Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/init/calibrate.c
10811 views
1
/* calibrate.c: default delay calibration
2
*
3
* Excised from init/main.c
4
* Copyright (C) 1991, 1992 Linus Torvalds
5
*/
6
7
#include <linux/jiffies.h>
8
#include <linux/delay.h>
9
#include <linux/init.h>
10
#include <linux/timex.h>
11
#include <linux/smp.h>
12
13
unsigned long lpj_fine;
14
unsigned long preset_lpj;
15
static int __init lpj_setup(char *str)
16
{
17
preset_lpj = simple_strtoul(str,NULL,0);
18
return 1;
19
}
20
21
__setup("lpj=", lpj_setup);
22
23
#ifdef ARCH_HAS_READ_CURRENT_TIMER
24
25
/* This routine uses the read_current_timer() routine and gets the
26
* loops per jiffy directly, instead of guessing it using delay().
27
* Also, this code tries to handle non-maskable asynchronous events
28
* (like SMIs)
29
*/
30
#define DELAY_CALIBRATION_TICKS ((HZ < 100) ? 1 : (HZ/100))
31
#define MAX_DIRECT_CALIBRATION_RETRIES 5
32
33
static unsigned long __cpuinit calibrate_delay_direct(void)
34
{
35
unsigned long pre_start, start, post_start;
36
unsigned long pre_end, end, post_end;
37
unsigned long start_jiffies;
38
unsigned long timer_rate_min, timer_rate_max;
39
unsigned long good_timer_sum = 0;
40
unsigned long good_timer_count = 0;
41
unsigned long measured_times[MAX_DIRECT_CALIBRATION_RETRIES];
42
int max = -1; /* index of measured_times with max/min values or not set */
43
int min = -1;
44
int i;
45
46
if (read_current_timer(&pre_start) < 0 )
47
return 0;
48
49
/*
50
* A simple loop like
51
* while ( jiffies < start_jiffies+1)
52
* start = read_current_timer();
53
* will not do. As we don't really know whether jiffy switch
54
* happened first or timer_value was read first. And some asynchronous
55
* event can happen between these two events introducing errors in lpj.
56
*
57
* So, we do
58
* 1. pre_start <- When we are sure that jiffy switch hasn't happened
59
* 2. check jiffy switch
60
* 3. start <- timer value before or after jiffy switch
61
* 4. post_start <- When we are sure that jiffy switch has happened
62
*
63
* Note, we don't know anything about order of 2 and 3.
64
* Now, by looking at post_start and pre_start difference, we can
65
* check whether any asynchronous event happened or not
66
*/
67
68
for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
69
pre_start = 0;
70
read_current_timer(&start);
71
start_jiffies = jiffies;
72
while (time_before_eq(jiffies, start_jiffies + 1)) {
73
pre_start = start;
74
read_current_timer(&start);
75
}
76
read_current_timer(&post_start);
77
78
pre_end = 0;
79
end = post_start;
80
while (time_before_eq(jiffies, start_jiffies + 1 +
81
DELAY_CALIBRATION_TICKS)) {
82
pre_end = end;
83
read_current_timer(&end);
84
}
85
read_current_timer(&post_end);
86
87
timer_rate_max = (post_end - pre_start) /
88
DELAY_CALIBRATION_TICKS;
89
timer_rate_min = (pre_end - post_start) /
90
DELAY_CALIBRATION_TICKS;
91
92
/*
93
* If the upper limit and lower limit of the timer_rate is
94
* >= 12.5% apart, redo calibration.
95
*/
96
if (start >= post_end)
97
printk(KERN_NOTICE "calibrate_delay_direct() ignoring "
98
"timer_rate as we had a TSC wrap around"
99
" start=%lu >=post_end=%lu\n",
100
start, post_end);
101
if (start < post_end && pre_start != 0 && pre_end != 0 &&
102
(timer_rate_max - timer_rate_min) < (timer_rate_max >> 3)) {
103
good_timer_count++;
104
good_timer_sum += timer_rate_max;
105
measured_times[i] = timer_rate_max;
106
if (max < 0 || timer_rate_max > measured_times[max])
107
max = i;
108
if (min < 0 || timer_rate_max < measured_times[min])
109
min = i;
110
} else
111
measured_times[i] = 0;
112
113
}
114
115
/*
116
* Find the maximum & minimum - if they differ too much throw out the
117
* one with the largest difference from the mean and try again...
118
*/
119
while (good_timer_count > 1) {
120
unsigned long estimate;
121
unsigned long maxdiff;
122
123
/* compute the estimate */
124
estimate = (good_timer_sum/good_timer_count);
125
maxdiff = estimate >> 3;
126
127
/* if range is within 12% let's take it */
128
if ((measured_times[max] - measured_times[min]) < maxdiff)
129
return estimate;
130
131
/* ok - drop the worse value and try again... */
132
good_timer_sum = 0;
133
good_timer_count = 0;
134
if ((measured_times[max] - estimate) <
135
(estimate - measured_times[min])) {
136
printk(KERN_NOTICE "calibrate_delay_direct() dropping "
137
"min bogoMips estimate %d = %lu\n",
138
min, measured_times[min]);
139
measured_times[min] = 0;
140
min = max;
141
} else {
142
printk(KERN_NOTICE "calibrate_delay_direct() dropping "
143
"max bogoMips estimate %d = %lu\n",
144
max, measured_times[max]);
145
measured_times[max] = 0;
146
max = min;
147
}
148
149
for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
150
if (measured_times[i] == 0)
151
continue;
152
good_timer_count++;
153
good_timer_sum += measured_times[i];
154
if (measured_times[i] < measured_times[min])
155
min = i;
156
if (measured_times[i] > measured_times[max])
157
max = i;
158
}
159
160
}
161
162
printk(KERN_NOTICE "calibrate_delay_direct() failed to get a good "
163
"estimate for loops_per_jiffy.\nProbably due to long platform "
164
"interrupts. Consider using \"lpj=\" boot option.\n");
165
return 0;
166
}
167
#else
168
static unsigned long __cpuinit calibrate_delay_direct(void) {return 0;}
169
#endif
170
171
/*
172
* This is the number of bits of precision for the loops_per_jiffy. Each
173
* time we refine our estimate after the first takes 1.5/HZ seconds, so try
174
* to start with a good estimate.
175
* For the boot cpu we can skip the delay calibration and assign it a value
176
* calculated based on the timer frequency.
177
* For the rest of the CPUs we cannot assume that the timer frequency is same as
178
* the cpu frequency, hence do the calibration for those.
179
*/
180
#define LPS_PREC 8
181
182
static unsigned long __cpuinit calibrate_delay_converge(void)
183
{
184
/* First stage - slowly accelerate to find initial bounds */
185
unsigned long lpj, lpj_base, ticks, loopadd, loopadd_base, chop_limit;
186
int trials = 0, band = 0, trial_in_band = 0;
187
188
lpj = (1<<12);
189
190
/* wait for "start of" clock tick */
191
ticks = jiffies;
192
while (ticks == jiffies)
193
; /* nothing */
194
/* Go .. */
195
ticks = jiffies;
196
do {
197
if (++trial_in_band == (1<<band)) {
198
++band;
199
trial_in_band = 0;
200
}
201
__delay(lpj * band);
202
trials += band;
203
} while (ticks == jiffies);
204
/*
205
* We overshot, so retreat to a clear underestimate. Then estimate
206
* the largest likely undershoot. This defines our chop bounds.
207
*/
208
trials -= band;
209
loopadd_base = lpj * band;
210
lpj_base = lpj * trials;
211
212
recalibrate:
213
lpj = lpj_base;
214
loopadd = loopadd_base;
215
216
/*
217
* Do a binary approximation to get lpj set to
218
* equal one clock (up to LPS_PREC bits)
219
*/
220
chop_limit = lpj >> LPS_PREC;
221
while (loopadd > chop_limit) {
222
lpj += loopadd;
223
ticks = jiffies;
224
while (ticks == jiffies)
225
; /* nothing */
226
ticks = jiffies;
227
__delay(lpj);
228
if (jiffies != ticks) /* longer than 1 tick */
229
lpj -= loopadd;
230
loopadd >>= 1;
231
}
232
/*
233
* If we incremented every single time possible, presume we've
234
* massively underestimated initially, and retry with a higher
235
* start, and larger range. (Only seen on x86_64, due to SMIs)
236
*/
237
if (lpj + loopadd * 2 == lpj_base + loopadd_base * 2) {
238
lpj_base = lpj;
239
loopadd_base <<= 2;
240
goto recalibrate;
241
}
242
243
return lpj;
244
}
245
246
void __cpuinit calibrate_delay(void)
247
{
248
unsigned long lpj;
249
static bool printed;
250
251
if (preset_lpj) {
252
lpj = preset_lpj;
253
if (!printed)
254
pr_info("Calibrating delay loop (skipped) "
255
"preset value.. ");
256
} else if ((!printed) && lpj_fine) {
257
lpj = lpj_fine;
258
pr_info("Calibrating delay loop (skipped), "
259
"value calculated using timer frequency.. ");
260
} else if ((lpj = calibrate_delay_direct()) != 0) {
261
if (!printed)
262
pr_info("Calibrating delay using timer "
263
"specific routine.. ");
264
} else {
265
if (!printed)
266
pr_info("Calibrating delay loop... ");
267
lpj = calibrate_delay_converge();
268
}
269
if (!printed)
270
pr_cont("%lu.%02lu BogoMIPS (lpj=%lu)\n",
271
lpj/(500000/HZ),
272
(lpj/(5000/HZ)) % 100, lpj);
273
274
loops_per_jiffy = lpj;
275
printed = true;
276
}
277
278