
1721
err = cn_printf(cn, "%s",
1722
utsname()->nodename);
1723
up_read(&uts_sem);
1724
break;
1725
/* executable */
1726
case 'e':
1727
err = cn_printf(cn, "%s", current->comm);
1728
break;
1729
case 'E':
1730
err = cn_print_exe_file(cn);
1731
break;
1732
/* core limit size */
1733
case 'c':
1734
err = cn_printf(cn, "%lu",
1735
rlimit(RLIMIT_CORE));
1736
break;
1737
default:
1738
break;
1739
}
1740
++pat_ptr;
1741
}
1742
1743
if (err)
1744
return err;
1745
}
1746
1747
/* Backward compatibility with core_uses_pid:
1748
*
1749
* If core_pattern does not include a %p (as is the default)
1750
* and core_uses_pid is set, then .%pid will be appended to
1751
* the filename. Do not do this for piped commands. */
1752
if (!ispipe && !pid_in_pattern && core_uses_pid) {
1753
err = cn_printf(cn, ".%d", task_tgid_vnr(current));
1754
if (err)
1755
return err;
1756
}
1757
out:
1758
return ispipe;
1759
}
1760
1761
static int zap_process(struct task_struct *start, int exit_code)
1762
{
1763
struct task_struct *t;
1764
int nr = 0;
1765
1766
start->signal->flags = SIGNAL_GROUP_EXIT;
1767
start->signal->group_exit_code = exit_code;
1768
start->signal->group_stop_count = 0;
1769
1770
t = start;
1771
do {
1772
task_clear_group_stop_pending(t);
1773
if (t != current && t->mm) {
1774
sigaddset(&t->pending.signal, SIGKILL);
1775
signal_wake_up(t, 1);
1776
nr++;
1777
}
1778
} while_each_thread(start, t);
1779
1780
return nr;
1781
}
1782
1783
static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1784
struct core_state *core_state, int exit_code)
1785
{
1786
struct task_struct *g, *p;
1787
unsigned long flags;
1788
int nr = -EAGAIN;
1789
1790
spin_lock_irq(&tsk->sighand->siglock);
1791
if (!signal_group_exit(tsk->signal)) {
1792
mm->core_state = core_state;
1793
nr = zap_process(tsk, exit_code);
1794
}
1795
spin_unlock_irq(&tsk->sighand->siglock);
1796
if (unlikely(nr < 0))
1797
return nr;
1798
1799
if (atomic_read(&mm->mm_users) == nr + 1)
1800
goto done;
1801
/*
1802
* We should find and kill all tasks which use this mm, and we should
1803
* count them correctly into ->nr_threads. We don't take tasklist
1804
* lock, but this is safe wrt:
1805
*
1806
* fork:
1807
* None of sub-threads can fork after zap_process(leader). All
1808
* processes which were created before this point should be
1809
* visible to zap_threads() because copy_process() adds the new
1810
* process to the tail of init_task.tasks list, and lock/unlock
1811
* of ->siglock provides a memory barrier.
1812
*
1813
* do_exit:
1814
* The caller holds mm->mmap_sem. This means that the task which
1815
* uses this mm can't pass exit_mm(), so it can't exit or clear
1816
* its ->mm.
1817
*
1818
* de_thread:
1819
* It does list_replace_rcu(&leader->tasks, &current->tasks),
1820
* we must see either old or new leader, this does not matter.
1821
* However, it can change p->sighand, so lock_task_sighand(p)
1822
* must be used. Since p->mm != NULL and we hold ->mmap_sem
1823
* it can't fail.
1824
*
1825
* Note also that "g" can be the old leader with ->mm == NULL
1826
* and already unhashed and thus removed from ->thread_group.
1827
* This is OK, __unhash_process()->list_del_rcu() does not
1828
* clear the ->next pointer, we will find the new leader via
1829
* next_thread().
1830
*/
1831
rcu_read_lock();
1832
for_each_process(g) {
1833
if (g == tsk->group_leader)
1834
continue;
1835
if (g->flags & PF_KTHREAD)
1836
continue;
1837
p = g;
1838
do {
1839
if (p->mm) {
1840
if (unlikely(p->mm == mm)) {
1841
lock_task_sighand(p, &flags);
1842
nr += zap_process(p, exit_code);
1843
unlock_task_sighand(p, &flags);
1844
}
1845
break;
1846
}
1847
} while_each_thread(g, p);
1848
}
1849
rcu_read_unlock();
1850
done:
1851
atomic_set(&core_state->nr_threads, nr);
1852
return nr;
1853
}
1854
1855
static int coredump_wait(int exit_code, struct core_state *core_state)
1856
{
1857
struct task_struct *tsk = current;
1858
struct mm_struct *mm = tsk->mm;
1859
struct completion *vfork_done;
1860
int core_waiters = -EBUSY;
1861
1862
init_completion(&core_state->startup);
1863
core_state->dumper.task = tsk;
1864
core_state->dumper.next = NULL;
1865
1866
down_write(&mm->mmap_sem);
1867
if (!mm->core_state)
1868
core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1869
up_write(&mm->mmap_sem);
1870
1871
if (unlikely(core_waiters < 0))
1872
goto fail;
1873
1874
/*
1875
* Make sure nobody is waiting for us to release the VM,
1876
* otherwise we can deadlock when we wait on each other
1877
*/
1878
vfork_done = tsk->vfork_done;
1879
if (vfork_done) {
1880
tsk->vfork_done = NULL;
1881
complete(vfork_done);
1882
}
1883
1884
if (core_waiters)
1885
wait_for_completion(&core_state->startup);
1886
fail:
1887
return core_waiters;
1888
}
1889
1890
static void coredump_finish(struct mm_struct *mm)
1891
{
1892
struct core_thread *curr, *next;
1893
struct task_struct *task;
1894
1895
next = mm->core_state->dumper.next;
1896
while ((curr = next) != NULL) {
1897
next = curr->next;
1898
task = curr->task;
1899
/*
1900
* see exit_mm(), curr->task must not see
1901
* ->task == NULL before we read ->next.
1902
*/
1903
smp_mb();
1904
curr->task = NULL;
1905
wake_up_process(task);
1906
}
1907
1908
mm->core_state = NULL;
1909
}
1910
1911
/*
1912
* set_dumpable converts traditional three-value dumpable to two flags and
1913
* stores them into mm->flags. It modifies lower two bits of mm->flags, but
1914
* these bits are not changed atomically. So get_dumpable can observe the
1915
* intermediate state. To avoid doing unexpected behavior, get get_dumpable
1916
* return either old dumpable or new one by paying attention to the order of
1917
* modifying the bits.
1918
*
1919
* dumpable | mm->flags (binary)
1920
* old new | initial interim final
1921
* ---------+-----------------------
1922
* 0 1 | 00 01 01
1923
* 0 2 | 00 10(*) 11
1924
* 1 0 | 01 00 00
1925
* 1 2 | 01 11 11
1926
* 2 0 | 11 10(*) 00
1927
* 2 1 | 11 11 01
1928
*
1929
* (*) get_dumpable regards interim value of 10 as 11.
1930
*/
1931
void set_dumpable(struct mm_struct *mm, int value)
1932
{
1933
switch (value) {
1934
case 0:
1935
clear_bit(MMF_DUMPABLE, &mm->flags);
1936
smp_wmb();
1937
clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1938
break;
1939
case 1:
1940
set_bit(MMF_DUMPABLE, &mm->flags);
1941
smp_wmb();
1942
clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1943
break;
1944
case 2:
1945
set_bit(MMF_DUMP_SECURELY, &mm->flags);
1946
smp_wmb();
1947
set_bit(MMF_DUMPABLE, &mm->flags);
1948
break;
1949
}
1950
}
1951
1952
static int __get_dumpable(unsigned long mm_flags)
1953
{
1954
int ret;
1955
1956
ret = mm_flags & MMF_DUMPABLE_MASK;
1957
return (ret >= 2) ? 2 : ret;
1958
}
1959
1960
int get_dumpable(struct mm_struct *mm)
1961
{
1962
return __get_dumpable(mm->flags);
1963
}
1964
1965
static void wait_for_dump_helpers(struct file *file)
1966
{
1967
struct pipe_inode_info *pipe;
1968
1969
pipe = file->f_path.dentry->d_inode->i_pipe;
1970
1971
pipe_lock(pipe);
1972
pipe->readers++;
1973
pipe->writers--;
1974
1975
while ((pipe->readers > 1) && (!signal_pending(current))) {
1976
wake_up_interruptible_sync(&pipe->wait);
1977
kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1978
pipe_wait(pipe);
1979
}
1980
1981
pipe->readers--;
1982
pipe->writers++;
1983
pipe_unlock(pipe);
1984
1985
}
1986
1987
1988
/*
1989
* umh_pipe_setup
1990
* helper function to customize the process used
1991
* to collect the core in userspace. Specifically
1992
* it sets up a pipe and installs it as fd 0 (stdin)
1993
* for the process. Returns 0 on success, or
1994
* PTR_ERR on failure.
1995
* Note that it also sets the core limit to 1. This
1996
* is a special value that we use to trap recursive
1997
* core dumps
1998
*/
1999
static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
2000
{
2001
struct file *rp, *wp;
2002
struct fdtable *fdt;
2003
struct coredump_params *cp = (struct coredump_params *)info->data;
2004
struct files_struct *cf = current->files;
2005
2006
wp = create_write_pipe(0);
2007
if (IS_ERR(wp))
2008
return PTR_ERR(wp);
2009
2010
rp = create_read_pipe(wp, 0);
2011
if (IS_ERR(rp)) {
2012
free_write_pipe(wp);
2013
return PTR_ERR(rp);
2014
}
2015
2016
cp->file = wp;
2017
2018
sys_close(0);
2019
fd_install(0, rp);
2020
spin_lock(&cf->file_lock);
2021
fdt = files_fdtable(cf);
2022
FD_SET(0, fdt->open_fds);
2023
FD_CLR(0, fdt->close_on_exec);
2024
spin_unlock(&cf->file_lock);
2025
2026
/* and disallow core files too */
2027
current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
2028
2029
return 0;
2030
}
2031
2032
void do_coredump(long signr, int exit_code, struct pt_regs *regs)
2033
{
2034
struct core_state core_state;
2035
struct core_name cn;
2036
struct mm_struct *mm = current->mm;
2037
struct linux_binfmt * binfmt;
2038
const struct cred *old_cred;
2039
struct cred *cred;
2040
int retval = 0;
2041
int flag = 0;
2042
int ispipe;
2043
static atomic_t core_dump_count = ATOMIC_INIT(0);
2044
struct coredump_params cprm = {
2045
.signr = signr,
2046
.regs = regs,
2047
.limit = rlimit(RLIMIT_CORE),
2048
/*
2049
* We must use the same mm->flags while dumping core to avoid
2050
* inconsistency of bit flags, since this flag is not protected
2051
* by any locks.
2052
*/
2053
.mm_flags = mm->flags,
2054
};
2055
2056
audit_core_dumps(signr);
2057
2058
binfmt = mm->binfmt;
2059
if (!binfmt || !binfmt->core_dump)
2060
goto fail;
2061
if (!__get_dumpable(cprm.mm_flags))
2062
goto fail;
2063
2064
cred = prepare_creds();
2065
if (!cred)
2066
goto fail;
2067
/*
2068
* We cannot trust fsuid as being the "true" uid of the
2069
* process nor do we know its entire history. We only know it
2070
* was tainted so we dump it as root in mode 2.
2071
*/
2072
if (__get_dumpable(cprm.mm_flags) == 2) {
2073
/* Setuid core dump mode */
2074
flag = O_EXCL; /* Stop rewrite attacks */
2075
cred->fsuid = 0; /* Dump root private */
2076
}
2077
2078
retval = coredump_wait(exit_code, &core_state);
2079
if (retval < 0)
2080
goto fail_creds;
2081
2082
old_cred = override_creds(cred);
2083
2084
/*
2085
* Clear any false indication of pending signals that might
2086
* be seen by the filesystem code called to write the core file.
2087
*/
2088
clear_thread_flag(TIF_SIGPENDING);
2089
2090
ispipe = format_corename(&cn, signr);
2091
2092
if (ispipe == -ENOMEM) {
2093
printk(KERN_WARNING "format_corename failed\n");
2094
printk(KERN_WARNING "Aborting core\n");
2095
goto fail_corename;
2096
}
2097
2098
if (ispipe) {
2099
int dump_count;
2100
char **helper_argv;
2101
2102
if (cprm.limit == 1) {
2103
/*
2104
* Normally core limits are irrelevant to pipes, since
2105
* we're not writing to the file system, but we use
2106
* cprm.limit of 1 here as a speacial value. Any
2107
* non-1 limit gets set to RLIM_INFINITY below, but
2108
* a limit of 0 skips the dump. This is a consistent
2109
* way to catch recursive crashes. We can still crash
2110
* if the core_pattern binary sets RLIM_CORE = !1
2111
* but it runs as root, and can do lots of stupid things
2112
* Note that we use task_tgid_vnr here to grab the pid
2113
* of the process group leader. That way we get the
2114
* right pid if a thread in a multi-threaded
2115
* core_pattern process dies.
2116
*/
2117
printk(KERN_WARNING
2118
"Process %d(%s) has RLIMIT_CORE set to 1\n",
2119
task_tgid_vnr(current), current->comm);
2120
printk(KERN_WARNING "Aborting core\n");
2121
goto fail_unlock;
2122
}
2123
cprm.limit = RLIM_INFINITY;
2124
2125
dump_count = atomic_inc_return(&core_dump_count);
2126
if (core_pipe_limit && (core_pipe_limit < dump_count)) {
2127
printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
2128
task_tgid_vnr(current), current->comm);
2129
printk(KERN_WARNING "Skipping core dump\n");
2130
goto fail_dropcount;
2131
}
2132
2133
helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
2134
if (!helper_argv) {
2135
printk(KERN_WARNING "%s failed to allocate memory\n",
2136
__func__);
2137
goto fail_dropcount;
2138
}
2139
2140
retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
2141
NULL, UMH_WAIT_EXEC, umh_pipe_setup,
2142
NULL, &cprm);
2143
argv_free(helper_argv);
2144
if (retval) {
2145
printk(KERN_INFO "Core dump to %s pipe failed\n",
2146
cn.corename);
2147
goto close_fail;
2148
}
2149
} else {
2150
struct inode *inode;
2151
2152
if (cprm.limit < binfmt->min_coredump)
2153
goto fail_unlock;
2154
2155
cprm.file = filp_open(cn.corename,
2156
O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
2157
0600);
2158
if (IS_ERR(cprm.file))
2159
goto fail_unlock;
2160
2161
inode = cprm.file->f_path.dentry->d_inode;
2162
if (inode->i_nlink > 1)
2163
goto close_fail;
2164
if (d_unhashed(cprm.file->f_path.dentry))
2165
goto close_fail;
2166
/*
2167
* AK: actually i see no reason to not allow this for named
2168
* pipes etc, but keep the previous behaviour for now.
2169
*/
2170
if (!S_ISREG(inode->i_mode))
2171
goto close_fail;
2172
/*
2173
* Dont allow local users get cute and trick others to coredump
2174
* into their pre-created files.
2175
*/
2176
if (inode->i_uid != current_fsuid())
2177
goto close_fail;
2178
if (!cprm.file->f_op || !cprm.file->f_op->write)
2179
goto close_fail;
2180
if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
2181
goto close_fail;
2182
}
2183
2184
retval = binfmt->core_dump(&cprm);
2185
if (retval)
2186
current->signal->group_exit_code |= 0x80;
2187
2188
if (ispipe && core_pipe_limit)
2189
wait_for_dump_helpers(cprm.file);
2190
close_fail:
2191
if (cprm.file)
2192
filp_close(cprm.file, NULL);
2193
fail_dropcount:
2194
if (ispipe)
2195
atomic_dec(&core_dump_count);
2196
fail_unlock:
2197
kfree(cn.corename);
2198
fail_corename:
2199
coredump_finish(mm);
2200
revert_creds(old_cred);
2201
fail_creds:
2202
put_cred(cred);
2203
fail:
2204
return;
2205
}
2206
2207
/*
2208
* Core dumping helper functions. These are the only things you should
2209
* do on a core-file: use only these functions to write out all the
2210
* necessary info.
2211
*/
2212
int dump_write(struct file *file, const void *addr, int nr)
2213
{
2214
return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
2215
}
2216
EXPORT_SYMBOL(dump_write);
2217
2218
int dump_seek(struct file *file, loff_t off)
2219
{
2220
int ret = 1;
2221
2222
if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
2223
if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
2224
return 0;
2225
} else {
2226
char *buf = (char *)get_zeroed_page(GFP_KERNEL);
2227
2228
if (!buf)
2229
return 0;
2230
while (off > 0) {
2231
unsigned long n = off;
2232
2233
if (n > PAGE_SIZE)
2234
n = PAGE_SIZE;
2235
if (!dump_write(file, buf, n)) {
2236
ret = 0;
2237
break;
2238
}
2239
off -= n;
2240
}
2241
free_page((unsigned long)buf);
2242
}
2243
return ret;
2244
}
2245
EXPORT_SYMBOL(dump_seek);
2246
2247