Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/kernel/events/hw_breakpoint.c
10818 views
1
/*
2
* This program is free software; you can redistribute it and/or modify
3
* it under the terms of the GNU General Public License as published by
4
* the Free Software Foundation; either version 2 of the License, or
5
* (at your option) any later version.
6
*
7
* This program is distributed in the hope that it will be useful,
8
* but WITHOUT ANY WARRANTY; without even the implied warranty of
9
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10
* GNU General Public License for more details.
11
*
12
* You should have received a copy of the GNU General Public License
13
* along with this program; if not, write to the Free Software
14
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
15
*
16
* Copyright (C) 2007 Alan Stern
17
* Copyright (C) IBM Corporation, 2009
18
* Copyright (C) 2009, Frederic Weisbecker <[email protected]>
19
*
20
* Thanks to Ingo Molnar for his many suggestions.
21
*
22
* Authors: Alan Stern <[email protected]>
23
* K.Prasad <[email protected]>
24
* Frederic Weisbecker <[email protected]>
25
*/
26
27
/*
28
* HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
29
* using the CPU's debug registers.
30
* This file contains the arch-independent routines.
31
*/
32
33
#include <linux/irqflags.h>
34
#include <linux/kallsyms.h>
35
#include <linux/notifier.h>
36
#include <linux/kprobes.h>
37
#include <linux/kdebug.h>
38
#include <linux/kernel.h>
39
#include <linux/module.h>
40
#include <linux/percpu.h>
41
#include <linux/sched.h>
42
#include <linux/init.h>
43
#include <linux/slab.h>
44
#include <linux/list.h>
45
#include <linux/cpu.h>
46
#include <linux/smp.h>
47
48
#include <linux/hw_breakpoint.h>
49
50
51
/*
52
* Constraints data
53
*/
54
55
/* Number of pinned cpu breakpoints in a cpu */
56
static DEFINE_PER_CPU(unsigned int, nr_cpu_bp_pinned[TYPE_MAX]);
57
58
/* Number of pinned task breakpoints in a cpu */
59
static DEFINE_PER_CPU(unsigned int *, nr_task_bp_pinned[TYPE_MAX]);
60
61
/* Number of non-pinned cpu/task breakpoints in a cpu */
62
static DEFINE_PER_CPU(unsigned int, nr_bp_flexible[TYPE_MAX]);
63
64
static int nr_slots[TYPE_MAX];
65
66
/* Keep track of the breakpoints attached to tasks */
67
static LIST_HEAD(bp_task_head);
68
69
static int constraints_initialized;
70
71
/* Gather the number of total pinned and un-pinned bp in a cpuset */
72
struct bp_busy_slots {
73
unsigned int pinned;
74
unsigned int flexible;
75
};
76
77
/* Serialize accesses to the above constraints */
78
static DEFINE_MUTEX(nr_bp_mutex);
79
80
__weak int hw_breakpoint_weight(struct perf_event *bp)
81
{
82
return 1;
83
}
84
85
static inline enum bp_type_idx find_slot_idx(struct perf_event *bp)
86
{
87
if (bp->attr.bp_type & HW_BREAKPOINT_RW)
88
return TYPE_DATA;
89
90
return TYPE_INST;
91
}
92
93
/*
94
* Report the maximum number of pinned breakpoints a task
95
* have in this cpu
96
*/
97
static unsigned int max_task_bp_pinned(int cpu, enum bp_type_idx type)
98
{
99
int i;
100
unsigned int *tsk_pinned = per_cpu(nr_task_bp_pinned[type], cpu);
101
102
for (i = nr_slots[type] - 1; i >= 0; i--) {
103
if (tsk_pinned[i] > 0)
104
return i + 1;
105
}
106
107
return 0;
108
}
109
110
/*
111
* Count the number of breakpoints of the same type and same task.
112
* The given event must be not on the list.
113
*/
114
static int task_bp_pinned(struct perf_event *bp, enum bp_type_idx type)
115
{
116
struct task_struct *tsk = bp->hw.bp_target;
117
struct perf_event *iter;
118
int count = 0;
119
120
list_for_each_entry(iter, &bp_task_head, hw.bp_list) {
121
if (iter->hw.bp_target == tsk && find_slot_idx(iter) == type)
122
count += hw_breakpoint_weight(iter);
123
}
124
125
return count;
126
}
127
128
/*
129
* Report the number of pinned/un-pinned breakpoints we have in
130
* a given cpu (cpu > -1) or in all of them (cpu = -1).
131
*/
132
static void
133
fetch_bp_busy_slots(struct bp_busy_slots *slots, struct perf_event *bp,
134
enum bp_type_idx type)
135
{
136
int cpu = bp->cpu;
137
struct task_struct *tsk = bp->hw.bp_target;
138
139
if (cpu >= 0) {
140
slots->pinned = per_cpu(nr_cpu_bp_pinned[type], cpu);
141
if (!tsk)
142
slots->pinned += max_task_bp_pinned(cpu, type);
143
else
144
slots->pinned += task_bp_pinned(bp, type);
145
slots->flexible = per_cpu(nr_bp_flexible[type], cpu);
146
147
return;
148
}
149
150
for_each_online_cpu(cpu) {
151
unsigned int nr;
152
153
nr = per_cpu(nr_cpu_bp_pinned[type], cpu);
154
if (!tsk)
155
nr += max_task_bp_pinned(cpu, type);
156
else
157
nr += task_bp_pinned(bp, type);
158
159
if (nr > slots->pinned)
160
slots->pinned = nr;
161
162
nr = per_cpu(nr_bp_flexible[type], cpu);
163
164
if (nr > slots->flexible)
165
slots->flexible = nr;
166
}
167
}
168
169
/*
170
* For now, continue to consider flexible as pinned, until we can
171
* ensure no flexible event can ever be scheduled before a pinned event
172
* in a same cpu.
173
*/
174
static void
175
fetch_this_slot(struct bp_busy_slots *slots, int weight)
176
{
177
slots->pinned += weight;
178
}
179
180
/*
181
* Add a pinned breakpoint for the given task in our constraint table
182
*/
183
static void toggle_bp_task_slot(struct perf_event *bp, int cpu, bool enable,
184
enum bp_type_idx type, int weight)
185
{
186
unsigned int *tsk_pinned;
187
int old_count = 0;
188
int old_idx = 0;
189
int idx = 0;
190
191
old_count = task_bp_pinned(bp, type);
192
old_idx = old_count - 1;
193
idx = old_idx + weight;
194
195
/* tsk_pinned[n] is the number of tasks having n breakpoints */
196
tsk_pinned = per_cpu(nr_task_bp_pinned[type], cpu);
197
if (enable) {
198
tsk_pinned[idx]++;
199
if (old_count > 0)
200
tsk_pinned[old_idx]--;
201
} else {
202
tsk_pinned[idx]--;
203
if (old_count > 0)
204
tsk_pinned[old_idx]++;
205
}
206
}
207
208
/*
209
* Add/remove the given breakpoint in our constraint table
210
*/
211
static void
212
toggle_bp_slot(struct perf_event *bp, bool enable, enum bp_type_idx type,
213
int weight)
214
{
215
int cpu = bp->cpu;
216
struct task_struct *tsk = bp->hw.bp_target;
217
218
/* Pinned counter cpu profiling */
219
if (!tsk) {
220
221
if (enable)
222
per_cpu(nr_cpu_bp_pinned[type], bp->cpu) += weight;
223
else
224
per_cpu(nr_cpu_bp_pinned[type], bp->cpu) -= weight;
225
return;
226
}
227
228
/* Pinned counter task profiling */
229
230
if (!enable)
231
list_del(&bp->hw.bp_list);
232
233
if (cpu >= 0) {
234
toggle_bp_task_slot(bp, cpu, enable, type, weight);
235
} else {
236
for_each_online_cpu(cpu)
237
toggle_bp_task_slot(bp, cpu, enable, type, weight);
238
}
239
240
if (enable)
241
list_add_tail(&bp->hw.bp_list, &bp_task_head);
242
}
243
244
/*
245
* Function to perform processor-specific cleanup during unregistration
246
*/
247
__weak void arch_unregister_hw_breakpoint(struct perf_event *bp)
248
{
249
/*
250
* A weak stub function here for those archs that don't define
251
* it inside arch/.../kernel/hw_breakpoint.c
252
*/
253
}
254
255
/*
256
* Contraints to check before allowing this new breakpoint counter:
257
*
258
* == Non-pinned counter == (Considered as pinned for now)
259
*
260
* - If attached to a single cpu, check:
261
*
262
* (per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
263
* + max(per_cpu(nr_task_bp_pinned, cpu)))) < HBP_NUM
264
*
265
* -> If there are already non-pinned counters in this cpu, it means
266
* there is already a free slot for them.
267
* Otherwise, we check that the maximum number of per task
268
* breakpoints (for this cpu) plus the number of per cpu breakpoint
269
* (for this cpu) doesn't cover every registers.
270
*
271
* - If attached to every cpus, check:
272
*
273
* (per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
274
* + max(per_cpu(nr_task_bp_pinned, *)))) < HBP_NUM
275
*
276
* -> This is roughly the same, except we check the number of per cpu
277
* bp for every cpu and we keep the max one. Same for the per tasks
278
* breakpoints.
279
*
280
*
281
* == Pinned counter ==
282
*
283
* - If attached to a single cpu, check:
284
*
285
* ((per_cpu(nr_bp_flexible, cpu) > 1) + per_cpu(nr_cpu_bp_pinned, cpu)
286
* + max(per_cpu(nr_task_bp_pinned, cpu))) < HBP_NUM
287
*
288
* -> Same checks as before. But now the nr_bp_flexible, if any, must keep
289
* one register at least (or they will never be fed).
290
*
291
* - If attached to every cpus, check:
292
*
293
* ((per_cpu(nr_bp_flexible, *) > 1) + max(per_cpu(nr_cpu_bp_pinned, *))
294
* + max(per_cpu(nr_task_bp_pinned, *))) < HBP_NUM
295
*/
296
static int __reserve_bp_slot(struct perf_event *bp)
297
{
298
struct bp_busy_slots slots = {0};
299
enum bp_type_idx type;
300
int weight;
301
302
/* We couldn't initialize breakpoint constraints on boot */
303
if (!constraints_initialized)
304
return -ENOMEM;
305
306
/* Basic checks */
307
if (bp->attr.bp_type == HW_BREAKPOINT_EMPTY ||
308
bp->attr.bp_type == HW_BREAKPOINT_INVALID)
309
return -EINVAL;
310
311
type = find_slot_idx(bp);
312
weight = hw_breakpoint_weight(bp);
313
314
fetch_bp_busy_slots(&slots, bp, type);
315
/*
316
* Simulate the addition of this breakpoint to the constraints
317
* and see the result.
318
*/
319
fetch_this_slot(&slots, weight);
320
321
/* Flexible counters need to keep at least one slot */
322
if (slots.pinned + (!!slots.flexible) > nr_slots[type])
323
return -ENOSPC;
324
325
toggle_bp_slot(bp, true, type, weight);
326
327
return 0;
328
}
329
330
int reserve_bp_slot(struct perf_event *bp)
331
{
332
int ret;
333
334
mutex_lock(&nr_bp_mutex);
335
336
ret = __reserve_bp_slot(bp);
337
338
mutex_unlock(&nr_bp_mutex);
339
340
return ret;
341
}
342
343
static void __release_bp_slot(struct perf_event *bp)
344
{
345
enum bp_type_idx type;
346
int weight;
347
348
type = find_slot_idx(bp);
349
weight = hw_breakpoint_weight(bp);
350
toggle_bp_slot(bp, false, type, weight);
351
}
352
353
void release_bp_slot(struct perf_event *bp)
354
{
355
mutex_lock(&nr_bp_mutex);
356
357
arch_unregister_hw_breakpoint(bp);
358
__release_bp_slot(bp);
359
360
mutex_unlock(&nr_bp_mutex);
361
}
362
363
/*
364
* Allow the kernel debugger to reserve breakpoint slots without
365
* taking a lock using the dbg_* variant of for the reserve and
366
* release breakpoint slots.
367
*/
368
int dbg_reserve_bp_slot(struct perf_event *bp)
369
{
370
if (mutex_is_locked(&nr_bp_mutex))
371
return -1;
372
373
return __reserve_bp_slot(bp);
374
}
375
376
int dbg_release_bp_slot(struct perf_event *bp)
377
{
378
if (mutex_is_locked(&nr_bp_mutex))
379
return -1;
380
381
__release_bp_slot(bp);
382
383
return 0;
384
}
385
386
static int validate_hw_breakpoint(struct perf_event *bp)
387
{
388
int ret;
389
390
ret = arch_validate_hwbkpt_settings(bp);
391
if (ret)
392
return ret;
393
394
if (arch_check_bp_in_kernelspace(bp)) {
395
if (bp->attr.exclude_kernel)
396
return -EINVAL;
397
/*
398
* Don't let unprivileged users set a breakpoint in the trap
399
* path to avoid trap recursion attacks.
400
*/
401
if (!capable(CAP_SYS_ADMIN))
402
return -EPERM;
403
}
404
405
return 0;
406
}
407
408
int register_perf_hw_breakpoint(struct perf_event *bp)
409
{
410
int ret;
411
412
ret = reserve_bp_slot(bp);
413
if (ret)
414
return ret;
415
416
ret = validate_hw_breakpoint(bp);
417
418
/* if arch_validate_hwbkpt_settings() fails then release bp slot */
419
if (ret)
420
release_bp_slot(bp);
421
422
return ret;
423
}
424
425
/**
426
* register_user_hw_breakpoint - register a hardware breakpoint for user space
427
* @attr: breakpoint attributes
428
* @triggered: callback to trigger when we hit the breakpoint
429
* @tsk: pointer to 'task_struct' of the process to which the address belongs
430
*/
431
struct perf_event *
432
register_user_hw_breakpoint(struct perf_event_attr *attr,
433
perf_overflow_handler_t triggered,
434
struct task_struct *tsk)
435
{
436
return perf_event_create_kernel_counter(attr, -1, tsk, triggered);
437
}
438
EXPORT_SYMBOL_GPL(register_user_hw_breakpoint);
439
440
/**
441
* modify_user_hw_breakpoint - modify a user-space hardware breakpoint
442
* @bp: the breakpoint structure to modify
443
* @attr: new breakpoint attributes
444
* @triggered: callback to trigger when we hit the breakpoint
445
* @tsk: pointer to 'task_struct' of the process to which the address belongs
446
*/
447
int modify_user_hw_breakpoint(struct perf_event *bp, struct perf_event_attr *attr)
448
{
449
u64 old_addr = bp->attr.bp_addr;
450
u64 old_len = bp->attr.bp_len;
451
int old_type = bp->attr.bp_type;
452
int err = 0;
453
454
perf_event_disable(bp);
455
456
bp->attr.bp_addr = attr->bp_addr;
457
bp->attr.bp_type = attr->bp_type;
458
bp->attr.bp_len = attr->bp_len;
459
460
if (attr->disabled)
461
goto end;
462
463
err = validate_hw_breakpoint(bp);
464
if (!err)
465
perf_event_enable(bp);
466
467
if (err) {
468
bp->attr.bp_addr = old_addr;
469
bp->attr.bp_type = old_type;
470
bp->attr.bp_len = old_len;
471
if (!bp->attr.disabled)
472
perf_event_enable(bp);
473
474
return err;
475
}
476
477
end:
478
bp->attr.disabled = attr->disabled;
479
480
return 0;
481
}
482
EXPORT_SYMBOL_GPL(modify_user_hw_breakpoint);
483
484
/**
485
* unregister_hw_breakpoint - unregister a user-space hardware breakpoint
486
* @bp: the breakpoint structure to unregister
487
*/
488
void unregister_hw_breakpoint(struct perf_event *bp)
489
{
490
if (!bp)
491
return;
492
perf_event_release_kernel(bp);
493
}
494
EXPORT_SYMBOL_GPL(unregister_hw_breakpoint);
495
496
/**
497
* register_wide_hw_breakpoint - register a wide breakpoint in the kernel
498
* @attr: breakpoint attributes
499
* @triggered: callback to trigger when we hit the breakpoint
500
*
501
* @return a set of per_cpu pointers to perf events
502
*/
503
struct perf_event * __percpu *
504
register_wide_hw_breakpoint(struct perf_event_attr *attr,
505
perf_overflow_handler_t triggered)
506
{
507
struct perf_event * __percpu *cpu_events, **pevent, *bp;
508
long err;
509
int cpu;
510
511
cpu_events = alloc_percpu(typeof(*cpu_events));
512
if (!cpu_events)
513
return (void __percpu __force *)ERR_PTR(-ENOMEM);
514
515
get_online_cpus();
516
for_each_online_cpu(cpu) {
517
pevent = per_cpu_ptr(cpu_events, cpu);
518
bp = perf_event_create_kernel_counter(attr, cpu, NULL, triggered);
519
520
*pevent = bp;
521
522
if (IS_ERR(bp)) {
523
err = PTR_ERR(bp);
524
goto fail;
525
}
526
}
527
put_online_cpus();
528
529
return cpu_events;
530
531
fail:
532
for_each_online_cpu(cpu) {
533
pevent = per_cpu_ptr(cpu_events, cpu);
534
if (IS_ERR(*pevent))
535
break;
536
unregister_hw_breakpoint(*pevent);
537
}
538
put_online_cpus();
539
540
free_percpu(cpu_events);
541
return (void __percpu __force *)ERR_PTR(err);
542
}
543
EXPORT_SYMBOL_GPL(register_wide_hw_breakpoint);
544
545
/**
546
* unregister_wide_hw_breakpoint - unregister a wide breakpoint in the kernel
547
* @cpu_events: the per cpu set of events to unregister
548
*/
549
void unregister_wide_hw_breakpoint(struct perf_event * __percpu *cpu_events)
550
{
551
int cpu;
552
struct perf_event **pevent;
553
554
for_each_possible_cpu(cpu) {
555
pevent = per_cpu_ptr(cpu_events, cpu);
556
unregister_hw_breakpoint(*pevent);
557
}
558
free_percpu(cpu_events);
559
}
560
EXPORT_SYMBOL_GPL(unregister_wide_hw_breakpoint);
561
562
static struct notifier_block hw_breakpoint_exceptions_nb = {
563
.notifier_call = hw_breakpoint_exceptions_notify,
564
/* we need to be notified first */
565
.priority = 0x7fffffff
566
};
567
568
static void bp_perf_event_destroy(struct perf_event *event)
569
{
570
release_bp_slot(event);
571
}
572
573
static int hw_breakpoint_event_init(struct perf_event *bp)
574
{
575
int err;
576
577
if (bp->attr.type != PERF_TYPE_BREAKPOINT)
578
return -ENOENT;
579
580
err = register_perf_hw_breakpoint(bp);
581
if (err)
582
return err;
583
584
bp->destroy = bp_perf_event_destroy;
585
586
return 0;
587
}
588
589
static int hw_breakpoint_add(struct perf_event *bp, int flags)
590
{
591
if (!(flags & PERF_EF_START))
592
bp->hw.state = PERF_HES_STOPPED;
593
594
return arch_install_hw_breakpoint(bp);
595
}
596
597
static void hw_breakpoint_del(struct perf_event *bp, int flags)
598
{
599
arch_uninstall_hw_breakpoint(bp);
600
}
601
602
static void hw_breakpoint_start(struct perf_event *bp, int flags)
603
{
604
bp->hw.state = 0;
605
}
606
607
static void hw_breakpoint_stop(struct perf_event *bp, int flags)
608
{
609
bp->hw.state = PERF_HES_STOPPED;
610
}
611
612
static struct pmu perf_breakpoint = {
613
.task_ctx_nr = perf_sw_context, /* could eventually get its own */
614
615
.event_init = hw_breakpoint_event_init,
616
.add = hw_breakpoint_add,
617
.del = hw_breakpoint_del,
618
.start = hw_breakpoint_start,
619
.stop = hw_breakpoint_stop,
620
.read = hw_breakpoint_pmu_read,
621
};
622
623
int __init init_hw_breakpoint(void)
624
{
625
unsigned int **task_bp_pinned;
626
int cpu, err_cpu;
627
int i;
628
629
for (i = 0; i < TYPE_MAX; i++)
630
nr_slots[i] = hw_breakpoint_slots(i);
631
632
for_each_possible_cpu(cpu) {
633
for (i = 0; i < TYPE_MAX; i++) {
634
task_bp_pinned = &per_cpu(nr_task_bp_pinned[i], cpu);
635
*task_bp_pinned = kzalloc(sizeof(int) * nr_slots[i],
636
GFP_KERNEL);
637
if (!*task_bp_pinned)
638
goto err_alloc;
639
}
640
}
641
642
constraints_initialized = 1;
643
644
perf_pmu_register(&perf_breakpoint, "breakpoint", PERF_TYPE_BREAKPOINT);
645
646
return register_die_notifier(&hw_breakpoint_exceptions_nb);
647
648
err_alloc:
649
for_each_possible_cpu(err_cpu) {
650
if (err_cpu == cpu)
651
break;
652
for (i = 0; i < TYPE_MAX; i++)
653
kfree(per_cpu(nr_task_bp_pinned[i], cpu));
654
}
655
656
return -ENOMEM;
657
}
658
659
660
661