Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/include/rdma/ib_verbs.h
10818 views
1
/*
2
* Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3
* Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4
* Copyright (c) 2004 Intel Corporation. All rights reserved.
5
* Copyright (c) 2004 Topspin Corporation. All rights reserved.
6
* Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7
* Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8
* Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
9
*
10
* This software is available to you under a choice of one of two
11
* licenses. You may choose to be licensed under the terms of the GNU
12
* General Public License (GPL) Version 2, available from the file
13
* COPYING in the main directory of this source tree, or the
14
* OpenIB.org BSD license below:
15
*
16
* Redistribution and use in source and binary forms, with or
17
* without modification, are permitted provided that the following
18
* conditions are met:
19
*
20
* - Redistributions of source code must retain the above
21
* copyright notice, this list of conditions and the following
22
* disclaimer.
23
*
24
* - Redistributions in binary form must reproduce the above
25
* copyright notice, this list of conditions and the following
26
* disclaimer in the documentation and/or other materials
27
* provided with the distribution.
28
*
29
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36
* SOFTWARE.
37
*/
38
39
#if !defined(IB_VERBS_H)
40
#define IB_VERBS_H
41
42
#include <linux/types.h>
43
#include <linux/device.h>
44
#include <linux/mm.h>
45
#include <linux/dma-mapping.h>
46
#include <linux/kref.h>
47
#include <linux/list.h>
48
#include <linux/rwsem.h>
49
#include <linux/scatterlist.h>
50
#include <linux/workqueue.h>
51
52
#include <asm/atomic.h>
53
#include <asm/uaccess.h>
54
55
extern struct workqueue_struct *ib_wq;
56
57
union ib_gid {
58
u8 raw[16];
59
struct {
60
__be64 subnet_prefix;
61
__be64 interface_id;
62
} global;
63
};
64
65
enum rdma_node_type {
66
/* IB values map to NodeInfo:NodeType. */
67
RDMA_NODE_IB_CA = 1,
68
RDMA_NODE_IB_SWITCH,
69
RDMA_NODE_IB_ROUTER,
70
RDMA_NODE_RNIC
71
};
72
73
enum rdma_transport_type {
74
RDMA_TRANSPORT_IB,
75
RDMA_TRANSPORT_IWARP
76
};
77
78
enum rdma_transport_type
79
rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__;
80
81
enum rdma_link_layer {
82
IB_LINK_LAYER_UNSPECIFIED,
83
IB_LINK_LAYER_INFINIBAND,
84
IB_LINK_LAYER_ETHERNET,
85
};
86
87
enum ib_device_cap_flags {
88
IB_DEVICE_RESIZE_MAX_WR = 1,
89
IB_DEVICE_BAD_PKEY_CNTR = (1<<1),
90
IB_DEVICE_BAD_QKEY_CNTR = (1<<2),
91
IB_DEVICE_RAW_MULTI = (1<<3),
92
IB_DEVICE_AUTO_PATH_MIG = (1<<4),
93
IB_DEVICE_CHANGE_PHY_PORT = (1<<5),
94
IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6),
95
IB_DEVICE_CURR_QP_STATE_MOD = (1<<7),
96
IB_DEVICE_SHUTDOWN_PORT = (1<<8),
97
IB_DEVICE_INIT_TYPE = (1<<9),
98
IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10),
99
IB_DEVICE_SYS_IMAGE_GUID = (1<<11),
100
IB_DEVICE_RC_RNR_NAK_GEN = (1<<12),
101
IB_DEVICE_SRQ_RESIZE = (1<<13),
102
IB_DEVICE_N_NOTIFY_CQ = (1<<14),
103
IB_DEVICE_LOCAL_DMA_LKEY = (1<<15),
104
IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */
105
IB_DEVICE_MEM_WINDOW = (1<<17),
106
/*
107
* Devices should set IB_DEVICE_UD_IP_SUM if they support
108
* insertion of UDP and TCP checksum on outgoing UD IPoIB
109
* messages and can verify the validity of checksum for
110
* incoming messages. Setting this flag implies that the
111
* IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
112
*/
113
IB_DEVICE_UD_IP_CSUM = (1<<18),
114
IB_DEVICE_UD_TSO = (1<<19),
115
IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21),
116
IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
117
};
118
119
enum ib_atomic_cap {
120
IB_ATOMIC_NONE,
121
IB_ATOMIC_HCA,
122
IB_ATOMIC_GLOB
123
};
124
125
struct ib_device_attr {
126
u64 fw_ver;
127
__be64 sys_image_guid;
128
u64 max_mr_size;
129
u64 page_size_cap;
130
u32 vendor_id;
131
u32 vendor_part_id;
132
u32 hw_ver;
133
int max_qp;
134
int max_qp_wr;
135
int device_cap_flags;
136
int max_sge;
137
int max_sge_rd;
138
int max_cq;
139
int max_cqe;
140
int max_mr;
141
int max_pd;
142
int max_qp_rd_atom;
143
int max_ee_rd_atom;
144
int max_res_rd_atom;
145
int max_qp_init_rd_atom;
146
int max_ee_init_rd_atom;
147
enum ib_atomic_cap atomic_cap;
148
enum ib_atomic_cap masked_atomic_cap;
149
int max_ee;
150
int max_rdd;
151
int max_mw;
152
int max_raw_ipv6_qp;
153
int max_raw_ethy_qp;
154
int max_mcast_grp;
155
int max_mcast_qp_attach;
156
int max_total_mcast_qp_attach;
157
int max_ah;
158
int max_fmr;
159
int max_map_per_fmr;
160
int max_srq;
161
int max_srq_wr;
162
int max_srq_sge;
163
unsigned int max_fast_reg_page_list_len;
164
u16 max_pkeys;
165
u8 local_ca_ack_delay;
166
};
167
168
enum ib_mtu {
169
IB_MTU_256 = 1,
170
IB_MTU_512 = 2,
171
IB_MTU_1024 = 3,
172
IB_MTU_2048 = 4,
173
IB_MTU_4096 = 5
174
};
175
176
static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
177
{
178
switch (mtu) {
179
case IB_MTU_256: return 256;
180
case IB_MTU_512: return 512;
181
case IB_MTU_1024: return 1024;
182
case IB_MTU_2048: return 2048;
183
case IB_MTU_4096: return 4096;
184
default: return -1;
185
}
186
}
187
188
enum ib_port_state {
189
IB_PORT_NOP = 0,
190
IB_PORT_DOWN = 1,
191
IB_PORT_INIT = 2,
192
IB_PORT_ARMED = 3,
193
IB_PORT_ACTIVE = 4,
194
IB_PORT_ACTIVE_DEFER = 5
195
};
196
197
enum ib_port_cap_flags {
198
IB_PORT_SM = 1 << 1,
199
IB_PORT_NOTICE_SUP = 1 << 2,
200
IB_PORT_TRAP_SUP = 1 << 3,
201
IB_PORT_OPT_IPD_SUP = 1 << 4,
202
IB_PORT_AUTO_MIGR_SUP = 1 << 5,
203
IB_PORT_SL_MAP_SUP = 1 << 6,
204
IB_PORT_MKEY_NVRAM = 1 << 7,
205
IB_PORT_PKEY_NVRAM = 1 << 8,
206
IB_PORT_LED_INFO_SUP = 1 << 9,
207
IB_PORT_SM_DISABLED = 1 << 10,
208
IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
209
IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
210
IB_PORT_CM_SUP = 1 << 16,
211
IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
212
IB_PORT_REINIT_SUP = 1 << 18,
213
IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
214
IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
215
IB_PORT_DR_NOTICE_SUP = 1 << 21,
216
IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
217
IB_PORT_BOOT_MGMT_SUP = 1 << 23,
218
IB_PORT_LINK_LATENCY_SUP = 1 << 24,
219
IB_PORT_CLIENT_REG_SUP = 1 << 25
220
};
221
222
enum ib_port_width {
223
IB_WIDTH_1X = 1,
224
IB_WIDTH_4X = 2,
225
IB_WIDTH_8X = 4,
226
IB_WIDTH_12X = 8
227
};
228
229
static inline int ib_width_enum_to_int(enum ib_port_width width)
230
{
231
switch (width) {
232
case IB_WIDTH_1X: return 1;
233
case IB_WIDTH_4X: return 4;
234
case IB_WIDTH_8X: return 8;
235
case IB_WIDTH_12X: return 12;
236
default: return -1;
237
}
238
}
239
240
struct ib_protocol_stats {
241
/* TBD... */
242
};
243
244
struct iw_protocol_stats {
245
u64 ipInReceives;
246
u64 ipInHdrErrors;
247
u64 ipInTooBigErrors;
248
u64 ipInNoRoutes;
249
u64 ipInAddrErrors;
250
u64 ipInUnknownProtos;
251
u64 ipInTruncatedPkts;
252
u64 ipInDiscards;
253
u64 ipInDelivers;
254
u64 ipOutForwDatagrams;
255
u64 ipOutRequests;
256
u64 ipOutDiscards;
257
u64 ipOutNoRoutes;
258
u64 ipReasmTimeout;
259
u64 ipReasmReqds;
260
u64 ipReasmOKs;
261
u64 ipReasmFails;
262
u64 ipFragOKs;
263
u64 ipFragFails;
264
u64 ipFragCreates;
265
u64 ipInMcastPkts;
266
u64 ipOutMcastPkts;
267
u64 ipInBcastPkts;
268
u64 ipOutBcastPkts;
269
270
u64 tcpRtoAlgorithm;
271
u64 tcpRtoMin;
272
u64 tcpRtoMax;
273
u64 tcpMaxConn;
274
u64 tcpActiveOpens;
275
u64 tcpPassiveOpens;
276
u64 tcpAttemptFails;
277
u64 tcpEstabResets;
278
u64 tcpCurrEstab;
279
u64 tcpInSegs;
280
u64 tcpOutSegs;
281
u64 tcpRetransSegs;
282
u64 tcpInErrs;
283
u64 tcpOutRsts;
284
};
285
286
union rdma_protocol_stats {
287
struct ib_protocol_stats ib;
288
struct iw_protocol_stats iw;
289
};
290
291
struct ib_port_attr {
292
enum ib_port_state state;
293
enum ib_mtu max_mtu;
294
enum ib_mtu active_mtu;
295
int gid_tbl_len;
296
u32 port_cap_flags;
297
u32 max_msg_sz;
298
u32 bad_pkey_cntr;
299
u32 qkey_viol_cntr;
300
u16 pkey_tbl_len;
301
u16 lid;
302
u16 sm_lid;
303
u8 lmc;
304
u8 max_vl_num;
305
u8 sm_sl;
306
u8 subnet_timeout;
307
u8 init_type_reply;
308
u8 active_width;
309
u8 active_speed;
310
u8 phys_state;
311
};
312
313
enum ib_device_modify_flags {
314
IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
315
IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
316
};
317
318
struct ib_device_modify {
319
u64 sys_image_guid;
320
char node_desc[64];
321
};
322
323
enum ib_port_modify_flags {
324
IB_PORT_SHUTDOWN = 1,
325
IB_PORT_INIT_TYPE = (1<<2),
326
IB_PORT_RESET_QKEY_CNTR = (1<<3)
327
};
328
329
struct ib_port_modify {
330
u32 set_port_cap_mask;
331
u32 clr_port_cap_mask;
332
u8 init_type;
333
};
334
335
enum ib_event_type {
336
IB_EVENT_CQ_ERR,
337
IB_EVENT_QP_FATAL,
338
IB_EVENT_QP_REQ_ERR,
339
IB_EVENT_QP_ACCESS_ERR,
340
IB_EVENT_COMM_EST,
341
IB_EVENT_SQ_DRAINED,
342
IB_EVENT_PATH_MIG,
343
IB_EVENT_PATH_MIG_ERR,
344
IB_EVENT_DEVICE_FATAL,
345
IB_EVENT_PORT_ACTIVE,
346
IB_EVENT_PORT_ERR,
347
IB_EVENT_LID_CHANGE,
348
IB_EVENT_PKEY_CHANGE,
349
IB_EVENT_SM_CHANGE,
350
IB_EVENT_SRQ_ERR,
351
IB_EVENT_SRQ_LIMIT_REACHED,
352
IB_EVENT_QP_LAST_WQE_REACHED,
353
IB_EVENT_CLIENT_REREGISTER
354
};
355
356
struct ib_event {
357
struct ib_device *device;
358
union {
359
struct ib_cq *cq;
360
struct ib_qp *qp;
361
struct ib_srq *srq;
362
u8 port_num;
363
} element;
364
enum ib_event_type event;
365
};
366
367
struct ib_event_handler {
368
struct ib_device *device;
369
void (*handler)(struct ib_event_handler *, struct ib_event *);
370
struct list_head list;
371
};
372
373
#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
374
do { \
375
(_ptr)->device = _device; \
376
(_ptr)->handler = _handler; \
377
INIT_LIST_HEAD(&(_ptr)->list); \
378
} while (0)
379
380
struct ib_global_route {
381
union ib_gid dgid;
382
u32 flow_label;
383
u8 sgid_index;
384
u8 hop_limit;
385
u8 traffic_class;
386
};
387
388
struct ib_grh {
389
__be32 version_tclass_flow;
390
__be16 paylen;
391
u8 next_hdr;
392
u8 hop_limit;
393
union ib_gid sgid;
394
union ib_gid dgid;
395
};
396
397
enum {
398
IB_MULTICAST_QPN = 0xffffff
399
};
400
401
#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
402
403
enum ib_ah_flags {
404
IB_AH_GRH = 1
405
};
406
407
enum ib_rate {
408
IB_RATE_PORT_CURRENT = 0,
409
IB_RATE_2_5_GBPS = 2,
410
IB_RATE_5_GBPS = 5,
411
IB_RATE_10_GBPS = 3,
412
IB_RATE_20_GBPS = 6,
413
IB_RATE_30_GBPS = 4,
414
IB_RATE_40_GBPS = 7,
415
IB_RATE_60_GBPS = 8,
416
IB_RATE_80_GBPS = 9,
417
IB_RATE_120_GBPS = 10
418
};
419
420
/**
421
* ib_rate_to_mult - Convert the IB rate enum to a multiple of the
422
* base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
423
* converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
424
* @rate: rate to convert.
425
*/
426
int ib_rate_to_mult(enum ib_rate rate) __attribute_const__;
427
428
/**
429
* mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
430
* enum.
431
* @mult: multiple to convert.
432
*/
433
enum ib_rate mult_to_ib_rate(int mult) __attribute_const__;
434
435
struct ib_ah_attr {
436
struct ib_global_route grh;
437
u16 dlid;
438
u8 sl;
439
u8 src_path_bits;
440
u8 static_rate;
441
u8 ah_flags;
442
u8 port_num;
443
};
444
445
enum ib_wc_status {
446
IB_WC_SUCCESS,
447
IB_WC_LOC_LEN_ERR,
448
IB_WC_LOC_QP_OP_ERR,
449
IB_WC_LOC_EEC_OP_ERR,
450
IB_WC_LOC_PROT_ERR,
451
IB_WC_WR_FLUSH_ERR,
452
IB_WC_MW_BIND_ERR,
453
IB_WC_BAD_RESP_ERR,
454
IB_WC_LOC_ACCESS_ERR,
455
IB_WC_REM_INV_REQ_ERR,
456
IB_WC_REM_ACCESS_ERR,
457
IB_WC_REM_OP_ERR,
458
IB_WC_RETRY_EXC_ERR,
459
IB_WC_RNR_RETRY_EXC_ERR,
460
IB_WC_LOC_RDD_VIOL_ERR,
461
IB_WC_REM_INV_RD_REQ_ERR,
462
IB_WC_REM_ABORT_ERR,
463
IB_WC_INV_EECN_ERR,
464
IB_WC_INV_EEC_STATE_ERR,
465
IB_WC_FATAL_ERR,
466
IB_WC_RESP_TIMEOUT_ERR,
467
IB_WC_GENERAL_ERR
468
};
469
470
enum ib_wc_opcode {
471
IB_WC_SEND,
472
IB_WC_RDMA_WRITE,
473
IB_WC_RDMA_READ,
474
IB_WC_COMP_SWAP,
475
IB_WC_FETCH_ADD,
476
IB_WC_BIND_MW,
477
IB_WC_LSO,
478
IB_WC_LOCAL_INV,
479
IB_WC_FAST_REG_MR,
480
IB_WC_MASKED_COMP_SWAP,
481
IB_WC_MASKED_FETCH_ADD,
482
/*
483
* Set value of IB_WC_RECV so consumers can test if a completion is a
484
* receive by testing (opcode & IB_WC_RECV).
485
*/
486
IB_WC_RECV = 1 << 7,
487
IB_WC_RECV_RDMA_WITH_IMM
488
};
489
490
enum ib_wc_flags {
491
IB_WC_GRH = 1,
492
IB_WC_WITH_IMM = (1<<1),
493
IB_WC_WITH_INVALIDATE = (1<<2),
494
};
495
496
struct ib_wc {
497
u64 wr_id;
498
enum ib_wc_status status;
499
enum ib_wc_opcode opcode;
500
u32 vendor_err;
501
u32 byte_len;
502
struct ib_qp *qp;
503
union {
504
__be32 imm_data;
505
u32 invalidate_rkey;
506
} ex;
507
u32 src_qp;
508
int wc_flags;
509
u16 pkey_index;
510
u16 slid;
511
u8 sl;
512
u8 dlid_path_bits;
513
u8 port_num; /* valid only for DR SMPs on switches */
514
int csum_ok;
515
};
516
517
enum ib_cq_notify_flags {
518
IB_CQ_SOLICITED = 1 << 0,
519
IB_CQ_NEXT_COMP = 1 << 1,
520
IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
521
IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
522
};
523
524
enum ib_srq_attr_mask {
525
IB_SRQ_MAX_WR = 1 << 0,
526
IB_SRQ_LIMIT = 1 << 1,
527
};
528
529
struct ib_srq_attr {
530
u32 max_wr;
531
u32 max_sge;
532
u32 srq_limit;
533
};
534
535
struct ib_srq_init_attr {
536
void (*event_handler)(struct ib_event *, void *);
537
void *srq_context;
538
struct ib_srq_attr attr;
539
};
540
541
struct ib_qp_cap {
542
u32 max_send_wr;
543
u32 max_recv_wr;
544
u32 max_send_sge;
545
u32 max_recv_sge;
546
u32 max_inline_data;
547
};
548
549
enum ib_sig_type {
550
IB_SIGNAL_ALL_WR,
551
IB_SIGNAL_REQ_WR
552
};
553
554
enum ib_qp_type {
555
/*
556
* IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
557
* here (and in that order) since the MAD layer uses them as
558
* indices into a 2-entry table.
559
*/
560
IB_QPT_SMI,
561
IB_QPT_GSI,
562
563
IB_QPT_RC,
564
IB_QPT_UC,
565
IB_QPT_UD,
566
IB_QPT_RAW_IPV6,
567
IB_QPT_RAW_ETHERTYPE
568
};
569
570
enum ib_qp_create_flags {
571
IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
572
IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
573
};
574
575
struct ib_qp_init_attr {
576
void (*event_handler)(struct ib_event *, void *);
577
void *qp_context;
578
struct ib_cq *send_cq;
579
struct ib_cq *recv_cq;
580
struct ib_srq *srq;
581
struct ib_qp_cap cap;
582
enum ib_sig_type sq_sig_type;
583
enum ib_qp_type qp_type;
584
enum ib_qp_create_flags create_flags;
585
u8 port_num; /* special QP types only */
586
};
587
588
enum ib_rnr_timeout {
589
IB_RNR_TIMER_655_36 = 0,
590
IB_RNR_TIMER_000_01 = 1,
591
IB_RNR_TIMER_000_02 = 2,
592
IB_RNR_TIMER_000_03 = 3,
593
IB_RNR_TIMER_000_04 = 4,
594
IB_RNR_TIMER_000_06 = 5,
595
IB_RNR_TIMER_000_08 = 6,
596
IB_RNR_TIMER_000_12 = 7,
597
IB_RNR_TIMER_000_16 = 8,
598
IB_RNR_TIMER_000_24 = 9,
599
IB_RNR_TIMER_000_32 = 10,
600
IB_RNR_TIMER_000_48 = 11,
601
IB_RNR_TIMER_000_64 = 12,
602
IB_RNR_TIMER_000_96 = 13,
603
IB_RNR_TIMER_001_28 = 14,
604
IB_RNR_TIMER_001_92 = 15,
605
IB_RNR_TIMER_002_56 = 16,
606
IB_RNR_TIMER_003_84 = 17,
607
IB_RNR_TIMER_005_12 = 18,
608
IB_RNR_TIMER_007_68 = 19,
609
IB_RNR_TIMER_010_24 = 20,
610
IB_RNR_TIMER_015_36 = 21,
611
IB_RNR_TIMER_020_48 = 22,
612
IB_RNR_TIMER_030_72 = 23,
613
IB_RNR_TIMER_040_96 = 24,
614
IB_RNR_TIMER_061_44 = 25,
615
IB_RNR_TIMER_081_92 = 26,
616
IB_RNR_TIMER_122_88 = 27,
617
IB_RNR_TIMER_163_84 = 28,
618
IB_RNR_TIMER_245_76 = 29,
619
IB_RNR_TIMER_327_68 = 30,
620
IB_RNR_TIMER_491_52 = 31
621
};
622
623
enum ib_qp_attr_mask {
624
IB_QP_STATE = 1,
625
IB_QP_CUR_STATE = (1<<1),
626
IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
627
IB_QP_ACCESS_FLAGS = (1<<3),
628
IB_QP_PKEY_INDEX = (1<<4),
629
IB_QP_PORT = (1<<5),
630
IB_QP_QKEY = (1<<6),
631
IB_QP_AV = (1<<7),
632
IB_QP_PATH_MTU = (1<<8),
633
IB_QP_TIMEOUT = (1<<9),
634
IB_QP_RETRY_CNT = (1<<10),
635
IB_QP_RNR_RETRY = (1<<11),
636
IB_QP_RQ_PSN = (1<<12),
637
IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
638
IB_QP_ALT_PATH = (1<<14),
639
IB_QP_MIN_RNR_TIMER = (1<<15),
640
IB_QP_SQ_PSN = (1<<16),
641
IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
642
IB_QP_PATH_MIG_STATE = (1<<18),
643
IB_QP_CAP = (1<<19),
644
IB_QP_DEST_QPN = (1<<20)
645
};
646
647
enum ib_qp_state {
648
IB_QPS_RESET,
649
IB_QPS_INIT,
650
IB_QPS_RTR,
651
IB_QPS_RTS,
652
IB_QPS_SQD,
653
IB_QPS_SQE,
654
IB_QPS_ERR
655
};
656
657
enum ib_mig_state {
658
IB_MIG_MIGRATED,
659
IB_MIG_REARM,
660
IB_MIG_ARMED
661
};
662
663
struct ib_qp_attr {
664
enum ib_qp_state qp_state;
665
enum ib_qp_state cur_qp_state;
666
enum ib_mtu path_mtu;
667
enum ib_mig_state path_mig_state;
668
u32 qkey;
669
u32 rq_psn;
670
u32 sq_psn;
671
u32 dest_qp_num;
672
int qp_access_flags;
673
struct ib_qp_cap cap;
674
struct ib_ah_attr ah_attr;
675
struct ib_ah_attr alt_ah_attr;
676
u16 pkey_index;
677
u16 alt_pkey_index;
678
u8 en_sqd_async_notify;
679
u8 sq_draining;
680
u8 max_rd_atomic;
681
u8 max_dest_rd_atomic;
682
u8 min_rnr_timer;
683
u8 port_num;
684
u8 timeout;
685
u8 retry_cnt;
686
u8 rnr_retry;
687
u8 alt_port_num;
688
u8 alt_timeout;
689
};
690
691
enum ib_wr_opcode {
692
IB_WR_RDMA_WRITE,
693
IB_WR_RDMA_WRITE_WITH_IMM,
694
IB_WR_SEND,
695
IB_WR_SEND_WITH_IMM,
696
IB_WR_RDMA_READ,
697
IB_WR_ATOMIC_CMP_AND_SWP,
698
IB_WR_ATOMIC_FETCH_AND_ADD,
699
IB_WR_LSO,
700
IB_WR_SEND_WITH_INV,
701
IB_WR_RDMA_READ_WITH_INV,
702
IB_WR_LOCAL_INV,
703
IB_WR_FAST_REG_MR,
704
IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
705
IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
706
};
707
708
enum ib_send_flags {
709
IB_SEND_FENCE = 1,
710
IB_SEND_SIGNALED = (1<<1),
711
IB_SEND_SOLICITED = (1<<2),
712
IB_SEND_INLINE = (1<<3),
713
IB_SEND_IP_CSUM = (1<<4)
714
};
715
716
struct ib_sge {
717
u64 addr;
718
u32 length;
719
u32 lkey;
720
};
721
722
struct ib_fast_reg_page_list {
723
struct ib_device *device;
724
u64 *page_list;
725
unsigned int max_page_list_len;
726
};
727
728
struct ib_send_wr {
729
struct ib_send_wr *next;
730
u64 wr_id;
731
struct ib_sge *sg_list;
732
int num_sge;
733
enum ib_wr_opcode opcode;
734
int send_flags;
735
union {
736
__be32 imm_data;
737
u32 invalidate_rkey;
738
} ex;
739
union {
740
struct {
741
u64 remote_addr;
742
u32 rkey;
743
} rdma;
744
struct {
745
u64 remote_addr;
746
u64 compare_add;
747
u64 swap;
748
u64 compare_add_mask;
749
u64 swap_mask;
750
u32 rkey;
751
} atomic;
752
struct {
753
struct ib_ah *ah;
754
void *header;
755
int hlen;
756
int mss;
757
u32 remote_qpn;
758
u32 remote_qkey;
759
u16 pkey_index; /* valid for GSI only */
760
u8 port_num; /* valid for DR SMPs on switch only */
761
} ud;
762
struct {
763
u64 iova_start;
764
struct ib_fast_reg_page_list *page_list;
765
unsigned int page_shift;
766
unsigned int page_list_len;
767
u32 length;
768
int access_flags;
769
u32 rkey;
770
} fast_reg;
771
} wr;
772
};
773
774
struct ib_recv_wr {
775
struct ib_recv_wr *next;
776
u64 wr_id;
777
struct ib_sge *sg_list;
778
int num_sge;
779
};
780
781
enum ib_access_flags {
782
IB_ACCESS_LOCAL_WRITE = 1,
783
IB_ACCESS_REMOTE_WRITE = (1<<1),
784
IB_ACCESS_REMOTE_READ = (1<<2),
785
IB_ACCESS_REMOTE_ATOMIC = (1<<3),
786
IB_ACCESS_MW_BIND = (1<<4)
787
};
788
789
struct ib_phys_buf {
790
u64 addr;
791
u64 size;
792
};
793
794
struct ib_mr_attr {
795
struct ib_pd *pd;
796
u64 device_virt_addr;
797
u64 size;
798
int mr_access_flags;
799
u32 lkey;
800
u32 rkey;
801
};
802
803
enum ib_mr_rereg_flags {
804
IB_MR_REREG_TRANS = 1,
805
IB_MR_REREG_PD = (1<<1),
806
IB_MR_REREG_ACCESS = (1<<2)
807
};
808
809
struct ib_mw_bind {
810
struct ib_mr *mr;
811
u64 wr_id;
812
u64 addr;
813
u32 length;
814
int send_flags;
815
int mw_access_flags;
816
};
817
818
struct ib_fmr_attr {
819
int max_pages;
820
int max_maps;
821
u8 page_shift;
822
};
823
824
struct ib_ucontext {
825
struct ib_device *device;
826
struct list_head pd_list;
827
struct list_head mr_list;
828
struct list_head mw_list;
829
struct list_head cq_list;
830
struct list_head qp_list;
831
struct list_head srq_list;
832
struct list_head ah_list;
833
int closing;
834
};
835
836
struct ib_uobject {
837
u64 user_handle; /* handle given to us by userspace */
838
struct ib_ucontext *context; /* associated user context */
839
void *object; /* containing object */
840
struct list_head list; /* link to context's list */
841
int id; /* index into kernel idr */
842
struct kref ref;
843
struct rw_semaphore mutex; /* protects .live */
844
int live;
845
};
846
847
struct ib_udata {
848
void __user *inbuf;
849
void __user *outbuf;
850
size_t inlen;
851
size_t outlen;
852
};
853
854
struct ib_pd {
855
struct ib_device *device;
856
struct ib_uobject *uobject;
857
atomic_t usecnt; /* count all resources */
858
};
859
860
struct ib_ah {
861
struct ib_device *device;
862
struct ib_pd *pd;
863
struct ib_uobject *uobject;
864
};
865
866
typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
867
868
struct ib_cq {
869
struct ib_device *device;
870
struct ib_uobject *uobject;
871
ib_comp_handler comp_handler;
872
void (*event_handler)(struct ib_event *, void *);
873
void *cq_context;
874
int cqe;
875
atomic_t usecnt; /* count number of work queues */
876
};
877
878
struct ib_srq {
879
struct ib_device *device;
880
struct ib_pd *pd;
881
struct ib_uobject *uobject;
882
void (*event_handler)(struct ib_event *, void *);
883
void *srq_context;
884
atomic_t usecnt;
885
};
886
887
struct ib_qp {
888
struct ib_device *device;
889
struct ib_pd *pd;
890
struct ib_cq *send_cq;
891
struct ib_cq *recv_cq;
892
struct ib_srq *srq;
893
struct ib_uobject *uobject;
894
void (*event_handler)(struct ib_event *, void *);
895
void *qp_context;
896
u32 qp_num;
897
enum ib_qp_type qp_type;
898
};
899
900
struct ib_mr {
901
struct ib_device *device;
902
struct ib_pd *pd;
903
struct ib_uobject *uobject;
904
u32 lkey;
905
u32 rkey;
906
atomic_t usecnt; /* count number of MWs */
907
};
908
909
struct ib_mw {
910
struct ib_device *device;
911
struct ib_pd *pd;
912
struct ib_uobject *uobject;
913
u32 rkey;
914
};
915
916
struct ib_fmr {
917
struct ib_device *device;
918
struct ib_pd *pd;
919
struct list_head list;
920
u32 lkey;
921
u32 rkey;
922
};
923
924
struct ib_mad;
925
struct ib_grh;
926
927
enum ib_process_mad_flags {
928
IB_MAD_IGNORE_MKEY = 1,
929
IB_MAD_IGNORE_BKEY = 2,
930
IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
931
};
932
933
enum ib_mad_result {
934
IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
935
IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
936
IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
937
IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
938
};
939
940
#define IB_DEVICE_NAME_MAX 64
941
942
struct ib_cache {
943
rwlock_t lock;
944
struct ib_event_handler event_handler;
945
struct ib_pkey_cache **pkey_cache;
946
struct ib_gid_cache **gid_cache;
947
u8 *lmc_cache;
948
};
949
950
struct ib_dma_mapping_ops {
951
int (*mapping_error)(struct ib_device *dev,
952
u64 dma_addr);
953
u64 (*map_single)(struct ib_device *dev,
954
void *ptr, size_t size,
955
enum dma_data_direction direction);
956
void (*unmap_single)(struct ib_device *dev,
957
u64 addr, size_t size,
958
enum dma_data_direction direction);
959
u64 (*map_page)(struct ib_device *dev,
960
struct page *page, unsigned long offset,
961
size_t size,
962
enum dma_data_direction direction);
963
void (*unmap_page)(struct ib_device *dev,
964
u64 addr, size_t size,
965
enum dma_data_direction direction);
966
int (*map_sg)(struct ib_device *dev,
967
struct scatterlist *sg, int nents,
968
enum dma_data_direction direction);
969
void (*unmap_sg)(struct ib_device *dev,
970
struct scatterlist *sg, int nents,
971
enum dma_data_direction direction);
972
u64 (*dma_address)(struct ib_device *dev,
973
struct scatterlist *sg);
974
unsigned int (*dma_len)(struct ib_device *dev,
975
struct scatterlist *sg);
976
void (*sync_single_for_cpu)(struct ib_device *dev,
977
u64 dma_handle,
978
size_t size,
979
enum dma_data_direction dir);
980
void (*sync_single_for_device)(struct ib_device *dev,
981
u64 dma_handle,
982
size_t size,
983
enum dma_data_direction dir);
984
void *(*alloc_coherent)(struct ib_device *dev,
985
size_t size,
986
u64 *dma_handle,
987
gfp_t flag);
988
void (*free_coherent)(struct ib_device *dev,
989
size_t size, void *cpu_addr,
990
u64 dma_handle);
991
};
992
993
struct iw_cm_verbs;
994
995
struct ib_device {
996
struct device *dma_device;
997
998
char name[IB_DEVICE_NAME_MAX];
999
1000
struct list_head event_handler_list;
1001
spinlock_t event_handler_lock;
1002
1003
spinlock_t client_data_lock;
1004
struct list_head core_list;
1005
struct list_head client_data_list;
1006
1007
struct ib_cache cache;
1008
int *pkey_tbl_len;
1009
int *gid_tbl_len;
1010
1011
int num_comp_vectors;
1012
1013
struct iw_cm_verbs *iwcm;
1014
1015
int (*get_protocol_stats)(struct ib_device *device,
1016
union rdma_protocol_stats *stats);
1017
int (*query_device)(struct ib_device *device,
1018
struct ib_device_attr *device_attr);
1019
int (*query_port)(struct ib_device *device,
1020
u8 port_num,
1021
struct ib_port_attr *port_attr);
1022
enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1023
u8 port_num);
1024
int (*query_gid)(struct ib_device *device,
1025
u8 port_num, int index,
1026
union ib_gid *gid);
1027
int (*query_pkey)(struct ib_device *device,
1028
u8 port_num, u16 index, u16 *pkey);
1029
int (*modify_device)(struct ib_device *device,
1030
int device_modify_mask,
1031
struct ib_device_modify *device_modify);
1032
int (*modify_port)(struct ib_device *device,
1033
u8 port_num, int port_modify_mask,
1034
struct ib_port_modify *port_modify);
1035
struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1036
struct ib_udata *udata);
1037
int (*dealloc_ucontext)(struct ib_ucontext *context);
1038
int (*mmap)(struct ib_ucontext *context,
1039
struct vm_area_struct *vma);
1040
struct ib_pd * (*alloc_pd)(struct ib_device *device,
1041
struct ib_ucontext *context,
1042
struct ib_udata *udata);
1043
int (*dealloc_pd)(struct ib_pd *pd);
1044
struct ib_ah * (*create_ah)(struct ib_pd *pd,
1045
struct ib_ah_attr *ah_attr);
1046
int (*modify_ah)(struct ib_ah *ah,
1047
struct ib_ah_attr *ah_attr);
1048
int (*query_ah)(struct ib_ah *ah,
1049
struct ib_ah_attr *ah_attr);
1050
int (*destroy_ah)(struct ib_ah *ah);
1051
struct ib_srq * (*create_srq)(struct ib_pd *pd,
1052
struct ib_srq_init_attr *srq_init_attr,
1053
struct ib_udata *udata);
1054
int (*modify_srq)(struct ib_srq *srq,
1055
struct ib_srq_attr *srq_attr,
1056
enum ib_srq_attr_mask srq_attr_mask,
1057
struct ib_udata *udata);
1058
int (*query_srq)(struct ib_srq *srq,
1059
struct ib_srq_attr *srq_attr);
1060
int (*destroy_srq)(struct ib_srq *srq);
1061
int (*post_srq_recv)(struct ib_srq *srq,
1062
struct ib_recv_wr *recv_wr,
1063
struct ib_recv_wr **bad_recv_wr);
1064
struct ib_qp * (*create_qp)(struct ib_pd *pd,
1065
struct ib_qp_init_attr *qp_init_attr,
1066
struct ib_udata *udata);
1067
int (*modify_qp)(struct ib_qp *qp,
1068
struct ib_qp_attr *qp_attr,
1069
int qp_attr_mask,
1070
struct ib_udata *udata);
1071
int (*query_qp)(struct ib_qp *qp,
1072
struct ib_qp_attr *qp_attr,
1073
int qp_attr_mask,
1074
struct ib_qp_init_attr *qp_init_attr);
1075
int (*destroy_qp)(struct ib_qp *qp);
1076
int (*post_send)(struct ib_qp *qp,
1077
struct ib_send_wr *send_wr,
1078
struct ib_send_wr **bad_send_wr);
1079
int (*post_recv)(struct ib_qp *qp,
1080
struct ib_recv_wr *recv_wr,
1081
struct ib_recv_wr **bad_recv_wr);
1082
struct ib_cq * (*create_cq)(struct ib_device *device, int cqe,
1083
int comp_vector,
1084
struct ib_ucontext *context,
1085
struct ib_udata *udata);
1086
int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1087
u16 cq_period);
1088
int (*destroy_cq)(struct ib_cq *cq);
1089
int (*resize_cq)(struct ib_cq *cq, int cqe,
1090
struct ib_udata *udata);
1091
int (*poll_cq)(struct ib_cq *cq, int num_entries,
1092
struct ib_wc *wc);
1093
int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1094
int (*req_notify_cq)(struct ib_cq *cq,
1095
enum ib_cq_notify_flags flags);
1096
int (*req_ncomp_notif)(struct ib_cq *cq,
1097
int wc_cnt);
1098
struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1099
int mr_access_flags);
1100
struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd,
1101
struct ib_phys_buf *phys_buf_array,
1102
int num_phys_buf,
1103
int mr_access_flags,
1104
u64 *iova_start);
1105
struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
1106
u64 start, u64 length,
1107
u64 virt_addr,
1108
int mr_access_flags,
1109
struct ib_udata *udata);
1110
int (*query_mr)(struct ib_mr *mr,
1111
struct ib_mr_attr *mr_attr);
1112
int (*dereg_mr)(struct ib_mr *mr);
1113
struct ib_mr * (*alloc_fast_reg_mr)(struct ib_pd *pd,
1114
int max_page_list_len);
1115
struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1116
int page_list_len);
1117
void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1118
int (*rereg_phys_mr)(struct ib_mr *mr,
1119
int mr_rereg_mask,
1120
struct ib_pd *pd,
1121
struct ib_phys_buf *phys_buf_array,
1122
int num_phys_buf,
1123
int mr_access_flags,
1124
u64 *iova_start);
1125
struct ib_mw * (*alloc_mw)(struct ib_pd *pd);
1126
int (*bind_mw)(struct ib_qp *qp,
1127
struct ib_mw *mw,
1128
struct ib_mw_bind *mw_bind);
1129
int (*dealloc_mw)(struct ib_mw *mw);
1130
struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1131
int mr_access_flags,
1132
struct ib_fmr_attr *fmr_attr);
1133
int (*map_phys_fmr)(struct ib_fmr *fmr,
1134
u64 *page_list, int list_len,
1135
u64 iova);
1136
int (*unmap_fmr)(struct list_head *fmr_list);
1137
int (*dealloc_fmr)(struct ib_fmr *fmr);
1138
int (*attach_mcast)(struct ib_qp *qp,
1139
union ib_gid *gid,
1140
u16 lid);
1141
int (*detach_mcast)(struct ib_qp *qp,
1142
union ib_gid *gid,
1143
u16 lid);
1144
int (*process_mad)(struct ib_device *device,
1145
int process_mad_flags,
1146
u8 port_num,
1147
struct ib_wc *in_wc,
1148
struct ib_grh *in_grh,
1149
struct ib_mad *in_mad,
1150
struct ib_mad *out_mad);
1151
1152
struct ib_dma_mapping_ops *dma_ops;
1153
1154
struct module *owner;
1155
struct device dev;
1156
struct kobject *ports_parent;
1157
struct list_head port_list;
1158
1159
enum {
1160
IB_DEV_UNINITIALIZED,
1161
IB_DEV_REGISTERED,
1162
IB_DEV_UNREGISTERED
1163
} reg_state;
1164
1165
int uverbs_abi_ver;
1166
u64 uverbs_cmd_mask;
1167
1168
char node_desc[64];
1169
__be64 node_guid;
1170
u32 local_dma_lkey;
1171
u8 node_type;
1172
u8 phys_port_cnt;
1173
};
1174
1175
struct ib_client {
1176
char *name;
1177
void (*add) (struct ib_device *);
1178
void (*remove)(struct ib_device *);
1179
1180
struct list_head list;
1181
};
1182
1183
struct ib_device *ib_alloc_device(size_t size);
1184
void ib_dealloc_device(struct ib_device *device);
1185
1186
int ib_register_device(struct ib_device *device,
1187
int (*port_callback)(struct ib_device *,
1188
u8, struct kobject *));
1189
void ib_unregister_device(struct ib_device *device);
1190
1191
int ib_register_client (struct ib_client *client);
1192
void ib_unregister_client(struct ib_client *client);
1193
1194
void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1195
void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1196
void *data);
1197
1198
static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1199
{
1200
return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1201
}
1202
1203
static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1204
{
1205
return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1206
}
1207
1208
/**
1209
* ib_modify_qp_is_ok - Check that the supplied attribute mask
1210
* contains all required attributes and no attributes not allowed for
1211
* the given QP state transition.
1212
* @cur_state: Current QP state
1213
* @next_state: Next QP state
1214
* @type: QP type
1215
* @mask: Mask of supplied QP attributes
1216
*
1217
* This function is a helper function that a low-level driver's
1218
* modify_qp method can use to validate the consumer's input. It
1219
* checks that cur_state and next_state are valid QP states, that a
1220
* transition from cur_state to next_state is allowed by the IB spec,
1221
* and that the attribute mask supplied is allowed for the transition.
1222
*/
1223
int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1224
enum ib_qp_type type, enum ib_qp_attr_mask mask);
1225
1226
int ib_register_event_handler (struct ib_event_handler *event_handler);
1227
int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1228
void ib_dispatch_event(struct ib_event *event);
1229
1230
int ib_query_device(struct ib_device *device,
1231
struct ib_device_attr *device_attr);
1232
1233
int ib_query_port(struct ib_device *device,
1234
u8 port_num, struct ib_port_attr *port_attr);
1235
1236
enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1237
u8 port_num);
1238
1239
int ib_query_gid(struct ib_device *device,
1240
u8 port_num, int index, union ib_gid *gid);
1241
1242
int ib_query_pkey(struct ib_device *device,
1243
u8 port_num, u16 index, u16 *pkey);
1244
1245
int ib_modify_device(struct ib_device *device,
1246
int device_modify_mask,
1247
struct ib_device_modify *device_modify);
1248
1249
int ib_modify_port(struct ib_device *device,
1250
u8 port_num, int port_modify_mask,
1251
struct ib_port_modify *port_modify);
1252
1253
int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1254
u8 *port_num, u16 *index);
1255
1256
int ib_find_pkey(struct ib_device *device,
1257
u8 port_num, u16 pkey, u16 *index);
1258
1259
/**
1260
* ib_alloc_pd - Allocates an unused protection domain.
1261
* @device: The device on which to allocate the protection domain.
1262
*
1263
* A protection domain object provides an association between QPs, shared
1264
* receive queues, address handles, memory regions, and memory windows.
1265
*/
1266
struct ib_pd *ib_alloc_pd(struct ib_device *device);
1267
1268
/**
1269
* ib_dealloc_pd - Deallocates a protection domain.
1270
* @pd: The protection domain to deallocate.
1271
*/
1272
int ib_dealloc_pd(struct ib_pd *pd);
1273
1274
/**
1275
* ib_create_ah - Creates an address handle for the given address vector.
1276
* @pd: The protection domain associated with the address handle.
1277
* @ah_attr: The attributes of the address vector.
1278
*
1279
* The address handle is used to reference a local or global destination
1280
* in all UD QP post sends.
1281
*/
1282
struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
1283
1284
/**
1285
* ib_init_ah_from_wc - Initializes address handle attributes from a
1286
* work completion.
1287
* @device: Device on which the received message arrived.
1288
* @port_num: Port on which the received message arrived.
1289
* @wc: Work completion associated with the received message.
1290
* @grh: References the received global route header. This parameter is
1291
* ignored unless the work completion indicates that the GRH is valid.
1292
* @ah_attr: Returned attributes that can be used when creating an address
1293
* handle for replying to the message.
1294
*/
1295
int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
1296
struct ib_grh *grh, struct ib_ah_attr *ah_attr);
1297
1298
/**
1299
* ib_create_ah_from_wc - Creates an address handle associated with the
1300
* sender of the specified work completion.
1301
* @pd: The protection domain associated with the address handle.
1302
* @wc: Work completion information associated with a received message.
1303
* @grh: References the received global route header. This parameter is
1304
* ignored unless the work completion indicates that the GRH is valid.
1305
* @port_num: The outbound port number to associate with the address.
1306
*
1307
* The address handle is used to reference a local or global destination
1308
* in all UD QP post sends.
1309
*/
1310
struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
1311
struct ib_grh *grh, u8 port_num);
1312
1313
/**
1314
* ib_modify_ah - Modifies the address vector associated with an address
1315
* handle.
1316
* @ah: The address handle to modify.
1317
* @ah_attr: The new address vector attributes to associate with the
1318
* address handle.
1319
*/
1320
int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1321
1322
/**
1323
* ib_query_ah - Queries the address vector associated with an address
1324
* handle.
1325
* @ah: The address handle to query.
1326
* @ah_attr: The address vector attributes associated with the address
1327
* handle.
1328
*/
1329
int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1330
1331
/**
1332
* ib_destroy_ah - Destroys an address handle.
1333
* @ah: The address handle to destroy.
1334
*/
1335
int ib_destroy_ah(struct ib_ah *ah);
1336
1337
/**
1338
* ib_create_srq - Creates a SRQ associated with the specified protection
1339
* domain.
1340
* @pd: The protection domain associated with the SRQ.
1341
* @srq_init_attr: A list of initial attributes required to create the
1342
* SRQ. If SRQ creation succeeds, then the attributes are updated to
1343
* the actual capabilities of the created SRQ.
1344
*
1345
* srq_attr->max_wr and srq_attr->max_sge are read the determine the
1346
* requested size of the SRQ, and set to the actual values allocated
1347
* on return. If ib_create_srq() succeeds, then max_wr and max_sge
1348
* will always be at least as large as the requested values.
1349
*/
1350
struct ib_srq *ib_create_srq(struct ib_pd *pd,
1351
struct ib_srq_init_attr *srq_init_attr);
1352
1353
/**
1354
* ib_modify_srq - Modifies the attributes for the specified SRQ.
1355
* @srq: The SRQ to modify.
1356
* @srq_attr: On input, specifies the SRQ attributes to modify. On output,
1357
* the current values of selected SRQ attributes are returned.
1358
* @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
1359
* are being modified.
1360
*
1361
* The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
1362
* IB_SRQ_LIMIT to set the SRQ's limit and request notification when
1363
* the number of receives queued drops below the limit.
1364
*/
1365
int ib_modify_srq(struct ib_srq *srq,
1366
struct ib_srq_attr *srq_attr,
1367
enum ib_srq_attr_mask srq_attr_mask);
1368
1369
/**
1370
* ib_query_srq - Returns the attribute list and current values for the
1371
* specified SRQ.
1372
* @srq: The SRQ to query.
1373
* @srq_attr: The attributes of the specified SRQ.
1374
*/
1375
int ib_query_srq(struct ib_srq *srq,
1376
struct ib_srq_attr *srq_attr);
1377
1378
/**
1379
* ib_destroy_srq - Destroys the specified SRQ.
1380
* @srq: The SRQ to destroy.
1381
*/
1382
int ib_destroy_srq(struct ib_srq *srq);
1383
1384
/**
1385
* ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
1386
* @srq: The SRQ to post the work request on.
1387
* @recv_wr: A list of work requests to post on the receive queue.
1388
* @bad_recv_wr: On an immediate failure, this parameter will reference
1389
* the work request that failed to be posted on the QP.
1390
*/
1391
static inline int ib_post_srq_recv(struct ib_srq *srq,
1392
struct ib_recv_wr *recv_wr,
1393
struct ib_recv_wr **bad_recv_wr)
1394
{
1395
return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
1396
}
1397
1398
/**
1399
* ib_create_qp - Creates a QP associated with the specified protection
1400
* domain.
1401
* @pd: The protection domain associated with the QP.
1402
* @qp_init_attr: A list of initial attributes required to create the
1403
* QP. If QP creation succeeds, then the attributes are updated to
1404
* the actual capabilities of the created QP.
1405
*/
1406
struct ib_qp *ib_create_qp(struct ib_pd *pd,
1407
struct ib_qp_init_attr *qp_init_attr);
1408
1409
/**
1410
* ib_modify_qp - Modifies the attributes for the specified QP and then
1411
* transitions the QP to the given state.
1412
* @qp: The QP to modify.
1413
* @qp_attr: On input, specifies the QP attributes to modify. On output,
1414
* the current values of selected QP attributes are returned.
1415
* @qp_attr_mask: A bit-mask used to specify which attributes of the QP
1416
* are being modified.
1417
*/
1418
int ib_modify_qp(struct ib_qp *qp,
1419
struct ib_qp_attr *qp_attr,
1420
int qp_attr_mask);
1421
1422
/**
1423
* ib_query_qp - Returns the attribute list and current values for the
1424
* specified QP.
1425
* @qp: The QP to query.
1426
* @qp_attr: The attributes of the specified QP.
1427
* @qp_attr_mask: A bit-mask used to select specific attributes to query.
1428
* @qp_init_attr: Additional attributes of the selected QP.
1429
*
1430
* The qp_attr_mask may be used to limit the query to gathering only the
1431
* selected attributes.
1432
*/
1433
int ib_query_qp(struct ib_qp *qp,
1434
struct ib_qp_attr *qp_attr,
1435
int qp_attr_mask,
1436
struct ib_qp_init_attr *qp_init_attr);
1437
1438
/**
1439
* ib_destroy_qp - Destroys the specified QP.
1440
* @qp: The QP to destroy.
1441
*/
1442
int ib_destroy_qp(struct ib_qp *qp);
1443
1444
/**
1445
* ib_post_send - Posts a list of work requests to the send queue of
1446
* the specified QP.
1447
* @qp: The QP to post the work request on.
1448
* @send_wr: A list of work requests to post on the send queue.
1449
* @bad_send_wr: On an immediate failure, this parameter will reference
1450
* the work request that failed to be posted on the QP.
1451
*
1452
* While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
1453
* error is returned, the QP state shall not be affected,
1454
* ib_post_send() will return an immediate error after queueing any
1455
* earlier work requests in the list.
1456
*/
1457
static inline int ib_post_send(struct ib_qp *qp,
1458
struct ib_send_wr *send_wr,
1459
struct ib_send_wr **bad_send_wr)
1460
{
1461
return qp->device->post_send(qp, send_wr, bad_send_wr);
1462
}
1463
1464
/**
1465
* ib_post_recv - Posts a list of work requests to the receive queue of
1466
* the specified QP.
1467
* @qp: The QP to post the work request on.
1468
* @recv_wr: A list of work requests to post on the receive queue.
1469
* @bad_recv_wr: On an immediate failure, this parameter will reference
1470
* the work request that failed to be posted on the QP.
1471
*/
1472
static inline int ib_post_recv(struct ib_qp *qp,
1473
struct ib_recv_wr *recv_wr,
1474
struct ib_recv_wr **bad_recv_wr)
1475
{
1476
return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
1477
}
1478
1479
/**
1480
* ib_create_cq - Creates a CQ on the specified device.
1481
* @device: The device on which to create the CQ.
1482
* @comp_handler: A user-specified callback that is invoked when a
1483
* completion event occurs on the CQ.
1484
* @event_handler: A user-specified callback that is invoked when an
1485
* asynchronous event not associated with a completion occurs on the CQ.
1486
* @cq_context: Context associated with the CQ returned to the user via
1487
* the associated completion and event handlers.
1488
* @cqe: The minimum size of the CQ.
1489
* @comp_vector - Completion vector used to signal completion events.
1490
* Must be >= 0 and < context->num_comp_vectors.
1491
*
1492
* Users can examine the cq structure to determine the actual CQ size.
1493
*/
1494
struct ib_cq *ib_create_cq(struct ib_device *device,
1495
ib_comp_handler comp_handler,
1496
void (*event_handler)(struct ib_event *, void *),
1497
void *cq_context, int cqe, int comp_vector);
1498
1499
/**
1500
* ib_resize_cq - Modifies the capacity of the CQ.
1501
* @cq: The CQ to resize.
1502
* @cqe: The minimum size of the CQ.
1503
*
1504
* Users can examine the cq structure to determine the actual CQ size.
1505
*/
1506
int ib_resize_cq(struct ib_cq *cq, int cqe);
1507
1508
/**
1509
* ib_modify_cq - Modifies moderation params of the CQ
1510
* @cq: The CQ to modify.
1511
* @cq_count: number of CQEs that will trigger an event
1512
* @cq_period: max period of time in usec before triggering an event
1513
*
1514
*/
1515
int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
1516
1517
/**
1518
* ib_destroy_cq - Destroys the specified CQ.
1519
* @cq: The CQ to destroy.
1520
*/
1521
int ib_destroy_cq(struct ib_cq *cq);
1522
1523
/**
1524
* ib_poll_cq - poll a CQ for completion(s)
1525
* @cq:the CQ being polled
1526
* @num_entries:maximum number of completions to return
1527
* @wc:array of at least @num_entries &struct ib_wc where completions
1528
* will be returned
1529
*
1530
* Poll a CQ for (possibly multiple) completions. If the return value
1531
* is < 0, an error occurred. If the return value is >= 0, it is the
1532
* number of completions returned. If the return value is
1533
* non-negative and < num_entries, then the CQ was emptied.
1534
*/
1535
static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
1536
struct ib_wc *wc)
1537
{
1538
return cq->device->poll_cq(cq, num_entries, wc);
1539
}
1540
1541
/**
1542
* ib_peek_cq - Returns the number of unreaped completions currently
1543
* on the specified CQ.
1544
* @cq: The CQ to peek.
1545
* @wc_cnt: A minimum number of unreaped completions to check for.
1546
*
1547
* If the number of unreaped completions is greater than or equal to wc_cnt,
1548
* this function returns wc_cnt, otherwise, it returns the actual number of
1549
* unreaped completions.
1550
*/
1551
int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
1552
1553
/**
1554
* ib_req_notify_cq - Request completion notification on a CQ.
1555
* @cq: The CQ to generate an event for.
1556
* @flags:
1557
* Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
1558
* to request an event on the next solicited event or next work
1559
* completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
1560
* may also be |ed in to request a hint about missed events, as
1561
* described below.
1562
*
1563
* Return Value:
1564
* < 0 means an error occurred while requesting notification
1565
* == 0 means notification was requested successfully, and if
1566
* IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
1567
* were missed and it is safe to wait for another event. In
1568
* this case is it guaranteed that any work completions added
1569
* to the CQ since the last CQ poll will trigger a completion
1570
* notification event.
1571
* > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
1572
* in. It means that the consumer must poll the CQ again to
1573
* make sure it is empty to avoid missing an event because of a
1574
* race between requesting notification and an entry being
1575
* added to the CQ. This return value means it is possible
1576
* (but not guaranteed) that a work completion has been added
1577
* to the CQ since the last poll without triggering a
1578
* completion notification event.
1579
*/
1580
static inline int ib_req_notify_cq(struct ib_cq *cq,
1581
enum ib_cq_notify_flags flags)
1582
{
1583
return cq->device->req_notify_cq(cq, flags);
1584
}
1585
1586
/**
1587
* ib_req_ncomp_notif - Request completion notification when there are
1588
* at least the specified number of unreaped completions on the CQ.
1589
* @cq: The CQ to generate an event for.
1590
* @wc_cnt: The number of unreaped completions that should be on the
1591
* CQ before an event is generated.
1592
*/
1593
static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
1594
{
1595
return cq->device->req_ncomp_notif ?
1596
cq->device->req_ncomp_notif(cq, wc_cnt) :
1597
-ENOSYS;
1598
}
1599
1600
/**
1601
* ib_get_dma_mr - Returns a memory region for system memory that is
1602
* usable for DMA.
1603
* @pd: The protection domain associated with the memory region.
1604
* @mr_access_flags: Specifies the memory access rights.
1605
*
1606
* Note that the ib_dma_*() functions defined below must be used
1607
* to create/destroy addresses used with the Lkey or Rkey returned
1608
* by ib_get_dma_mr().
1609
*/
1610
struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
1611
1612
/**
1613
* ib_dma_mapping_error - check a DMA addr for error
1614
* @dev: The device for which the dma_addr was created
1615
* @dma_addr: The DMA address to check
1616
*/
1617
static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
1618
{
1619
if (dev->dma_ops)
1620
return dev->dma_ops->mapping_error(dev, dma_addr);
1621
return dma_mapping_error(dev->dma_device, dma_addr);
1622
}
1623
1624
/**
1625
* ib_dma_map_single - Map a kernel virtual address to DMA address
1626
* @dev: The device for which the dma_addr is to be created
1627
* @cpu_addr: The kernel virtual address
1628
* @size: The size of the region in bytes
1629
* @direction: The direction of the DMA
1630
*/
1631
static inline u64 ib_dma_map_single(struct ib_device *dev,
1632
void *cpu_addr, size_t size,
1633
enum dma_data_direction direction)
1634
{
1635
if (dev->dma_ops)
1636
return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
1637
return dma_map_single(dev->dma_device, cpu_addr, size, direction);
1638
}
1639
1640
/**
1641
* ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
1642
* @dev: The device for which the DMA address was created
1643
* @addr: The DMA address
1644
* @size: The size of the region in bytes
1645
* @direction: The direction of the DMA
1646
*/
1647
static inline void ib_dma_unmap_single(struct ib_device *dev,
1648
u64 addr, size_t size,
1649
enum dma_data_direction direction)
1650
{
1651
if (dev->dma_ops)
1652
dev->dma_ops->unmap_single(dev, addr, size, direction);
1653
else
1654
dma_unmap_single(dev->dma_device, addr, size, direction);
1655
}
1656
1657
static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
1658
void *cpu_addr, size_t size,
1659
enum dma_data_direction direction,
1660
struct dma_attrs *attrs)
1661
{
1662
return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
1663
direction, attrs);
1664
}
1665
1666
static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
1667
u64 addr, size_t size,
1668
enum dma_data_direction direction,
1669
struct dma_attrs *attrs)
1670
{
1671
return dma_unmap_single_attrs(dev->dma_device, addr, size,
1672
direction, attrs);
1673
}
1674
1675
/**
1676
* ib_dma_map_page - Map a physical page to DMA address
1677
* @dev: The device for which the dma_addr is to be created
1678
* @page: The page to be mapped
1679
* @offset: The offset within the page
1680
* @size: The size of the region in bytes
1681
* @direction: The direction of the DMA
1682
*/
1683
static inline u64 ib_dma_map_page(struct ib_device *dev,
1684
struct page *page,
1685
unsigned long offset,
1686
size_t size,
1687
enum dma_data_direction direction)
1688
{
1689
if (dev->dma_ops)
1690
return dev->dma_ops->map_page(dev, page, offset, size, direction);
1691
return dma_map_page(dev->dma_device, page, offset, size, direction);
1692
}
1693
1694
/**
1695
* ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
1696
* @dev: The device for which the DMA address was created
1697
* @addr: The DMA address
1698
* @size: The size of the region in bytes
1699
* @direction: The direction of the DMA
1700
*/
1701
static inline void ib_dma_unmap_page(struct ib_device *dev,
1702
u64 addr, size_t size,
1703
enum dma_data_direction direction)
1704
{
1705
if (dev->dma_ops)
1706
dev->dma_ops->unmap_page(dev, addr, size, direction);
1707
else
1708
dma_unmap_page(dev->dma_device, addr, size, direction);
1709
}
1710
1711
/**
1712
* ib_dma_map_sg - Map a scatter/gather list to DMA addresses
1713
* @dev: The device for which the DMA addresses are to be created
1714
* @sg: The array of scatter/gather entries
1715
* @nents: The number of scatter/gather entries
1716
* @direction: The direction of the DMA
1717
*/
1718
static inline int ib_dma_map_sg(struct ib_device *dev,
1719
struct scatterlist *sg, int nents,
1720
enum dma_data_direction direction)
1721
{
1722
if (dev->dma_ops)
1723
return dev->dma_ops->map_sg(dev, sg, nents, direction);
1724
return dma_map_sg(dev->dma_device, sg, nents, direction);
1725
}
1726
1727
/**
1728
* ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
1729
* @dev: The device for which the DMA addresses were created
1730
* @sg: The array of scatter/gather entries
1731
* @nents: The number of scatter/gather entries
1732
* @direction: The direction of the DMA
1733
*/
1734
static inline void ib_dma_unmap_sg(struct ib_device *dev,
1735
struct scatterlist *sg, int nents,
1736
enum dma_data_direction direction)
1737
{
1738
if (dev->dma_ops)
1739
dev->dma_ops->unmap_sg(dev, sg, nents, direction);
1740
else
1741
dma_unmap_sg(dev->dma_device, sg, nents, direction);
1742
}
1743
1744
static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
1745
struct scatterlist *sg, int nents,
1746
enum dma_data_direction direction,
1747
struct dma_attrs *attrs)
1748
{
1749
return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1750
}
1751
1752
static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
1753
struct scatterlist *sg, int nents,
1754
enum dma_data_direction direction,
1755
struct dma_attrs *attrs)
1756
{
1757
dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1758
}
1759
/**
1760
* ib_sg_dma_address - Return the DMA address from a scatter/gather entry
1761
* @dev: The device for which the DMA addresses were created
1762
* @sg: The scatter/gather entry
1763
*/
1764
static inline u64 ib_sg_dma_address(struct ib_device *dev,
1765
struct scatterlist *sg)
1766
{
1767
if (dev->dma_ops)
1768
return dev->dma_ops->dma_address(dev, sg);
1769
return sg_dma_address(sg);
1770
}
1771
1772
/**
1773
* ib_sg_dma_len - Return the DMA length from a scatter/gather entry
1774
* @dev: The device for which the DMA addresses were created
1775
* @sg: The scatter/gather entry
1776
*/
1777
static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
1778
struct scatterlist *sg)
1779
{
1780
if (dev->dma_ops)
1781
return dev->dma_ops->dma_len(dev, sg);
1782
return sg_dma_len(sg);
1783
}
1784
1785
/**
1786
* ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
1787
* @dev: The device for which the DMA address was created
1788
* @addr: The DMA address
1789
* @size: The size of the region in bytes
1790
* @dir: The direction of the DMA
1791
*/
1792
static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
1793
u64 addr,
1794
size_t size,
1795
enum dma_data_direction dir)
1796
{
1797
if (dev->dma_ops)
1798
dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
1799
else
1800
dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
1801
}
1802
1803
/**
1804
* ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
1805
* @dev: The device for which the DMA address was created
1806
* @addr: The DMA address
1807
* @size: The size of the region in bytes
1808
* @dir: The direction of the DMA
1809
*/
1810
static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
1811
u64 addr,
1812
size_t size,
1813
enum dma_data_direction dir)
1814
{
1815
if (dev->dma_ops)
1816
dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
1817
else
1818
dma_sync_single_for_device(dev->dma_device, addr, size, dir);
1819
}
1820
1821
/**
1822
* ib_dma_alloc_coherent - Allocate memory and map it for DMA
1823
* @dev: The device for which the DMA address is requested
1824
* @size: The size of the region to allocate in bytes
1825
* @dma_handle: A pointer for returning the DMA address of the region
1826
* @flag: memory allocator flags
1827
*/
1828
static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
1829
size_t size,
1830
u64 *dma_handle,
1831
gfp_t flag)
1832
{
1833
if (dev->dma_ops)
1834
return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
1835
else {
1836
dma_addr_t handle;
1837
void *ret;
1838
1839
ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
1840
*dma_handle = handle;
1841
return ret;
1842
}
1843
}
1844
1845
/**
1846
* ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
1847
* @dev: The device for which the DMA addresses were allocated
1848
* @size: The size of the region
1849
* @cpu_addr: the address returned by ib_dma_alloc_coherent()
1850
* @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
1851
*/
1852
static inline void ib_dma_free_coherent(struct ib_device *dev,
1853
size_t size, void *cpu_addr,
1854
u64 dma_handle)
1855
{
1856
if (dev->dma_ops)
1857
dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
1858
else
1859
dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
1860
}
1861
1862
/**
1863
* ib_reg_phys_mr - Prepares a virtually addressed memory region for use
1864
* by an HCA.
1865
* @pd: The protection domain associated assigned to the registered region.
1866
* @phys_buf_array: Specifies a list of physical buffers to use in the
1867
* memory region.
1868
* @num_phys_buf: Specifies the size of the phys_buf_array.
1869
* @mr_access_flags: Specifies the memory access rights.
1870
* @iova_start: The offset of the region's starting I/O virtual address.
1871
*/
1872
struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
1873
struct ib_phys_buf *phys_buf_array,
1874
int num_phys_buf,
1875
int mr_access_flags,
1876
u64 *iova_start);
1877
1878
/**
1879
* ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
1880
* Conceptually, this call performs the functions deregister memory region
1881
* followed by register physical memory region. Where possible,
1882
* resources are reused instead of deallocated and reallocated.
1883
* @mr: The memory region to modify.
1884
* @mr_rereg_mask: A bit-mask used to indicate which of the following
1885
* properties of the memory region are being modified.
1886
* @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
1887
* the new protection domain to associated with the memory region,
1888
* otherwise, this parameter is ignored.
1889
* @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1890
* field specifies a list of physical buffers to use in the new
1891
* translation, otherwise, this parameter is ignored.
1892
* @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1893
* field specifies the size of the phys_buf_array, otherwise, this
1894
* parameter is ignored.
1895
* @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
1896
* field specifies the new memory access rights, otherwise, this
1897
* parameter is ignored.
1898
* @iova_start: The offset of the region's starting I/O virtual address.
1899
*/
1900
int ib_rereg_phys_mr(struct ib_mr *mr,
1901
int mr_rereg_mask,
1902
struct ib_pd *pd,
1903
struct ib_phys_buf *phys_buf_array,
1904
int num_phys_buf,
1905
int mr_access_flags,
1906
u64 *iova_start);
1907
1908
/**
1909
* ib_query_mr - Retrieves information about a specific memory region.
1910
* @mr: The memory region to retrieve information about.
1911
* @mr_attr: The attributes of the specified memory region.
1912
*/
1913
int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
1914
1915
/**
1916
* ib_dereg_mr - Deregisters a memory region and removes it from the
1917
* HCA translation table.
1918
* @mr: The memory region to deregister.
1919
*/
1920
int ib_dereg_mr(struct ib_mr *mr);
1921
1922
/**
1923
* ib_alloc_fast_reg_mr - Allocates memory region usable with the
1924
* IB_WR_FAST_REG_MR send work request.
1925
* @pd: The protection domain associated with the region.
1926
* @max_page_list_len: requested max physical buffer list length to be
1927
* used with fast register work requests for this MR.
1928
*/
1929
struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len);
1930
1931
/**
1932
* ib_alloc_fast_reg_page_list - Allocates a page list array
1933
* @device - ib device pointer.
1934
* @page_list_len - size of the page list array to be allocated.
1935
*
1936
* This allocates and returns a struct ib_fast_reg_page_list * and a
1937
* page_list array that is at least page_list_len in size. The actual
1938
* size is returned in max_page_list_len. The caller is responsible
1939
* for initializing the contents of the page_list array before posting
1940
* a send work request with the IB_WC_FAST_REG_MR opcode.
1941
*
1942
* The page_list array entries must be translated using one of the
1943
* ib_dma_*() functions just like the addresses passed to
1944
* ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct
1945
* ib_fast_reg_page_list must not be modified by the caller until the
1946
* IB_WC_FAST_REG_MR work request completes.
1947
*/
1948
struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
1949
struct ib_device *device, int page_list_len);
1950
1951
/**
1952
* ib_free_fast_reg_page_list - Deallocates a previously allocated
1953
* page list array.
1954
* @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
1955
*/
1956
void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
1957
1958
/**
1959
* ib_update_fast_reg_key - updates the key portion of the fast_reg MR
1960
* R_Key and L_Key.
1961
* @mr - struct ib_mr pointer to be updated.
1962
* @newkey - new key to be used.
1963
*/
1964
static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
1965
{
1966
mr->lkey = (mr->lkey & 0xffffff00) | newkey;
1967
mr->rkey = (mr->rkey & 0xffffff00) | newkey;
1968
}
1969
1970
/**
1971
* ib_alloc_mw - Allocates a memory window.
1972
* @pd: The protection domain associated with the memory window.
1973
*/
1974
struct ib_mw *ib_alloc_mw(struct ib_pd *pd);
1975
1976
/**
1977
* ib_bind_mw - Posts a work request to the send queue of the specified
1978
* QP, which binds the memory window to the given address range and
1979
* remote access attributes.
1980
* @qp: QP to post the bind work request on.
1981
* @mw: The memory window to bind.
1982
* @mw_bind: Specifies information about the memory window, including
1983
* its address range, remote access rights, and associated memory region.
1984
*/
1985
static inline int ib_bind_mw(struct ib_qp *qp,
1986
struct ib_mw *mw,
1987
struct ib_mw_bind *mw_bind)
1988
{
1989
/* XXX reference counting in corresponding MR? */
1990
return mw->device->bind_mw ?
1991
mw->device->bind_mw(qp, mw, mw_bind) :
1992
-ENOSYS;
1993
}
1994
1995
/**
1996
* ib_dealloc_mw - Deallocates a memory window.
1997
* @mw: The memory window to deallocate.
1998
*/
1999
int ib_dealloc_mw(struct ib_mw *mw);
2000
2001
/**
2002
* ib_alloc_fmr - Allocates a unmapped fast memory region.
2003
* @pd: The protection domain associated with the unmapped region.
2004
* @mr_access_flags: Specifies the memory access rights.
2005
* @fmr_attr: Attributes of the unmapped region.
2006
*
2007
* A fast memory region must be mapped before it can be used as part of
2008
* a work request.
2009
*/
2010
struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2011
int mr_access_flags,
2012
struct ib_fmr_attr *fmr_attr);
2013
2014
/**
2015
* ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2016
* @fmr: The fast memory region to associate with the pages.
2017
* @page_list: An array of physical pages to map to the fast memory region.
2018
* @list_len: The number of pages in page_list.
2019
* @iova: The I/O virtual address to use with the mapped region.
2020
*/
2021
static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2022
u64 *page_list, int list_len,
2023
u64 iova)
2024
{
2025
return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2026
}
2027
2028
/**
2029
* ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2030
* @fmr_list: A linked list of fast memory regions to unmap.
2031
*/
2032
int ib_unmap_fmr(struct list_head *fmr_list);
2033
2034
/**
2035
* ib_dealloc_fmr - Deallocates a fast memory region.
2036
* @fmr: The fast memory region to deallocate.
2037
*/
2038
int ib_dealloc_fmr(struct ib_fmr *fmr);
2039
2040
/**
2041
* ib_attach_mcast - Attaches the specified QP to a multicast group.
2042
* @qp: QP to attach to the multicast group. The QP must be type
2043
* IB_QPT_UD.
2044
* @gid: Multicast group GID.
2045
* @lid: Multicast group LID in host byte order.
2046
*
2047
* In order to send and receive multicast packets, subnet
2048
* administration must have created the multicast group and configured
2049
* the fabric appropriately. The port associated with the specified
2050
* QP must also be a member of the multicast group.
2051
*/
2052
int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2053
2054
/**
2055
* ib_detach_mcast - Detaches the specified QP from a multicast group.
2056
* @qp: QP to detach from the multicast group.
2057
* @gid: Multicast group GID.
2058
* @lid: Multicast group LID in host byte order.
2059
*/
2060
int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2061
2062
#endif /* IB_VERBS_H */
2063
2064