Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/kernel/cpuset.c
10817 views
1
/*
2
* kernel/cpuset.c
3
*
4
* Processor and Memory placement constraints for sets of tasks.
5
*
6
* Copyright (C) 2003 BULL SA.
7
* Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
* Copyright (C) 2006 Google, Inc
9
*
10
* Portions derived from Patrick Mochel's sysfs code.
11
* sysfs is Copyright (c) 2001-3 Patrick Mochel
12
*
13
* 2003-10-10 Written by Simon Derr.
14
* 2003-10-22 Updates by Stephen Hemminger.
15
* 2004 May-July Rework by Paul Jackson.
16
* 2006 Rework by Paul Menage to use generic cgroups
17
* 2008 Rework of the scheduler domains and CPU hotplug handling
18
* by Max Krasnyansky
19
*
20
* This file is subject to the terms and conditions of the GNU General Public
21
* License. See the file COPYING in the main directory of the Linux
22
* distribution for more details.
23
*/
24
25
#include <linux/cpu.h>
26
#include <linux/cpumask.h>
27
#include <linux/cpuset.h>
28
#include <linux/err.h>
29
#include <linux/errno.h>
30
#include <linux/file.h>
31
#include <linux/fs.h>
32
#include <linux/init.h>
33
#include <linux/interrupt.h>
34
#include <linux/kernel.h>
35
#include <linux/kmod.h>
36
#include <linux/list.h>
37
#include <linux/mempolicy.h>
38
#include <linux/mm.h>
39
#include <linux/memory.h>
40
#include <linux/module.h>
41
#include <linux/mount.h>
42
#include <linux/namei.h>
43
#include <linux/pagemap.h>
44
#include <linux/proc_fs.h>
45
#include <linux/rcupdate.h>
46
#include <linux/sched.h>
47
#include <linux/seq_file.h>
48
#include <linux/security.h>
49
#include <linux/slab.h>
50
#include <linux/spinlock.h>
51
#include <linux/stat.h>
52
#include <linux/string.h>
53
#include <linux/time.h>
54
#include <linux/backing-dev.h>
55
#include <linux/sort.h>
56
57
#include <asm/uaccess.h>
58
#include <asm/atomic.h>
59
#include <linux/mutex.h>
60
#include <linux/workqueue.h>
61
#include <linux/cgroup.h>
62
63
/*
64
* Workqueue for cpuset related tasks.
65
*
66
* Using kevent workqueue may cause deadlock when memory_migrate
67
* is set. So we create a separate workqueue thread for cpuset.
68
*/
69
static struct workqueue_struct *cpuset_wq;
70
71
/*
72
* Tracks how many cpusets are currently defined in system.
73
* When there is only one cpuset (the root cpuset) we can
74
* short circuit some hooks.
75
*/
76
int number_of_cpusets __read_mostly;
77
78
/* Forward declare cgroup structures */
79
struct cgroup_subsys cpuset_subsys;
80
struct cpuset;
81
82
/* See "Frequency meter" comments, below. */
83
84
struct fmeter {
85
int cnt; /* unprocessed events count */
86
int val; /* most recent output value */
87
time_t time; /* clock (secs) when val computed */
88
spinlock_t lock; /* guards read or write of above */
89
};
90
91
struct cpuset {
92
struct cgroup_subsys_state css;
93
94
unsigned long flags; /* "unsigned long" so bitops work */
95
cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
96
nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
97
98
struct cpuset *parent; /* my parent */
99
100
struct fmeter fmeter; /* memory_pressure filter */
101
102
/* partition number for rebuild_sched_domains() */
103
int pn;
104
105
/* for custom sched domain */
106
int relax_domain_level;
107
108
/* used for walking a cpuset hierarchy */
109
struct list_head stack_list;
110
};
111
112
/* Retrieve the cpuset for a cgroup */
113
static inline struct cpuset *cgroup_cs(struct cgroup *cont)
114
{
115
return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
116
struct cpuset, css);
117
}
118
119
/* Retrieve the cpuset for a task */
120
static inline struct cpuset *task_cs(struct task_struct *task)
121
{
122
return container_of(task_subsys_state(task, cpuset_subsys_id),
123
struct cpuset, css);
124
}
125
126
/* bits in struct cpuset flags field */
127
typedef enum {
128
CS_CPU_EXCLUSIVE,
129
CS_MEM_EXCLUSIVE,
130
CS_MEM_HARDWALL,
131
CS_MEMORY_MIGRATE,
132
CS_SCHED_LOAD_BALANCE,
133
CS_SPREAD_PAGE,
134
CS_SPREAD_SLAB,
135
} cpuset_flagbits_t;
136
137
/* convenient tests for these bits */
138
static inline int is_cpu_exclusive(const struct cpuset *cs)
139
{
140
return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
141
}
142
143
static inline int is_mem_exclusive(const struct cpuset *cs)
144
{
145
return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
146
}
147
148
static inline int is_mem_hardwall(const struct cpuset *cs)
149
{
150
return test_bit(CS_MEM_HARDWALL, &cs->flags);
151
}
152
153
static inline int is_sched_load_balance(const struct cpuset *cs)
154
{
155
return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
156
}
157
158
static inline int is_memory_migrate(const struct cpuset *cs)
159
{
160
return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
161
}
162
163
static inline int is_spread_page(const struct cpuset *cs)
164
{
165
return test_bit(CS_SPREAD_PAGE, &cs->flags);
166
}
167
168
static inline int is_spread_slab(const struct cpuset *cs)
169
{
170
return test_bit(CS_SPREAD_SLAB, &cs->flags);
171
}
172
173
static struct cpuset top_cpuset = {
174
.flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
175
};
176
177
/*
178
* There are two global mutexes guarding cpuset structures. The first
179
* is the main control groups cgroup_mutex, accessed via
180
* cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
181
* callback_mutex, below. They can nest. It is ok to first take
182
* cgroup_mutex, then nest callback_mutex. We also require taking
183
* task_lock() when dereferencing a task's cpuset pointer. See "The
184
* task_lock() exception", at the end of this comment.
185
*
186
* A task must hold both mutexes to modify cpusets. If a task
187
* holds cgroup_mutex, then it blocks others wanting that mutex,
188
* ensuring that it is the only task able to also acquire callback_mutex
189
* and be able to modify cpusets. It can perform various checks on
190
* the cpuset structure first, knowing nothing will change. It can
191
* also allocate memory while just holding cgroup_mutex. While it is
192
* performing these checks, various callback routines can briefly
193
* acquire callback_mutex to query cpusets. Once it is ready to make
194
* the changes, it takes callback_mutex, blocking everyone else.
195
*
196
* Calls to the kernel memory allocator can not be made while holding
197
* callback_mutex, as that would risk double tripping on callback_mutex
198
* from one of the callbacks into the cpuset code from within
199
* __alloc_pages().
200
*
201
* If a task is only holding callback_mutex, then it has read-only
202
* access to cpusets.
203
*
204
* Now, the task_struct fields mems_allowed and mempolicy may be changed
205
* by other task, we use alloc_lock in the task_struct fields to protect
206
* them.
207
*
208
* The cpuset_common_file_read() handlers only hold callback_mutex across
209
* small pieces of code, such as when reading out possibly multi-word
210
* cpumasks and nodemasks.
211
*
212
* Accessing a task's cpuset should be done in accordance with the
213
* guidelines for accessing subsystem state in kernel/cgroup.c
214
*/
215
216
static DEFINE_MUTEX(callback_mutex);
217
218
/*
219
* cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
220
* buffers. They are statically allocated to prevent using excess stack
221
* when calling cpuset_print_task_mems_allowed().
222
*/
223
#define CPUSET_NAME_LEN (128)
224
#define CPUSET_NODELIST_LEN (256)
225
static char cpuset_name[CPUSET_NAME_LEN];
226
static char cpuset_nodelist[CPUSET_NODELIST_LEN];
227
static DEFINE_SPINLOCK(cpuset_buffer_lock);
228
229
/*
230
* This is ugly, but preserves the userspace API for existing cpuset
231
* users. If someone tries to mount the "cpuset" filesystem, we
232
* silently switch it to mount "cgroup" instead
233
*/
234
static struct dentry *cpuset_mount(struct file_system_type *fs_type,
235
int flags, const char *unused_dev_name, void *data)
236
{
237
struct file_system_type *cgroup_fs = get_fs_type("cgroup");
238
struct dentry *ret = ERR_PTR(-ENODEV);
239
if (cgroup_fs) {
240
char mountopts[] =
241
"cpuset,noprefix,"
242
"release_agent=/sbin/cpuset_release_agent";
243
ret = cgroup_fs->mount(cgroup_fs, flags,
244
unused_dev_name, mountopts);
245
put_filesystem(cgroup_fs);
246
}
247
return ret;
248
}
249
250
static struct file_system_type cpuset_fs_type = {
251
.name = "cpuset",
252
.mount = cpuset_mount,
253
};
254
255
/*
256
* Return in pmask the portion of a cpusets's cpus_allowed that
257
* are online. If none are online, walk up the cpuset hierarchy
258
* until we find one that does have some online cpus. If we get
259
* all the way to the top and still haven't found any online cpus,
260
* return cpu_online_map. Or if passed a NULL cs from an exit'ing
261
* task, return cpu_online_map.
262
*
263
* One way or another, we guarantee to return some non-empty subset
264
* of cpu_online_map.
265
*
266
* Call with callback_mutex held.
267
*/
268
269
static void guarantee_online_cpus(const struct cpuset *cs,
270
struct cpumask *pmask)
271
{
272
while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
273
cs = cs->parent;
274
if (cs)
275
cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
276
else
277
cpumask_copy(pmask, cpu_online_mask);
278
BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
279
}
280
281
/*
282
* Return in *pmask the portion of a cpusets's mems_allowed that
283
* are online, with memory. If none are online with memory, walk
284
* up the cpuset hierarchy until we find one that does have some
285
* online mems. If we get all the way to the top and still haven't
286
* found any online mems, return node_states[N_HIGH_MEMORY].
287
*
288
* One way or another, we guarantee to return some non-empty subset
289
* of node_states[N_HIGH_MEMORY].
290
*
291
* Call with callback_mutex held.
292
*/
293
294
static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
295
{
296
while (cs && !nodes_intersects(cs->mems_allowed,
297
node_states[N_HIGH_MEMORY]))
298
cs = cs->parent;
299
if (cs)
300
nodes_and(*pmask, cs->mems_allowed,
301
node_states[N_HIGH_MEMORY]);
302
else
303
*pmask = node_states[N_HIGH_MEMORY];
304
BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
305
}
306
307
/*
308
* update task's spread flag if cpuset's page/slab spread flag is set
309
*
310
* Called with callback_mutex/cgroup_mutex held
311
*/
312
static void cpuset_update_task_spread_flag(struct cpuset *cs,
313
struct task_struct *tsk)
314
{
315
if (is_spread_page(cs))
316
tsk->flags |= PF_SPREAD_PAGE;
317
else
318
tsk->flags &= ~PF_SPREAD_PAGE;
319
if (is_spread_slab(cs))
320
tsk->flags |= PF_SPREAD_SLAB;
321
else
322
tsk->flags &= ~PF_SPREAD_SLAB;
323
}
324
325
/*
326
* is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
327
*
328
* One cpuset is a subset of another if all its allowed CPUs and
329
* Memory Nodes are a subset of the other, and its exclusive flags
330
* are only set if the other's are set. Call holding cgroup_mutex.
331
*/
332
333
static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
334
{
335
return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
336
nodes_subset(p->mems_allowed, q->mems_allowed) &&
337
is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
338
is_mem_exclusive(p) <= is_mem_exclusive(q);
339
}
340
341
/**
342
* alloc_trial_cpuset - allocate a trial cpuset
343
* @cs: the cpuset that the trial cpuset duplicates
344
*/
345
static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
346
{
347
struct cpuset *trial;
348
349
trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
350
if (!trial)
351
return NULL;
352
353
if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
354
kfree(trial);
355
return NULL;
356
}
357
cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
358
359
return trial;
360
}
361
362
/**
363
* free_trial_cpuset - free the trial cpuset
364
* @trial: the trial cpuset to be freed
365
*/
366
static void free_trial_cpuset(struct cpuset *trial)
367
{
368
free_cpumask_var(trial->cpus_allowed);
369
kfree(trial);
370
}
371
372
/*
373
* validate_change() - Used to validate that any proposed cpuset change
374
* follows the structural rules for cpusets.
375
*
376
* If we replaced the flag and mask values of the current cpuset
377
* (cur) with those values in the trial cpuset (trial), would
378
* our various subset and exclusive rules still be valid? Presumes
379
* cgroup_mutex held.
380
*
381
* 'cur' is the address of an actual, in-use cpuset. Operations
382
* such as list traversal that depend on the actual address of the
383
* cpuset in the list must use cur below, not trial.
384
*
385
* 'trial' is the address of bulk structure copy of cur, with
386
* perhaps one or more of the fields cpus_allowed, mems_allowed,
387
* or flags changed to new, trial values.
388
*
389
* Return 0 if valid, -errno if not.
390
*/
391
392
static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
393
{
394
struct cgroup *cont;
395
struct cpuset *c, *par;
396
397
/* Each of our child cpusets must be a subset of us */
398
list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
399
if (!is_cpuset_subset(cgroup_cs(cont), trial))
400
return -EBUSY;
401
}
402
403
/* Remaining checks don't apply to root cpuset */
404
if (cur == &top_cpuset)
405
return 0;
406
407
par = cur->parent;
408
409
/* We must be a subset of our parent cpuset */
410
if (!is_cpuset_subset(trial, par))
411
return -EACCES;
412
413
/*
414
* If either I or some sibling (!= me) is exclusive, we can't
415
* overlap
416
*/
417
list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
418
c = cgroup_cs(cont);
419
if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
420
c != cur &&
421
cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
422
return -EINVAL;
423
if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
424
c != cur &&
425
nodes_intersects(trial->mems_allowed, c->mems_allowed))
426
return -EINVAL;
427
}
428
429
/* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
430
if (cgroup_task_count(cur->css.cgroup)) {
431
if (cpumask_empty(trial->cpus_allowed) ||
432
nodes_empty(trial->mems_allowed)) {
433
return -ENOSPC;
434
}
435
}
436
437
return 0;
438
}
439
440
#ifdef CONFIG_SMP
441
/*
442
* Helper routine for generate_sched_domains().
443
* Do cpusets a, b have overlapping cpus_allowed masks?
444
*/
445
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
446
{
447
return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
448
}
449
450
static void
451
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
452
{
453
if (dattr->relax_domain_level < c->relax_domain_level)
454
dattr->relax_domain_level = c->relax_domain_level;
455
return;
456
}
457
458
static void
459
update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
460
{
461
LIST_HEAD(q);
462
463
list_add(&c->stack_list, &q);
464
while (!list_empty(&q)) {
465
struct cpuset *cp;
466
struct cgroup *cont;
467
struct cpuset *child;
468
469
cp = list_first_entry(&q, struct cpuset, stack_list);
470
list_del(q.next);
471
472
if (cpumask_empty(cp->cpus_allowed))
473
continue;
474
475
if (is_sched_load_balance(cp))
476
update_domain_attr(dattr, cp);
477
478
list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
479
child = cgroup_cs(cont);
480
list_add_tail(&child->stack_list, &q);
481
}
482
}
483
}
484
485
/*
486
* generate_sched_domains()
487
*
488
* This function builds a partial partition of the systems CPUs
489
* A 'partial partition' is a set of non-overlapping subsets whose
490
* union is a subset of that set.
491
* The output of this function needs to be passed to kernel/sched.c
492
* partition_sched_domains() routine, which will rebuild the scheduler's
493
* load balancing domains (sched domains) as specified by that partial
494
* partition.
495
*
496
* See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
497
* for a background explanation of this.
498
*
499
* Does not return errors, on the theory that the callers of this
500
* routine would rather not worry about failures to rebuild sched
501
* domains when operating in the severe memory shortage situations
502
* that could cause allocation failures below.
503
*
504
* Must be called with cgroup_lock held.
505
*
506
* The three key local variables below are:
507
* q - a linked-list queue of cpuset pointers, used to implement a
508
* top-down scan of all cpusets. This scan loads a pointer
509
* to each cpuset marked is_sched_load_balance into the
510
* array 'csa'. For our purposes, rebuilding the schedulers
511
* sched domains, we can ignore !is_sched_load_balance cpusets.
512
* csa - (for CpuSet Array) Array of pointers to all the cpusets
513
* that need to be load balanced, for convenient iterative
514
* access by the subsequent code that finds the best partition,
515
* i.e the set of domains (subsets) of CPUs such that the
516
* cpus_allowed of every cpuset marked is_sched_load_balance
517
* is a subset of one of these domains, while there are as
518
* many such domains as possible, each as small as possible.
519
* doms - Conversion of 'csa' to an array of cpumasks, for passing to
520
* the kernel/sched.c routine partition_sched_domains() in a
521
* convenient format, that can be easily compared to the prior
522
* value to determine what partition elements (sched domains)
523
* were changed (added or removed.)
524
*
525
* Finding the best partition (set of domains):
526
* The triple nested loops below over i, j, k scan over the
527
* load balanced cpusets (using the array of cpuset pointers in
528
* csa[]) looking for pairs of cpusets that have overlapping
529
* cpus_allowed, but which don't have the same 'pn' partition
530
* number and gives them in the same partition number. It keeps
531
* looping on the 'restart' label until it can no longer find
532
* any such pairs.
533
*
534
* The union of the cpus_allowed masks from the set of
535
* all cpusets having the same 'pn' value then form the one
536
* element of the partition (one sched domain) to be passed to
537
* partition_sched_domains().
538
*/
539
static int generate_sched_domains(cpumask_var_t **domains,
540
struct sched_domain_attr **attributes)
541
{
542
LIST_HEAD(q); /* queue of cpusets to be scanned */
543
struct cpuset *cp; /* scans q */
544
struct cpuset **csa; /* array of all cpuset ptrs */
545
int csn; /* how many cpuset ptrs in csa so far */
546
int i, j, k; /* indices for partition finding loops */
547
cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
548
struct sched_domain_attr *dattr; /* attributes for custom domains */
549
int ndoms = 0; /* number of sched domains in result */
550
int nslot; /* next empty doms[] struct cpumask slot */
551
552
doms = NULL;
553
dattr = NULL;
554
csa = NULL;
555
556
/* Special case for the 99% of systems with one, full, sched domain */
557
if (is_sched_load_balance(&top_cpuset)) {
558
ndoms = 1;
559
doms = alloc_sched_domains(ndoms);
560
if (!doms)
561
goto done;
562
563
dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
564
if (dattr) {
565
*dattr = SD_ATTR_INIT;
566
update_domain_attr_tree(dattr, &top_cpuset);
567
}
568
cpumask_copy(doms[0], top_cpuset.cpus_allowed);
569
570
goto done;
571
}
572
573
csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
574
if (!csa)
575
goto done;
576
csn = 0;
577
578
list_add(&top_cpuset.stack_list, &q);
579
while (!list_empty(&q)) {
580
struct cgroup *cont;
581
struct cpuset *child; /* scans child cpusets of cp */
582
583
cp = list_first_entry(&q, struct cpuset, stack_list);
584
list_del(q.next);
585
586
if (cpumask_empty(cp->cpus_allowed))
587
continue;
588
589
/*
590
* All child cpusets contain a subset of the parent's cpus, so
591
* just skip them, and then we call update_domain_attr_tree()
592
* to calc relax_domain_level of the corresponding sched
593
* domain.
594
*/
595
if (is_sched_load_balance(cp)) {
596
csa[csn++] = cp;
597
continue;
598
}
599
600
list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
601
child = cgroup_cs(cont);
602
list_add_tail(&child->stack_list, &q);
603
}
604
}
605
606
for (i = 0; i < csn; i++)
607
csa[i]->pn = i;
608
ndoms = csn;
609
610
restart:
611
/* Find the best partition (set of sched domains) */
612
for (i = 0; i < csn; i++) {
613
struct cpuset *a = csa[i];
614
int apn = a->pn;
615
616
for (j = 0; j < csn; j++) {
617
struct cpuset *b = csa[j];
618
int bpn = b->pn;
619
620
if (apn != bpn && cpusets_overlap(a, b)) {
621
for (k = 0; k < csn; k++) {
622
struct cpuset *c = csa[k];
623
624
if (c->pn == bpn)
625
c->pn = apn;
626
}
627
ndoms--; /* one less element */
628
goto restart;
629
}
630
}
631
}
632
633
/*
634
* Now we know how many domains to create.
635
* Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
636
*/
637
doms = alloc_sched_domains(ndoms);
638
if (!doms)
639
goto done;
640
641
/*
642
* The rest of the code, including the scheduler, can deal with
643
* dattr==NULL case. No need to abort if alloc fails.
644
*/
645
dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
646
647
for (nslot = 0, i = 0; i < csn; i++) {
648
struct cpuset *a = csa[i];
649
struct cpumask *dp;
650
int apn = a->pn;
651
652
if (apn < 0) {
653
/* Skip completed partitions */
654
continue;
655
}
656
657
dp = doms[nslot];
658
659
if (nslot == ndoms) {
660
static int warnings = 10;
661
if (warnings) {
662
printk(KERN_WARNING
663
"rebuild_sched_domains confused:"
664
" nslot %d, ndoms %d, csn %d, i %d,"
665
" apn %d\n",
666
nslot, ndoms, csn, i, apn);
667
warnings--;
668
}
669
continue;
670
}
671
672
cpumask_clear(dp);
673
if (dattr)
674
*(dattr + nslot) = SD_ATTR_INIT;
675
for (j = i; j < csn; j++) {
676
struct cpuset *b = csa[j];
677
678
if (apn == b->pn) {
679
cpumask_or(dp, dp, b->cpus_allowed);
680
if (dattr)
681
update_domain_attr_tree(dattr + nslot, b);
682
683
/* Done with this partition */
684
b->pn = -1;
685
}
686
}
687
nslot++;
688
}
689
BUG_ON(nslot != ndoms);
690
691
done:
692
kfree(csa);
693
694
/*
695
* Fallback to the default domain if kmalloc() failed.
696
* See comments in partition_sched_domains().
697
*/
698
if (doms == NULL)
699
ndoms = 1;
700
701
*domains = doms;
702
*attributes = dattr;
703
return ndoms;
704
}
705
706
/*
707
* Rebuild scheduler domains.
708
*
709
* Call with neither cgroup_mutex held nor within get_online_cpus().
710
* Takes both cgroup_mutex and get_online_cpus().
711
*
712
* Cannot be directly called from cpuset code handling changes
713
* to the cpuset pseudo-filesystem, because it cannot be called
714
* from code that already holds cgroup_mutex.
715
*/
716
static void do_rebuild_sched_domains(struct work_struct *unused)
717
{
718
struct sched_domain_attr *attr;
719
cpumask_var_t *doms;
720
int ndoms;
721
722
get_online_cpus();
723
724
/* Generate domain masks and attrs */
725
cgroup_lock();
726
ndoms = generate_sched_domains(&doms, &attr);
727
cgroup_unlock();
728
729
/* Have scheduler rebuild the domains */
730
partition_sched_domains(ndoms, doms, attr);
731
732
put_online_cpus();
733
}
734
#else /* !CONFIG_SMP */
735
static void do_rebuild_sched_domains(struct work_struct *unused)
736
{
737
}
738
739
static int generate_sched_domains(cpumask_var_t **domains,
740
struct sched_domain_attr **attributes)
741
{
742
*domains = NULL;
743
return 1;
744
}
745
#endif /* CONFIG_SMP */
746
747
static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
748
749
/*
750
* Rebuild scheduler domains, asynchronously via workqueue.
751
*
752
* If the flag 'sched_load_balance' of any cpuset with non-empty
753
* 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
754
* which has that flag enabled, or if any cpuset with a non-empty
755
* 'cpus' is removed, then call this routine to rebuild the
756
* scheduler's dynamic sched domains.
757
*
758
* The rebuild_sched_domains() and partition_sched_domains()
759
* routines must nest cgroup_lock() inside get_online_cpus(),
760
* but such cpuset changes as these must nest that locking the
761
* other way, holding cgroup_lock() for much of the code.
762
*
763
* So in order to avoid an ABBA deadlock, the cpuset code handling
764
* these user changes delegates the actual sched domain rebuilding
765
* to a separate workqueue thread, which ends up processing the
766
* above do_rebuild_sched_domains() function.
767
*/
768
static void async_rebuild_sched_domains(void)
769
{
770
queue_work(cpuset_wq, &rebuild_sched_domains_work);
771
}
772
773
/*
774
* Accomplishes the same scheduler domain rebuild as the above
775
* async_rebuild_sched_domains(), however it directly calls the
776
* rebuild routine synchronously rather than calling it via an
777
* asynchronous work thread.
778
*
779
* This can only be called from code that is not holding
780
* cgroup_mutex (not nested in a cgroup_lock() call.)
781
*/
782
void rebuild_sched_domains(void)
783
{
784
do_rebuild_sched_domains(NULL);
785
}
786
787
/**
788
* cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
789
* @tsk: task to test
790
* @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
791
*
792
* Call with cgroup_mutex held. May take callback_mutex during call.
793
* Called for each task in a cgroup by cgroup_scan_tasks().
794
* Return nonzero if this tasks's cpus_allowed mask should be changed (in other
795
* words, if its mask is not equal to its cpuset's mask).
796
*/
797
static int cpuset_test_cpumask(struct task_struct *tsk,
798
struct cgroup_scanner *scan)
799
{
800
return !cpumask_equal(&tsk->cpus_allowed,
801
(cgroup_cs(scan->cg))->cpus_allowed);
802
}
803
804
/**
805
* cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
806
* @tsk: task to test
807
* @scan: struct cgroup_scanner containing the cgroup of the task
808
*
809
* Called by cgroup_scan_tasks() for each task in a cgroup whose
810
* cpus_allowed mask needs to be changed.
811
*
812
* We don't need to re-check for the cgroup/cpuset membership, since we're
813
* holding cgroup_lock() at this point.
814
*/
815
static void cpuset_change_cpumask(struct task_struct *tsk,
816
struct cgroup_scanner *scan)
817
{
818
set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
819
}
820
821
/**
822
* update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
823
* @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
824
* @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
825
*
826
* Called with cgroup_mutex held
827
*
828
* The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
829
* calling callback functions for each.
830
*
831
* No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
832
* if @heap != NULL.
833
*/
834
static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
835
{
836
struct cgroup_scanner scan;
837
838
scan.cg = cs->css.cgroup;
839
scan.test_task = cpuset_test_cpumask;
840
scan.process_task = cpuset_change_cpumask;
841
scan.heap = heap;
842
cgroup_scan_tasks(&scan);
843
}
844
845
/**
846
* update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
847
* @cs: the cpuset to consider
848
* @buf: buffer of cpu numbers written to this cpuset
849
*/
850
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
851
const char *buf)
852
{
853
struct ptr_heap heap;
854
int retval;
855
int is_load_balanced;
856
857
/* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
858
if (cs == &top_cpuset)
859
return -EACCES;
860
861
/*
862
* An empty cpus_allowed is ok only if the cpuset has no tasks.
863
* Since cpulist_parse() fails on an empty mask, we special case
864
* that parsing. The validate_change() call ensures that cpusets
865
* with tasks have cpus.
866
*/
867
if (!*buf) {
868
cpumask_clear(trialcs->cpus_allowed);
869
} else {
870
retval = cpulist_parse(buf, trialcs->cpus_allowed);
871
if (retval < 0)
872
return retval;
873
874
if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
875
return -EINVAL;
876
}
877
retval = validate_change(cs, trialcs);
878
if (retval < 0)
879
return retval;
880
881
/* Nothing to do if the cpus didn't change */
882
if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
883
return 0;
884
885
retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
886
if (retval)
887
return retval;
888
889
is_load_balanced = is_sched_load_balance(trialcs);
890
891
mutex_lock(&callback_mutex);
892
cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
893
mutex_unlock(&callback_mutex);
894
895
/*
896
* Scan tasks in the cpuset, and update the cpumasks of any
897
* that need an update.
898
*/
899
update_tasks_cpumask(cs, &heap);
900
901
heap_free(&heap);
902
903
if (is_load_balanced)
904
async_rebuild_sched_domains();
905
return 0;
906
}
907
908
/*
909
* cpuset_migrate_mm
910
*
911
* Migrate memory region from one set of nodes to another.
912
*
913
* Temporarilly set tasks mems_allowed to target nodes of migration,
914
* so that the migration code can allocate pages on these nodes.
915
*
916
* Call holding cgroup_mutex, so current's cpuset won't change
917
* during this call, as manage_mutex holds off any cpuset_attach()
918
* calls. Therefore we don't need to take task_lock around the
919
* call to guarantee_online_mems(), as we know no one is changing
920
* our task's cpuset.
921
*
922
* While the mm_struct we are migrating is typically from some
923
* other task, the task_struct mems_allowed that we are hacking
924
* is for our current task, which must allocate new pages for that
925
* migrating memory region.
926
*/
927
928
static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
929
const nodemask_t *to)
930
{
931
struct task_struct *tsk = current;
932
933
tsk->mems_allowed = *to;
934
935
do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
936
937
guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
938
}
939
940
/*
941
* cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
942
* @tsk: the task to change
943
* @newmems: new nodes that the task will be set
944
*
945
* In order to avoid seeing no nodes if the old and new nodes are disjoint,
946
* we structure updates as setting all new allowed nodes, then clearing newly
947
* disallowed ones.
948
*/
949
static void cpuset_change_task_nodemask(struct task_struct *tsk,
950
nodemask_t *newmems)
951
{
952
repeat:
953
/*
954
* Allow tasks that have access to memory reserves because they have
955
* been OOM killed to get memory anywhere.
956
*/
957
if (unlikely(test_thread_flag(TIF_MEMDIE)))
958
return;
959
if (current->flags & PF_EXITING) /* Let dying task have memory */
960
return;
961
962
task_lock(tsk);
963
nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
964
mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
965
966
967
/*
968
* ensure checking ->mems_allowed_change_disable after setting all new
969
* allowed nodes.
970
*
971
* the read-side task can see an nodemask with new allowed nodes and
972
* old allowed nodes. and if it allocates page when cpuset clears newly
973
* disallowed ones continuous, it can see the new allowed bits.
974
*
975
* And if setting all new allowed nodes is after the checking, setting
976
* all new allowed nodes and clearing newly disallowed ones will be done
977
* continuous, and the read-side task may find no node to alloc page.
978
*/
979
smp_mb();
980
981
/*
982
* Allocation of memory is very fast, we needn't sleep when waiting
983
* for the read-side.
984
*/
985
while (ACCESS_ONCE(tsk->mems_allowed_change_disable)) {
986
task_unlock(tsk);
987
if (!task_curr(tsk))
988
yield();
989
goto repeat;
990
}
991
992
/*
993
* ensure checking ->mems_allowed_change_disable before clearing all new
994
* disallowed nodes.
995
*
996
* if clearing newly disallowed bits before the checking, the read-side
997
* task may find no node to alloc page.
998
*/
999
smp_mb();
1000
1001
mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1002
tsk->mems_allowed = *newmems;
1003
task_unlock(tsk);
1004
}
1005
1006
/*
1007
* Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1008
* of it to cpuset's new mems_allowed, and migrate pages to new nodes if
1009
* memory_migrate flag is set. Called with cgroup_mutex held.
1010
*/
1011
static void cpuset_change_nodemask(struct task_struct *p,
1012
struct cgroup_scanner *scan)
1013
{
1014
struct mm_struct *mm;
1015
struct cpuset *cs;
1016
int migrate;
1017
const nodemask_t *oldmem = scan->data;
1018
static nodemask_t newmems; /* protected by cgroup_mutex */
1019
1020
cs = cgroup_cs(scan->cg);
1021
guarantee_online_mems(cs, &newmems);
1022
1023
cpuset_change_task_nodemask(p, &newmems);
1024
1025
mm = get_task_mm(p);
1026
if (!mm)
1027
return;
1028
1029
migrate = is_memory_migrate(cs);
1030
1031
mpol_rebind_mm(mm, &cs->mems_allowed);
1032
if (migrate)
1033
cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1034
mmput(mm);
1035
}
1036
1037
static void *cpuset_being_rebound;
1038
1039
/**
1040
* update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1041
* @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1042
* @oldmem: old mems_allowed of cpuset cs
1043
* @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1044
*
1045
* Called with cgroup_mutex held
1046
* No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1047
* if @heap != NULL.
1048
*/
1049
static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1050
struct ptr_heap *heap)
1051
{
1052
struct cgroup_scanner scan;
1053
1054
cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1055
1056
scan.cg = cs->css.cgroup;
1057
scan.test_task = NULL;
1058
scan.process_task = cpuset_change_nodemask;
1059
scan.heap = heap;
1060
scan.data = (nodemask_t *)oldmem;
1061
1062
/*
1063
* The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1064
* take while holding tasklist_lock. Forks can happen - the
1065
* mpol_dup() cpuset_being_rebound check will catch such forks,
1066
* and rebind their vma mempolicies too. Because we still hold
1067
* the global cgroup_mutex, we know that no other rebind effort
1068
* will be contending for the global variable cpuset_being_rebound.
1069
* It's ok if we rebind the same mm twice; mpol_rebind_mm()
1070
* is idempotent. Also migrate pages in each mm to new nodes.
1071
*/
1072
cgroup_scan_tasks(&scan);
1073
1074
/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1075
cpuset_being_rebound = NULL;
1076
}
1077
1078
/*
1079
* Handle user request to change the 'mems' memory placement
1080
* of a cpuset. Needs to validate the request, update the
1081
* cpusets mems_allowed, and for each task in the cpuset,
1082
* update mems_allowed and rebind task's mempolicy and any vma
1083
* mempolicies and if the cpuset is marked 'memory_migrate',
1084
* migrate the tasks pages to the new memory.
1085
*
1086
* Call with cgroup_mutex held. May take callback_mutex during call.
1087
* Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1088
* lock each such tasks mm->mmap_sem, scan its vma's and rebind
1089
* their mempolicies to the cpusets new mems_allowed.
1090
*/
1091
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1092
const char *buf)
1093
{
1094
NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
1095
int retval;
1096
struct ptr_heap heap;
1097
1098
if (!oldmem)
1099
return -ENOMEM;
1100
1101
/*
1102
* top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
1103
* it's read-only
1104
*/
1105
if (cs == &top_cpuset) {
1106
retval = -EACCES;
1107
goto done;
1108
}
1109
1110
/*
1111
* An empty mems_allowed is ok iff there are no tasks in the cpuset.
1112
* Since nodelist_parse() fails on an empty mask, we special case
1113
* that parsing. The validate_change() call ensures that cpusets
1114
* with tasks have memory.
1115
*/
1116
if (!*buf) {
1117
nodes_clear(trialcs->mems_allowed);
1118
} else {
1119
retval = nodelist_parse(buf, trialcs->mems_allowed);
1120
if (retval < 0)
1121
goto done;
1122
1123
if (!nodes_subset(trialcs->mems_allowed,
1124
node_states[N_HIGH_MEMORY])) {
1125
retval = -EINVAL;
1126
goto done;
1127
}
1128
}
1129
*oldmem = cs->mems_allowed;
1130
if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
1131
retval = 0; /* Too easy - nothing to do */
1132
goto done;
1133
}
1134
retval = validate_change(cs, trialcs);
1135
if (retval < 0)
1136
goto done;
1137
1138
retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1139
if (retval < 0)
1140
goto done;
1141
1142
mutex_lock(&callback_mutex);
1143
cs->mems_allowed = trialcs->mems_allowed;
1144
mutex_unlock(&callback_mutex);
1145
1146
update_tasks_nodemask(cs, oldmem, &heap);
1147
1148
heap_free(&heap);
1149
done:
1150
NODEMASK_FREE(oldmem);
1151
return retval;
1152
}
1153
1154
int current_cpuset_is_being_rebound(void)
1155
{
1156
return task_cs(current) == cpuset_being_rebound;
1157
}
1158
1159
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1160
{
1161
#ifdef CONFIG_SMP
1162
if (val < -1 || val >= sched_domain_level_max)
1163
return -EINVAL;
1164
#endif
1165
1166
if (val != cs->relax_domain_level) {
1167
cs->relax_domain_level = val;
1168
if (!cpumask_empty(cs->cpus_allowed) &&
1169
is_sched_load_balance(cs))
1170
async_rebuild_sched_domains();
1171
}
1172
1173
return 0;
1174
}
1175
1176
/*
1177
* cpuset_change_flag - make a task's spread flags the same as its cpuset's
1178
* @tsk: task to be updated
1179
* @scan: struct cgroup_scanner containing the cgroup of the task
1180
*
1181
* Called by cgroup_scan_tasks() for each task in a cgroup.
1182
*
1183
* We don't need to re-check for the cgroup/cpuset membership, since we're
1184
* holding cgroup_lock() at this point.
1185
*/
1186
static void cpuset_change_flag(struct task_struct *tsk,
1187
struct cgroup_scanner *scan)
1188
{
1189
cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
1190
}
1191
1192
/*
1193
* update_tasks_flags - update the spread flags of tasks in the cpuset.
1194
* @cs: the cpuset in which each task's spread flags needs to be changed
1195
* @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1196
*
1197
* Called with cgroup_mutex held
1198
*
1199
* The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1200
* calling callback functions for each.
1201
*
1202
* No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1203
* if @heap != NULL.
1204
*/
1205
static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1206
{
1207
struct cgroup_scanner scan;
1208
1209
scan.cg = cs->css.cgroup;
1210
scan.test_task = NULL;
1211
scan.process_task = cpuset_change_flag;
1212
scan.heap = heap;
1213
cgroup_scan_tasks(&scan);
1214
}
1215
1216
/*
1217
* update_flag - read a 0 or a 1 in a file and update associated flag
1218
* bit: the bit to update (see cpuset_flagbits_t)
1219
* cs: the cpuset to update
1220
* turning_on: whether the flag is being set or cleared
1221
*
1222
* Call with cgroup_mutex held.
1223
*/
1224
1225
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1226
int turning_on)
1227
{
1228
struct cpuset *trialcs;
1229
int balance_flag_changed;
1230
int spread_flag_changed;
1231
struct ptr_heap heap;
1232
int err;
1233
1234
trialcs = alloc_trial_cpuset(cs);
1235
if (!trialcs)
1236
return -ENOMEM;
1237
1238
if (turning_on)
1239
set_bit(bit, &trialcs->flags);
1240
else
1241
clear_bit(bit, &trialcs->flags);
1242
1243
err = validate_change(cs, trialcs);
1244
if (err < 0)
1245
goto out;
1246
1247
err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1248
if (err < 0)
1249
goto out;
1250
1251
balance_flag_changed = (is_sched_load_balance(cs) !=
1252
is_sched_load_balance(trialcs));
1253
1254
spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1255
|| (is_spread_page(cs) != is_spread_page(trialcs)));
1256
1257
mutex_lock(&callback_mutex);
1258
cs->flags = trialcs->flags;
1259
mutex_unlock(&callback_mutex);
1260
1261
if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1262
async_rebuild_sched_domains();
1263
1264
if (spread_flag_changed)
1265
update_tasks_flags(cs, &heap);
1266
heap_free(&heap);
1267
out:
1268
free_trial_cpuset(trialcs);
1269
return err;
1270
}
1271
1272
/*
1273
* Frequency meter - How fast is some event occurring?
1274
*
1275
* These routines manage a digitally filtered, constant time based,
1276
* event frequency meter. There are four routines:
1277
* fmeter_init() - initialize a frequency meter.
1278
* fmeter_markevent() - called each time the event happens.
1279
* fmeter_getrate() - returns the recent rate of such events.
1280
* fmeter_update() - internal routine used to update fmeter.
1281
*
1282
* A common data structure is passed to each of these routines,
1283
* which is used to keep track of the state required to manage the
1284
* frequency meter and its digital filter.
1285
*
1286
* The filter works on the number of events marked per unit time.
1287
* The filter is single-pole low-pass recursive (IIR). The time unit
1288
* is 1 second. Arithmetic is done using 32-bit integers scaled to
1289
* simulate 3 decimal digits of precision (multiplied by 1000).
1290
*
1291
* With an FM_COEF of 933, and a time base of 1 second, the filter
1292
* has a half-life of 10 seconds, meaning that if the events quit
1293
* happening, then the rate returned from the fmeter_getrate()
1294
* will be cut in half each 10 seconds, until it converges to zero.
1295
*
1296
* It is not worth doing a real infinitely recursive filter. If more
1297
* than FM_MAXTICKS ticks have elapsed since the last filter event,
1298
* just compute FM_MAXTICKS ticks worth, by which point the level
1299
* will be stable.
1300
*
1301
* Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1302
* arithmetic overflow in the fmeter_update() routine.
1303
*
1304
* Given the simple 32 bit integer arithmetic used, this meter works
1305
* best for reporting rates between one per millisecond (msec) and
1306
* one per 32 (approx) seconds. At constant rates faster than one
1307
* per msec it maxes out at values just under 1,000,000. At constant
1308
* rates between one per msec, and one per second it will stabilize
1309
* to a value N*1000, where N is the rate of events per second.
1310
* At constant rates between one per second and one per 32 seconds,
1311
* it will be choppy, moving up on the seconds that have an event,
1312
* and then decaying until the next event. At rates slower than
1313
* about one in 32 seconds, it decays all the way back to zero between
1314
* each event.
1315
*/
1316
1317
#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1318
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1319
#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1320
#define FM_SCALE 1000 /* faux fixed point scale */
1321
1322
/* Initialize a frequency meter */
1323
static void fmeter_init(struct fmeter *fmp)
1324
{
1325
fmp->cnt = 0;
1326
fmp->val = 0;
1327
fmp->time = 0;
1328
spin_lock_init(&fmp->lock);
1329
}
1330
1331
/* Internal meter update - process cnt events and update value */
1332
static void fmeter_update(struct fmeter *fmp)
1333
{
1334
time_t now = get_seconds();
1335
time_t ticks = now - fmp->time;
1336
1337
if (ticks == 0)
1338
return;
1339
1340
ticks = min(FM_MAXTICKS, ticks);
1341
while (ticks-- > 0)
1342
fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1343
fmp->time = now;
1344
1345
fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1346
fmp->cnt = 0;
1347
}
1348
1349
/* Process any previous ticks, then bump cnt by one (times scale). */
1350
static void fmeter_markevent(struct fmeter *fmp)
1351
{
1352
spin_lock(&fmp->lock);
1353
fmeter_update(fmp);
1354
fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1355
spin_unlock(&fmp->lock);
1356
}
1357
1358
/* Process any previous ticks, then return current value. */
1359
static int fmeter_getrate(struct fmeter *fmp)
1360
{
1361
int val;
1362
1363
spin_lock(&fmp->lock);
1364
fmeter_update(fmp);
1365
val = fmp->val;
1366
spin_unlock(&fmp->lock);
1367
return val;
1368
}
1369
1370
/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
1371
static int cpuset_can_attach(struct cgroup_subsys *ss, struct cgroup *cont,
1372
struct task_struct *tsk)
1373
{
1374
struct cpuset *cs = cgroup_cs(cont);
1375
1376
if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1377
return -ENOSPC;
1378
1379
/*
1380
* Kthreads bound to specific cpus cannot be moved to a new cpuset; we
1381
* cannot change their cpu affinity and isolating such threads by their
1382
* set of allowed nodes is unnecessary. Thus, cpusets are not
1383
* applicable for such threads. This prevents checking for success of
1384
* set_cpus_allowed_ptr() on all attached tasks before cpus_allowed may
1385
* be changed.
1386
*/
1387
if (tsk->flags & PF_THREAD_BOUND)
1388
return -EINVAL;
1389
1390
return 0;
1391
}
1392
1393
static int cpuset_can_attach_task(struct cgroup *cgrp, struct task_struct *task)
1394
{
1395
return security_task_setscheduler(task);
1396
}
1397
1398
/*
1399
* Protected by cgroup_lock. The nodemasks must be stored globally because
1400
* dynamically allocating them is not allowed in pre_attach, and they must
1401
* persist among pre_attach, attach_task, and attach.
1402
*/
1403
static cpumask_var_t cpus_attach;
1404
static nodemask_t cpuset_attach_nodemask_from;
1405
static nodemask_t cpuset_attach_nodemask_to;
1406
1407
/* Set-up work for before attaching each task. */
1408
static void cpuset_pre_attach(struct cgroup *cont)
1409
{
1410
struct cpuset *cs = cgroup_cs(cont);
1411
1412
if (cs == &top_cpuset)
1413
cpumask_copy(cpus_attach, cpu_possible_mask);
1414
else
1415
guarantee_online_cpus(cs, cpus_attach);
1416
1417
guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1418
}
1419
1420
/* Per-thread attachment work. */
1421
static void cpuset_attach_task(struct cgroup *cont, struct task_struct *tsk)
1422
{
1423
int err;
1424
struct cpuset *cs = cgroup_cs(cont);
1425
1426
/*
1427
* can_attach beforehand should guarantee that this doesn't fail.
1428
* TODO: have a better way to handle failure here
1429
*/
1430
err = set_cpus_allowed_ptr(tsk, cpus_attach);
1431
WARN_ON_ONCE(err);
1432
1433
cpuset_change_task_nodemask(tsk, &cpuset_attach_nodemask_to);
1434
cpuset_update_task_spread_flag(cs, tsk);
1435
}
1436
1437
static void cpuset_attach(struct cgroup_subsys *ss, struct cgroup *cont,
1438
struct cgroup *oldcont, struct task_struct *tsk)
1439
{
1440
struct mm_struct *mm;
1441
struct cpuset *cs = cgroup_cs(cont);
1442
struct cpuset *oldcs = cgroup_cs(oldcont);
1443
1444
/*
1445
* Change mm, possibly for multiple threads in a threadgroup. This is
1446
* expensive and may sleep.
1447
*/
1448
cpuset_attach_nodemask_from = oldcs->mems_allowed;
1449
cpuset_attach_nodemask_to = cs->mems_allowed;
1450
mm = get_task_mm(tsk);
1451
if (mm) {
1452
mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1453
if (is_memory_migrate(cs))
1454
cpuset_migrate_mm(mm, &cpuset_attach_nodemask_from,
1455
&cpuset_attach_nodemask_to);
1456
mmput(mm);
1457
}
1458
}
1459
1460
/* The various types of files and directories in a cpuset file system */
1461
1462
typedef enum {
1463
FILE_MEMORY_MIGRATE,
1464
FILE_CPULIST,
1465
FILE_MEMLIST,
1466
FILE_CPU_EXCLUSIVE,
1467
FILE_MEM_EXCLUSIVE,
1468
FILE_MEM_HARDWALL,
1469
FILE_SCHED_LOAD_BALANCE,
1470
FILE_SCHED_RELAX_DOMAIN_LEVEL,
1471
FILE_MEMORY_PRESSURE_ENABLED,
1472
FILE_MEMORY_PRESSURE,
1473
FILE_SPREAD_PAGE,
1474
FILE_SPREAD_SLAB,
1475
} cpuset_filetype_t;
1476
1477
static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1478
{
1479
int retval = 0;
1480
struct cpuset *cs = cgroup_cs(cgrp);
1481
cpuset_filetype_t type = cft->private;
1482
1483
if (!cgroup_lock_live_group(cgrp))
1484
return -ENODEV;
1485
1486
switch (type) {
1487
case FILE_CPU_EXCLUSIVE:
1488
retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1489
break;
1490
case FILE_MEM_EXCLUSIVE:
1491
retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1492
break;
1493
case FILE_MEM_HARDWALL:
1494
retval = update_flag(CS_MEM_HARDWALL, cs, val);
1495
break;
1496
case FILE_SCHED_LOAD_BALANCE:
1497
retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1498
break;
1499
case FILE_MEMORY_MIGRATE:
1500
retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1501
break;
1502
case FILE_MEMORY_PRESSURE_ENABLED:
1503
cpuset_memory_pressure_enabled = !!val;
1504
break;
1505
case FILE_MEMORY_PRESSURE:
1506
retval = -EACCES;
1507
break;
1508
case FILE_SPREAD_PAGE:
1509
retval = update_flag(CS_SPREAD_PAGE, cs, val);
1510
break;
1511
case FILE_SPREAD_SLAB:
1512
retval = update_flag(CS_SPREAD_SLAB, cs, val);
1513
break;
1514
default:
1515
retval = -EINVAL;
1516
break;
1517
}
1518
cgroup_unlock();
1519
return retval;
1520
}
1521
1522
static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1523
{
1524
int retval = 0;
1525
struct cpuset *cs = cgroup_cs(cgrp);
1526
cpuset_filetype_t type = cft->private;
1527
1528
if (!cgroup_lock_live_group(cgrp))
1529
return -ENODEV;
1530
1531
switch (type) {
1532
case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1533
retval = update_relax_domain_level(cs, val);
1534
break;
1535
default:
1536
retval = -EINVAL;
1537
break;
1538
}
1539
cgroup_unlock();
1540
return retval;
1541
}
1542
1543
/*
1544
* Common handling for a write to a "cpus" or "mems" file.
1545
*/
1546
static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1547
const char *buf)
1548
{
1549
int retval = 0;
1550
struct cpuset *cs = cgroup_cs(cgrp);
1551
struct cpuset *trialcs;
1552
1553
if (!cgroup_lock_live_group(cgrp))
1554
return -ENODEV;
1555
1556
trialcs = alloc_trial_cpuset(cs);
1557
if (!trialcs) {
1558
retval = -ENOMEM;
1559
goto out;
1560
}
1561
1562
switch (cft->private) {
1563
case FILE_CPULIST:
1564
retval = update_cpumask(cs, trialcs, buf);
1565
break;
1566
case FILE_MEMLIST:
1567
retval = update_nodemask(cs, trialcs, buf);
1568
break;
1569
default:
1570
retval = -EINVAL;
1571
break;
1572
}
1573
1574
free_trial_cpuset(trialcs);
1575
out:
1576
cgroup_unlock();
1577
return retval;
1578
}
1579
1580
/*
1581
* These ascii lists should be read in a single call, by using a user
1582
* buffer large enough to hold the entire map. If read in smaller
1583
* chunks, there is no guarantee of atomicity. Since the display format
1584
* used, list of ranges of sequential numbers, is variable length,
1585
* and since these maps can change value dynamically, one could read
1586
* gibberish by doing partial reads while a list was changing.
1587
* A single large read to a buffer that crosses a page boundary is
1588
* ok, because the result being copied to user land is not recomputed
1589
* across a page fault.
1590
*/
1591
1592
static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1593
{
1594
size_t count;
1595
1596
mutex_lock(&callback_mutex);
1597
count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
1598
mutex_unlock(&callback_mutex);
1599
1600
return count;
1601
}
1602
1603
static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1604
{
1605
size_t count;
1606
1607
mutex_lock(&callback_mutex);
1608
count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
1609
mutex_unlock(&callback_mutex);
1610
1611
return count;
1612
}
1613
1614
static ssize_t cpuset_common_file_read(struct cgroup *cont,
1615
struct cftype *cft,
1616
struct file *file,
1617
char __user *buf,
1618
size_t nbytes, loff_t *ppos)
1619
{
1620
struct cpuset *cs = cgroup_cs(cont);
1621
cpuset_filetype_t type = cft->private;
1622
char *page;
1623
ssize_t retval = 0;
1624
char *s;
1625
1626
if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1627
return -ENOMEM;
1628
1629
s = page;
1630
1631
switch (type) {
1632
case FILE_CPULIST:
1633
s += cpuset_sprintf_cpulist(s, cs);
1634
break;
1635
case FILE_MEMLIST:
1636
s += cpuset_sprintf_memlist(s, cs);
1637
break;
1638
default:
1639
retval = -EINVAL;
1640
goto out;
1641
}
1642
*s++ = '\n';
1643
1644
retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1645
out:
1646
free_page((unsigned long)page);
1647
return retval;
1648
}
1649
1650
static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1651
{
1652
struct cpuset *cs = cgroup_cs(cont);
1653
cpuset_filetype_t type = cft->private;
1654
switch (type) {
1655
case FILE_CPU_EXCLUSIVE:
1656
return is_cpu_exclusive(cs);
1657
case FILE_MEM_EXCLUSIVE:
1658
return is_mem_exclusive(cs);
1659
case FILE_MEM_HARDWALL:
1660
return is_mem_hardwall(cs);
1661
case FILE_SCHED_LOAD_BALANCE:
1662
return is_sched_load_balance(cs);
1663
case FILE_MEMORY_MIGRATE:
1664
return is_memory_migrate(cs);
1665
case FILE_MEMORY_PRESSURE_ENABLED:
1666
return cpuset_memory_pressure_enabled;
1667
case FILE_MEMORY_PRESSURE:
1668
return fmeter_getrate(&cs->fmeter);
1669
case FILE_SPREAD_PAGE:
1670
return is_spread_page(cs);
1671
case FILE_SPREAD_SLAB:
1672
return is_spread_slab(cs);
1673
default:
1674
BUG();
1675
}
1676
1677
/* Unreachable but makes gcc happy */
1678
return 0;
1679
}
1680
1681
static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1682
{
1683
struct cpuset *cs = cgroup_cs(cont);
1684
cpuset_filetype_t type = cft->private;
1685
switch (type) {
1686
case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1687
return cs->relax_domain_level;
1688
default:
1689
BUG();
1690
}
1691
1692
/* Unrechable but makes gcc happy */
1693
return 0;
1694
}
1695
1696
1697
/*
1698
* for the common functions, 'private' gives the type of file
1699
*/
1700
1701
static struct cftype files[] = {
1702
{
1703
.name = "cpus",
1704
.read = cpuset_common_file_read,
1705
.write_string = cpuset_write_resmask,
1706
.max_write_len = (100U + 6 * NR_CPUS),
1707
.private = FILE_CPULIST,
1708
},
1709
1710
{
1711
.name = "mems",
1712
.read = cpuset_common_file_read,
1713
.write_string = cpuset_write_resmask,
1714
.max_write_len = (100U + 6 * MAX_NUMNODES),
1715
.private = FILE_MEMLIST,
1716
},
1717
1718
{
1719
.name = "cpu_exclusive",
1720
.read_u64 = cpuset_read_u64,
1721
.write_u64 = cpuset_write_u64,
1722
.private = FILE_CPU_EXCLUSIVE,
1723
},
1724
1725
{
1726
.name = "mem_exclusive",
1727
.read_u64 = cpuset_read_u64,
1728
.write_u64 = cpuset_write_u64,
1729
.private = FILE_MEM_EXCLUSIVE,
1730
},
1731
1732
{
1733
.name = "mem_hardwall",
1734
.read_u64 = cpuset_read_u64,
1735
.write_u64 = cpuset_write_u64,
1736
.private = FILE_MEM_HARDWALL,
1737
},
1738
1739
{
1740
.name = "sched_load_balance",
1741
.read_u64 = cpuset_read_u64,
1742
.write_u64 = cpuset_write_u64,
1743
.private = FILE_SCHED_LOAD_BALANCE,
1744
},
1745
1746
{
1747
.name = "sched_relax_domain_level",
1748
.read_s64 = cpuset_read_s64,
1749
.write_s64 = cpuset_write_s64,
1750
.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1751
},
1752
1753
{
1754
.name = "memory_migrate",
1755
.read_u64 = cpuset_read_u64,
1756
.write_u64 = cpuset_write_u64,
1757
.private = FILE_MEMORY_MIGRATE,
1758
},
1759
1760
{
1761
.name = "memory_pressure",
1762
.read_u64 = cpuset_read_u64,
1763
.write_u64 = cpuset_write_u64,
1764
.private = FILE_MEMORY_PRESSURE,
1765
.mode = S_IRUGO,
1766
},
1767
1768
{
1769
.name = "memory_spread_page",
1770
.read_u64 = cpuset_read_u64,
1771
.write_u64 = cpuset_write_u64,
1772
.private = FILE_SPREAD_PAGE,
1773
},
1774
1775
{
1776
.name = "memory_spread_slab",
1777
.read_u64 = cpuset_read_u64,
1778
.write_u64 = cpuset_write_u64,
1779
.private = FILE_SPREAD_SLAB,
1780
},
1781
};
1782
1783
static struct cftype cft_memory_pressure_enabled = {
1784
.name = "memory_pressure_enabled",
1785
.read_u64 = cpuset_read_u64,
1786
.write_u64 = cpuset_write_u64,
1787
.private = FILE_MEMORY_PRESSURE_ENABLED,
1788
};
1789
1790
static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1791
{
1792
int err;
1793
1794
err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1795
if (err)
1796
return err;
1797
/* memory_pressure_enabled is in root cpuset only */
1798
if (!cont->parent)
1799
err = cgroup_add_file(cont, ss,
1800
&cft_memory_pressure_enabled);
1801
return err;
1802
}
1803
1804
/*
1805
* post_clone() is called during cgroup_create() when the
1806
* clone_children mount argument was specified. The cgroup
1807
* can not yet have any tasks.
1808
*
1809
* Currently we refuse to set up the cgroup - thereby
1810
* refusing the task to be entered, and as a result refusing
1811
* the sys_unshare() or clone() which initiated it - if any
1812
* sibling cpusets have exclusive cpus or mem.
1813
*
1814
* If this becomes a problem for some users who wish to
1815
* allow that scenario, then cpuset_post_clone() could be
1816
* changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1817
* (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1818
* held.
1819
*/
1820
static void cpuset_post_clone(struct cgroup_subsys *ss,
1821
struct cgroup *cgroup)
1822
{
1823
struct cgroup *parent, *child;
1824
struct cpuset *cs, *parent_cs;
1825
1826
parent = cgroup->parent;
1827
list_for_each_entry(child, &parent->children, sibling) {
1828
cs = cgroup_cs(child);
1829
if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1830
return;
1831
}
1832
cs = cgroup_cs(cgroup);
1833
parent_cs = cgroup_cs(parent);
1834
1835
mutex_lock(&callback_mutex);
1836
cs->mems_allowed = parent_cs->mems_allowed;
1837
cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed);
1838
mutex_unlock(&callback_mutex);
1839
return;
1840
}
1841
1842
/*
1843
* cpuset_create - create a cpuset
1844
* ss: cpuset cgroup subsystem
1845
* cont: control group that the new cpuset will be part of
1846
*/
1847
1848
static struct cgroup_subsys_state *cpuset_create(
1849
struct cgroup_subsys *ss,
1850
struct cgroup *cont)
1851
{
1852
struct cpuset *cs;
1853
struct cpuset *parent;
1854
1855
if (!cont->parent) {
1856
return &top_cpuset.css;
1857
}
1858
parent = cgroup_cs(cont->parent);
1859
cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1860
if (!cs)
1861
return ERR_PTR(-ENOMEM);
1862
if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1863
kfree(cs);
1864
return ERR_PTR(-ENOMEM);
1865
}
1866
1867
cs->flags = 0;
1868
if (is_spread_page(parent))
1869
set_bit(CS_SPREAD_PAGE, &cs->flags);
1870
if (is_spread_slab(parent))
1871
set_bit(CS_SPREAD_SLAB, &cs->flags);
1872
set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1873
cpumask_clear(cs->cpus_allowed);
1874
nodes_clear(cs->mems_allowed);
1875
fmeter_init(&cs->fmeter);
1876
cs->relax_domain_level = -1;
1877
1878
cs->parent = parent;
1879
number_of_cpusets++;
1880
return &cs->css ;
1881
}
1882
1883
/*
1884
* If the cpuset being removed has its flag 'sched_load_balance'
1885
* enabled, then simulate turning sched_load_balance off, which
1886
* will call async_rebuild_sched_domains().
1887
*/
1888
1889
static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1890
{
1891
struct cpuset *cs = cgroup_cs(cont);
1892
1893
if (is_sched_load_balance(cs))
1894
update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1895
1896
number_of_cpusets--;
1897
free_cpumask_var(cs->cpus_allowed);
1898
kfree(cs);
1899
}
1900
1901
struct cgroup_subsys cpuset_subsys = {
1902
.name = "cpuset",
1903
.create = cpuset_create,
1904
.destroy = cpuset_destroy,
1905
.can_attach = cpuset_can_attach,
1906
.can_attach_task = cpuset_can_attach_task,
1907
.pre_attach = cpuset_pre_attach,
1908
.attach_task = cpuset_attach_task,
1909
.attach = cpuset_attach,
1910
.populate = cpuset_populate,
1911
.post_clone = cpuset_post_clone,
1912
.subsys_id = cpuset_subsys_id,
1913
.early_init = 1,
1914
};
1915
1916
/**
1917
* cpuset_init - initialize cpusets at system boot
1918
*
1919
* Description: Initialize top_cpuset and the cpuset internal file system,
1920
**/
1921
1922
int __init cpuset_init(void)
1923
{
1924
int err = 0;
1925
1926
if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
1927
BUG();
1928
1929
cpumask_setall(top_cpuset.cpus_allowed);
1930
nodes_setall(top_cpuset.mems_allowed);
1931
1932
fmeter_init(&top_cpuset.fmeter);
1933
set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1934
top_cpuset.relax_domain_level = -1;
1935
1936
err = register_filesystem(&cpuset_fs_type);
1937
if (err < 0)
1938
return err;
1939
1940
if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1941
BUG();
1942
1943
number_of_cpusets = 1;
1944
return 0;
1945
}
1946
1947
/**
1948
* cpuset_do_move_task - move a given task to another cpuset
1949
* @tsk: pointer to task_struct the task to move
1950
* @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1951
*
1952
* Called by cgroup_scan_tasks() for each task in a cgroup.
1953
* Return nonzero to stop the walk through the tasks.
1954
*/
1955
static void cpuset_do_move_task(struct task_struct *tsk,
1956
struct cgroup_scanner *scan)
1957
{
1958
struct cgroup *new_cgroup = scan->data;
1959
1960
cgroup_attach_task(new_cgroup, tsk);
1961
}
1962
1963
/**
1964
* move_member_tasks_to_cpuset - move tasks from one cpuset to another
1965
* @from: cpuset in which the tasks currently reside
1966
* @to: cpuset to which the tasks will be moved
1967
*
1968
* Called with cgroup_mutex held
1969
* callback_mutex must not be held, as cpuset_attach() will take it.
1970
*
1971
* The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1972
* calling callback functions for each.
1973
*/
1974
static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1975
{
1976
struct cgroup_scanner scan;
1977
1978
scan.cg = from->css.cgroup;
1979
scan.test_task = NULL; /* select all tasks in cgroup */
1980
scan.process_task = cpuset_do_move_task;
1981
scan.heap = NULL;
1982
scan.data = to->css.cgroup;
1983
1984
if (cgroup_scan_tasks(&scan))
1985
printk(KERN_ERR "move_member_tasks_to_cpuset: "
1986
"cgroup_scan_tasks failed\n");
1987
}
1988
1989
/*
1990
* If CPU and/or memory hotplug handlers, below, unplug any CPUs
1991
* or memory nodes, we need to walk over the cpuset hierarchy,
1992
* removing that CPU or node from all cpusets. If this removes the
1993
* last CPU or node from a cpuset, then move the tasks in the empty
1994
* cpuset to its next-highest non-empty parent.
1995
*
1996
* Called with cgroup_mutex held
1997
* callback_mutex must not be held, as cpuset_attach() will take it.
1998
*/
1999
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2000
{
2001
struct cpuset *parent;
2002
2003
/*
2004
* The cgroup's css_sets list is in use if there are tasks
2005
* in the cpuset; the list is empty if there are none;
2006
* the cs->css.refcnt seems always 0.
2007
*/
2008
if (list_empty(&cs->css.cgroup->css_sets))
2009
return;
2010
2011
/*
2012
* Find its next-highest non-empty parent, (top cpuset
2013
* has online cpus, so can't be empty).
2014
*/
2015
parent = cs->parent;
2016
while (cpumask_empty(parent->cpus_allowed) ||
2017
nodes_empty(parent->mems_allowed))
2018
parent = parent->parent;
2019
2020
move_member_tasks_to_cpuset(cs, parent);
2021
}
2022
2023
/*
2024
* Walk the specified cpuset subtree and look for empty cpusets.
2025
* The tasks of such cpuset must be moved to a parent cpuset.
2026
*
2027
* Called with cgroup_mutex held. We take callback_mutex to modify
2028
* cpus_allowed and mems_allowed.
2029
*
2030
* This walk processes the tree from top to bottom, completing one layer
2031
* before dropping down to the next. It always processes a node before
2032
* any of its children.
2033
*
2034
* For now, since we lack memory hot unplug, we'll never see a cpuset
2035
* that has tasks along with an empty 'mems'. But if we did see such
2036
* a cpuset, we'd handle it just like we do if its 'cpus' was empty.
2037
*/
2038
static void scan_for_empty_cpusets(struct cpuset *root)
2039
{
2040
LIST_HEAD(queue);
2041
struct cpuset *cp; /* scans cpusets being updated */
2042
struct cpuset *child; /* scans child cpusets of cp */
2043
struct cgroup *cont;
2044
static nodemask_t oldmems; /* protected by cgroup_mutex */
2045
2046
list_add_tail((struct list_head *)&root->stack_list, &queue);
2047
2048
while (!list_empty(&queue)) {
2049
cp = list_first_entry(&queue, struct cpuset, stack_list);
2050
list_del(queue.next);
2051
list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
2052
child = cgroup_cs(cont);
2053
list_add_tail(&child->stack_list, &queue);
2054
}
2055
2056
/* Continue past cpusets with all cpus, mems online */
2057
if (cpumask_subset(cp->cpus_allowed, cpu_active_mask) &&
2058
nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
2059
continue;
2060
2061
oldmems = cp->mems_allowed;
2062
2063
/* Remove offline cpus and mems from this cpuset. */
2064
mutex_lock(&callback_mutex);
2065
cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
2066
cpu_active_mask);
2067
nodes_and(cp->mems_allowed, cp->mems_allowed,
2068
node_states[N_HIGH_MEMORY]);
2069
mutex_unlock(&callback_mutex);
2070
2071
/* Move tasks from the empty cpuset to a parent */
2072
if (cpumask_empty(cp->cpus_allowed) ||
2073
nodes_empty(cp->mems_allowed))
2074
remove_tasks_in_empty_cpuset(cp);
2075
else {
2076
update_tasks_cpumask(cp, NULL);
2077
update_tasks_nodemask(cp, &oldmems, NULL);
2078
}
2079
}
2080
}
2081
2082
/*
2083
* The top_cpuset tracks what CPUs and Memory Nodes are online,
2084
* period. This is necessary in order to make cpusets transparent
2085
* (of no affect) on systems that are actively using CPU hotplug
2086
* but making no active use of cpusets.
2087
*
2088
* This routine ensures that top_cpuset.cpus_allowed tracks
2089
* cpu_active_mask on each CPU hotplug (cpuhp) event.
2090
*
2091
* Called within get_online_cpus(). Needs to call cgroup_lock()
2092
* before calling generate_sched_domains().
2093
*/
2094
void cpuset_update_active_cpus(void)
2095
{
2096
struct sched_domain_attr *attr;
2097
cpumask_var_t *doms;
2098
int ndoms;
2099
2100
cgroup_lock();
2101
mutex_lock(&callback_mutex);
2102
cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2103
mutex_unlock(&callback_mutex);
2104
scan_for_empty_cpusets(&top_cpuset);
2105
ndoms = generate_sched_domains(&doms, &attr);
2106
cgroup_unlock();
2107
2108
/* Have scheduler rebuild the domains */
2109
partition_sched_domains(ndoms, doms, attr);
2110
}
2111
2112
#ifdef CONFIG_MEMORY_HOTPLUG
2113
/*
2114
* Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
2115
* Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
2116
* See also the previous routine cpuset_track_online_cpus().
2117
*/
2118
static int cpuset_track_online_nodes(struct notifier_block *self,
2119
unsigned long action, void *arg)
2120
{
2121
static nodemask_t oldmems; /* protected by cgroup_mutex */
2122
2123
cgroup_lock();
2124
switch (action) {
2125
case MEM_ONLINE:
2126
oldmems = top_cpuset.mems_allowed;
2127
mutex_lock(&callback_mutex);
2128
top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2129
mutex_unlock(&callback_mutex);
2130
update_tasks_nodemask(&top_cpuset, &oldmems, NULL);
2131
break;
2132
case MEM_OFFLINE:
2133
/*
2134
* needn't update top_cpuset.mems_allowed explicitly because
2135
* scan_for_empty_cpusets() will update it.
2136
*/
2137
scan_for_empty_cpusets(&top_cpuset);
2138
break;
2139
default:
2140
break;
2141
}
2142
cgroup_unlock();
2143
2144
return NOTIFY_OK;
2145
}
2146
#endif
2147
2148
/**
2149
* cpuset_init_smp - initialize cpus_allowed
2150
*
2151
* Description: Finish top cpuset after cpu, node maps are initialized
2152
**/
2153
2154
void __init cpuset_init_smp(void)
2155
{
2156
cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2157
top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2158
2159
hotplug_memory_notifier(cpuset_track_online_nodes, 10);
2160
2161
cpuset_wq = create_singlethread_workqueue("cpuset");
2162
BUG_ON(!cpuset_wq);
2163
}
2164
2165
/**
2166
* cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2167
* @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2168
* @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2169
*
2170
* Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2171
* attached to the specified @tsk. Guaranteed to return some non-empty
2172
* subset of cpu_online_map, even if this means going outside the
2173
* tasks cpuset.
2174
**/
2175
2176
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2177
{
2178
mutex_lock(&callback_mutex);
2179
task_lock(tsk);
2180
guarantee_online_cpus(task_cs(tsk), pmask);
2181
task_unlock(tsk);
2182
mutex_unlock(&callback_mutex);
2183
}
2184
2185
int cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2186
{
2187
const struct cpuset *cs;
2188
int cpu;
2189
2190
rcu_read_lock();
2191
cs = task_cs(tsk);
2192
if (cs)
2193
do_set_cpus_allowed(tsk, cs->cpus_allowed);
2194
rcu_read_unlock();
2195
2196
/*
2197
* We own tsk->cpus_allowed, nobody can change it under us.
2198
*
2199
* But we used cs && cs->cpus_allowed lockless and thus can
2200
* race with cgroup_attach_task() or update_cpumask() and get
2201
* the wrong tsk->cpus_allowed. However, both cases imply the
2202
* subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2203
* which takes task_rq_lock().
2204
*
2205
* If we are called after it dropped the lock we must see all
2206
* changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2207
* set any mask even if it is not right from task_cs() pov,
2208
* the pending set_cpus_allowed_ptr() will fix things.
2209
*/
2210
2211
cpu = cpumask_any_and(&tsk->cpus_allowed, cpu_active_mask);
2212
if (cpu >= nr_cpu_ids) {
2213
/*
2214
* Either tsk->cpus_allowed is wrong (see above) or it
2215
* is actually empty. The latter case is only possible
2216
* if we are racing with remove_tasks_in_empty_cpuset().
2217
* Like above we can temporary set any mask and rely on
2218
* set_cpus_allowed_ptr() as synchronization point.
2219
*/
2220
do_set_cpus_allowed(tsk, cpu_possible_mask);
2221
cpu = cpumask_any(cpu_active_mask);
2222
}
2223
2224
return cpu;
2225
}
2226
2227
void cpuset_init_current_mems_allowed(void)
2228
{
2229
nodes_setall(current->mems_allowed);
2230
}
2231
2232
/**
2233
* cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2234
* @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2235
*
2236
* Description: Returns the nodemask_t mems_allowed of the cpuset
2237
* attached to the specified @tsk. Guaranteed to return some non-empty
2238
* subset of node_states[N_HIGH_MEMORY], even if this means going outside the
2239
* tasks cpuset.
2240
**/
2241
2242
nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2243
{
2244
nodemask_t mask;
2245
2246
mutex_lock(&callback_mutex);
2247
task_lock(tsk);
2248
guarantee_online_mems(task_cs(tsk), &mask);
2249
task_unlock(tsk);
2250
mutex_unlock(&callback_mutex);
2251
2252
return mask;
2253
}
2254
2255
/**
2256
* cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2257
* @nodemask: the nodemask to be checked
2258
*
2259
* Are any of the nodes in the nodemask allowed in current->mems_allowed?
2260
*/
2261
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2262
{
2263
return nodes_intersects(*nodemask, current->mems_allowed);
2264
}
2265
2266
/*
2267
* nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2268
* mem_hardwall ancestor to the specified cpuset. Call holding
2269
* callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2270
* (an unusual configuration), then returns the root cpuset.
2271
*/
2272
static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2273
{
2274
while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
2275
cs = cs->parent;
2276
return cs;
2277
}
2278
2279
/**
2280
* cpuset_node_allowed_softwall - Can we allocate on a memory node?
2281
* @node: is this an allowed node?
2282
* @gfp_mask: memory allocation flags
2283
*
2284
* If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2285
* set, yes, we can always allocate. If node is in our task's mems_allowed,
2286
* yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2287
* hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2288
* OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2289
* flag, yes.
2290
* Otherwise, no.
2291
*
2292
* If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2293
* cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2294
* might sleep, and might allow a node from an enclosing cpuset.
2295
*
2296
* cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2297
* cpusets, and never sleeps.
2298
*
2299
* The __GFP_THISNODE placement logic is really handled elsewhere,
2300
* by forcibly using a zonelist starting at a specified node, and by
2301
* (in get_page_from_freelist()) refusing to consider the zones for
2302
* any node on the zonelist except the first. By the time any such
2303
* calls get to this routine, we should just shut up and say 'yes'.
2304
*
2305
* GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2306
* and do not allow allocations outside the current tasks cpuset
2307
* unless the task has been OOM killed as is marked TIF_MEMDIE.
2308
* GFP_KERNEL allocations are not so marked, so can escape to the
2309
* nearest enclosing hardwalled ancestor cpuset.
2310
*
2311
* Scanning up parent cpusets requires callback_mutex. The
2312
* __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2313
* _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2314
* current tasks mems_allowed came up empty on the first pass over
2315
* the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2316
* cpuset are short of memory, might require taking the callback_mutex
2317
* mutex.
2318
*
2319
* The first call here from mm/page_alloc:get_page_from_freelist()
2320
* has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2321
* so no allocation on a node outside the cpuset is allowed (unless
2322
* in interrupt, of course).
2323
*
2324
* The second pass through get_page_from_freelist() doesn't even call
2325
* here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2326
* variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2327
* in alloc_flags. That logic and the checks below have the combined
2328
* affect that:
2329
* in_interrupt - any node ok (current task context irrelevant)
2330
* GFP_ATOMIC - any node ok
2331
* TIF_MEMDIE - any node ok
2332
* GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2333
* GFP_USER - only nodes in current tasks mems allowed ok.
2334
*
2335
* Rule:
2336
* Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2337
* pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2338
* the code that might scan up ancestor cpusets and sleep.
2339
*/
2340
int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
2341
{
2342
const struct cpuset *cs; /* current cpuset ancestors */
2343
int allowed; /* is allocation in zone z allowed? */
2344
2345
if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2346
return 1;
2347
might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2348
if (node_isset(node, current->mems_allowed))
2349
return 1;
2350
/*
2351
* Allow tasks that have access to memory reserves because they have
2352
* been OOM killed to get memory anywhere.
2353
*/
2354
if (unlikely(test_thread_flag(TIF_MEMDIE)))
2355
return 1;
2356
if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2357
return 0;
2358
2359
if (current->flags & PF_EXITING) /* Let dying task have memory */
2360
return 1;
2361
2362
/* Not hardwall and node outside mems_allowed: scan up cpusets */
2363
mutex_lock(&callback_mutex);
2364
2365
task_lock(current);
2366
cs = nearest_hardwall_ancestor(task_cs(current));
2367
task_unlock(current);
2368
2369
allowed = node_isset(node, cs->mems_allowed);
2370
mutex_unlock(&callback_mutex);
2371
return allowed;
2372
}
2373
2374
/*
2375
* cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2376
* @node: is this an allowed node?
2377
* @gfp_mask: memory allocation flags
2378
*
2379
* If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2380
* set, yes, we can always allocate. If node is in our task's mems_allowed,
2381
* yes. If the task has been OOM killed and has access to memory reserves as
2382
* specified by the TIF_MEMDIE flag, yes.
2383
* Otherwise, no.
2384
*
2385
* The __GFP_THISNODE placement logic is really handled elsewhere,
2386
* by forcibly using a zonelist starting at a specified node, and by
2387
* (in get_page_from_freelist()) refusing to consider the zones for
2388
* any node on the zonelist except the first. By the time any such
2389
* calls get to this routine, we should just shut up and say 'yes'.
2390
*
2391
* Unlike the cpuset_node_allowed_softwall() variant, above,
2392
* this variant requires that the node be in the current task's
2393
* mems_allowed or that we're in interrupt. It does not scan up the
2394
* cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2395
* It never sleeps.
2396
*/
2397
int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2398
{
2399
if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2400
return 1;
2401
if (node_isset(node, current->mems_allowed))
2402
return 1;
2403
/*
2404
* Allow tasks that have access to memory reserves because they have
2405
* been OOM killed to get memory anywhere.
2406
*/
2407
if (unlikely(test_thread_flag(TIF_MEMDIE)))
2408
return 1;
2409
return 0;
2410
}
2411
2412
/**
2413
* cpuset_unlock - release lock on cpuset changes
2414
*
2415
* Undo the lock taken in a previous cpuset_lock() call.
2416
*/
2417
2418
void cpuset_unlock(void)
2419
{
2420
mutex_unlock(&callback_mutex);
2421
}
2422
2423
/**
2424
* cpuset_mem_spread_node() - On which node to begin search for a file page
2425
* cpuset_slab_spread_node() - On which node to begin search for a slab page
2426
*
2427
* If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2428
* tasks in a cpuset with is_spread_page or is_spread_slab set),
2429
* and if the memory allocation used cpuset_mem_spread_node()
2430
* to determine on which node to start looking, as it will for
2431
* certain page cache or slab cache pages such as used for file
2432
* system buffers and inode caches, then instead of starting on the
2433
* local node to look for a free page, rather spread the starting
2434
* node around the tasks mems_allowed nodes.
2435
*
2436
* We don't have to worry about the returned node being offline
2437
* because "it can't happen", and even if it did, it would be ok.
2438
*
2439
* The routines calling guarantee_online_mems() are careful to
2440
* only set nodes in task->mems_allowed that are online. So it
2441
* should not be possible for the following code to return an
2442
* offline node. But if it did, that would be ok, as this routine
2443
* is not returning the node where the allocation must be, only
2444
* the node where the search should start. The zonelist passed to
2445
* __alloc_pages() will include all nodes. If the slab allocator
2446
* is passed an offline node, it will fall back to the local node.
2447
* See kmem_cache_alloc_node().
2448
*/
2449
2450
static int cpuset_spread_node(int *rotor)
2451
{
2452
int node;
2453
2454
node = next_node(*rotor, current->mems_allowed);
2455
if (node == MAX_NUMNODES)
2456
node = first_node(current->mems_allowed);
2457
*rotor = node;
2458
return node;
2459
}
2460
2461
int cpuset_mem_spread_node(void)
2462
{
2463
return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2464
}
2465
2466
int cpuset_slab_spread_node(void)
2467
{
2468
return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2469
}
2470
2471
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2472
2473
/**
2474
* cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2475
* @tsk1: pointer to task_struct of some task.
2476
* @tsk2: pointer to task_struct of some other task.
2477
*
2478
* Description: Return true if @tsk1's mems_allowed intersects the
2479
* mems_allowed of @tsk2. Used by the OOM killer to determine if
2480
* one of the task's memory usage might impact the memory available
2481
* to the other.
2482
**/
2483
2484
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2485
const struct task_struct *tsk2)
2486
{
2487
return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2488
}
2489
2490
/**
2491
* cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2492
* @task: pointer to task_struct of some task.
2493
*
2494
* Description: Prints @task's name, cpuset name, and cached copy of its
2495
* mems_allowed to the kernel log. Must hold task_lock(task) to allow
2496
* dereferencing task_cs(task).
2497
*/
2498
void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2499
{
2500
struct dentry *dentry;
2501
2502
dentry = task_cs(tsk)->css.cgroup->dentry;
2503
spin_lock(&cpuset_buffer_lock);
2504
snprintf(cpuset_name, CPUSET_NAME_LEN,
2505
dentry ? (const char *)dentry->d_name.name : "/");
2506
nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2507
tsk->mems_allowed);
2508
printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2509
tsk->comm, cpuset_name, cpuset_nodelist);
2510
spin_unlock(&cpuset_buffer_lock);
2511
}
2512
2513
/*
2514
* Collection of memory_pressure is suppressed unless
2515
* this flag is enabled by writing "1" to the special
2516
* cpuset file 'memory_pressure_enabled' in the root cpuset.
2517
*/
2518
2519
int cpuset_memory_pressure_enabled __read_mostly;
2520
2521
/**
2522
* cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2523
*
2524
* Keep a running average of the rate of synchronous (direct)
2525
* page reclaim efforts initiated by tasks in each cpuset.
2526
*
2527
* This represents the rate at which some task in the cpuset
2528
* ran low on memory on all nodes it was allowed to use, and
2529
* had to enter the kernels page reclaim code in an effort to
2530
* create more free memory by tossing clean pages or swapping
2531
* or writing dirty pages.
2532
*
2533
* Display to user space in the per-cpuset read-only file
2534
* "memory_pressure". Value displayed is an integer
2535
* representing the recent rate of entry into the synchronous
2536
* (direct) page reclaim by any task attached to the cpuset.
2537
**/
2538
2539
void __cpuset_memory_pressure_bump(void)
2540
{
2541
task_lock(current);
2542
fmeter_markevent(&task_cs(current)->fmeter);
2543
task_unlock(current);
2544
}
2545
2546
#ifdef CONFIG_PROC_PID_CPUSET
2547
/*
2548
* proc_cpuset_show()
2549
* - Print tasks cpuset path into seq_file.
2550
* - Used for /proc/<pid>/cpuset.
2551
* - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2552
* doesn't really matter if tsk->cpuset changes after we read it,
2553
* and we take cgroup_mutex, keeping cpuset_attach() from changing it
2554
* anyway.
2555
*/
2556
static int proc_cpuset_show(struct seq_file *m, void *unused_v)
2557
{
2558
struct pid *pid;
2559
struct task_struct *tsk;
2560
char *buf;
2561
struct cgroup_subsys_state *css;
2562
int retval;
2563
2564
retval = -ENOMEM;
2565
buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2566
if (!buf)
2567
goto out;
2568
2569
retval = -ESRCH;
2570
pid = m->private;
2571
tsk = get_pid_task(pid, PIDTYPE_PID);
2572
if (!tsk)
2573
goto out_free;
2574
2575
retval = -EINVAL;
2576
cgroup_lock();
2577
css = task_subsys_state(tsk, cpuset_subsys_id);
2578
retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
2579
if (retval < 0)
2580
goto out_unlock;
2581
seq_puts(m, buf);
2582
seq_putc(m, '\n');
2583
out_unlock:
2584
cgroup_unlock();
2585
put_task_struct(tsk);
2586
out_free:
2587
kfree(buf);
2588
out:
2589
return retval;
2590
}
2591
2592
static int cpuset_open(struct inode *inode, struct file *file)
2593
{
2594
struct pid *pid = PROC_I(inode)->pid;
2595
return single_open(file, proc_cpuset_show, pid);
2596
}
2597
2598
const struct file_operations proc_cpuset_operations = {
2599
.open = cpuset_open,
2600
.read = seq_read,
2601
.llseek = seq_lseek,
2602
.release = single_release,
2603
};
2604
#endif /* CONFIG_PROC_PID_CPUSET */
2605
2606
/* Display task mems_allowed in /proc/<pid>/status file. */
2607
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2608
{
2609
seq_printf(m, "Mems_allowed:\t");
2610
seq_nodemask(m, &task->mems_allowed);
2611
seq_printf(m, "\n");
2612
seq_printf(m, "Mems_allowed_list:\t");
2613
seq_nodemask_list(m, &task->mems_allowed);
2614
seq_printf(m, "\n");
2615
}
2616
2617