Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/ipc/sem.c
10817 views
1
/*
2
* linux/ipc/sem.c
3
* Copyright (C) 1992 Krishna Balasubramanian
4
* Copyright (C) 1995 Eric Schenk, Bruno Haible
5
*
6
* /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <[email protected]>
7
*
8
* SMP-threaded, sysctl's added
9
* (c) 1999 Manfred Spraul <[email protected]>
10
* Enforced range limit on SEM_UNDO
11
* (c) 2001 Red Hat Inc
12
* Lockless wakeup
13
* (c) 2003 Manfred Spraul <[email protected]>
14
* Further wakeup optimizations, documentation
15
* (c) 2010 Manfred Spraul <[email protected]>
16
*
17
* support for audit of ipc object properties and permission changes
18
* Dustin Kirkland <[email protected]>
19
*
20
* namespaces support
21
* OpenVZ, SWsoft Inc.
22
* Pavel Emelianov <[email protected]>
23
*
24
* Implementation notes: (May 2010)
25
* This file implements System V semaphores.
26
*
27
* User space visible behavior:
28
* - FIFO ordering for semop() operations (just FIFO, not starvation
29
* protection)
30
* - multiple semaphore operations that alter the same semaphore in
31
* one semop() are handled.
32
* - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33
* SETALL calls.
34
* - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35
* - undo adjustments at process exit are limited to 0..SEMVMX.
36
* - namespace are supported.
37
* - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38
* to /proc/sys/kernel/sem.
39
* - statistics about the usage are reported in /proc/sysvipc/sem.
40
*
41
* Internals:
42
* - scalability:
43
* - all global variables are read-mostly.
44
* - semop() calls and semctl(RMID) are synchronized by RCU.
45
* - most operations do write operations (actually: spin_lock calls) to
46
* the per-semaphore array structure.
47
* Thus: Perfect SMP scaling between independent semaphore arrays.
48
* If multiple semaphores in one array are used, then cache line
49
* trashing on the semaphore array spinlock will limit the scaling.
50
* - semncnt and semzcnt are calculated on demand in count_semncnt() and
51
* count_semzcnt()
52
* - the task that performs a successful semop() scans the list of all
53
* sleeping tasks and completes any pending operations that can be fulfilled.
54
* Semaphores are actively given to waiting tasks (necessary for FIFO).
55
* (see update_queue())
56
* - To improve the scalability, the actual wake-up calls are performed after
57
* dropping all locks. (see wake_up_sem_queue_prepare(),
58
* wake_up_sem_queue_do())
59
* - All work is done by the waker, the woken up task does not have to do
60
* anything - not even acquiring a lock or dropping a refcount.
61
* - A woken up task may not even touch the semaphore array anymore, it may
62
* have been destroyed already by a semctl(RMID).
63
* - The synchronizations between wake-ups due to a timeout/signal and a
64
* wake-up due to a completed semaphore operation is achieved by using an
65
* intermediate state (IN_WAKEUP).
66
* - UNDO values are stored in an array (one per process and per
67
* semaphore array, lazily allocated). For backwards compatibility, multiple
68
* modes for the UNDO variables are supported (per process, per thread)
69
* (see copy_semundo, CLONE_SYSVSEM)
70
* - There are two lists of the pending operations: a per-array list
71
* and per-semaphore list (stored in the array). This allows to achieve FIFO
72
* ordering without always scanning all pending operations.
73
* The worst-case behavior is nevertheless O(N^2) for N wakeups.
74
*/
75
76
#include <linux/slab.h>
77
#include <linux/spinlock.h>
78
#include <linux/init.h>
79
#include <linux/proc_fs.h>
80
#include <linux/time.h>
81
#include <linux/security.h>
82
#include <linux/syscalls.h>
83
#include <linux/audit.h>
84
#include <linux/capability.h>
85
#include <linux/seq_file.h>
86
#include <linux/rwsem.h>
87
#include <linux/nsproxy.h>
88
#include <linux/ipc_namespace.h>
89
90
#include <asm/uaccess.h>
91
#include "util.h"
92
93
#define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
94
95
#define sem_unlock(sma) ipc_unlock(&(sma)->sem_perm)
96
#define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
97
98
static int newary(struct ipc_namespace *, struct ipc_params *);
99
static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
100
#ifdef CONFIG_PROC_FS
101
static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
102
#endif
103
104
#define SEMMSL_FAST 256 /* 512 bytes on stack */
105
#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
106
107
/*
108
* linked list protection:
109
* sem_undo.id_next,
110
* sem_array.sem_pending{,last},
111
* sem_array.sem_undo: sem_lock() for read/write
112
* sem_undo.proc_next: only "current" is allowed to read/write that field.
113
*
114
*/
115
116
#define sc_semmsl sem_ctls[0]
117
#define sc_semmns sem_ctls[1]
118
#define sc_semopm sem_ctls[2]
119
#define sc_semmni sem_ctls[3]
120
121
void sem_init_ns(struct ipc_namespace *ns)
122
{
123
ns->sc_semmsl = SEMMSL;
124
ns->sc_semmns = SEMMNS;
125
ns->sc_semopm = SEMOPM;
126
ns->sc_semmni = SEMMNI;
127
ns->used_sems = 0;
128
ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
129
}
130
131
#ifdef CONFIG_IPC_NS
132
void sem_exit_ns(struct ipc_namespace *ns)
133
{
134
free_ipcs(ns, &sem_ids(ns), freeary);
135
idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
136
}
137
#endif
138
139
void __init sem_init (void)
140
{
141
sem_init_ns(&init_ipc_ns);
142
ipc_init_proc_interface("sysvipc/sem",
143
" key semid perms nsems uid gid cuid cgid otime ctime\n",
144
IPC_SEM_IDS, sysvipc_sem_proc_show);
145
}
146
147
/*
148
* sem_lock_(check_) routines are called in the paths where the rw_mutex
149
* is not held.
150
*/
151
static inline struct sem_array *sem_lock(struct ipc_namespace *ns, int id)
152
{
153
struct kern_ipc_perm *ipcp = ipc_lock(&sem_ids(ns), id);
154
155
if (IS_ERR(ipcp))
156
return (struct sem_array *)ipcp;
157
158
return container_of(ipcp, struct sem_array, sem_perm);
159
}
160
161
static inline struct sem_array *sem_lock_check(struct ipc_namespace *ns,
162
int id)
163
{
164
struct kern_ipc_perm *ipcp = ipc_lock_check(&sem_ids(ns), id);
165
166
if (IS_ERR(ipcp))
167
return (struct sem_array *)ipcp;
168
169
return container_of(ipcp, struct sem_array, sem_perm);
170
}
171
172
static inline void sem_lock_and_putref(struct sem_array *sma)
173
{
174
ipc_lock_by_ptr(&sma->sem_perm);
175
ipc_rcu_putref(sma);
176
}
177
178
static inline void sem_getref_and_unlock(struct sem_array *sma)
179
{
180
ipc_rcu_getref(sma);
181
ipc_unlock(&(sma)->sem_perm);
182
}
183
184
static inline void sem_putref(struct sem_array *sma)
185
{
186
ipc_lock_by_ptr(&sma->sem_perm);
187
ipc_rcu_putref(sma);
188
ipc_unlock(&(sma)->sem_perm);
189
}
190
191
static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
192
{
193
ipc_rmid(&sem_ids(ns), &s->sem_perm);
194
}
195
196
/*
197
* Lockless wakeup algorithm:
198
* Without the check/retry algorithm a lockless wakeup is possible:
199
* - queue.status is initialized to -EINTR before blocking.
200
* - wakeup is performed by
201
* * unlinking the queue entry from sma->sem_pending
202
* * setting queue.status to IN_WAKEUP
203
* This is the notification for the blocked thread that a
204
* result value is imminent.
205
* * call wake_up_process
206
* * set queue.status to the final value.
207
* - the previously blocked thread checks queue.status:
208
* * if it's IN_WAKEUP, then it must wait until the value changes
209
* * if it's not -EINTR, then the operation was completed by
210
* update_queue. semtimedop can return queue.status without
211
* performing any operation on the sem array.
212
* * otherwise it must acquire the spinlock and check what's up.
213
*
214
* The two-stage algorithm is necessary to protect against the following
215
* races:
216
* - if queue.status is set after wake_up_process, then the woken up idle
217
* thread could race forward and try (and fail) to acquire sma->lock
218
* before update_queue had a chance to set queue.status
219
* - if queue.status is written before wake_up_process and if the
220
* blocked process is woken up by a signal between writing
221
* queue.status and the wake_up_process, then the woken up
222
* process could return from semtimedop and die by calling
223
* sys_exit before wake_up_process is called. Then wake_up_process
224
* will oops, because the task structure is already invalid.
225
* (yes, this happened on s390 with sysv msg).
226
*
227
*/
228
#define IN_WAKEUP 1
229
230
/**
231
* newary - Create a new semaphore set
232
* @ns: namespace
233
* @params: ptr to the structure that contains key, semflg and nsems
234
*
235
* Called with sem_ids.rw_mutex held (as a writer)
236
*/
237
238
static int newary(struct ipc_namespace *ns, struct ipc_params *params)
239
{
240
int id;
241
int retval;
242
struct sem_array *sma;
243
int size;
244
key_t key = params->key;
245
int nsems = params->u.nsems;
246
int semflg = params->flg;
247
int i;
248
249
if (!nsems)
250
return -EINVAL;
251
if (ns->used_sems + nsems > ns->sc_semmns)
252
return -ENOSPC;
253
254
size = sizeof (*sma) + nsems * sizeof (struct sem);
255
sma = ipc_rcu_alloc(size);
256
if (!sma) {
257
return -ENOMEM;
258
}
259
memset (sma, 0, size);
260
261
sma->sem_perm.mode = (semflg & S_IRWXUGO);
262
sma->sem_perm.key = key;
263
264
sma->sem_perm.security = NULL;
265
retval = security_sem_alloc(sma);
266
if (retval) {
267
ipc_rcu_putref(sma);
268
return retval;
269
}
270
271
id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
272
if (id < 0) {
273
security_sem_free(sma);
274
ipc_rcu_putref(sma);
275
return id;
276
}
277
ns->used_sems += nsems;
278
279
sma->sem_base = (struct sem *) &sma[1];
280
281
for (i = 0; i < nsems; i++)
282
INIT_LIST_HEAD(&sma->sem_base[i].sem_pending);
283
284
sma->complex_count = 0;
285
INIT_LIST_HEAD(&sma->sem_pending);
286
INIT_LIST_HEAD(&sma->list_id);
287
sma->sem_nsems = nsems;
288
sma->sem_ctime = get_seconds();
289
sem_unlock(sma);
290
291
return sma->sem_perm.id;
292
}
293
294
295
/*
296
* Called with sem_ids.rw_mutex and ipcp locked.
297
*/
298
static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
299
{
300
struct sem_array *sma;
301
302
sma = container_of(ipcp, struct sem_array, sem_perm);
303
return security_sem_associate(sma, semflg);
304
}
305
306
/*
307
* Called with sem_ids.rw_mutex and ipcp locked.
308
*/
309
static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
310
struct ipc_params *params)
311
{
312
struct sem_array *sma;
313
314
sma = container_of(ipcp, struct sem_array, sem_perm);
315
if (params->u.nsems > sma->sem_nsems)
316
return -EINVAL;
317
318
return 0;
319
}
320
321
SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
322
{
323
struct ipc_namespace *ns;
324
struct ipc_ops sem_ops;
325
struct ipc_params sem_params;
326
327
ns = current->nsproxy->ipc_ns;
328
329
if (nsems < 0 || nsems > ns->sc_semmsl)
330
return -EINVAL;
331
332
sem_ops.getnew = newary;
333
sem_ops.associate = sem_security;
334
sem_ops.more_checks = sem_more_checks;
335
336
sem_params.key = key;
337
sem_params.flg = semflg;
338
sem_params.u.nsems = nsems;
339
340
return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
341
}
342
343
/*
344
* Determine whether a sequence of semaphore operations would succeed
345
* all at once. Return 0 if yes, 1 if need to sleep, else return error code.
346
*/
347
348
static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,
349
int nsops, struct sem_undo *un, int pid)
350
{
351
int result, sem_op;
352
struct sembuf *sop;
353
struct sem * curr;
354
355
for (sop = sops; sop < sops + nsops; sop++) {
356
curr = sma->sem_base + sop->sem_num;
357
sem_op = sop->sem_op;
358
result = curr->semval;
359
360
if (!sem_op && result)
361
goto would_block;
362
363
result += sem_op;
364
if (result < 0)
365
goto would_block;
366
if (result > SEMVMX)
367
goto out_of_range;
368
if (sop->sem_flg & SEM_UNDO) {
369
int undo = un->semadj[sop->sem_num] - sem_op;
370
/*
371
* Exceeding the undo range is an error.
372
*/
373
if (undo < (-SEMAEM - 1) || undo > SEMAEM)
374
goto out_of_range;
375
}
376
curr->semval = result;
377
}
378
379
sop--;
380
while (sop >= sops) {
381
sma->sem_base[sop->sem_num].sempid = pid;
382
if (sop->sem_flg & SEM_UNDO)
383
un->semadj[sop->sem_num] -= sop->sem_op;
384
sop--;
385
}
386
387
return 0;
388
389
out_of_range:
390
result = -ERANGE;
391
goto undo;
392
393
would_block:
394
if (sop->sem_flg & IPC_NOWAIT)
395
result = -EAGAIN;
396
else
397
result = 1;
398
399
undo:
400
sop--;
401
while (sop >= sops) {
402
sma->sem_base[sop->sem_num].semval -= sop->sem_op;
403
sop--;
404
}
405
406
return result;
407
}
408
409
/** wake_up_sem_queue_prepare(q, error): Prepare wake-up
410
* @q: queue entry that must be signaled
411
* @error: Error value for the signal
412
*
413
* Prepare the wake-up of the queue entry q.
414
*/
415
static void wake_up_sem_queue_prepare(struct list_head *pt,
416
struct sem_queue *q, int error)
417
{
418
if (list_empty(pt)) {
419
/*
420
* Hold preempt off so that we don't get preempted and have the
421
* wakee busy-wait until we're scheduled back on.
422
*/
423
preempt_disable();
424
}
425
q->status = IN_WAKEUP;
426
q->pid = error;
427
428
list_add_tail(&q->simple_list, pt);
429
}
430
431
/**
432
* wake_up_sem_queue_do(pt) - do the actual wake-up
433
* @pt: list of tasks to be woken up
434
*
435
* Do the actual wake-up.
436
* The function is called without any locks held, thus the semaphore array
437
* could be destroyed already and the tasks can disappear as soon as the
438
* status is set to the actual return code.
439
*/
440
static void wake_up_sem_queue_do(struct list_head *pt)
441
{
442
struct sem_queue *q, *t;
443
int did_something;
444
445
did_something = !list_empty(pt);
446
list_for_each_entry_safe(q, t, pt, simple_list) {
447
wake_up_process(q->sleeper);
448
/* q can disappear immediately after writing q->status. */
449
smp_wmb();
450
q->status = q->pid;
451
}
452
if (did_something)
453
preempt_enable();
454
}
455
456
static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
457
{
458
list_del(&q->list);
459
if (q->nsops == 1)
460
list_del(&q->simple_list);
461
else
462
sma->complex_count--;
463
}
464
465
/** check_restart(sma, q)
466
* @sma: semaphore array
467
* @q: the operation that just completed
468
*
469
* update_queue is O(N^2) when it restarts scanning the whole queue of
470
* waiting operations. Therefore this function checks if the restart is
471
* really necessary. It is called after a previously waiting operation
472
* was completed.
473
*/
474
static int check_restart(struct sem_array *sma, struct sem_queue *q)
475
{
476
struct sem *curr;
477
struct sem_queue *h;
478
479
/* if the operation didn't modify the array, then no restart */
480
if (q->alter == 0)
481
return 0;
482
483
/* pending complex operations are too difficult to analyse */
484
if (sma->complex_count)
485
return 1;
486
487
/* we were a sleeping complex operation. Too difficult */
488
if (q->nsops > 1)
489
return 1;
490
491
curr = sma->sem_base + q->sops[0].sem_num;
492
493
/* No-one waits on this queue */
494
if (list_empty(&curr->sem_pending))
495
return 0;
496
497
/* the new semaphore value */
498
if (curr->semval) {
499
/* It is impossible that someone waits for the new value:
500
* - q is a previously sleeping simple operation that
501
* altered the array. It must be a decrement, because
502
* simple increments never sleep.
503
* - The value is not 0, thus wait-for-zero won't proceed.
504
* - If there are older (higher priority) decrements
505
* in the queue, then they have observed the original
506
* semval value and couldn't proceed. The operation
507
* decremented to value - thus they won't proceed either.
508
*/
509
BUG_ON(q->sops[0].sem_op >= 0);
510
return 0;
511
}
512
/*
513
* semval is 0. Check if there are wait-for-zero semops.
514
* They must be the first entries in the per-semaphore simple queue
515
*/
516
h = list_first_entry(&curr->sem_pending, struct sem_queue, simple_list);
517
BUG_ON(h->nsops != 1);
518
BUG_ON(h->sops[0].sem_num != q->sops[0].sem_num);
519
520
/* Yes, there is a wait-for-zero semop. Restart */
521
if (h->sops[0].sem_op == 0)
522
return 1;
523
524
/* Again - no-one is waiting for the new value. */
525
return 0;
526
}
527
528
529
/**
530
* update_queue(sma, semnum): Look for tasks that can be completed.
531
* @sma: semaphore array.
532
* @semnum: semaphore that was modified.
533
* @pt: list head for the tasks that must be woken up.
534
*
535
* update_queue must be called after a semaphore in a semaphore array
536
* was modified. If multiple semaphore were modified, then @semnum
537
* must be set to -1.
538
* The tasks that must be woken up are added to @pt. The return code
539
* is stored in q->pid.
540
* The function return 1 if at least one semop was completed successfully.
541
*/
542
static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
543
{
544
struct sem_queue *q;
545
struct list_head *walk;
546
struct list_head *pending_list;
547
int offset;
548
int semop_completed = 0;
549
550
/* if there are complex operations around, then knowing the semaphore
551
* that was modified doesn't help us. Assume that multiple semaphores
552
* were modified.
553
*/
554
if (sma->complex_count)
555
semnum = -1;
556
557
if (semnum == -1) {
558
pending_list = &sma->sem_pending;
559
offset = offsetof(struct sem_queue, list);
560
} else {
561
pending_list = &sma->sem_base[semnum].sem_pending;
562
offset = offsetof(struct sem_queue, simple_list);
563
}
564
565
again:
566
walk = pending_list->next;
567
while (walk != pending_list) {
568
int error, restart;
569
570
q = (struct sem_queue *)((char *)walk - offset);
571
walk = walk->next;
572
573
/* If we are scanning the single sop, per-semaphore list of
574
* one semaphore and that semaphore is 0, then it is not
575
* necessary to scan the "alter" entries: simple increments
576
* that affect only one entry succeed immediately and cannot
577
* be in the per semaphore pending queue, and decrements
578
* cannot be successful if the value is already 0.
579
*/
580
if (semnum != -1 && sma->sem_base[semnum].semval == 0 &&
581
q->alter)
582
break;
583
584
error = try_atomic_semop(sma, q->sops, q->nsops,
585
q->undo, q->pid);
586
587
/* Does q->sleeper still need to sleep? */
588
if (error > 0)
589
continue;
590
591
unlink_queue(sma, q);
592
593
if (error) {
594
restart = 0;
595
} else {
596
semop_completed = 1;
597
restart = check_restart(sma, q);
598
}
599
600
wake_up_sem_queue_prepare(pt, q, error);
601
if (restart)
602
goto again;
603
}
604
return semop_completed;
605
}
606
607
/**
608
* do_smart_update(sma, sops, nsops, otime, pt) - optimized update_queue
609
* @sma: semaphore array
610
* @sops: operations that were performed
611
* @nsops: number of operations
612
* @otime: force setting otime
613
* @pt: list head of the tasks that must be woken up.
614
*
615
* do_smart_update() does the required called to update_queue, based on the
616
* actual changes that were performed on the semaphore array.
617
* Note that the function does not do the actual wake-up: the caller is
618
* responsible for calling wake_up_sem_queue_do(@pt).
619
* It is safe to perform this call after dropping all locks.
620
*/
621
static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
622
int otime, struct list_head *pt)
623
{
624
int i;
625
626
if (sma->complex_count || sops == NULL) {
627
if (update_queue(sma, -1, pt))
628
otime = 1;
629
goto done;
630
}
631
632
for (i = 0; i < nsops; i++) {
633
if (sops[i].sem_op > 0 ||
634
(sops[i].sem_op < 0 &&
635
sma->sem_base[sops[i].sem_num].semval == 0))
636
if (update_queue(sma, sops[i].sem_num, pt))
637
otime = 1;
638
}
639
done:
640
if (otime)
641
sma->sem_otime = get_seconds();
642
}
643
644
645
/* The following counts are associated to each semaphore:
646
* semncnt number of tasks waiting on semval being nonzero
647
* semzcnt number of tasks waiting on semval being zero
648
* This model assumes that a task waits on exactly one semaphore.
649
* Since semaphore operations are to be performed atomically, tasks actually
650
* wait on a whole sequence of semaphores simultaneously.
651
* The counts we return here are a rough approximation, but still
652
* warrant that semncnt+semzcnt>0 if the task is on the pending queue.
653
*/
654
static int count_semncnt (struct sem_array * sma, ushort semnum)
655
{
656
int semncnt;
657
struct sem_queue * q;
658
659
semncnt = 0;
660
list_for_each_entry(q, &sma->sem_pending, list) {
661
struct sembuf * sops = q->sops;
662
int nsops = q->nsops;
663
int i;
664
for (i = 0; i < nsops; i++)
665
if (sops[i].sem_num == semnum
666
&& (sops[i].sem_op < 0)
667
&& !(sops[i].sem_flg & IPC_NOWAIT))
668
semncnt++;
669
}
670
return semncnt;
671
}
672
673
static int count_semzcnt (struct sem_array * sma, ushort semnum)
674
{
675
int semzcnt;
676
struct sem_queue * q;
677
678
semzcnt = 0;
679
list_for_each_entry(q, &sma->sem_pending, list) {
680
struct sembuf * sops = q->sops;
681
int nsops = q->nsops;
682
int i;
683
for (i = 0; i < nsops; i++)
684
if (sops[i].sem_num == semnum
685
&& (sops[i].sem_op == 0)
686
&& !(sops[i].sem_flg & IPC_NOWAIT))
687
semzcnt++;
688
}
689
return semzcnt;
690
}
691
692
static void free_un(struct rcu_head *head)
693
{
694
struct sem_undo *un = container_of(head, struct sem_undo, rcu);
695
kfree(un);
696
}
697
698
/* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked
699
* as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex
700
* remains locked on exit.
701
*/
702
static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
703
{
704
struct sem_undo *un, *tu;
705
struct sem_queue *q, *tq;
706
struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
707
struct list_head tasks;
708
709
/* Free the existing undo structures for this semaphore set. */
710
assert_spin_locked(&sma->sem_perm.lock);
711
list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
712
list_del(&un->list_id);
713
spin_lock(&un->ulp->lock);
714
un->semid = -1;
715
list_del_rcu(&un->list_proc);
716
spin_unlock(&un->ulp->lock);
717
call_rcu(&un->rcu, free_un);
718
}
719
720
/* Wake up all pending processes and let them fail with EIDRM. */
721
INIT_LIST_HEAD(&tasks);
722
list_for_each_entry_safe(q, tq, &sma->sem_pending, list) {
723
unlink_queue(sma, q);
724
wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
725
}
726
727
/* Remove the semaphore set from the IDR */
728
sem_rmid(ns, sma);
729
sem_unlock(sma);
730
731
wake_up_sem_queue_do(&tasks);
732
ns->used_sems -= sma->sem_nsems;
733
security_sem_free(sma);
734
ipc_rcu_putref(sma);
735
}
736
737
static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
738
{
739
switch(version) {
740
case IPC_64:
741
return copy_to_user(buf, in, sizeof(*in));
742
case IPC_OLD:
743
{
744
struct semid_ds out;
745
746
memset(&out, 0, sizeof(out));
747
748
ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
749
750
out.sem_otime = in->sem_otime;
751
out.sem_ctime = in->sem_ctime;
752
out.sem_nsems = in->sem_nsems;
753
754
return copy_to_user(buf, &out, sizeof(out));
755
}
756
default:
757
return -EINVAL;
758
}
759
}
760
761
static int semctl_nolock(struct ipc_namespace *ns, int semid,
762
int cmd, int version, union semun arg)
763
{
764
int err;
765
struct sem_array *sma;
766
767
switch(cmd) {
768
case IPC_INFO:
769
case SEM_INFO:
770
{
771
struct seminfo seminfo;
772
int max_id;
773
774
err = security_sem_semctl(NULL, cmd);
775
if (err)
776
return err;
777
778
memset(&seminfo,0,sizeof(seminfo));
779
seminfo.semmni = ns->sc_semmni;
780
seminfo.semmns = ns->sc_semmns;
781
seminfo.semmsl = ns->sc_semmsl;
782
seminfo.semopm = ns->sc_semopm;
783
seminfo.semvmx = SEMVMX;
784
seminfo.semmnu = SEMMNU;
785
seminfo.semmap = SEMMAP;
786
seminfo.semume = SEMUME;
787
down_read(&sem_ids(ns).rw_mutex);
788
if (cmd == SEM_INFO) {
789
seminfo.semusz = sem_ids(ns).in_use;
790
seminfo.semaem = ns->used_sems;
791
} else {
792
seminfo.semusz = SEMUSZ;
793
seminfo.semaem = SEMAEM;
794
}
795
max_id = ipc_get_maxid(&sem_ids(ns));
796
up_read(&sem_ids(ns).rw_mutex);
797
if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo)))
798
return -EFAULT;
799
return (max_id < 0) ? 0: max_id;
800
}
801
case IPC_STAT:
802
case SEM_STAT:
803
{
804
struct semid64_ds tbuf;
805
int id;
806
807
if (cmd == SEM_STAT) {
808
sma = sem_lock(ns, semid);
809
if (IS_ERR(sma))
810
return PTR_ERR(sma);
811
id = sma->sem_perm.id;
812
} else {
813
sma = sem_lock_check(ns, semid);
814
if (IS_ERR(sma))
815
return PTR_ERR(sma);
816
id = 0;
817
}
818
819
err = -EACCES;
820
if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
821
goto out_unlock;
822
823
err = security_sem_semctl(sma, cmd);
824
if (err)
825
goto out_unlock;
826
827
memset(&tbuf, 0, sizeof(tbuf));
828
829
kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
830
tbuf.sem_otime = sma->sem_otime;
831
tbuf.sem_ctime = sma->sem_ctime;
832
tbuf.sem_nsems = sma->sem_nsems;
833
sem_unlock(sma);
834
if (copy_semid_to_user (arg.buf, &tbuf, version))
835
return -EFAULT;
836
return id;
837
}
838
default:
839
return -EINVAL;
840
}
841
out_unlock:
842
sem_unlock(sma);
843
return err;
844
}
845
846
static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
847
int cmd, int version, union semun arg)
848
{
849
struct sem_array *sma;
850
struct sem* curr;
851
int err;
852
ushort fast_sem_io[SEMMSL_FAST];
853
ushort* sem_io = fast_sem_io;
854
int nsems;
855
struct list_head tasks;
856
857
sma = sem_lock_check(ns, semid);
858
if (IS_ERR(sma))
859
return PTR_ERR(sma);
860
861
INIT_LIST_HEAD(&tasks);
862
nsems = sma->sem_nsems;
863
864
err = -EACCES;
865
if (ipcperms(ns, &sma->sem_perm,
866
(cmd == SETVAL || cmd == SETALL) ? S_IWUGO : S_IRUGO))
867
goto out_unlock;
868
869
err = security_sem_semctl(sma, cmd);
870
if (err)
871
goto out_unlock;
872
873
err = -EACCES;
874
switch (cmd) {
875
case GETALL:
876
{
877
ushort __user *array = arg.array;
878
int i;
879
880
if(nsems > SEMMSL_FAST) {
881
sem_getref_and_unlock(sma);
882
883
sem_io = ipc_alloc(sizeof(ushort)*nsems);
884
if(sem_io == NULL) {
885
sem_putref(sma);
886
return -ENOMEM;
887
}
888
889
sem_lock_and_putref(sma);
890
if (sma->sem_perm.deleted) {
891
sem_unlock(sma);
892
err = -EIDRM;
893
goto out_free;
894
}
895
}
896
897
for (i = 0; i < sma->sem_nsems; i++)
898
sem_io[i] = sma->sem_base[i].semval;
899
sem_unlock(sma);
900
err = 0;
901
if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
902
err = -EFAULT;
903
goto out_free;
904
}
905
case SETALL:
906
{
907
int i;
908
struct sem_undo *un;
909
910
sem_getref_and_unlock(sma);
911
912
if(nsems > SEMMSL_FAST) {
913
sem_io = ipc_alloc(sizeof(ushort)*nsems);
914
if(sem_io == NULL) {
915
sem_putref(sma);
916
return -ENOMEM;
917
}
918
}
919
920
if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) {
921
sem_putref(sma);
922
err = -EFAULT;
923
goto out_free;
924
}
925
926
for (i = 0; i < nsems; i++) {
927
if (sem_io[i] > SEMVMX) {
928
sem_putref(sma);
929
err = -ERANGE;
930
goto out_free;
931
}
932
}
933
sem_lock_and_putref(sma);
934
if (sma->sem_perm.deleted) {
935
sem_unlock(sma);
936
err = -EIDRM;
937
goto out_free;
938
}
939
940
for (i = 0; i < nsems; i++)
941
sma->sem_base[i].semval = sem_io[i];
942
943
assert_spin_locked(&sma->sem_perm.lock);
944
list_for_each_entry(un, &sma->list_id, list_id) {
945
for (i = 0; i < nsems; i++)
946
un->semadj[i] = 0;
947
}
948
sma->sem_ctime = get_seconds();
949
/* maybe some queued-up processes were waiting for this */
950
do_smart_update(sma, NULL, 0, 0, &tasks);
951
err = 0;
952
goto out_unlock;
953
}
954
/* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */
955
}
956
err = -EINVAL;
957
if(semnum < 0 || semnum >= nsems)
958
goto out_unlock;
959
960
curr = &sma->sem_base[semnum];
961
962
switch (cmd) {
963
case GETVAL:
964
err = curr->semval;
965
goto out_unlock;
966
case GETPID:
967
err = curr->sempid;
968
goto out_unlock;
969
case GETNCNT:
970
err = count_semncnt(sma,semnum);
971
goto out_unlock;
972
case GETZCNT:
973
err = count_semzcnt(sma,semnum);
974
goto out_unlock;
975
case SETVAL:
976
{
977
int val = arg.val;
978
struct sem_undo *un;
979
980
err = -ERANGE;
981
if (val > SEMVMX || val < 0)
982
goto out_unlock;
983
984
assert_spin_locked(&sma->sem_perm.lock);
985
list_for_each_entry(un, &sma->list_id, list_id)
986
un->semadj[semnum] = 0;
987
988
curr->semval = val;
989
curr->sempid = task_tgid_vnr(current);
990
sma->sem_ctime = get_seconds();
991
/* maybe some queued-up processes were waiting for this */
992
do_smart_update(sma, NULL, 0, 0, &tasks);
993
err = 0;
994
goto out_unlock;
995
}
996
}
997
out_unlock:
998
sem_unlock(sma);
999
wake_up_sem_queue_do(&tasks);
1000
1001
out_free:
1002
if(sem_io != fast_sem_io)
1003
ipc_free(sem_io, sizeof(ushort)*nsems);
1004
return err;
1005
}
1006
1007
static inline unsigned long
1008
copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1009
{
1010
switch(version) {
1011
case IPC_64:
1012
if (copy_from_user(out, buf, sizeof(*out)))
1013
return -EFAULT;
1014
return 0;
1015
case IPC_OLD:
1016
{
1017
struct semid_ds tbuf_old;
1018
1019
if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1020
return -EFAULT;
1021
1022
out->sem_perm.uid = tbuf_old.sem_perm.uid;
1023
out->sem_perm.gid = tbuf_old.sem_perm.gid;
1024
out->sem_perm.mode = tbuf_old.sem_perm.mode;
1025
1026
return 0;
1027
}
1028
default:
1029
return -EINVAL;
1030
}
1031
}
1032
1033
/*
1034
* This function handles some semctl commands which require the rw_mutex
1035
* to be held in write mode.
1036
* NOTE: no locks must be held, the rw_mutex is taken inside this function.
1037
*/
1038
static int semctl_down(struct ipc_namespace *ns, int semid,
1039
int cmd, int version, union semun arg)
1040
{
1041
struct sem_array *sma;
1042
int err;
1043
struct semid64_ds semid64;
1044
struct kern_ipc_perm *ipcp;
1045
1046
if(cmd == IPC_SET) {
1047
if (copy_semid_from_user(&semid64, arg.buf, version))
1048
return -EFAULT;
1049
}
1050
1051
ipcp = ipcctl_pre_down(ns, &sem_ids(ns), semid, cmd,
1052
&semid64.sem_perm, 0);
1053
if (IS_ERR(ipcp))
1054
return PTR_ERR(ipcp);
1055
1056
sma = container_of(ipcp, struct sem_array, sem_perm);
1057
1058
err = security_sem_semctl(sma, cmd);
1059
if (err)
1060
goto out_unlock;
1061
1062
switch(cmd){
1063
case IPC_RMID:
1064
freeary(ns, ipcp);
1065
goto out_up;
1066
case IPC_SET:
1067
ipc_update_perm(&semid64.sem_perm, ipcp);
1068
sma->sem_ctime = get_seconds();
1069
break;
1070
default:
1071
err = -EINVAL;
1072
}
1073
1074
out_unlock:
1075
sem_unlock(sma);
1076
out_up:
1077
up_write(&sem_ids(ns).rw_mutex);
1078
return err;
1079
}
1080
1081
SYSCALL_DEFINE(semctl)(int semid, int semnum, int cmd, union semun arg)
1082
{
1083
int err = -EINVAL;
1084
int version;
1085
struct ipc_namespace *ns;
1086
1087
if (semid < 0)
1088
return -EINVAL;
1089
1090
version = ipc_parse_version(&cmd);
1091
ns = current->nsproxy->ipc_ns;
1092
1093
switch(cmd) {
1094
case IPC_INFO:
1095
case SEM_INFO:
1096
case IPC_STAT:
1097
case SEM_STAT:
1098
err = semctl_nolock(ns, semid, cmd, version, arg);
1099
return err;
1100
case GETALL:
1101
case GETVAL:
1102
case GETPID:
1103
case GETNCNT:
1104
case GETZCNT:
1105
case SETVAL:
1106
case SETALL:
1107
err = semctl_main(ns,semid,semnum,cmd,version,arg);
1108
return err;
1109
case IPC_RMID:
1110
case IPC_SET:
1111
err = semctl_down(ns, semid, cmd, version, arg);
1112
return err;
1113
default:
1114
return -EINVAL;
1115
}
1116
}
1117
#ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1118
asmlinkage long SyS_semctl(int semid, int semnum, int cmd, union semun arg)
1119
{
1120
return SYSC_semctl((int) semid, (int) semnum, (int) cmd, arg);
1121
}
1122
SYSCALL_ALIAS(sys_semctl, SyS_semctl);
1123
#endif
1124
1125
/* If the task doesn't already have a undo_list, then allocate one
1126
* here. We guarantee there is only one thread using this undo list,
1127
* and current is THE ONE
1128
*
1129
* If this allocation and assignment succeeds, but later
1130
* portions of this code fail, there is no need to free the sem_undo_list.
1131
* Just let it stay associated with the task, and it'll be freed later
1132
* at exit time.
1133
*
1134
* This can block, so callers must hold no locks.
1135
*/
1136
static inline int get_undo_list(struct sem_undo_list **undo_listp)
1137
{
1138
struct sem_undo_list *undo_list;
1139
1140
undo_list = current->sysvsem.undo_list;
1141
if (!undo_list) {
1142
undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1143
if (undo_list == NULL)
1144
return -ENOMEM;
1145
spin_lock_init(&undo_list->lock);
1146
atomic_set(&undo_list->refcnt, 1);
1147
INIT_LIST_HEAD(&undo_list->list_proc);
1148
1149
current->sysvsem.undo_list = undo_list;
1150
}
1151
*undo_listp = undo_list;
1152
return 0;
1153
}
1154
1155
static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1156
{
1157
struct sem_undo *un;
1158
1159
list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1160
if (un->semid == semid)
1161
return un;
1162
}
1163
return NULL;
1164
}
1165
1166
static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1167
{
1168
struct sem_undo *un;
1169
1170
assert_spin_locked(&ulp->lock);
1171
1172
un = __lookup_undo(ulp, semid);
1173
if (un) {
1174
list_del_rcu(&un->list_proc);
1175
list_add_rcu(&un->list_proc, &ulp->list_proc);
1176
}
1177
return un;
1178
}
1179
1180
/**
1181
* find_alloc_undo - Lookup (and if not present create) undo array
1182
* @ns: namespace
1183
* @semid: semaphore array id
1184
*
1185
* The function looks up (and if not present creates) the undo structure.
1186
* The size of the undo structure depends on the size of the semaphore
1187
* array, thus the alloc path is not that straightforward.
1188
* Lifetime-rules: sem_undo is rcu-protected, on success, the function
1189
* performs a rcu_read_lock().
1190
*/
1191
static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1192
{
1193
struct sem_array *sma;
1194
struct sem_undo_list *ulp;
1195
struct sem_undo *un, *new;
1196
int nsems;
1197
int error;
1198
1199
error = get_undo_list(&ulp);
1200
if (error)
1201
return ERR_PTR(error);
1202
1203
rcu_read_lock();
1204
spin_lock(&ulp->lock);
1205
un = lookup_undo(ulp, semid);
1206
spin_unlock(&ulp->lock);
1207
if (likely(un!=NULL))
1208
goto out;
1209
rcu_read_unlock();
1210
1211
/* no undo structure around - allocate one. */
1212
/* step 1: figure out the size of the semaphore array */
1213
sma = sem_lock_check(ns, semid);
1214
if (IS_ERR(sma))
1215
return ERR_CAST(sma);
1216
1217
nsems = sma->sem_nsems;
1218
sem_getref_and_unlock(sma);
1219
1220
/* step 2: allocate new undo structure */
1221
new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1222
if (!new) {
1223
sem_putref(sma);
1224
return ERR_PTR(-ENOMEM);
1225
}
1226
1227
/* step 3: Acquire the lock on semaphore array */
1228
sem_lock_and_putref(sma);
1229
if (sma->sem_perm.deleted) {
1230
sem_unlock(sma);
1231
kfree(new);
1232
un = ERR_PTR(-EIDRM);
1233
goto out;
1234
}
1235
spin_lock(&ulp->lock);
1236
1237
/*
1238
* step 4: check for races: did someone else allocate the undo struct?
1239
*/
1240
un = lookup_undo(ulp, semid);
1241
if (un) {
1242
kfree(new);
1243
goto success;
1244
}
1245
/* step 5: initialize & link new undo structure */
1246
new->semadj = (short *) &new[1];
1247
new->ulp = ulp;
1248
new->semid = semid;
1249
assert_spin_locked(&ulp->lock);
1250
list_add_rcu(&new->list_proc, &ulp->list_proc);
1251
assert_spin_locked(&sma->sem_perm.lock);
1252
list_add(&new->list_id, &sma->list_id);
1253
un = new;
1254
1255
success:
1256
spin_unlock(&ulp->lock);
1257
rcu_read_lock();
1258
sem_unlock(sma);
1259
out:
1260
return un;
1261
}
1262
1263
1264
/**
1265
* get_queue_result - Retrieve the result code from sem_queue
1266
* @q: Pointer to queue structure
1267
*
1268
* Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1269
* q->status, then we must loop until the value is replaced with the final
1270
* value: This may happen if a task is woken up by an unrelated event (e.g.
1271
* signal) and in parallel the task is woken up by another task because it got
1272
* the requested semaphores.
1273
*
1274
* The function can be called with or without holding the semaphore spinlock.
1275
*/
1276
static int get_queue_result(struct sem_queue *q)
1277
{
1278
int error;
1279
1280
error = q->status;
1281
while (unlikely(error == IN_WAKEUP)) {
1282
cpu_relax();
1283
error = q->status;
1284
}
1285
1286
return error;
1287
}
1288
1289
1290
SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1291
unsigned, nsops, const struct timespec __user *, timeout)
1292
{
1293
int error = -EINVAL;
1294
struct sem_array *sma;
1295
struct sembuf fast_sops[SEMOPM_FAST];
1296
struct sembuf* sops = fast_sops, *sop;
1297
struct sem_undo *un;
1298
int undos = 0, alter = 0, max;
1299
struct sem_queue queue;
1300
unsigned long jiffies_left = 0;
1301
struct ipc_namespace *ns;
1302
struct list_head tasks;
1303
1304
ns = current->nsproxy->ipc_ns;
1305
1306
if (nsops < 1 || semid < 0)
1307
return -EINVAL;
1308
if (nsops > ns->sc_semopm)
1309
return -E2BIG;
1310
if(nsops > SEMOPM_FAST) {
1311
sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1312
if(sops==NULL)
1313
return -ENOMEM;
1314
}
1315
if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1316
error=-EFAULT;
1317
goto out_free;
1318
}
1319
if (timeout) {
1320
struct timespec _timeout;
1321
if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1322
error = -EFAULT;
1323
goto out_free;
1324
}
1325
if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1326
_timeout.tv_nsec >= 1000000000L) {
1327
error = -EINVAL;
1328
goto out_free;
1329
}
1330
jiffies_left = timespec_to_jiffies(&_timeout);
1331
}
1332
max = 0;
1333
for (sop = sops; sop < sops + nsops; sop++) {
1334
if (sop->sem_num >= max)
1335
max = sop->sem_num;
1336
if (sop->sem_flg & SEM_UNDO)
1337
undos = 1;
1338
if (sop->sem_op != 0)
1339
alter = 1;
1340
}
1341
1342
if (undos) {
1343
un = find_alloc_undo(ns, semid);
1344
if (IS_ERR(un)) {
1345
error = PTR_ERR(un);
1346
goto out_free;
1347
}
1348
} else
1349
un = NULL;
1350
1351
INIT_LIST_HEAD(&tasks);
1352
1353
sma = sem_lock_check(ns, semid);
1354
if (IS_ERR(sma)) {
1355
if (un)
1356
rcu_read_unlock();
1357
error = PTR_ERR(sma);
1358
goto out_free;
1359
}
1360
1361
/*
1362
* semid identifiers are not unique - find_alloc_undo may have
1363
* allocated an undo structure, it was invalidated by an RMID
1364
* and now a new array with received the same id. Check and fail.
1365
* This case can be detected checking un->semid. The existence of
1366
* "un" itself is guaranteed by rcu.
1367
*/
1368
error = -EIDRM;
1369
if (un) {
1370
if (un->semid == -1) {
1371
rcu_read_unlock();
1372
goto out_unlock_free;
1373
} else {
1374
/*
1375
* rcu lock can be released, "un" cannot disappear:
1376
* - sem_lock is acquired, thus IPC_RMID is
1377
* impossible.
1378
* - exit_sem is impossible, it always operates on
1379
* current (or a dead task).
1380
*/
1381
1382
rcu_read_unlock();
1383
}
1384
}
1385
1386
error = -EFBIG;
1387
if (max >= sma->sem_nsems)
1388
goto out_unlock_free;
1389
1390
error = -EACCES;
1391
if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1392
goto out_unlock_free;
1393
1394
error = security_sem_semop(sma, sops, nsops, alter);
1395
if (error)
1396
goto out_unlock_free;
1397
1398
error = try_atomic_semop (sma, sops, nsops, un, task_tgid_vnr(current));
1399
if (error <= 0) {
1400
if (alter && error == 0)
1401
do_smart_update(sma, sops, nsops, 1, &tasks);
1402
1403
goto out_unlock_free;
1404
}
1405
1406
/* We need to sleep on this operation, so we put the current
1407
* task into the pending queue and go to sleep.
1408
*/
1409
1410
queue.sops = sops;
1411
queue.nsops = nsops;
1412
queue.undo = un;
1413
queue.pid = task_tgid_vnr(current);
1414
queue.alter = alter;
1415
if (alter)
1416
list_add_tail(&queue.list, &sma->sem_pending);
1417
else
1418
list_add(&queue.list, &sma->sem_pending);
1419
1420
if (nsops == 1) {
1421
struct sem *curr;
1422
curr = &sma->sem_base[sops->sem_num];
1423
1424
if (alter)
1425
list_add_tail(&queue.simple_list, &curr->sem_pending);
1426
else
1427
list_add(&queue.simple_list, &curr->sem_pending);
1428
} else {
1429
INIT_LIST_HEAD(&queue.simple_list);
1430
sma->complex_count++;
1431
}
1432
1433
queue.status = -EINTR;
1434
queue.sleeper = current;
1435
current->state = TASK_INTERRUPTIBLE;
1436
sem_unlock(sma);
1437
1438
if (timeout)
1439
jiffies_left = schedule_timeout(jiffies_left);
1440
else
1441
schedule();
1442
1443
error = get_queue_result(&queue);
1444
1445
if (error != -EINTR) {
1446
/* fast path: update_queue already obtained all requested
1447
* resources.
1448
* Perform a smp_mb(): User space could assume that semop()
1449
* is a memory barrier: Without the mb(), the cpu could
1450
* speculatively read in user space stale data that was
1451
* overwritten by the previous owner of the semaphore.
1452
*/
1453
smp_mb();
1454
1455
goto out_free;
1456
}
1457
1458
sma = sem_lock(ns, semid);
1459
if (IS_ERR(sma)) {
1460
error = -EIDRM;
1461
goto out_free;
1462
}
1463
1464
error = get_queue_result(&queue);
1465
1466
/*
1467
* If queue.status != -EINTR we are woken up by another process
1468
*/
1469
1470
if (error != -EINTR) {
1471
goto out_unlock_free;
1472
}
1473
1474
/*
1475
* If an interrupt occurred we have to clean up the queue
1476
*/
1477
if (timeout && jiffies_left == 0)
1478
error = -EAGAIN;
1479
unlink_queue(sma, &queue);
1480
1481
out_unlock_free:
1482
sem_unlock(sma);
1483
1484
wake_up_sem_queue_do(&tasks);
1485
out_free:
1486
if(sops != fast_sops)
1487
kfree(sops);
1488
return error;
1489
}
1490
1491
SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
1492
unsigned, nsops)
1493
{
1494
return sys_semtimedop(semid, tsops, nsops, NULL);
1495
}
1496
1497
/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1498
* parent and child tasks.
1499
*/
1500
1501
int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1502
{
1503
struct sem_undo_list *undo_list;
1504
int error;
1505
1506
if (clone_flags & CLONE_SYSVSEM) {
1507
error = get_undo_list(&undo_list);
1508
if (error)
1509
return error;
1510
atomic_inc(&undo_list->refcnt);
1511
tsk->sysvsem.undo_list = undo_list;
1512
} else
1513
tsk->sysvsem.undo_list = NULL;
1514
1515
return 0;
1516
}
1517
1518
/*
1519
* add semadj values to semaphores, free undo structures.
1520
* undo structures are not freed when semaphore arrays are destroyed
1521
* so some of them may be out of date.
1522
* IMPLEMENTATION NOTE: There is some confusion over whether the
1523
* set of adjustments that needs to be done should be done in an atomic
1524
* manner or not. That is, if we are attempting to decrement the semval
1525
* should we queue up and wait until we can do so legally?
1526
* The original implementation attempted to do this (queue and wait).
1527
* The current implementation does not do so. The POSIX standard
1528
* and SVID should be consulted to determine what behavior is mandated.
1529
*/
1530
void exit_sem(struct task_struct *tsk)
1531
{
1532
struct sem_undo_list *ulp;
1533
1534
ulp = tsk->sysvsem.undo_list;
1535
if (!ulp)
1536
return;
1537
tsk->sysvsem.undo_list = NULL;
1538
1539
if (!atomic_dec_and_test(&ulp->refcnt))
1540
return;
1541
1542
for (;;) {
1543
struct sem_array *sma;
1544
struct sem_undo *un;
1545
struct list_head tasks;
1546
int semid;
1547
int i;
1548
1549
rcu_read_lock();
1550
un = list_entry_rcu(ulp->list_proc.next,
1551
struct sem_undo, list_proc);
1552
if (&un->list_proc == &ulp->list_proc)
1553
semid = -1;
1554
else
1555
semid = un->semid;
1556
rcu_read_unlock();
1557
1558
if (semid == -1)
1559
break;
1560
1561
sma = sem_lock_check(tsk->nsproxy->ipc_ns, un->semid);
1562
1563
/* exit_sem raced with IPC_RMID, nothing to do */
1564
if (IS_ERR(sma))
1565
continue;
1566
1567
un = __lookup_undo(ulp, semid);
1568
if (un == NULL) {
1569
/* exit_sem raced with IPC_RMID+semget() that created
1570
* exactly the same semid. Nothing to do.
1571
*/
1572
sem_unlock(sma);
1573
continue;
1574
}
1575
1576
/* remove un from the linked lists */
1577
assert_spin_locked(&sma->sem_perm.lock);
1578
list_del(&un->list_id);
1579
1580
spin_lock(&ulp->lock);
1581
list_del_rcu(&un->list_proc);
1582
spin_unlock(&ulp->lock);
1583
1584
/* perform adjustments registered in un */
1585
for (i = 0; i < sma->sem_nsems; i++) {
1586
struct sem * semaphore = &sma->sem_base[i];
1587
if (un->semadj[i]) {
1588
semaphore->semval += un->semadj[i];
1589
/*
1590
* Range checks of the new semaphore value,
1591
* not defined by sus:
1592
* - Some unices ignore the undo entirely
1593
* (e.g. HP UX 11i 11.22, Tru64 V5.1)
1594
* - some cap the value (e.g. FreeBSD caps
1595
* at 0, but doesn't enforce SEMVMX)
1596
*
1597
* Linux caps the semaphore value, both at 0
1598
* and at SEMVMX.
1599
*
1600
* Manfred <[email protected]>
1601
*/
1602
if (semaphore->semval < 0)
1603
semaphore->semval = 0;
1604
if (semaphore->semval > SEMVMX)
1605
semaphore->semval = SEMVMX;
1606
semaphore->sempid = task_tgid_vnr(current);
1607
}
1608
}
1609
/* maybe some queued-up processes were waiting for this */
1610
INIT_LIST_HEAD(&tasks);
1611
do_smart_update(sma, NULL, 0, 1, &tasks);
1612
sem_unlock(sma);
1613
wake_up_sem_queue_do(&tasks);
1614
1615
call_rcu(&un->rcu, free_un);
1616
}
1617
kfree(ulp);
1618
}
1619
1620
#ifdef CONFIG_PROC_FS
1621
static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1622
{
1623
struct sem_array *sma = it;
1624
1625
return seq_printf(s,
1626
"%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
1627
sma->sem_perm.key,
1628
sma->sem_perm.id,
1629
sma->sem_perm.mode,
1630
sma->sem_nsems,
1631
sma->sem_perm.uid,
1632
sma->sem_perm.gid,
1633
sma->sem_perm.cuid,
1634
sma->sem_perm.cgid,
1635
sma->sem_otime,
1636
sma->sem_ctime);
1637
}
1638
#endif
1639
1640