Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/kernel/auditsc.c
10818 views
1
/* auditsc.c -- System-call auditing support
2
* Handles all system-call specific auditing features.
3
*
4
* Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5
* Copyright 2005 Hewlett-Packard Development Company, L.P.
6
* Copyright (C) 2005, 2006 IBM Corporation
7
* All Rights Reserved.
8
*
9
* This program is free software; you can redistribute it and/or modify
10
* it under the terms of the GNU General Public License as published by
11
* the Free Software Foundation; either version 2 of the License, or
12
* (at your option) any later version.
13
*
14
* This program is distributed in the hope that it will be useful,
15
* but WITHOUT ANY WARRANTY; without even the implied warranty of
16
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17
* GNU General Public License for more details.
18
*
19
* You should have received a copy of the GNU General Public License
20
* along with this program; if not, write to the Free Software
21
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22
*
23
* Written by Rickard E. (Rik) Faith <[email protected]>
24
*
25
* Many of the ideas implemented here are from Stephen C. Tweedie,
26
* especially the idea of avoiding a copy by using getname.
27
*
28
* The method for actual interception of syscall entry and exit (not in
29
* this file -- see entry.S) is based on a GPL'd patch written by
30
* [email protected] and Copyright 2003 SuSE Linux AG.
31
*
32
* POSIX message queue support added by George Wilson <[email protected]>,
33
* 2006.
34
*
35
* The support of additional filter rules compares (>, <, >=, <=) was
36
* added by Dustin Kirkland <[email protected]>, 2005.
37
*
38
* Modified by Amy Griffis <[email protected]> to collect additional
39
* filesystem information.
40
*
41
* Subject and object context labeling support added by <[email protected]>
42
* and <[email protected]> for LSPP certification compliance.
43
*/
44
45
#include <linux/init.h>
46
#include <asm/types.h>
47
#include <asm/atomic.h>
48
#include <linux/fs.h>
49
#include <linux/namei.h>
50
#include <linux/mm.h>
51
#include <linux/module.h>
52
#include <linux/slab.h>
53
#include <linux/mount.h>
54
#include <linux/socket.h>
55
#include <linux/mqueue.h>
56
#include <linux/audit.h>
57
#include <linux/personality.h>
58
#include <linux/time.h>
59
#include <linux/netlink.h>
60
#include <linux/compiler.h>
61
#include <asm/unistd.h>
62
#include <linux/security.h>
63
#include <linux/list.h>
64
#include <linux/tty.h>
65
#include <linux/binfmts.h>
66
#include <linux/highmem.h>
67
#include <linux/syscalls.h>
68
#include <linux/capability.h>
69
#include <linux/fs_struct.h>
70
71
#include "audit.h"
72
73
/* AUDIT_NAMES is the number of slots we reserve in the audit_context
74
* for saving names from getname(). */
75
#define AUDIT_NAMES 20
76
77
/* Indicates that audit should log the full pathname. */
78
#define AUDIT_NAME_FULL -1
79
80
/* no execve audit message should be longer than this (userspace limits) */
81
#define MAX_EXECVE_AUDIT_LEN 7500
82
83
/* number of audit rules */
84
int audit_n_rules;
85
86
/* determines whether we collect data for signals sent */
87
int audit_signals;
88
89
struct audit_cap_data {
90
kernel_cap_t permitted;
91
kernel_cap_t inheritable;
92
union {
93
unsigned int fE; /* effective bit of a file capability */
94
kernel_cap_t effective; /* effective set of a process */
95
};
96
};
97
98
/* When fs/namei.c:getname() is called, we store the pointer in name and
99
* we don't let putname() free it (instead we free all of the saved
100
* pointers at syscall exit time).
101
*
102
* Further, in fs/namei.c:path_lookup() we store the inode and device. */
103
struct audit_names {
104
const char *name;
105
int name_len; /* number of name's characters to log */
106
unsigned name_put; /* call __putname() for this name */
107
unsigned long ino;
108
dev_t dev;
109
umode_t mode;
110
uid_t uid;
111
gid_t gid;
112
dev_t rdev;
113
u32 osid;
114
struct audit_cap_data fcap;
115
unsigned int fcap_ver;
116
};
117
118
struct audit_aux_data {
119
struct audit_aux_data *next;
120
int type;
121
};
122
123
#define AUDIT_AUX_IPCPERM 0
124
125
/* Number of target pids per aux struct. */
126
#define AUDIT_AUX_PIDS 16
127
128
struct audit_aux_data_execve {
129
struct audit_aux_data d;
130
int argc;
131
int envc;
132
struct mm_struct *mm;
133
};
134
135
struct audit_aux_data_pids {
136
struct audit_aux_data d;
137
pid_t target_pid[AUDIT_AUX_PIDS];
138
uid_t target_auid[AUDIT_AUX_PIDS];
139
uid_t target_uid[AUDIT_AUX_PIDS];
140
unsigned int target_sessionid[AUDIT_AUX_PIDS];
141
u32 target_sid[AUDIT_AUX_PIDS];
142
char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
143
int pid_count;
144
};
145
146
struct audit_aux_data_bprm_fcaps {
147
struct audit_aux_data d;
148
struct audit_cap_data fcap;
149
unsigned int fcap_ver;
150
struct audit_cap_data old_pcap;
151
struct audit_cap_data new_pcap;
152
};
153
154
struct audit_aux_data_capset {
155
struct audit_aux_data d;
156
pid_t pid;
157
struct audit_cap_data cap;
158
};
159
160
struct audit_tree_refs {
161
struct audit_tree_refs *next;
162
struct audit_chunk *c[31];
163
};
164
165
/* The per-task audit context. */
166
struct audit_context {
167
int dummy; /* must be the first element */
168
int in_syscall; /* 1 if task is in a syscall */
169
enum audit_state state, current_state;
170
unsigned int serial; /* serial number for record */
171
int major; /* syscall number */
172
struct timespec ctime; /* time of syscall entry */
173
unsigned long argv[4]; /* syscall arguments */
174
long return_code;/* syscall return code */
175
u64 prio;
176
int return_valid; /* return code is valid */
177
int name_count;
178
struct audit_names names[AUDIT_NAMES];
179
char * filterkey; /* key for rule that triggered record */
180
struct path pwd;
181
struct audit_context *previous; /* For nested syscalls */
182
struct audit_aux_data *aux;
183
struct audit_aux_data *aux_pids;
184
struct sockaddr_storage *sockaddr;
185
size_t sockaddr_len;
186
/* Save things to print about task_struct */
187
pid_t pid, ppid;
188
uid_t uid, euid, suid, fsuid;
189
gid_t gid, egid, sgid, fsgid;
190
unsigned long personality;
191
int arch;
192
193
pid_t target_pid;
194
uid_t target_auid;
195
uid_t target_uid;
196
unsigned int target_sessionid;
197
u32 target_sid;
198
char target_comm[TASK_COMM_LEN];
199
200
struct audit_tree_refs *trees, *first_trees;
201
struct list_head killed_trees;
202
int tree_count;
203
204
int type;
205
union {
206
struct {
207
int nargs;
208
long args[6];
209
} socketcall;
210
struct {
211
uid_t uid;
212
gid_t gid;
213
mode_t mode;
214
u32 osid;
215
int has_perm;
216
uid_t perm_uid;
217
gid_t perm_gid;
218
mode_t perm_mode;
219
unsigned long qbytes;
220
} ipc;
221
struct {
222
mqd_t mqdes;
223
struct mq_attr mqstat;
224
} mq_getsetattr;
225
struct {
226
mqd_t mqdes;
227
int sigev_signo;
228
} mq_notify;
229
struct {
230
mqd_t mqdes;
231
size_t msg_len;
232
unsigned int msg_prio;
233
struct timespec abs_timeout;
234
} mq_sendrecv;
235
struct {
236
int oflag;
237
mode_t mode;
238
struct mq_attr attr;
239
} mq_open;
240
struct {
241
pid_t pid;
242
struct audit_cap_data cap;
243
} capset;
244
struct {
245
int fd;
246
int flags;
247
} mmap;
248
};
249
int fds[2];
250
251
#if AUDIT_DEBUG
252
int put_count;
253
int ino_count;
254
#endif
255
};
256
257
static inline int open_arg(int flags, int mask)
258
{
259
int n = ACC_MODE(flags);
260
if (flags & (O_TRUNC | O_CREAT))
261
n |= AUDIT_PERM_WRITE;
262
return n & mask;
263
}
264
265
static int audit_match_perm(struct audit_context *ctx, int mask)
266
{
267
unsigned n;
268
if (unlikely(!ctx))
269
return 0;
270
n = ctx->major;
271
272
switch (audit_classify_syscall(ctx->arch, n)) {
273
case 0: /* native */
274
if ((mask & AUDIT_PERM_WRITE) &&
275
audit_match_class(AUDIT_CLASS_WRITE, n))
276
return 1;
277
if ((mask & AUDIT_PERM_READ) &&
278
audit_match_class(AUDIT_CLASS_READ, n))
279
return 1;
280
if ((mask & AUDIT_PERM_ATTR) &&
281
audit_match_class(AUDIT_CLASS_CHATTR, n))
282
return 1;
283
return 0;
284
case 1: /* 32bit on biarch */
285
if ((mask & AUDIT_PERM_WRITE) &&
286
audit_match_class(AUDIT_CLASS_WRITE_32, n))
287
return 1;
288
if ((mask & AUDIT_PERM_READ) &&
289
audit_match_class(AUDIT_CLASS_READ_32, n))
290
return 1;
291
if ((mask & AUDIT_PERM_ATTR) &&
292
audit_match_class(AUDIT_CLASS_CHATTR_32, n))
293
return 1;
294
return 0;
295
case 2: /* open */
296
return mask & ACC_MODE(ctx->argv[1]);
297
case 3: /* openat */
298
return mask & ACC_MODE(ctx->argv[2]);
299
case 4: /* socketcall */
300
return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
301
case 5: /* execve */
302
return mask & AUDIT_PERM_EXEC;
303
default:
304
return 0;
305
}
306
}
307
308
static int audit_match_filetype(struct audit_context *ctx, int which)
309
{
310
unsigned index = which & ~S_IFMT;
311
mode_t mode = which & S_IFMT;
312
313
if (unlikely(!ctx))
314
return 0;
315
316
if (index >= ctx->name_count)
317
return 0;
318
if (ctx->names[index].ino == -1)
319
return 0;
320
if ((ctx->names[index].mode ^ mode) & S_IFMT)
321
return 0;
322
return 1;
323
}
324
325
/*
326
* We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
327
* ->first_trees points to its beginning, ->trees - to the current end of data.
328
* ->tree_count is the number of free entries in array pointed to by ->trees.
329
* Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
330
* "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
331
* it's going to remain 1-element for almost any setup) until we free context itself.
332
* References in it _are_ dropped - at the same time we free/drop aux stuff.
333
*/
334
335
#ifdef CONFIG_AUDIT_TREE
336
static void audit_set_auditable(struct audit_context *ctx)
337
{
338
if (!ctx->prio) {
339
ctx->prio = 1;
340
ctx->current_state = AUDIT_RECORD_CONTEXT;
341
}
342
}
343
344
static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
345
{
346
struct audit_tree_refs *p = ctx->trees;
347
int left = ctx->tree_count;
348
if (likely(left)) {
349
p->c[--left] = chunk;
350
ctx->tree_count = left;
351
return 1;
352
}
353
if (!p)
354
return 0;
355
p = p->next;
356
if (p) {
357
p->c[30] = chunk;
358
ctx->trees = p;
359
ctx->tree_count = 30;
360
return 1;
361
}
362
return 0;
363
}
364
365
static int grow_tree_refs(struct audit_context *ctx)
366
{
367
struct audit_tree_refs *p = ctx->trees;
368
ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
369
if (!ctx->trees) {
370
ctx->trees = p;
371
return 0;
372
}
373
if (p)
374
p->next = ctx->trees;
375
else
376
ctx->first_trees = ctx->trees;
377
ctx->tree_count = 31;
378
return 1;
379
}
380
#endif
381
382
static void unroll_tree_refs(struct audit_context *ctx,
383
struct audit_tree_refs *p, int count)
384
{
385
#ifdef CONFIG_AUDIT_TREE
386
struct audit_tree_refs *q;
387
int n;
388
if (!p) {
389
/* we started with empty chain */
390
p = ctx->first_trees;
391
count = 31;
392
/* if the very first allocation has failed, nothing to do */
393
if (!p)
394
return;
395
}
396
n = count;
397
for (q = p; q != ctx->trees; q = q->next, n = 31) {
398
while (n--) {
399
audit_put_chunk(q->c[n]);
400
q->c[n] = NULL;
401
}
402
}
403
while (n-- > ctx->tree_count) {
404
audit_put_chunk(q->c[n]);
405
q->c[n] = NULL;
406
}
407
ctx->trees = p;
408
ctx->tree_count = count;
409
#endif
410
}
411
412
static void free_tree_refs(struct audit_context *ctx)
413
{
414
struct audit_tree_refs *p, *q;
415
for (p = ctx->first_trees; p; p = q) {
416
q = p->next;
417
kfree(p);
418
}
419
}
420
421
static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
422
{
423
#ifdef CONFIG_AUDIT_TREE
424
struct audit_tree_refs *p;
425
int n;
426
if (!tree)
427
return 0;
428
/* full ones */
429
for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
430
for (n = 0; n < 31; n++)
431
if (audit_tree_match(p->c[n], tree))
432
return 1;
433
}
434
/* partial */
435
if (p) {
436
for (n = ctx->tree_count; n < 31; n++)
437
if (audit_tree_match(p->c[n], tree))
438
return 1;
439
}
440
#endif
441
return 0;
442
}
443
444
/* Determine if any context name data matches a rule's watch data */
445
/* Compare a task_struct with an audit_rule. Return 1 on match, 0
446
* otherwise.
447
*
448
* If task_creation is true, this is an explicit indication that we are
449
* filtering a task rule at task creation time. This and tsk == current are
450
* the only situations where tsk->cred may be accessed without an rcu read lock.
451
*/
452
static int audit_filter_rules(struct task_struct *tsk,
453
struct audit_krule *rule,
454
struct audit_context *ctx,
455
struct audit_names *name,
456
enum audit_state *state,
457
bool task_creation)
458
{
459
const struct cred *cred;
460
int i, j, need_sid = 1;
461
u32 sid;
462
463
cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
464
465
for (i = 0; i < rule->field_count; i++) {
466
struct audit_field *f = &rule->fields[i];
467
int result = 0;
468
469
switch (f->type) {
470
case AUDIT_PID:
471
result = audit_comparator(tsk->pid, f->op, f->val);
472
break;
473
case AUDIT_PPID:
474
if (ctx) {
475
if (!ctx->ppid)
476
ctx->ppid = sys_getppid();
477
result = audit_comparator(ctx->ppid, f->op, f->val);
478
}
479
break;
480
case AUDIT_UID:
481
result = audit_comparator(cred->uid, f->op, f->val);
482
break;
483
case AUDIT_EUID:
484
result = audit_comparator(cred->euid, f->op, f->val);
485
break;
486
case AUDIT_SUID:
487
result = audit_comparator(cred->suid, f->op, f->val);
488
break;
489
case AUDIT_FSUID:
490
result = audit_comparator(cred->fsuid, f->op, f->val);
491
break;
492
case AUDIT_GID:
493
result = audit_comparator(cred->gid, f->op, f->val);
494
break;
495
case AUDIT_EGID:
496
result = audit_comparator(cred->egid, f->op, f->val);
497
break;
498
case AUDIT_SGID:
499
result = audit_comparator(cred->sgid, f->op, f->val);
500
break;
501
case AUDIT_FSGID:
502
result = audit_comparator(cred->fsgid, f->op, f->val);
503
break;
504
case AUDIT_PERS:
505
result = audit_comparator(tsk->personality, f->op, f->val);
506
break;
507
case AUDIT_ARCH:
508
if (ctx)
509
result = audit_comparator(ctx->arch, f->op, f->val);
510
break;
511
512
case AUDIT_EXIT:
513
if (ctx && ctx->return_valid)
514
result = audit_comparator(ctx->return_code, f->op, f->val);
515
break;
516
case AUDIT_SUCCESS:
517
if (ctx && ctx->return_valid) {
518
if (f->val)
519
result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
520
else
521
result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
522
}
523
break;
524
case AUDIT_DEVMAJOR:
525
if (name)
526
result = audit_comparator(MAJOR(name->dev),
527
f->op, f->val);
528
else if (ctx) {
529
for (j = 0; j < ctx->name_count; j++) {
530
if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
531
++result;
532
break;
533
}
534
}
535
}
536
break;
537
case AUDIT_DEVMINOR:
538
if (name)
539
result = audit_comparator(MINOR(name->dev),
540
f->op, f->val);
541
else if (ctx) {
542
for (j = 0; j < ctx->name_count; j++) {
543
if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
544
++result;
545
break;
546
}
547
}
548
}
549
break;
550
case AUDIT_INODE:
551
if (name)
552
result = (name->ino == f->val);
553
else if (ctx) {
554
for (j = 0; j < ctx->name_count; j++) {
555
if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
556
++result;
557
break;
558
}
559
}
560
}
561
break;
562
case AUDIT_WATCH:
563
if (name)
564
result = audit_watch_compare(rule->watch, name->ino, name->dev);
565
break;
566
case AUDIT_DIR:
567
if (ctx)
568
result = match_tree_refs(ctx, rule->tree);
569
break;
570
case AUDIT_LOGINUID:
571
result = 0;
572
if (ctx)
573
result = audit_comparator(tsk->loginuid, f->op, f->val);
574
break;
575
case AUDIT_SUBJ_USER:
576
case AUDIT_SUBJ_ROLE:
577
case AUDIT_SUBJ_TYPE:
578
case AUDIT_SUBJ_SEN:
579
case AUDIT_SUBJ_CLR:
580
/* NOTE: this may return negative values indicating
581
a temporary error. We simply treat this as a
582
match for now to avoid losing information that
583
may be wanted. An error message will also be
584
logged upon error */
585
if (f->lsm_rule) {
586
if (need_sid) {
587
security_task_getsecid(tsk, &sid);
588
need_sid = 0;
589
}
590
result = security_audit_rule_match(sid, f->type,
591
f->op,
592
f->lsm_rule,
593
ctx);
594
}
595
break;
596
case AUDIT_OBJ_USER:
597
case AUDIT_OBJ_ROLE:
598
case AUDIT_OBJ_TYPE:
599
case AUDIT_OBJ_LEV_LOW:
600
case AUDIT_OBJ_LEV_HIGH:
601
/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
602
also applies here */
603
if (f->lsm_rule) {
604
/* Find files that match */
605
if (name) {
606
result = security_audit_rule_match(
607
name->osid, f->type, f->op,
608
f->lsm_rule, ctx);
609
} else if (ctx) {
610
for (j = 0; j < ctx->name_count; j++) {
611
if (security_audit_rule_match(
612
ctx->names[j].osid,
613
f->type, f->op,
614
f->lsm_rule, ctx)) {
615
++result;
616
break;
617
}
618
}
619
}
620
/* Find ipc objects that match */
621
if (!ctx || ctx->type != AUDIT_IPC)
622
break;
623
if (security_audit_rule_match(ctx->ipc.osid,
624
f->type, f->op,
625
f->lsm_rule, ctx))
626
++result;
627
}
628
break;
629
case AUDIT_ARG0:
630
case AUDIT_ARG1:
631
case AUDIT_ARG2:
632
case AUDIT_ARG3:
633
if (ctx)
634
result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
635
break;
636
case AUDIT_FILTERKEY:
637
/* ignore this field for filtering */
638
result = 1;
639
break;
640
case AUDIT_PERM:
641
result = audit_match_perm(ctx, f->val);
642
break;
643
case AUDIT_FILETYPE:
644
result = audit_match_filetype(ctx, f->val);
645
break;
646
}
647
648
if (!result)
649
return 0;
650
}
651
652
if (ctx) {
653
if (rule->prio <= ctx->prio)
654
return 0;
655
if (rule->filterkey) {
656
kfree(ctx->filterkey);
657
ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
658
}
659
ctx->prio = rule->prio;
660
}
661
switch (rule->action) {
662
case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
663
case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
664
}
665
return 1;
666
}
667
668
/* At process creation time, we can determine if system-call auditing is
669
* completely disabled for this task. Since we only have the task
670
* structure at this point, we can only check uid and gid.
671
*/
672
static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
673
{
674
struct audit_entry *e;
675
enum audit_state state;
676
677
rcu_read_lock();
678
list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
679
if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
680
&state, true)) {
681
if (state == AUDIT_RECORD_CONTEXT)
682
*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
683
rcu_read_unlock();
684
return state;
685
}
686
}
687
rcu_read_unlock();
688
return AUDIT_BUILD_CONTEXT;
689
}
690
691
/* At syscall entry and exit time, this filter is called if the
692
* audit_state is not low enough that auditing cannot take place, but is
693
* also not high enough that we already know we have to write an audit
694
* record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
695
*/
696
static enum audit_state audit_filter_syscall(struct task_struct *tsk,
697
struct audit_context *ctx,
698
struct list_head *list)
699
{
700
struct audit_entry *e;
701
enum audit_state state;
702
703
if (audit_pid && tsk->tgid == audit_pid)
704
return AUDIT_DISABLED;
705
706
rcu_read_lock();
707
if (!list_empty(list)) {
708
int word = AUDIT_WORD(ctx->major);
709
int bit = AUDIT_BIT(ctx->major);
710
711
list_for_each_entry_rcu(e, list, list) {
712
if ((e->rule.mask[word] & bit) == bit &&
713
audit_filter_rules(tsk, &e->rule, ctx, NULL,
714
&state, false)) {
715
rcu_read_unlock();
716
ctx->current_state = state;
717
return state;
718
}
719
}
720
}
721
rcu_read_unlock();
722
return AUDIT_BUILD_CONTEXT;
723
}
724
725
/* At syscall exit time, this filter is called if any audit_names[] have been
726
* collected during syscall processing. We only check rules in sublists at hash
727
* buckets applicable to the inode numbers in audit_names[].
728
* Regarding audit_state, same rules apply as for audit_filter_syscall().
729
*/
730
void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
731
{
732
int i;
733
struct audit_entry *e;
734
enum audit_state state;
735
736
if (audit_pid && tsk->tgid == audit_pid)
737
return;
738
739
rcu_read_lock();
740
for (i = 0; i < ctx->name_count; i++) {
741
int word = AUDIT_WORD(ctx->major);
742
int bit = AUDIT_BIT(ctx->major);
743
struct audit_names *n = &ctx->names[i];
744
int h = audit_hash_ino((u32)n->ino);
745
struct list_head *list = &audit_inode_hash[h];
746
747
if (list_empty(list))
748
continue;
749
750
list_for_each_entry_rcu(e, list, list) {
751
if ((e->rule.mask[word] & bit) == bit &&
752
audit_filter_rules(tsk, &e->rule, ctx, n,
753
&state, false)) {
754
rcu_read_unlock();
755
ctx->current_state = state;
756
return;
757
}
758
}
759
}
760
rcu_read_unlock();
761
}
762
763
static inline struct audit_context *audit_get_context(struct task_struct *tsk,
764
int return_valid,
765
long return_code)
766
{
767
struct audit_context *context = tsk->audit_context;
768
769
if (likely(!context))
770
return NULL;
771
context->return_valid = return_valid;
772
773
/*
774
* we need to fix up the return code in the audit logs if the actual
775
* return codes are later going to be fixed up by the arch specific
776
* signal handlers
777
*
778
* This is actually a test for:
779
* (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
780
* (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
781
*
782
* but is faster than a bunch of ||
783
*/
784
if (unlikely(return_code <= -ERESTARTSYS) &&
785
(return_code >= -ERESTART_RESTARTBLOCK) &&
786
(return_code != -ENOIOCTLCMD))
787
context->return_code = -EINTR;
788
else
789
context->return_code = return_code;
790
791
if (context->in_syscall && !context->dummy) {
792
audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
793
audit_filter_inodes(tsk, context);
794
}
795
796
tsk->audit_context = NULL;
797
return context;
798
}
799
800
static inline void audit_free_names(struct audit_context *context)
801
{
802
int i;
803
804
#if AUDIT_DEBUG == 2
805
if (context->put_count + context->ino_count != context->name_count) {
806
printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
807
" name_count=%d put_count=%d"
808
" ino_count=%d [NOT freeing]\n",
809
__FILE__, __LINE__,
810
context->serial, context->major, context->in_syscall,
811
context->name_count, context->put_count,
812
context->ino_count);
813
for (i = 0; i < context->name_count; i++) {
814
printk(KERN_ERR "names[%d] = %p = %s\n", i,
815
context->names[i].name,
816
context->names[i].name ?: "(null)");
817
}
818
dump_stack();
819
return;
820
}
821
#endif
822
#if AUDIT_DEBUG
823
context->put_count = 0;
824
context->ino_count = 0;
825
#endif
826
827
for (i = 0; i < context->name_count; i++) {
828
if (context->names[i].name && context->names[i].name_put)
829
__putname(context->names[i].name);
830
}
831
context->name_count = 0;
832
path_put(&context->pwd);
833
context->pwd.dentry = NULL;
834
context->pwd.mnt = NULL;
835
}
836
837
static inline void audit_free_aux(struct audit_context *context)
838
{
839
struct audit_aux_data *aux;
840
841
while ((aux = context->aux)) {
842
context->aux = aux->next;
843
kfree(aux);
844
}
845
while ((aux = context->aux_pids)) {
846
context->aux_pids = aux->next;
847
kfree(aux);
848
}
849
}
850
851
static inline void audit_zero_context(struct audit_context *context,
852
enum audit_state state)
853
{
854
memset(context, 0, sizeof(*context));
855
context->state = state;
856
context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
857
}
858
859
static inline struct audit_context *audit_alloc_context(enum audit_state state)
860
{
861
struct audit_context *context;
862
863
if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
864
return NULL;
865
audit_zero_context(context, state);
866
INIT_LIST_HEAD(&context->killed_trees);
867
return context;
868
}
869
870
/**
871
* audit_alloc - allocate an audit context block for a task
872
* @tsk: task
873
*
874
* Filter on the task information and allocate a per-task audit context
875
* if necessary. Doing so turns on system call auditing for the
876
* specified task. This is called from copy_process, so no lock is
877
* needed.
878
*/
879
int audit_alloc(struct task_struct *tsk)
880
{
881
struct audit_context *context;
882
enum audit_state state;
883
char *key = NULL;
884
885
if (likely(!audit_ever_enabled))
886
return 0; /* Return if not auditing. */
887
888
state = audit_filter_task(tsk, &key);
889
if (likely(state == AUDIT_DISABLED))
890
return 0;
891
892
if (!(context = audit_alloc_context(state))) {
893
kfree(key);
894
audit_log_lost("out of memory in audit_alloc");
895
return -ENOMEM;
896
}
897
context->filterkey = key;
898
899
tsk->audit_context = context;
900
set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
901
return 0;
902
}
903
904
static inline void audit_free_context(struct audit_context *context)
905
{
906
struct audit_context *previous;
907
int count = 0;
908
909
do {
910
previous = context->previous;
911
if (previous || (count && count < 10)) {
912
++count;
913
printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
914
" freeing multiple contexts (%d)\n",
915
context->serial, context->major,
916
context->name_count, count);
917
}
918
audit_free_names(context);
919
unroll_tree_refs(context, NULL, 0);
920
free_tree_refs(context);
921
audit_free_aux(context);
922
kfree(context->filterkey);
923
kfree(context->sockaddr);
924
kfree(context);
925
context = previous;
926
} while (context);
927
if (count >= 10)
928
printk(KERN_ERR "audit: freed %d contexts\n", count);
929
}
930
931
void audit_log_task_context(struct audit_buffer *ab)
932
{
933
char *ctx = NULL;
934
unsigned len;
935
int error;
936
u32 sid;
937
938
security_task_getsecid(current, &sid);
939
if (!sid)
940
return;
941
942
error = security_secid_to_secctx(sid, &ctx, &len);
943
if (error) {
944
if (error != -EINVAL)
945
goto error_path;
946
return;
947
}
948
949
audit_log_format(ab, " subj=%s", ctx);
950
security_release_secctx(ctx, len);
951
return;
952
953
error_path:
954
audit_panic("error in audit_log_task_context");
955
return;
956
}
957
958
EXPORT_SYMBOL(audit_log_task_context);
959
960
static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
961
{
962
char name[sizeof(tsk->comm)];
963
struct mm_struct *mm = tsk->mm;
964
struct vm_area_struct *vma;
965
966
/* tsk == current */
967
968
get_task_comm(name, tsk);
969
audit_log_format(ab, " comm=");
970
audit_log_untrustedstring(ab, name);
971
972
if (mm) {
973
down_read(&mm->mmap_sem);
974
vma = mm->mmap;
975
while (vma) {
976
if ((vma->vm_flags & VM_EXECUTABLE) &&
977
vma->vm_file) {
978
audit_log_d_path(ab, "exe=",
979
&vma->vm_file->f_path);
980
break;
981
}
982
vma = vma->vm_next;
983
}
984
up_read(&mm->mmap_sem);
985
}
986
audit_log_task_context(ab);
987
}
988
989
static int audit_log_pid_context(struct audit_context *context, pid_t pid,
990
uid_t auid, uid_t uid, unsigned int sessionid,
991
u32 sid, char *comm)
992
{
993
struct audit_buffer *ab;
994
char *ctx = NULL;
995
u32 len;
996
int rc = 0;
997
998
ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
999
if (!ab)
1000
return rc;
1001
1002
audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1003
uid, sessionid);
1004
if (security_secid_to_secctx(sid, &ctx, &len)) {
1005
audit_log_format(ab, " obj=(none)");
1006
rc = 1;
1007
} else {
1008
audit_log_format(ab, " obj=%s", ctx);
1009
security_release_secctx(ctx, len);
1010
}
1011
audit_log_format(ab, " ocomm=");
1012
audit_log_untrustedstring(ab, comm);
1013
audit_log_end(ab);
1014
1015
return rc;
1016
}
1017
1018
/*
1019
* to_send and len_sent accounting are very loose estimates. We aren't
1020
* really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1021
* within about 500 bytes (next page boundary)
1022
*
1023
* why snprintf? an int is up to 12 digits long. if we just assumed when
1024
* logging that a[%d]= was going to be 16 characters long we would be wasting
1025
* space in every audit message. In one 7500 byte message we can log up to
1026
* about 1000 min size arguments. That comes down to about 50% waste of space
1027
* if we didn't do the snprintf to find out how long arg_num_len was.
1028
*/
1029
static int audit_log_single_execve_arg(struct audit_context *context,
1030
struct audit_buffer **ab,
1031
int arg_num,
1032
size_t *len_sent,
1033
const char __user *p,
1034
char *buf)
1035
{
1036
char arg_num_len_buf[12];
1037
const char __user *tmp_p = p;
1038
/* how many digits are in arg_num? 5 is the length of ' a=""' */
1039
size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1040
size_t len, len_left, to_send;
1041
size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1042
unsigned int i, has_cntl = 0, too_long = 0;
1043
int ret;
1044
1045
/* strnlen_user includes the null we don't want to send */
1046
len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1047
1048
/*
1049
* We just created this mm, if we can't find the strings
1050
* we just copied into it something is _very_ wrong. Similar
1051
* for strings that are too long, we should not have created
1052
* any.
1053
*/
1054
if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1055
WARN_ON(1);
1056
send_sig(SIGKILL, current, 0);
1057
return -1;
1058
}
1059
1060
/* walk the whole argument looking for non-ascii chars */
1061
do {
1062
if (len_left > MAX_EXECVE_AUDIT_LEN)
1063
to_send = MAX_EXECVE_AUDIT_LEN;
1064
else
1065
to_send = len_left;
1066
ret = copy_from_user(buf, tmp_p, to_send);
1067
/*
1068
* There is no reason for this copy to be short. We just
1069
* copied them here, and the mm hasn't been exposed to user-
1070
* space yet.
1071
*/
1072
if (ret) {
1073
WARN_ON(1);
1074
send_sig(SIGKILL, current, 0);
1075
return -1;
1076
}
1077
buf[to_send] = '\0';
1078
has_cntl = audit_string_contains_control(buf, to_send);
1079
if (has_cntl) {
1080
/*
1081
* hex messages get logged as 2 bytes, so we can only
1082
* send half as much in each message
1083
*/
1084
max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1085
break;
1086
}
1087
len_left -= to_send;
1088
tmp_p += to_send;
1089
} while (len_left > 0);
1090
1091
len_left = len;
1092
1093
if (len > max_execve_audit_len)
1094
too_long = 1;
1095
1096
/* rewalk the argument actually logging the message */
1097
for (i = 0; len_left > 0; i++) {
1098
int room_left;
1099
1100
if (len_left > max_execve_audit_len)
1101
to_send = max_execve_audit_len;
1102
else
1103
to_send = len_left;
1104
1105
/* do we have space left to send this argument in this ab? */
1106
room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1107
if (has_cntl)
1108
room_left -= (to_send * 2);
1109
else
1110
room_left -= to_send;
1111
if (room_left < 0) {
1112
*len_sent = 0;
1113
audit_log_end(*ab);
1114
*ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1115
if (!*ab)
1116
return 0;
1117
}
1118
1119
/*
1120
* first record needs to say how long the original string was
1121
* so we can be sure nothing was lost.
1122
*/
1123
if ((i == 0) && (too_long))
1124
audit_log_format(*ab, " a%d_len=%zu", arg_num,
1125
has_cntl ? 2*len : len);
1126
1127
/*
1128
* normally arguments are small enough to fit and we already
1129
* filled buf above when we checked for control characters
1130
* so don't bother with another copy_from_user
1131
*/
1132
if (len >= max_execve_audit_len)
1133
ret = copy_from_user(buf, p, to_send);
1134
else
1135
ret = 0;
1136
if (ret) {
1137
WARN_ON(1);
1138
send_sig(SIGKILL, current, 0);
1139
return -1;
1140
}
1141
buf[to_send] = '\0';
1142
1143
/* actually log it */
1144
audit_log_format(*ab, " a%d", arg_num);
1145
if (too_long)
1146
audit_log_format(*ab, "[%d]", i);
1147
audit_log_format(*ab, "=");
1148
if (has_cntl)
1149
audit_log_n_hex(*ab, buf, to_send);
1150
else
1151
audit_log_string(*ab, buf);
1152
1153
p += to_send;
1154
len_left -= to_send;
1155
*len_sent += arg_num_len;
1156
if (has_cntl)
1157
*len_sent += to_send * 2;
1158
else
1159
*len_sent += to_send;
1160
}
1161
/* include the null we didn't log */
1162
return len + 1;
1163
}
1164
1165
static void audit_log_execve_info(struct audit_context *context,
1166
struct audit_buffer **ab,
1167
struct audit_aux_data_execve *axi)
1168
{
1169
int i;
1170
size_t len, len_sent = 0;
1171
const char __user *p;
1172
char *buf;
1173
1174
if (axi->mm != current->mm)
1175
return; /* execve failed, no additional info */
1176
1177
p = (const char __user *)axi->mm->arg_start;
1178
1179
audit_log_format(*ab, "argc=%d", axi->argc);
1180
1181
/*
1182
* we need some kernel buffer to hold the userspace args. Just
1183
* allocate one big one rather than allocating one of the right size
1184
* for every single argument inside audit_log_single_execve_arg()
1185
* should be <8k allocation so should be pretty safe.
1186
*/
1187
buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1188
if (!buf) {
1189
audit_panic("out of memory for argv string\n");
1190
return;
1191
}
1192
1193
for (i = 0; i < axi->argc; i++) {
1194
len = audit_log_single_execve_arg(context, ab, i,
1195
&len_sent, p, buf);
1196
if (len <= 0)
1197
break;
1198
p += len;
1199
}
1200
kfree(buf);
1201
}
1202
1203
static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1204
{
1205
int i;
1206
1207
audit_log_format(ab, " %s=", prefix);
1208
CAP_FOR_EACH_U32(i) {
1209
audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1210
}
1211
}
1212
1213
static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1214
{
1215
kernel_cap_t *perm = &name->fcap.permitted;
1216
kernel_cap_t *inh = &name->fcap.inheritable;
1217
int log = 0;
1218
1219
if (!cap_isclear(*perm)) {
1220
audit_log_cap(ab, "cap_fp", perm);
1221
log = 1;
1222
}
1223
if (!cap_isclear(*inh)) {
1224
audit_log_cap(ab, "cap_fi", inh);
1225
log = 1;
1226
}
1227
1228
if (log)
1229
audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1230
}
1231
1232
static void show_special(struct audit_context *context, int *call_panic)
1233
{
1234
struct audit_buffer *ab;
1235
int i;
1236
1237
ab = audit_log_start(context, GFP_KERNEL, context->type);
1238
if (!ab)
1239
return;
1240
1241
switch (context->type) {
1242
case AUDIT_SOCKETCALL: {
1243
int nargs = context->socketcall.nargs;
1244
audit_log_format(ab, "nargs=%d", nargs);
1245
for (i = 0; i < nargs; i++)
1246
audit_log_format(ab, " a%d=%lx", i,
1247
context->socketcall.args[i]);
1248
break; }
1249
case AUDIT_IPC: {
1250
u32 osid = context->ipc.osid;
1251
1252
audit_log_format(ab, "ouid=%u ogid=%u mode=%#o",
1253
context->ipc.uid, context->ipc.gid, context->ipc.mode);
1254
if (osid) {
1255
char *ctx = NULL;
1256
u32 len;
1257
if (security_secid_to_secctx(osid, &ctx, &len)) {
1258
audit_log_format(ab, " osid=%u", osid);
1259
*call_panic = 1;
1260
} else {
1261
audit_log_format(ab, " obj=%s", ctx);
1262
security_release_secctx(ctx, len);
1263
}
1264
}
1265
if (context->ipc.has_perm) {
1266
audit_log_end(ab);
1267
ab = audit_log_start(context, GFP_KERNEL,
1268
AUDIT_IPC_SET_PERM);
1269
audit_log_format(ab,
1270
"qbytes=%lx ouid=%u ogid=%u mode=%#o",
1271
context->ipc.qbytes,
1272
context->ipc.perm_uid,
1273
context->ipc.perm_gid,
1274
context->ipc.perm_mode);
1275
if (!ab)
1276
return;
1277
}
1278
break; }
1279
case AUDIT_MQ_OPEN: {
1280
audit_log_format(ab,
1281
"oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1282
"mq_msgsize=%ld mq_curmsgs=%ld",
1283
context->mq_open.oflag, context->mq_open.mode,
1284
context->mq_open.attr.mq_flags,
1285
context->mq_open.attr.mq_maxmsg,
1286
context->mq_open.attr.mq_msgsize,
1287
context->mq_open.attr.mq_curmsgs);
1288
break; }
1289
case AUDIT_MQ_SENDRECV: {
1290
audit_log_format(ab,
1291
"mqdes=%d msg_len=%zd msg_prio=%u "
1292
"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1293
context->mq_sendrecv.mqdes,
1294
context->mq_sendrecv.msg_len,
1295
context->mq_sendrecv.msg_prio,
1296
context->mq_sendrecv.abs_timeout.tv_sec,
1297
context->mq_sendrecv.abs_timeout.tv_nsec);
1298
break; }
1299
case AUDIT_MQ_NOTIFY: {
1300
audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1301
context->mq_notify.mqdes,
1302
context->mq_notify.sigev_signo);
1303
break; }
1304
case AUDIT_MQ_GETSETATTR: {
1305
struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1306
audit_log_format(ab,
1307
"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1308
"mq_curmsgs=%ld ",
1309
context->mq_getsetattr.mqdes,
1310
attr->mq_flags, attr->mq_maxmsg,
1311
attr->mq_msgsize, attr->mq_curmsgs);
1312
break; }
1313
case AUDIT_CAPSET: {
1314
audit_log_format(ab, "pid=%d", context->capset.pid);
1315
audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1316
audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1317
audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1318
break; }
1319
case AUDIT_MMAP: {
1320
audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1321
context->mmap.flags);
1322
break; }
1323
}
1324
audit_log_end(ab);
1325
}
1326
1327
static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1328
{
1329
const struct cred *cred;
1330
int i, call_panic = 0;
1331
struct audit_buffer *ab;
1332
struct audit_aux_data *aux;
1333
const char *tty;
1334
1335
/* tsk == current */
1336
context->pid = tsk->pid;
1337
if (!context->ppid)
1338
context->ppid = sys_getppid();
1339
cred = current_cred();
1340
context->uid = cred->uid;
1341
context->gid = cred->gid;
1342
context->euid = cred->euid;
1343
context->suid = cred->suid;
1344
context->fsuid = cred->fsuid;
1345
context->egid = cred->egid;
1346
context->sgid = cred->sgid;
1347
context->fsgid = cred->fsgid;
1348
context->personality = tsk->personality;
1349
1350
ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1351
if (!ab)
1352
return; /* audit_panic has been called */
1353
audit_log_format(ab, "arch=%x syscall=%d",
1354
context->arch, context->major);
1355
if (context->personality != PER_LINUX)
1356
audit_log_format(ab, " per=%lx", context->personality);
1357
if (context->return_valid)
1358
audit_log_format(ab, " success=%s exit=%ld",
1359
(context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1360
context->return_code);
1361
1362
spin_lock_irq(&tsk->sighand->siglock);
1363
if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1364
tty = tsk->signal->tty->name;
1365
else
1366
tty = "(none)";
1367
spin_unlock_irq(&tsk->sighand->siglock);
1368
1369
audit_log_format(ab,
1370
" a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1371
" ppid=%d pid=%d auid=%u uid=%u gid=%u"
1372
" euid=%u suid=%u fsuid=%u"
1373
" egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1374
context->argv[0],
1375
context->argv[1],
1376
context->argv[2],
1377
context->argv[3],
1378
context->name_count,
1379
context->ppid,
1380
context->pid,
1381
tsk->loginuid,
1382
context->uid,
1383
context->gid,
1384
context->euid, context->suid, context->fsuid,
1385
context->egid, context->sgid, context->fsgid, tty,
1386
tsk->sessionid);
1387
1388
1389
audit_log_task_info(ab, tsk);
1390
audit_log_key(ab, context->filterkey);
1391
audit_log_end(ab);
1392
1393
for (aux = context->aux; aux; aux = aux->next) {
1394
1395
ab = audit_log_start(context, GFP_KERNEL, aux->type);
1396
if (!ab)
1397
continue; /* audit_panic has been called */
1398
1399
switch (aux->type) {
1400
1401
case AUDIT_EXECVE: {
1402
struct audit_aux_data_execve *axi = (void *)aux;
1403
audit_log_execve_info(context, &ab, axi);
1404
break; }
1405
1406
case AUDIT_BPRM_FCAPS: {
1407
struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1408
audit_log_format(ab, "fver=%x", axs->fcap_ver);
1409
audit_log_cap(ab, "fp", &axs->fcap.permitted);
1410
audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1411
audit_log_format(ab, " fe=%d", axs->fcap.fE);
1412
audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1413
audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1414
audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1415
audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1416
audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1417
audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1418
break; }
1419
1420
}
1421
audit_log_end(ab);
1422
}
1423
1424
if (context->type)
1425
show_special(context, &call_panic);
1426
1427
if (context->fds[0] >= 0) {
1428
ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1429
if (ab) {
1430
audit_log_format(ab, "fd0=%d fd1=%d",
1431
context->fds[0], context->fds[1]);
1432
audit_log_end(ab);
1433
}
1434
}
1435
1436
if (context->sockaddr_len) {
1437
ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1438
if (ab) {
1439
audit_log_format(ab, "saddr=");
1440
audit_log_n_hex(ab, (void *)context->sockaddr,
1441
context->sockaddr_len);
1442
audit_log_end(ab);
1443
}
1444
}
1445
1446
for (aux = context->aux_pids; aux; aux = aux->next) {
1447
struct audit_aux_data_pids *axs = (void *)aux;
1448
1449
for (i = 0; i < axs->pid_count; i++)
1450
if (audit_log_pid_context(context, axs->target_pid[i],
1451
axs->target_auid[i],
1452
axs->target_uid[i],
1453
axs->target_sessionid[i],
1454
axs->target_sid[i],
1455
axs->target_comm[i]))
1456
call_panic = 1;
1457
}
1458
1459
if (context->target_pid &&
1460
audit_log_pid_context(context, context->target_pid,
1461
context->target_auid, context->target_uid,
1462
context->target_sessionid,
1463
context->target_sid, context->target_comm))
1464
call_panic = 1;
1465
1466
if (context->pwd.dentry && context->pwd.mnt) {
1467
ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1468
if (ab) {
1469
audit_log_d_path(ab, "cwd=", &context->pwd);
1470
audit_log_end(ab);
1471
}
1472
}
1473
for (i = 0; i < context->name_count; i++) {
1474
struct audit_names *n = &context->names[i];
1475
1476
ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1477
if (!ab)
1478
continue; /* audit_panic has been called */
1479
1480
audit_log_format(ab, "item=%d", i);
1481
1482
if (n->name) {
1483
switch(n->name_len) {
1484
case AUDIT_NAME_FULL:
1485
/* log the full path */
1486
audit_log_format(ab, " name=");
1487
audit_log_untrustedstring(ab, n->name);
1488
break;
1489
case 0:
1490
/* name was specified as a relative path and the
1491
* directory component is the cwd */
1492
audit_log_d_path(ab, "name=", &context->pwd);
1493
break;
1494
default:
1495
/* log the name's directory component */
1496
audit_log_format(ab, " name=");
1497
audit_log_n_untrustedstring(ab, n->name,
1498
n->name_len);
1499
}
1500
} else
1501
audit_log_format(ab, " name=(null)");
1502
1503
if (n->ino != (unsigned long)-1) {
1504
audit_log_format(ab, " inode=%lu"
1505
" dev=%02x:%02x mode=%#o"
1506
" ouid=%u ogid=%u rdev=%02x:%02x",
1507
n->ino,
1508
MAJOR(n->dev),
1509
MINOR(n->dev),
1510
n->mode,
1511
n->uid,
1512
n->gid,
1513
MAJOR(n->rdev),
1514
MINOR(n->rdev));
1515
}
1516
if (n->osid != 0) {
1517
char *ctx = NULL;
1518
u32 len;
1519
if (security_secid_to_secctx(
1520
n->osid, &ctx, &len)) {
1521
audit_log_format(ab, " osid=%u", n->osid);
1522
call_panic = 2;
1523
} else {
1524
audit_log_format(ab, " obj=%s", ctx);
1525
security_release_secctx(ctx, len);
1526
}
1527
}
1528
1529
audit_log_fcaps(ab, n);
1530
1531
audit_log_end(ab);
1532
}
1533
1534
/* Send end of event record to help user space know we are finished */
1535
ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1536
if (ab)
1537
audit_log_end(ab);
1538
if (call_panic)
1539
audit_panic("error converting sid to string");
1540
}
1541
1542
/**
1543
* audit_free - free a per-task audit context
1544
* @tsk: task whose audit context block to free
1545
*
1546
* Called from copy_process and do_exit
1547
*/
1548
void audit_free(struct task_struct *tsk)
1549
{
1550
struct audit_context *context;
1551
1552
context = audit_get_context(tsk, 0, 0);
1553
if (likely(!context))
1554
return;
1555
1556
/* Check for system calls that do not go through the exit
1557
* function (e.g., exit_group), then free context block.
1558
* We use GFP_ATOMIC here because we might be doing this
1559
* in the context of the idle thread */
1560
/* that can happen only if we are called from do_exit() */
1561
if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1562
audit_log_exit(context, tsk);
1563
if (!list_empty(&context->killed_trees))
1564
audit_kill_trees(&context->killed_trees);
1565
1566
audit_free_context(context);
1567
}
1568
1569
/**
1570
* audit_syscall_entry - fill in an audit record at syscall entry
1571
* @arch: architecture type
1572
* @major: major syscall type (function)
1573
* @a1: additional syscall register 1
1574
* @a2: additional syscall register 2
1575
* @a3: additional syscall register 3
1576
* @a4: additional syscall register 4
1577
*
1578
* Fill in audit context at syscall entry. This only happens if the
1579
* audit context was created when the task was created and the state or
1580
* filters demand the audit context be built. If the state from the
1581
* per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1582
* then the record will be written at syscall exit time (otherwise, it
1583
* will only be written if another part of the kernel requests that it
1584
* be written).
1585
*/
1586
void audit_syscall_entry(int arch, int major,
1587
unsigned long a1, unsigned long a2,
1588
unsigned long a3, unsigned long a4)
1589
{
1590
struct task_struct *tsk = current;
1591
struct audit_context *context = tsk->audit_context;
1592
enum audit_state state;
1593
1594
if (unlikely(!context))
1595
return;
1596
1597
/*
1598
* This happens only on certain architectures that make system
1599
* calls in kernel_thread via the entry.S interface, instead of
1600
* with direct calls. (If you are porting to a new
1601
* architecture, hitting this condition can indicate that you
1602
* got the _exit/_leave calls backward in entry.S.)
1603
*
1604
* i386 no
1605
* x86_64 no
1606
* ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1607
*
1608
* This also happens with vm86 emulation in a non-nested manner
1609
* (entries without exits), so this case must be caught.
1610
*/
1611
if (context->in_syscall) {
1612
struct audit_context *newctx;
1613
1614
#if AUDIT_DEBUG
1615
printk(KERN_ERR
1616
"audit(:%d) pid=%d in syscall=%d;"
1617
" entering syscall=%d\n",
1618
context->serial, tsk->pid, context->major, major);
1619
#endif
1620
newctx = audit_alloc_context(context->state);
1621
if (newctx) {
1622
newctx->previous = context;
1623
context = newctx;
1624
tsk->audit_context = newctx;
1625
} else {
1626
/* If we can't alloc a new context, the best we
1627
* can do is to leak memory (any pending putname
1628
* will be lost). The only other alternative is
1629
* to abandon auditing. */
1630
audit_zero_context(context, context->state);
1631
}
1632
}
1633
BUG_ON(context->in_syscall || context->name_count);
1634
1635
if (!audit_enabled)
1636
return;
1637
1638
context->arch = arch;
1639
context->major = major;
1640
context->argv[0] = a1;
1641
context->argv[1] = a2;
1642
context->argv[2] = a3;
1643
context->argv[3] = a4;
1644
1645
state = context->state;
1646
context->dummy = !audit_n_rules;
1647
if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1648
context->prio = 0;
1649
state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1650
}
1651
if (likely(state == AUDIT_DISABLED))
1652
return;
1653
1654
context->serial = 0;
1655
context->ctime = CURRENT_TIME;
1656
context->in_syscall = 1;
1657
context->current_state = state;
1658
context->ppid = 0;
1659
}
1660
1661
void audit_finish_fork(struct task_struct *child)
1662
{
1663
struct audit_context *ctx = current->audit_context;
1664
struct audit_context *p = child->audit_context;
1665
if (!p || !ctx)
1666
return;
1667
if (!ctx->in_syscall || ctx->current_state != AUDIT_RECORD_CONTEXT)
1668
return;
1669
p->arch = ctx->arch;
1670
p->major = ctx->major;
1671
memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1672
p->ctime = ctx->ctime;
1673
p->dummy = ctx->dummy;
1674
p->in_syscall = ctx->in_syscall;
1675
p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1676
p->ppid = current->pid;
1677
p->prio = ctx->prio;
1678
p->current_state = ctx->current_state;
1679
}
1680
1681
/**
1682
* audit_syscall_exit - deallocate audit context after a system call
1683
* @valid: success/failure flag
1684
* @return_code: syscall return value
1685
*
1686
* Tear down after system call. If the audit context has been marked as
1687
* auditable (either because of the AUDIT_RECORD_CONTEXT state from
1688
* filtering, or because some other part of the kernel write an audit
1689
* message), then write out the syscall information. In call cases,
1690
* free the names stored from getname().
1691
*/
1692
void audit_syscall_exit(int valid, long return_code)
1693
{
1694
struct task_struct *tsk = current;
1695
struct audit_context *context;
1696
1697
context = audit_get_context(tsk, valid, return_code);
1698
1699
if (likely(!context))
1700
return;
1701
1702
if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1703
audit_log_exit(context, tsk);
1704
1705
context->in_syscall = 0;
1706
context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1707
1708
if (!list_empty(&context->killed_trees))
1709
audit_kill_trees(&context->killed_trees);
1710
1711
if (context->previous) {
1712
struct audit_context *new_context = context->previous;
1713
context->previous = NULL;
1714
audit_free_context(context);
1715
tsk->audit_context = new_context;
1716
} else {
1717
audit_free_names(context);
1718
unroll_tree_refs(context, NULL, 0);
1719
audit_free_aux(context);
1720
context->aux = NULL;
1721
context->aux_pids = NULL;
1722
context->target_pid = 0;
1723
context->target_sid = 0;
1724
context->sockaddr_len = 0;
1725
context->type = 0;
1726
context->fds[0] = -1;
1727
if (context->state != AUDIT_RECORD_CONTEXT) {
1728
kfree(context->filterkey);
1729
context->filterkey = NULL;
1730
}
1731
tsk->audit_context = context;
1732
}
1733
}
1734
1735
static inline void handle_one(const struct inode *inode)
1736
{
1737
#ifdef CONFIG_AUDIT_TREE
1738
struct audit_context *context;
1739
struct audit_tree_refs *p;
1740
struct audit_chunk *chunk;
1741
int count;
1742
if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1743
return;
1744
context = current->audit_context;
1745
p = context->trees;
1746
count = context->tree_count;
1747
rcu_read_lock();
1748
chunk = audit_tree_lookup(inode);
1749
rcu_read_unlock();
1750
if (!chunk)
1751
return;
1752
if (likely(put_tree_ref(context, chunk)))
1753
return;
1754
if (unlikely(!grow_tree_refs(context))) {
1755
printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1756
audit_set_auditable(context);
1757
audit_put_chunk(chunk);
1758
unroll_tree_refs(context, p, count);
1759
return;
1760
}
1761
put_tree_ref(context, chunk);
1762
#endif
1763
}
1764
1765
static void handle_path(const struct dentry *dentry)
1766
{
1767
#ifdef CONFIG_AUDIT_TREE
1768
struct audit_context *context;
1769
struct audit_tree_refs *p;
1770
const struct dentry *d, *parent;
1771
struct audit_chunk *drop;
1772
unsigned long seq;
1773
int count;
1774
1775
context = current->audit_context;
1776
p = context->trees;
1777
count = context->tree_count;
1778
retry:
1779
drop = NULL;
1780
d = dentry;
1781
rcu_read_lock();
1782
seq = read_seqbegin(&rename_lock);
1783
for(;;) {
1784
struct inode *inode = d->d_inode;
1785
if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1786
struct audit_chunk *chunk;
1787
chunk = audit_tree_lookup(inode);
1788
if (chunk) {
1789
if (unlikely(!put_tree_ref(context, chunk))) {
1790
drop = chunk;
1791
break;
1792
}
1793
}
1794
}
1795
parent = d->d_parent;
1796
if (parent == d)
1797
break;
1798
d = parent;
1799
}
1800
if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1801
rcu_read_unlock();
1802
if (!drop) {
1803
/* just a race with rename */
1804
unroll_tree_refs(context, p, count);
1805
goto retry;
1806
}
1807
audit_put_chunk(drop);
1808
if (grow_tree_refs(context)) {
1809
/* OK, got more space */
1810
unroll_tree_refs(context, p, count);
1811
goto retry;
1812
}
1813
/* too bad */
1814
printk(KERN_WARNING
1815
"out of memory, audit has lost a tree reference\n");
1816
unroll_tree_refs(context, p, count);
1817
audit_set_auditable(context);
1818
return;
1819
}
1820
rcu_read_unlock();
1821
#endif
1822
}
1823
1824
/**
1825
* audit_getname - add a name to the list
1826
* @name: name to add
1827
*
1828
* Add a name to the list of audit names for this context.
1829
* Called from fs/namei.c:getname().
1830
*/
1831
void __audit_getname(const char *name)
1832
{
1833
struct audit_context *context = current->audit_context;
1834
1835
if (IS_ERR(name) || !name)
1836
return;
1837
1838
if (!context->in_syscall) {
1839
#if AUDIT_DEBUG == 2
1840
printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1841
__FILE__, __LINE__, context->serial, name);
1842
dump_stack();
1843
#endif
1844
return;
1845
}
1846
BUG_ON(context->name_count >= AUDIT_NAMES);
1847
context->names[context->name_count].name = name;
1848
context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1849
context->names[context->name_count].name_put = 1;
1850
context->names[context->name_count].ino = (unsigned long)-1;
1851
context->names[context->name_count].osid = 0;
1852
++context->name_count;
1853
if (!context->pwd.dentry)
1854
get_fs_pwd(current->fs, &context->pwd);
1855
}
1856
1857
/* audit_putname - intercept a putname request
1858
* @name: name to intercept and delay for putname
1859
*
1860
* If we have stored the name from getname in the audit context,
1861
* then we delay the putname until syscall exit.
1862
* Called from include/linux/fs.h:putname().
1863
*/
1864
void audit_putname(const char *name)
1865
{
1866
struct audit_context *context = current->audit_context;
1867
1868
BUG_ON(!context);
1869
if (!context->in_syscall) {
1870
#if AUDIT_DEBUG == 2
1871
printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1872
__FILE__, __LINE__, context->serial, name);
1873
if (context->name_count) {
1874
int i;
1875
for (i = 0; i < context->name_count; i++)
1876
printk(KERN_ERR "name[%d] = %p = %s\n", i,
1877
context->names[i].name,
1878
context->names[i].name ?: "(null)");
1879
}
1880
#endif
1881
__putname(name);
1882
}
1883
#if AUDIT_DEBUG
1884
else {
1885
++context->put_count;
1886
if (context->put_count > context->name_count) {
1887
printk(KERN_ERR "%s:%d(:%d): major=%d"
1888
" in_syscall=%d putname(%p) name_count=%d"
1889
" put_count=%d\n",
1890
__FILE__, __LINE__,
1891
context->serial, context->major,
1892
context->in_syscall, name, context->name_count,
1893
context->put_count);
1894
dump_stack();
1895
}
1896
}
1897
#endif
1898
}
1899
1900
static int audit_inc_name_count(struct audit_context *context,
1901
const struct inode *inode)
1902
{
1903
if (context->name_count >= AUDIT_NAMES) {
1904
if (inode)
1905
printk(KERN_DEBUG "audit: name_count maxed, losing inode data: "
1906
"dev=%02x:%02x, inode=%lu\n",
1907
MAJOR(inode->i_sb->s_dev),
1908
MINOR(inode->i_sb->s_dev),
1909
inode->i_ino);
1910
1911
else
1912
printk(KERN_DEBUG "name_count maxed, losing inode data\n");
1913
return 1;
1914
}
1915
context->name_count++;
1916
#if AUDIT_DEBUG
1917
context->ino_count++;
1918
#endif
1919
return 0;
1920
}
1921
1922
1923
static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1924
{
1925
struct cpu_vfs_cap_data caps;
1926
int rc;
1927
1928
memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1929
memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1930
name->fcap.fE = 0;
1931
name->fcap_ver = 0;
1932
1933
if (!dentry)
1934
return 0;
1935
1936
rc = get_vfs_caps_from_disk(dentry, &caps);
1937
if (rc)
1938
return rc;
1939
1940
name->fcap.permitted = caps.permitted;
1941
name->fcap.inheritable = caps.inheritable;
1942
name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1943
name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1944
1945
return 0;
1946
}
1947
1948
1949
/* Copy inode data into an audit_names. */
1950
static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1951
const struct inode *inode)
1952
{
1953
name->ino = inode->i_ino;
1954
name->dev = inode->i_sb->s_dev;
1955
name->mode = inode->i_mode;
1956
name->uid = inode->i_uid;
1957
name->gid = inode->i_gid;
1958
name->rdev = inode->i_rdev;
1959
security_inode_getsecid(inode, &name->osid);
1960
audit_copy_fcaps(name, dentry);
1961
}
1962
1963
/**
1964
* audit_inode - store the inode and device from a lookup
1965
* @name: name being audited
1966
* @dentry: dentry being audited
1967
*
1968
* Called from fs/namei.c:path_lookup().
1969
*/
1970
void __audit_inode(const char *name, const struct dentry *dentry)
1971
{
1972
int idx;
1973
struct audit_context *context = current->audit_context;
1974
const struct inode *inode = dentry->d_inode;
1975
1976
if (!context->in_syscall)
1977
return;
1978
if (context->name_count
1979
&& context->names[context->name_count-1].name
1980
&& context->names[context->name_count-1].name == name)
1981
idx = context->name_count - 1;
1982
else if (context->name_count > 1
1983
&& context->names[context->name_count-2].name
1984
&& context->names[context->name_count-2].name == name)
1985
idx = context->name_count - 2;
1986
else {
1987
/* FIXME: how much do we care about inodes that have no
1988
* associated name? */
1989
if (audit_inc_name_count(context, inode))
1990
return;
1991
idx = context->name_count - 1;
1992
context->names[idx].name = NULL;
1993
}
1994
handle_path(dentry);
1995
audit_copy_inode(&context->names[idx], dentry, inode);
1996
}
1997
1998
/**
1999
* audit_inode_child - collect inode info for created/removed objects
2000
* @dentry: dentry being audited
2001
* @parent: inode of dentry parent
2002
*
2003
* For syscalls that create or remove filesystem objects, audit_inode
2004
* can only collect information for the filesystem object's parent.
2005
* This call updates the audit context with the child's information.
2006
* Syscalls that create a new filesystem object must be hooked after
2007
* the object is created. Syscalls that remove a filesystem object
2008
* must be hooked prior, in order to capture the target inode during
2009
* unsuccessful attempts.
2010
*/
2011
void __audit_inode_child(const struct dentry *dentry,
2012
const struct inode *parent)
2013
{
2014
int idx;
2015
struct audit_context *context = current->audit_context;
2016
const char *found_parent = NULL, *found_child = NULL;
2017
const struct inode *inode = dentry->d_inode;
2018
const char *dname = dentry->d_name.name;
2019
int dirlen = 0;
2020
2021
if (!context->in_syscall)
2022
return;
2023
2024
if (inode)
2025
handle_one(inode);
2026
2027
/* parent is more likely, look for it first */
2028
for (idx = 0; idx < context->name_count; idx++) {
2029
struct audit_names *n = &context->names[idx];
2030
2031
if (!n->name)
2032
continue;
2033
2034
if (n->ino == parent->i_ino &&
2035
!audit_compare_dname_path(dname, n->name, &dirlen)) {
2036
n->name_len = dirlen; /* update parent data in place */
2037
found_parent = n->name;
2038
goto add_names;
2039
}
2040
}
2041
2042
/* no matching parent, look for matching child */
2043
for (idx = 0; idx < context->name_count; idx++) {
2044
struct audit_names *n = &context->names[idx];
2045
2046
if (!n->name)
2047
continue;
2048
2049
/* strcmp() is the more likely scenario */
2050
if (!strcmp(dname, n->name) ||
2051
!audit_compare_dname_path(dname, n->name, &dirlen)) {
2052
if (inode)
2053
audit_copy_inode(n, NULL, inode);
2054
else
2055
n->ino = (unsigned long)-1;
2056
found_child = n->name;
2057
goto add_names;
2058
}
2059
}
2060
2061
add_names:
2062
if (!found_parent) {
2063
if (audit_inc_name_count(context, parent))
2064
return;
2065
idx = context->name_count - 1;
2066
context->names[idx].name = NULL;
2067
audit_copy_inode(&context->names[idx], NULL, parent);
2068
}
2069
2070
if (!found_child) {
2071
if (audit_inc_name_count(context, inode))
2072
return;
2073
idx = context->name_count - 1;
2074
2075
/* Re-use the name belonging to the slot for a matching parent
2076
* directory. All names for this context are relinquished in
2077
* audit_free_names() */
2078
if (found_parent) {
2079
context->names[idx].name = found_parent;
2080
context->names[idx].name_len = AUDIT_NAME_FULL;
2081
/* don't call __putname() */
2082
context->names[idx].name_put = 0;
2083
} else {
2084
context->names[idx].name = NULL;
2085
}
2086
2087
if (inode)
2088
audit_copy_inode(&context->names[idx], NULL, inode);
2089
else
2090
context->names[idx].ino = (unsigned long)-1;
2091
}
2092
}
2093
EXPORT_SYMBOL_GPL(__audit_inode_child);
2094
2095
/**
2096
* auditsc_get_stamp - get local copies of audit_context values
2097
* @ctx: audit_context for the task
2098
* @t: timespec to store time recorded in the audit_context
2099
* @serial: serial value that is recorded in the audit_context
2100
*
2101
* Also sets the context as auditable.
2102
*/
2103
int auditsc_get_stamp(struct audit_context *ctx,
2104
struct timespec *t, unsigned int *serial)
2105
{
2106
if (!ctx->in_syscall)
2107
return 0;
2108
if (!ctx->serial)
2109
ctx->serial = audit_serial();
2110
t->tv_sec = ctx->ctime.tv_sec;
2111
t->tv_nsec = ctx->ctime.tv_nsec;
2112
*serial = ctx->serial;
2113
if (!ctx->prio) {
2114
ctx->prio = 1;
2115
ctx->current_state = AUDIT_RECORD_CONTEXT;
2116
}
2117
return 1;
2118
}
2119
2120
/* global counter which is incremented every time something logs in */
2121
static atomic_t session_id = ATOMIC_INIT(0);
2122
2123
/**
2124
* audit_set_loginuid - set a task's audit_context loginuid
2125
* @task: task whose audit context is being modified
2126
* @loginuid: loginuid value
2127
*
2128
* Returns 0.
2129
*
2130
* Called (set) from fs/proc/base.c::proc_loginuid_write().
2131
*/
2132
int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
2133
{
2134
unsigned int sessionid = atomic_inc_return(&session_id);
2135
struct audit_context *context = task->audit_context;
2136
2137
if (context && context->in_syscall) {
2138
struct audit_buffer *ab;
2139
2140
ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2141
if (ab) {
2142
audit_log_format(ab, "login pid=%d uid=%u "
2143
"old auid=%u new auid=%u"
2144
" old ses=%u new ses=%u",
2145
task->pid, task_uid(task),
2146
task->loginuid, loginuid,
2147
task->sessionid, sessionid);
2148
audit_log_end(ab);
2149
}
2150
}
2151
task->sessionid = sessionid;
2152
task->loginuid = loginuid;
2153
return 0;
2154
}
2155
2156
/**
2157
* __audit_mq_open - record audit data for a POSIX MQ open
2158
* @oflag: open flag
2159
* @mode: mode bits
2160
* @attr: queue attributes
2161
*
2162
*/
2163
void __audit_mq_open(int oflag, mode_t mode, struct mq_attr *attr)
2164
{
2165
struct audit_context *context = current->audit_context;
2166
2167
if (attr)
2168
memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2169
else
2170
memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2171
2172
context->mq_open.oflag = oflag;
2173
context->mq_open.mode = mode;
2174
2175
context->type = AUDIT_MQ_OPEN;
2176
}
2177
2178
/**
2179
* __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2180
* @mqdes: MQ descriptor
2181
* @msg_len: Message length
2182
* @msg_prio: Message priority
2183
* @abs_timeout: Message timeout in absolute time
2184
*
2185
*/
2186
void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2187
const struct timespec *abs_timeout)
2188
{
2189
struct audit_context *context = current->audit_context;
2190
struct timespec *p = &context->mq_sendrecv.abs_timeout;
2191
2192
if (abs_timeout)
2193
memcpy(p, abs_timeout, sizeof(struct timespec));
2194
else
2195
memset(p, 0, sizeof(struct timespec));
2196
2197
context->mq_sendrecv.mqdes = mqdes;
2198
context->mq_sendrecv.msg_len = msg_len;
2199
context->mq_sendrecv.msg_prio = msg_prio;
2200
2201
context->type = AUDIT_MQ_SENDRECV;
2202
}
2203
2204
/**
2205
* __audit_mq_notify - record audit data for a POSIX MQ notify
2206
* @mqdes: MQ descriptor
2207
* @notification: Notification event
2208
*
2209
*/
2210
2211
void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2212
{
2213
struct audit_context *context = current->audit_context;
2214
2215
if (notification)
2216
context->mq_notify.sigev_signo = notification->sigev_signo;
2217
else
2218
context->mq_notify.sigev_signo = 0;
2219
2220
context->mq_notify.mqdes = mqdes;
2221
context->type = AUDIT_MQ_NOTIFY;
2222
}
2223
2224
/**
2225
* __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2226
* @mqdes: MQ descriptor
2227
* @mqstat: MQ flags
2228
*
2229
*/
2230
void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2231
{
2232
struct audit_context *context = current->audit_context;
2233
context->mq_getsetattr.mqdes = mqdes;
2234
context->mq_getsetattr.mqstat = *mqstat;
2235
context->type = AUDIT_MQ_GETSETATTR;
2236
}
2237
2238
/**
2239
* audit_ipc_obj - record audit data for ipc object
2240
* @ipcp: ipc permissions
2241
*
2242
*/
2243
void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2244
{
2245
struct audit_context *context = current->audit_context;
2246
context->ipc.uid = ipcp->uid;
2247
context->ipc.gid = ipcp->gid;
2248
context->ipc.mode = ipcp->mode;
2249
context->ipc.has_perm = 0;
2250
security_ipc_getsecid(ipcp, &context->ipc.osid);
2251
context->type = AUDIT_IPC;
2252
}
2253
2254
/**
2255
* audit_ipc_set_perm - record audit data for new ipc permissions
2256
* @qbytes: msgq bytes
2257
* @uid: msgq user id
2258
* @gid: msgq group id
2259
* @mode: msgq mode (permissions)
2260
*
2261
* Called only after audit_ipc_obj().
2262
*/
2263
void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2264
{
2265
struct audit_context *context = current->audit_context;
2266
2267
context->ipc.qbytes = qbytes;
2268
context->ipc.perm_uid = uid;
2269
context->ipc.perm_gid = gid;
2270
context->ipc.perm_mode = mode;
2271
context->ipc.has_perm = 1;
2272
}
2273
2274
int audit_bprm(struct linux_binprm *bprm)
2275
{
2276
struct audit_aux_data_execve *ax;
2277
struct audit_context *context = current->audit_context;
2278
2279
if (likely(!audit_enabled || !context || context->dummy))
2280
return 0;
2281
2282
ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2283
if (!ax)
2284
return -ENOMEM;
2285
2286
ax->argc = bprm->argc;
2287
ax->envc = bprm->envc;
2288
ax->mm = bprm->mm;
2289
ax->d.type = AUDIT_EXECVE;
2290
ax->d.next = context->aux;
2291
context->aux = (void *)ax;
2292
return 0;
2293
}
2294
2295
2296
/**
2297
* audit_socketcall - record audit data for sys_socketcall
2298
* @nargs: number of args
2299
* @args: args array
2300
*
2301
*/
2302
void audit_socketcall(int nargs, unsigned long *args)
2303
{
2304
struct audit_context *context = current->audit_context;
2305
2306
if (likely(!context || context->dummy))
2307
return;
2308
2309
context->type = AUDIT_SOCKETCALL;
2310
context->socketcall.nargs = nargs;
2311
memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2312
}
2313
2314
/**
2315
* __audit_fd_pair - record audit data for pipe and socketpair
2316
* @fd1: the first file descriptor
2317
* @fd2: the second file descriptor
2318
*
2319
*/
2320
void __audit_fd_pair(int fd1, int fd2)
2321
{
2322
struct audit_context *context = current->audit_context;
2323
context->fds[0] = fd1;
2324
context->fds[1] = fd2;
2325
}
2326
2327
/**
2328
* audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2329
* @len: data length in user space
2330
* @a: data address in kernel space
2331
*
2332
* Returns 0 for success or NULL context or < 0 on error.
2333
*/
2334
int audit_sockaddr(int len, void *a)
2335
{
2336
struct audit_context *context = current->audit_context;
2337
2338
if (likely(!context || context->dummy))
2339
return 0;
2340
2341
if (!context->sockaddr) {
2342
void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2343
if (!p)
2344
return -ENOMEM;
2345
context->sockaddr = p;
2346
}
2347
2348
context->sockaddr_len = len;
2349
memcpy(context->sockaddr, a, len);
2350
return 0;
2351
}
2352
2353
void __audit_ptrace(struct task_struct *t)
2354
{
2355
struct audit_context *context = current->audit_context;
2356
2357
context->target_pid = t->pid;
2358
context->target_auid = audit_get_loginuid(t);
2359
context->target_uid = task_uid(t);
2360
context->target_sessionid = audit_get_sessionid(t);
2361
security_task_getsecid(t, &context->target_sid);
2362
memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2363
}
2364
2365
/**
2366
* audit_signal_info - record signal info for shutting down audit subsystem
2367
* @sig: signal value
2368
* @t: task being signaled
2369
*
2370
* If the audit subsystem is being terminated, record the task (pid)
2371
* and uid that is doing that.
2372
*/
2373
int __audit_signal_info(int sig, struct task_struct *t)
2374
{
2375
struct audit_aux_data_pids *axp;
2376
struct task_struct *tsk = current;
2377
struct audit_context *ctx = tsk->audit_context;
2378
uid_t uid = current_uid(), t_uid = task_uid(t);
2379
2380
if (audit_pid && t->tgid == audit_pid) {
2381
if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2382
audit_sig_pid = tsk->pid;
2383
if (tsk->loginuid != -1)
2384
audit_sig_uid = tsk->loginuid;
2385
else
2386
audit_sig_uid = uid;
2387
security_task_getsecid(tsk, &audit_sig_sid);
2388
}
2389
if (!audit_signals || audit_dummy_context())
2390
return 0;
2391
}
2392
2393
/* optimize the common case by putting first signal recipient directly
2394
* in audit_context */
2395
if (!ctx->target_pid) {
2396
ctx->target_pid = t->tgid;
2397
ctx->target_auid = audit_get_loginuid(t);
2398
ctx->target_uid = t_uid;
2399
ctx->target_sessionid = audit_get_sessionid(t);
2400
security_task_getsecid(t, &ctx->target_sid);
2401
memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2402
return 0;
2403
}
2404
2405
axp = (void *)ctx->aux_pids;
2406
if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2407
axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2408
if (!axp)
2409
return -ENOMEM;
2410
2411
axp->d.type = AUDIT_OBJ_PID;
2412
axp->d.next = ctx->aux_pids;
2413
ctx->aux_pids = (void *)axp;
2414
}
2415
BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2416
2417
axp->target_pid[axp->pid_count] = t->tgid;
2418
axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2419
axp->target_uid[axp->pid_count] = t_uid;
2420
axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2421
security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2422
memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2423
axp->pid_count++;
2424
2425
return 0;
2426
}
2427
2428
/**
2429
* __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2430
* @bprm: pointer to the bprm being processed
2431
* @new: the proposed new credentials
2432
* @old: the old credentials
2433
*
2434
* Simply check if the proc already has the caps given by the file and if not
2435
* store the priv escalation info for later auditing at the end of the syscall
2436
*
2437
* -Eric
2438
*/
2439
int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2440
const struct cred *new, const struct cred *old)
2441
{
2442
struct audit_aux_data_bprm_fcaps *ax;
2443
struct audit_context *context = current->audit_context;
2444
struct cpu_vfs_cap_data vcaps;
2445
struct dentry *dentry;
2446
2447
ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2448
if (!ax)
2449
return -ENOMEM;
2450
2451
ax->d.type = AUDIT_BPRM_FCAPS;
2452
ax->d.next = context->aux;
2453
context->aux = (void *)ax;
2454
2455
dentry = dget(bprm->file->f_dentry);
2456
get_vfs_caps_from_disk(dentry, &vcaps);
2457
dput(dentry);
2458
2459
ax->fcap.permitted = vcaps.permitted;
2460
ax->fcap.inheritable = vcaps.inheritable;
2461
ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2462
ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2463
2464
ax->old_pcap.permitted = old->cap_permitted;
2465
ax->old_pcap.inheritable = old->cap_inheritable;
2466
ax->old_pcap.effective = old->cap_effective;
2467
2468
ax->new_pcap.permitted = new->cap_permitted;
2469
ax->new_pcap.inheritable = new->cap_inheritable;
2470
ax->new_pcap.effective = new->cap_effective;
2471
return 0;
2472
}
2473
2474
/**
2475
* __audit_log_capset - store information about the arguments to the capset syscall
2476
* @pid: target pid of the capset call
2477
* @new: the new credentials
2478
* @old: the old (current) credentials
2479
*
2480
* Record the aguments userspace sent to sys_capset for later printing by the
2481
* audit system if applicable
2482
*/
2483
void __audit_log_capset(pid_t pid,
2484
const struct cred *new, const struct cred *old)
2485
{
2486
struct audit_context *context = current->audit_context;
2487
context->capset.pid = pid;
2488
context->capset.cap.effective = new->cap_effective;
2489
context->capset.cap.inheritable = new->cap_effective;
2490
context->capset.cap.permitted = new->cap_permitted;
2491
context->type = AUDIT_CAPSET;
2492
}
2493
2494
void __audit_mmap_fd(int fd, int flags)
2495
{
2496
struct audit_context *context = current->audit_context;
2497
context->mmap.fd = fd;
2498
context->mmap.flags = flags;
2499
context->type = AUDIT_MMAP;
2500
}
2501
2502
/**
2503
* audit_core_dumps - record information about processes that end abnormally
2504
* @signr: signal value
2505
*
2506
* If a process ends with a core dump, something fishy is going on and we
2507
* should record the event for investigation.
2508
*/
2509
void audit_core_dumps(long signr)
2510
{
2511
struct audit_buffer *ab;
2512
u32 sid;
2513
uid_t auid = audit_get_loginuid(current), uid;
2514
gid_t gid;
2515
unsigned int sessionid = audit_get_sessionid(current);
2516
2517
if (!audit_enabled)
2518
return;
2519
2520
if (signr == SIGQUIT) /* don't care for those */
2521
return;
2522
2523
ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2524
current_uid_gid(&uid, &gid);
2525
audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2526
auid, uid, gid, sessionid);
2527
security_task_getsecid(current, &sid);
2528
if (sid) {
2529
char *ctx = NULL;
2530
u32 len;
2531
2532
if (security_secid_to_secctx(sid, &ctx, &len))
2533
audit_log_format(ab, " ssid=%u", sid);
2534
else {
2535
audit_log_format(ab, " subj=%s", ctx);
2536
security_release_secctx(ctx, len);
2537
}
2538
}
2539
audit_log_format(ab, " pid=%d comm=", current->pid);
2540
audit_log_untrustedstring(ab, current->comm);
2541
audit_log_format(ab, " sig=%ld", signr);
2542
audit_log_end(ab);
2543
}
2544
2545
struct list_head *audit_killed_trees(void)
2546
{
2547
struct audit_context *ctx = current->audit_context;
2548
if (likely(!ctx || !ctx->in_syscall))
2549
return NULL;
2550
return &ctx->killed_trees;
2551
}
2552
2553