Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/kernel/fork.c
10814 views
1
/*
2
* linux/kernel/fork.c
3
*
4
* Copyright (C) 1991, 1992 Linus Torvalds
5
*/
6
7
/*
8
* 'fork.c' contains the help-routines for the 'fork' system call
9
* (see also entry.S and others).
10
* Fork is rather simple, once you get the hang of it, but the memory
11
* management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12
*/
13
14
#include <linux/slab.h>
15
#include <linux/init.h>
16
#include <linux/unistd.h>
17
#include <linux/module.h>
18
#include <linux/vmalloc.h>
19
#include <linux/completion.h>
20
#include <linux/personality.h>
21
#include <linux/mempolicy.h>
22
#include <linux/sem.h>
23
#include <linux/file.h>
24
#include <linux/fdtable.h>
25
#include <linux/iocontext.h>
26
#include <linux/key.h>
27
#include <linux/binfmts.h>
28
#include <linux/mman.h>
29
#include <linux/mmu_notifier.h>
30
#include <linux/fs.h>
31
#include <linux/nsproxy.h>
32
#include <linux/capability.h>
33
#include <linux/cpu.h>
34
#include <linux/cgroup.h>
35
#include <linux/security.h>
36
#include <linux/hugetlb.h>
37
#include <linux/swap.h>
38
#include <linux/syscalls.h>
39
#include <linux/jiffies.h>
40
#include <linux/tracehook.h>
41
#include <linux/futex.h>
42
#include <linux/compat.h>
43
#include <linux/kthread.h>
44
#include <linux/task_io_accounting_ops.h>
45
#include <linux/rcupdate.h>
46
#include <linux/ptrace.h>
47
#include <linux/mount.h>
48
#include <linux/audit.h>
49
#include <linux/memcontrol.h>
50
#include <linux/ftrace.h>
51
#include <linux/profile.h>
52
#include <linux/rmap.h>
53
#include <linux/ksm.h>
54
#include <linux/acct.h>
55
#include <linux/tsacct_kern.h>
56
#include <linux/cn_proc.h>
57
#include <linux/freezer.h>
58
#include <linux/delayacct.h>
59
#include <linux/taskstats_kern.h>
60
#include <linux/random.h>
61
#include <linux/tty.h>
62
#include <linux/blkdev.h>
63
#include <linux/fs_struct.h>
64
#include <linux/magic.h>
65
#include <linux/perf_event.h>
66
#include <linux/posix-timers.h>
67
#include <linux/user-return-notifier.h>
68
#include <linux/oom.h>
69
#include <linux/khugepaged.h>
70
71
#include <asm/pgtable.h>
72
#include <asm/pgalloc.h>
73
#include <asm/uaccess.h>
74
#include <asm/mmu_context.h>
75
#include <asm/cacheflush.h>
76
#include <asm/tlbflush.h>
77
78
#include <trace/events/sched.h>
79
80
/*
81
* Protected counters by write_lock_irq(&tasklist_lock)
82
*/
83
unsigned long total_forks; /* Handle normal Linux uptimes. */
84
int nr_threads; /* The idle threads do not count.. */
85
86
int max_threads; /* tunable limit on nr_threads */
87
88
DEFINE_PER_CPU(unsigned long, process_counts) = 0;
89
90
__cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
91
92
#ifdef CONFIG_PROVE_RCU
93
int lockdep_tasklist_lock_is_held(void)
94
{
95
return lockdep_is_held(&tasklist_lock);
96
}
97
EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
98
#endif /* #ifdef CONFIG_PROVE_RCU */
99
100
int nr_processes(void)
101
{
102
int cpu;
103
int total = 0;
104
105
for_each_possible_cpu(cpu)
106
total += per_cpu(process_counts, cpu);
107
108
return total;
109
}
110
111
#ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
112
# define alloc_task_struct_node(node) \
113
kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
114
# define free_task_struct(tsk) \
115
kmem_cache_free(task_struct_cachep, (tsk))
116
static struct kmem_cache *task_struct_cachep;
117
#endif
118
119
#ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
120
static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
121
int node)
122
{
123
#ifdef CONFIG_DEBUG_STACK_USAGE
124
gfp_t mask = GFP_KERNEL | __GFP_ZERO;
125
#else
126
gfp_t mask = GFP_KERNEL;
127
#endif
128
struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
129
130
return page ? page_address(page) : NULL;
131
}
132
133
static inline void free_thread_info(struct thread_info *ti)
134
{
135
free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
136
}
137
#endif
138
139
/* SLAB cache for signal_struct structures (tsk->signal) */
140
static struct kmem_cache *signal_cachep;
141
142
/* SLAB cache for sighand_struct structures (tsk->sighand) */
143
struct kmem_cache *sighand_cachep;
144
145
/* SLAB cache for files_struct structures (tsk->files) */
146
struct kmem_cache *files_cachep;
147
148
/* SLAB cache for fs_struct structures (tsk->fs) */
149
struct kmem_cache *fs_cachep;
150
151
/* SLAB cache for vm_area_struct structures */
152
struct kmem_cache *vm_area_cachep;
153
154
/* SLAB cache for mm_struct structures (tsk->mm) */
155
static struct kmem_cache *mm_cachep;
156
157
static void account_kernel_stack(struct thread_info *ti, int account)
158
{
159
struct zone *zone = page_zone(virt_to_page(ti));
160
161
mod_zone_page_state(zone, NR_KERNEL_STACK, account);
162
}
163
164
void free_task(struct task_struct *tsk)
165
{
166
prop_local_destroy_single(&tsk->dirties);
167
account_kernel_stack(tsk->stack, -1);
168
free_thread_info(tsk->stack);
169
rt_mutex_debug_task_free(tsk);
170
ftrace_graph_exit_task(tsk);
171
free_task_struct(tsk);
172
}
173
EXPORT_SYMBOL(free_task);
174
175
static inline void free_signal_struct(struct signal_struct *sig)
176
{
177
taskstats_tgid_free(sig);
178
sched_autogroup_exit(sig);
179
kmem_cache_free(signal_cachep, sig);
180
}
181
182
static inline void put_signal_struct(struct signal_struct *sig)
183
{
184
if (atomic_dec_and_test(&sig->sigcnt))
185
free_signal_struct(sig);
186
}
187
188
void __put_task_struct(struct task_struct *tsk)
189
{
190
WARN_ON(!tsk->exit_state);
191
WARN_ON(atomic_read(&tsk->usage));
192
WARN_ON(tsk == current);
193
194
exit_creds(tsk);
195
delayacct_tsk_free(tsk);
196
put_signal_struct(tsk->signal);
197
198
if (!profile_handoff_task(tsk))
199
free_task(tsk);
200
}
201
EXPORT_SYMBOL_GPL(__put_task_struct);
202
203
/*
204
* macro override instead of weak attribute alias, to workaround
205
* gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
206
*/
207
#ifndef arch_task_cache_init
208
#define arch_task_cache_init()
209
#endif
210
211
void __init fork_init(unsigned long mempages)
212
{
213
#ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
214
#ifndef ARCH_MIN_TASKALIGN
215
#define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
216
#endif
217
/* create a slab on which task_structs can be allocated */
218
task_struct_cachep =
219
kmem_cache_create("task_struct", sizeof(struct task_struct),
220
ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
221
#endif
222
223
/* do the arch specific task caches init */
224
arch_task_cache_init();
225
226
/*
227
* The default maximum number of threads is set to a safe
228
* value: the thread structures can take up at most half
229
* of memory.
230
*/
231
max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
232
233
/*
234
* we need to allow at least 20 threads to boot a system
235
*/
236
if(max_threads < 20)
237
max_threads = 20;
238
239
init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
240
init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
241
init_task.signal->rlim[RLIMIT_SIGPENDING] =
242
init_task.signal->rlim[RLIMIT_NPROC];
243
}
244
245
int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
246
struct task_struct *src)
247
{
248
*dst = *src;
249
return 0;
250
}
251
252
static struct task_struct *dup_task_struct(struct task_struct *orig)
253
{
254
struct task_struct *tsk;
255
struct thread_info *ti;
256
unsigned long *stackend;
257
int node = tsk_fork_get_node(orig);
258
int err;
259
260
prepare_to_copy(orig);
261
262
tsk = alloc_task_struct_node(node);
263
if (!tsk)
264
return NULL;
265
266
ti = alloc_thread_info_node(tsk, node);
267
if (!ti) {
268
free_task_struct(tsk);
269
return NULL;
270
}
271
272
err = arch_dup_task_struct(tsk, orig);
273
if (err)
274
goto out;
275
276
tsk->stack = ti;
277
278
err = prop_local_init_single(&tsk->dirties);
279
if (err)
280
goto out;
281
282
setup_thread_stack(tsk, orig);
283
clear_user_return_notifier(tsk);
284
clear_tsk_need_resched(tsk);
285
stackend = end_of_stack(tsk);
286
*stackend = STACK_END_MAGIC; /* for overflow detection */
287
288
#ifdef CONFIG_CC_STACKPROTECTOR
289
tsk->stack_canary = get_random_int();
290
#endif
291
292
/* One for us, one for whoever does the "release_task()" (usually parent) */
293
atomic_set(&tsk->usage,2);
294
atomic_set(&tsk->fs_excl, 0);
295
#ifdef CONFIG_BLK_DEV_IO_TRACE
296
tsk->btrace_seq = 0;
297
#endif
298
tsk->splice_pipe = NULL;
299
300
account_kernel_stack(ti, 1);
301
302
return tsk;
303
304
out:
305
free_thread_info(ti);
306
free_task_struct(tsk);
307
return NULL;
308
}
309
310
#ifdef CONFIG_MMU
311
static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
312
{
313
struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
314
struct rb_node **rb_link, *rb_parent;
315
int retval;
316
unsigned long charge;
317
struct mempolicy *pol;
318
319
down_write(&oldmm->mmap_sem);
320
flush_cache_dup_mm(oldmm);
321
/*
322
* Not linked in yet - no deadlock potential:
323
*/
324
down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
325
326
mm->locked_vm = 0;
327
mm->mmap = NULL;
328
mm->mmap_cache = NULL;
329
mm->free_area_cache = oldmm->mmap_base;
330
mm->cached_hole_size = ~0UL;
331
mm->map_count = 0;
332
cpumask_clear(mm_cpumask(mm));
333
mm->mm_rb = RB_ROOT;
334
rb_link = &mm->mm_rb.rb_node;
335
rb_parent = NULL;
336
pprev = &mm->mmap;
337
retval = ksm_fork(mm, oldmm);
338
if (retval)
339
goto out;
340
retval = khugepaged_fork(mm, oldmm);
341
if (retval)
342
goto out;
343
344
prev = NULL;
345
for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
346
struct file *file;
347
348
if (mpnt->vm_flags & VM_DONTCOPY) {
349
long pages = vma_pages(mpnt);
350
mm->total_vm -= pages;
351
vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
352
-pages);
353
continue;
354
}
355
charge = 0;
356
if (mpnt->vm_flags & VM_ACCOUNT) {
357
unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
358
if (security_vm_enough_memory(len))
359
goto fail_nomem;
360
charge = len;
361
}
362
tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
363
if (!tmp)
364
goto fail_nomem;
365
*tmp = *mpnt;
366
INIT_LIST_HEAD(&tmp->anon_vma_chain);
367
pol = mpol_dup(vma_policy(mpnt));
368
retval = PTR_ERR(pol);
369
if (IS_ERR(pol))
370
goto fail_nomem_policy;
371
vma_set_policy(tmp, pol);
372
tmp->vm_mm = mm;
373
if (anon_vma_fork(tmp, mpnt))
374
goto fail_nomem_anon_vma_fork;
375
tmp->vm_flags &= ~VM_LOCKED;
376
tmp->vm_next = tmp->vm_prev = NULL;
377
file = tmp->vm_file;
378
if (file) {
379
struct inode *inode = file->f_path.dentry->d_inode;
380
struct address_space *mapping = file->f_mapping;
381
382
get_file(file);
383
if (tmp->vm_flags & VM_DENYWRITE)
384
atomic_dec(&inode->i_writecount);
385
mutex_lock(&mapping->i_mmap_mutex);
386
if (tmp->vm_flags & VM_SHARED)
387
mapping->i_mmap_writable++;
388
flush_dcache_mmap_lock(mapping);
389
/* insert tmp into the share list, just after mpnt */
390
vma_prio_tree_add(tmp, mpnt);
391
flush_dcache_mmap_unlock(mapping);
392
mutex_unlock(&mapping->i_mmap_mutex);
393
}
394
395
/*
396
* Clear hugetlb-related page reserves for children. This only
397
* affects MAP_PRIVATE mappings. Faults generated by the child
398
* are not guaranteed to succeed, even if read-only
399
*/
400
if (is_vm_hugetlb_page(tmp))
401
reset_vma_resv_huge_pages(tmp);
402
403
/*
404
* Link in the new vma and copy the page table entries.
405
*/
406
*pprev = tmp;
407
pprev = &tmp->vm_next;
408
tmp->vm_prev = prev;
409
prev = tmp;
410
411
__vma_link_rb(mm, tmp, rb_link, rb_parent);
412
rb_link = &tmp->vm_rb.rb_right;
413
rb_parent = &tmp->vm_rb;
414
415
mm->map_count++;
416
retval = copy_page_range(mm, oldmm, mpnt);
417
418
if (tmp->vm_ops && tmp->vm_ops->open)
419
tmp->vm_ops->open(tmp);
420
421
if (retval)
422
goto out;
423
}
424
/* a new mm has just been created */
425
arch_dup_mmap(oldmm, mm);
426
retval = 0;
427
out:
428
up_write(&mm->mmap_sem);
429
flush_tlb_mm(oldmm);
430
up_write(&oldmm->mmap_sem);
431
return retval;
432
fail_nomem_anon_vma_fork:
433
mpol_put(pol);
434
fail_nomem_policy:
435
kmem_cache_free(vm_area_cachep, tmp);
436
fail_nomem:
437
retval = -ENOMEM;
438
vm_unacct_memory(charge);
439
goto out;
440
}
441
442
static inline int mm_alloc_pgd(struct mm_struct * mm)
443
{
444
mm->pgd = pgd_alloc(mm);
445
if (unlikely(!mm->pgd))
446
return -ENOMEM;
447
return 0;
448
}
449
450
static inline void mm_free_pgd(struct mm_struct * mm)
451
{
452
pgd_free(mm, mm->pgd);
453
}
454
#else
455
#define dup_mmap(mm, oldmm) (0)
456
#define mm_alloc_pgd(mm) (0)
457
#define mm_free_pgd(mm)
458
#endif /* CONFIG_MMU */
459
460
__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
461
462
#define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
463
#define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
464
465
static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
466
467
static int __init coredump_filter_setup(char *s)
468
{
469
default_dump_filter =
470
(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
471
MMF_DUMP_FILTER_MASK;
472
return 1;
473
}
474
475
__setup("coredump_filter=", coredump_filter_setup);
476
477
#include <linux/init_task.h>
478
479
static void mm_init_aio(struct mm_struct *mm)
480
{
481
#ifdef CONFIG_AIO
482
spin_lock_init(&mm->ioctx_lock);
483
INIT_HLIST_HEAD(&mm->ioctx_list);
484
#endif
485
}
486
487
static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
488
{
489
atomic_set(&mm->mm_users, 1);
490
atomic_set(&mm->mm_count, 1);
491
init_rwsem(&mm->mmap_sem);
492
INIT_LIST_HEAD(&mm->mmlist);
493
mm->flags = (current->mm) ?
494
(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
495
mm->core_state = NULL;
496
mm->nr_ptes = 0;
497
memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
498
spin_lock_init(&mm->page_table_lock);
499
mm->free_area_cache = TASK_UNMAPPED_BASE;
500
mm->cached_hole_size = ~0UL;
501
mm_init_aio(mm);
502
mm_init_owner(mm, p);
503
atomic_set(&mm->oom_disable_count, 0);
504
505
if (likely(!mm_alloc_pgd(mm))) {
506
mm->def_flags = 0;
507
mmu_notifier_mm_init(mm);
508
return mm;
509
}
510
511
free_mm(mm);
512
return NULL;
513
}
514
515
/*
516
* Allocate and initialize an mm_struct.
517
*/
518
struct mm_struct * mm_alloc(void)
519
{
520
struct mm_struct * mm;
521
522
mm = allocate_mm();
523
if (!mm)
524
return NULL;
525
526
memset(mm, 0, sizeof(*mm));
527
mm_init_cpumask(mm);
528
return mm_init(mm, current);
529
}
530
531
/*
532
* Called when the last reference to the mm
533
* is dropped: either by a lazy thread or by
534
* mmput. Free the page directory and the mm.
535
*/
536
void __mmdrop(struct mm_struct *mm)
537
{
538
BUG_ON(mm == &init_mm);
539
mm_free_pgd(mm);
540
destroy_context(mm);
541
mmu_notifier_mm_destroy(mm);
542
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
543
VM_BUG_ON(mm->pmd_huge_pte);
544
#endif
545
free_mm(mm);
546
}
547
EXPORT_SYMBOL_GPL(__mmdrop);
548
549
/*
550
* Decrement the use count and release all resources for an mm.
551
*/
552
void mmput(struct mm_struct *mm)
553
{
554
might_sleep();
555
556
if (atomic_dec_and_test(&mm->mm_users)) {
557
exit_aio(mm);
558
ksm_exit(mm);
559
khugepaged_exit(mm); /* must run before exit_mmap */
560
exit_mmap(mm);
561
set_mm_exe_file(mm, NULL);
562
if (!list_empty(&mm->mmlist)) {
563
spin_lock(&mmlist_lock);
564
list_del(&mm->mmlist);
565
spin_unlock(&mmlist_lock);
566
}
567
put_swap_token(mm);
568
if (mm->binfmt)
569
module_put(mm->binfmt->module);
570
mmdrop(mm);
571
}
572
}
573
EXPORT_SYMBOL_GPL(mmput);
574
575
/*
576
* We added or removed a vma mapping the executable. The vmas are only mapped
577
* during exec and are not mapped with the mmap system call.
578
* Callers must hold down_write() on the mm's mmap_sem for these
579
*/
580
void added_exe_file_vma(struct mm_struct *mm)
581
{
582
mm->num_exe_file_vmas++;
583
}
584
585
void removed_exe_file_vma(struct mm_struct *mm)
586
{
587
mm->num_exe_file_vmas--;
588
if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
589
fput(mm->exe_file);
590
mm->exe_file = NULL;
591
}
592
593
}
594
595
void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
596
{
597
if (new_exe_file)
598
get_file(new_exe_file);
599
if (mm->exe_file)
600
fput(mm->exe_file);
601
mm->exe_file = new_exe_file;
602
mm->num_exe_file_vmas = 0;
603
}
604
605
struct file *get_mm_exe_file(struct mm_struct *mm)
606
{
607
struct file *exe_file;
608
609
/* We need mmap_sem to protect against races with removal of
610
* VM_EXECUTABLE vmas */
611
down_read(&mm->mmap_sem);
612
exe_file = mm->exe_file;
613
if (exe_file)
614
get_file(exe_file);
615
up_read(&mm->mmap_sem);
616
return exe_file;
617
}
618
619
static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
620
{
621
/* It's safe to write the exe_file pointer without exe_file_lock because
622
* this is called during fork when the task is not yet in /proc */
623
newmm->exe_file = get_mm_exe_file(oldmm);
624
}
625
626
/**
627
* get_task_mm - acquire a reference to the task's mm
628
*
629
* Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
630
* this kernel workthread has transiently adopted a user mm with use_mm,
631
* to do its AIO) is not set and if so returns a reference to it, after
632
* bumping up the use count. User must release the mm via mmput()
633
* after use. Typically used by /proc and ptrace.
634
*/
635
struct mm_struct *get_task_mm(struct task_struct *task)
636
{
637
struct mm_struct *mm;
638
639
task_lock(task);
640
mm = task->mm;
641
if (mm) {
642
if (task->flags & PF_KTHREAD)
643
mm = NULL;
644
else
645
atomic_inc(&mm->mm_users);
646
}
647
task_unlock(task);
648
return mm;
649
}
650
EXPORT_SYMBOL_GPL(get_task_mm);
651
652
/* Please note the differences between mmput and mm_release.
653
* mmput is called whenever we stop holding onto a mm_struct,
654
* error success whatever.
655
*
656
* mm_release is called after a mm_struct has been removed
657
* from the current process.
658
*
659
* This difference is important for error handling, when we
660
* only half set up a mm_struct for a new process and need to restore
661
* the old one. Because we mmput the new mm_struct before
662
* restoring the old one. . .
663
* Eric Biederman 10 January 1998
664
*/
665
void mm_release(struct task_struct *tsk, struct mm_struct *mm)
666
{
667
struct completion *vfork_done = tsk->vfork_done;
668
669
/* Get rid of any futexes when releasing the mm */
670
#ifdef CONFIG_FUTEX
671
if (unlikely(tsk->robust_list)) {
672
exit_robust_list(tsk);
673
tsk->robust_list = NULL;
674
}
675
#ifdef CONFIG_COMPAT
676
if (unlikely(tsk->compat_robust_list)) {
677
compat_exit_robust_list(tsk);
678
tsk->compat_robust_list = NULL;
679
}
680
#endif
681
if (unlikely(!list_empty(&tsk->pi_state_list)))
682
exit_pi_state_list(tsk);
683
#endif
684
685
/* Get rid of any cached register state */
686
deactivate_mm(tsk, mm);
687
688
/* notify parent sleeping on vfork() */
689
if (vfork_done) {
690
tsk->vfork_done = NULL;
691
complete(vfork_done);
692
}
693
694
/*
695
* If we're exiting normally, clear a user-space tid field if
696
* requested. We leave this alone when dying by signal, to leave
697
* the value intact in a core dump, and to save the unnecessary
698
* trouble otherwise. Userland only wants this done for a sys_exit.
699
*/
700
if (tsk->clear_child_tid) {
701
if (!(tsk->flags & PF_SIGNALED) &&
702
atomic_read(&mm->mm_users) > 1) {
703
/*
704
* We don't check the error code - if userspace has
705
* not set up a proper pointer then tough luck.
706
*/
707
put_user(0, tsk->clear_child_tid);
708
sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
709
1, NULL, NULL, 0);
710
}
711
tsk->clear_child_tid = NULL;
712
}
713
}
714
715
/*
716
* Allocate a new mm structure and copy contents from the
717
* mm structure of the passed in task structure.
718
*/
719
struct mm_struct *dup_mm(struct task_struct *tsk)
720
{
721
struct mm_struct *mm, *oldmm = current->mm;
722
int err;
723
724
if (!oldmm)
725
return NULL;
726
727
mm = allocate_mm();
728
if (!mm)
729
goto fail_nomem;
730
731
memcpy(mm, oldmm, sizeof(*mm));
732
mm_init_cpumask(mm);
733
734
/* Initializing for Swap token stuff */
735
mm->token_priority = 0;
736
mm->last_interval = 0;
737
738
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
739
mm->pmd_huge_pte = NULL;
740
#endif
741
742
if (!mm_init(mm, tsk))
743
goto fail_nomem;
744
745
if (init_new_context(tsk, mm))
746
goto fail_nocontext;
747
748
dup_mm_exe_file(oldmm, mm);
749
750
err = dup_mmap(mm, oldmm);
751
if (err)
752
goto free_pt;
753
754
mm->hiwater_rss = get_mm_rss(mm);
755
mm->hiwater_vm = mm->total_vm;
756
757
if (mm->binfmt && !try_module_get(mm->binfmt->module))
758
goto free_pt;
759
760
return mm;
761
762
free_pt:
763
/* don't put binfmt in mmput, we haven't got module yet */
764
mm->binfmt = NULL;
765
mmput(mm);
766
767
fail_nomem:
768
return NULL;
769
770
fail_nocontext:
771
/*
772
* If init_new_context() failed, we cannot use mmput() to free the mm
773
* because it calls destroy_context()
774
*/
775
mm_free_pgd(mm);
776
free_mm(mm);
777
return NULL;
778
}
779
780
static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
781
{
782
struct mm_struct * mm, *oldmm;
783
int retval;
784
785
tsk->min_flt = tsk->maj_flt = 0;
786
tsk->nvcsw = tsk->nivcsw = 0;
787
#ifdef CONFIG_DETECT_HUNG_TASK
788
tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
789
#endif
790
791
tsk->mm = NULL;
792
tsk->active_mm = NULL;
793
794
/*
795
* Are we cloning a kernel thread?
796
*
797
* We need to steal a active VM for that..
798
*/
799
oldmm = current->mm;
800
if (!oldmm)
801
return 0;
802
803
if (clone_flags & CLONE_VM) {
804
atomic_inc(&oldmm->mm_users);
805
mm = oldmm;
806
goto good_mm;
807
}
808
809
retval = -ENOMEM;
810
mm = dup_mm(tsk);
811
if (!mm)
812
goto fail_nomem;
813
814
good_mm:
815
/* Initializing for Swap token stuff */
816
mm->token_priority = 0;
817
mm->last_interval = 0;
818
if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
819
atomic_inc(&mm->oom_disable_count);
820
821
tsk->mm = mm;
822
tsk->active_mm = mm;
823
return 0;
824
825
fail_nomem:
826
return retval;
827
}
828
829
static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
830
{
831
struct fs_struct *fs = current->fs;
832
if (clone_flags & CLONE_FS) {
833
/* tsk->fs is already what we want */
834
spin_lock(&fs->lock);
835
if (fs->in_exec) {
836
spin_unlock(&fs->lock);
837
return -EAGAIN;
838
}
839
fs->users++;
840
spin_unlock(&fs->lock);
841
return 0;
842
}
843
tsk->fs = copy_fs_struct(fs);
844
if (!tsk->fs)
845
return -ENOMEM;
846
return 0;
847
}
848
849
static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
850
{
851
struct files_struct *oldf, *newf;
852
int error = 0;
853
854
/*
855
* A background process may not have any files ...
856
*/
857
oldf = current->files;
858
if (!oldf)
859
goto out;
860
861
if (clone_flags & CLONE_FILES) {
862
atomic_inc(&oldf->count);
863
goto out;
864
}
865
866
newf = dup_fd(oldf, &error);
867
if (!newf)
868
goto out;
869
870
tsk->files = newf;
871
error = 0;
872
out:
873
return error;
874
}
875
876
static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
877
{
878
#ifdef CONFIG_BLOCK
879
struct io_context *ioc = current->io_context;
880
881
if (!ioc)
882
return 0;
883
/*
884
* Share io context with parent, if CLONE_IO is set
885
*/
886
if (clone_flags & CLONE_IO) {
887
tsk->io_context = ioc_task_link(ioc);
888
if (unlikely(!tsk->io_context))
889
return -ENOMEM;
890
} else if (ioprio_valid(ioc->ioprio)) {
891
tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
892
if (unlikely(!tsk->io_context))
893
return -ENOMEM;
894
895
tsk->io_context->ioprio = ioc->ioprio;
896
}
897
#endif
898
return 0;
899
}
900
901
static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
902
{
903
struct sighand_struct *sig;
904
905
if (clone_flags & CLONE_SIGHAND) {
906
atomic_inc(&current->sighand->count);
907
return 0;
908
}
909
sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
910
rcu_assign_pointer(tsk->sighand, sig);
911
if (!sig)
912
return -ENOMEM;
913
atomic_set(&sig->count, 1);
914
memcpy(sig->action, current->sighand->action, sizeof(sig->action));
915
return 0;
916
}
917
918
void __cleanup_sighand(struct sighand_struct *sighand)
919
{
920
if (atomic_dec_and_test(&sighand->count))
921
kmem_cache_free(sighand_cachep, sighand);
922
}
923
924
925
/*
926
* Initialize POSIX timer handling for a thread group.
927
*/
928
static void posix_cpu_timers_init_group(struct signal_struct *sig)
929
{
930
unsigned long cpu_limit;
931
932
/* Thread group counters. */
933
thread_group_cputime_init(sig);
934
935
cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
936
if (cpu_limit != RLIM_INFINITY) {
937
sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
938
sig->cputimer.running = 1;
939
}
940
941
/* The timer lists. */
942
INIT_LIST_HEAD(&sig->cpu_timers[0]);
943
INIT_LIST_HEAD(&sig->cpu_timers[1]);
944
INIT_LIST_HEAD(&sig->cpu_timers[2]);
945
}
946
947
static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
948
{
949
struct signal_struct *sig;
950
951
if (clone_flags & CLONE_THREAD)
952
return 0;
953
954
sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
955
tsk->signal = sig;
956
if (!sig)
957
return -ENOMEM;
958
959
sig->nr_threads = 1;
960
atomic_set(&sig->live, 1);
961
atomic_set(&sig->sigcnt, 1);
962
init_waitqueue_head(&sig->wait_chldexit);
963
if (clone_flags & CLONE_NEWPID)
964
sig->flags |= SIGNAL_UNKILLABLE;
965
sig->curr_target = tsk;
966
init_sigpending(&sig->shared_pending);
967
INIT_LIST_HEAD(&sig->posix_timers);
968
969
hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
970
sig->real_timer.function = it_real_fn;
971
972
task_lock(current->group_leader);
973
memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
974
task_unlock(current->group_leader);
975
976
posix_cpu_timers_init_group(sig);
977
978
tty_audit_fork(sig);
979
sched_autogroup_fork(sig);
980
981
#ifdef CONFIG_CGROUPS
982
init_rwsem(&sig->threadgroup_fork_lock);
983
#endif
984
985
sig->oom_adj = current->signal->oom_adj;
986
sig->oom_score_adj = current->signal->oom_score_adj;
987
sig->oom_score_adj_min = current->signal->oom_score_adj_min;
988
989
mutex_init(&sig->cred_guard_mutex);
990
991
return 0;
992
}
993
994
static void copy_flags(unsigned long clone_flags, struct task_struct *p)
995
{
996
unsigned long new_flags = p->flags;
997
998
new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
999
new_flags |= PF_FORKNOEXEC;
1000
new_flags |= PF_STARTING;
1001
p->flags = new_flags;
1002
clear_freeze_flag(p);
1003
}
1004
1005
SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1006
{
1007
current->clear_child_tid = tidptr;
1008
1009
return task_pid_vnr(current);
1010
}
1011
1012
static void rt_mutex_init_task(struct task_struct *p)
1013
{
1014
raw_spin_lock_init(&p->pi_lock);
1015
#ifdef CONFIG_RT_MUTEXES
1016
plist_head_init_raw(&p->pi_waiters, &p->pi_lock);
1017
p->pi_blocked_on = NULL;
1018
#endif
1019
}
1020
1021
#ifdef CONFIG_MM_OWNER
1022
void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1023
{
1024
mm->owner = p;
1025
}
1026
#endif /* CONFIG_MM_OWNER */
1027
1028
/*
1029
* Initialize POSIX timer handling for a single task.
1030
*/
1031
static void posix_cpu_timers_init(struct task_struct *tsk)
1032
{
1033
tsk->cputime_expires.prof_exp = cputime_zero;
1034
tsk->cputime_expires.virt_exp = cputime_zero;
1035
tsk->cputime_expires.sched_exp = 0;
1036
INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1037
INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1038
INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1039
}
1040
1041
/*
1042
* This creates a new process as a copy of the old one,
1043
* but does not actually start it yet.
1044
*
1045
* It copies the registers, and all the appropriate
1046
* parts of the process environment (as per the clone
1047
* flags). The actual kick-off is left to the caller.
1048
*/
1049
static struct task_struct *copy_process(unsigned long clone_flags,
1050
unsigned long stack_start,
1051
struct pt_regs *regs,
1052
unsigned long stack_size,
1053
int __user *child_tidptr,
1054
struct pid *pid,
1055
int trace)
1056
{
1057
int retval;
1058
struct task_struct *p;
1059
int cgroup_callbacks_done = 0;
1060
1061
if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1062
return ERR_PTR(-EINVAL);
1063
1064
/*
1065
* Thread groups must share signals as well, and detached threads
1066
* can only be started up within the thread group.
1067
*/
1068
if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1069
return ERR_PTR(-EINVAL);
1070
1071
/*
1072
* Shared signal handlers imply shared VM. By way of the above,
1073
* thread groups also imply shared VM. Blocking this case allows
1074
* for various simplifications in other code.
1075
*/
1076
if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1077
return ERR_PTR(-EINVAL);
1078
1079
/*
1080
* Siblings of global init remain as zombies on exit since they are
1081
* not reaped by their parent (swapper). To solve this and to avoid
1082
* multi-rooted process trees, prevent global and container-inits
1083
* from creating siblings.
1084
*/
1085
if ((clone_flags & CLONE_PARENT) &&
1086
current->signal->flags & SIGNAL_UNKILLABLE)
1087
return ERR_PTR(-EINVAL);
1088
1089
retval = security_task_create(clone_flags);
1090
if (retval)
1091
goto fork_out;
1092
1093
retval = -ENOMEM;
1094
p = dup_task_struct(current);
1095
if (!p)
1096
goto fork_out;
1097
1098
ftrace_graph_init_task(p);
1099
1100
rt_mutex_init_task(p);
1101
1102
#ifdef CONFIG_PROVE_LOCKING
1103
DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1104
DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1105
#endif
1106
retval = -EAGAIN;
1107
if (atomic_read(&p->real_cred->user->processes) >=
1108
task_rlimit(p, RLIMIT_NPROC)) {
1109
if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1110
p->real_cred->user != INIT_USER)
1111
goto bad_fork_free;
1112
}
1113
1114
retval = copy_creds(p, clone_flags);
1115
if (retval < 0)
1116
goto bad_fork_free;
1117
1118
/*
1119
* If multiple threads are within copy_process(), then this check
1120
* triggers too late. This doesn't hurt, the check is only there
1121
* to stop root fork bombs.
1122
*/
1123
retval = -EAGAIN;
1124
if (nr_threads >= max_threads)
1125
goto bad_fork_cleanup_count;
1126
1127
if (!try_module_get(task_thread_info(p)->exec_domain->module))
1128
goto bad_fork_cleanup_count;
1129
1130
p->did_exec = 0;
1131
delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1132
copy_flags(clone_flags, p);
1133
INIT_LIST_HEAD(&p->children);
1134
INIT_LIST_HEAD(&p->sibling);
1135
rcu_copy_process(p);
1136
p->vfork_done = NULL;
1137
spin_lock_init(&p->alloc_lock);
1138
1139
init_sigpending(&p->pending);
1140
1141
p->utime = cputime_zero;
1142
p->stime = cputime_zero;
1143
p->gtime = cputime_zero;
1144
p->utimescaled = cputime_zero;
1145
p->stimescaled = cputime_zero;
1146
#ifndef CONFIG_VIRT_CPU_ACCOUNTING
1147
p->prev_utime = cputime_zero;
1148
p->prev_stime = cputime_zero;
1149
#endif
1150
#if defined(SPLIT_RSS_COUNTING)
1151
memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1152
#endif
1153
1154
p->default_timer_slack_ns = current->timer_slack_ns;
1155
1156
task_io_accounting_init(&p->ioac);
1157
acct_clear_integrals(p);
1158
1159
posix_cpu_timers_init(p);
1160
1161
do_posix_clock_monotonic_gettime(&p->start_time);
1162
p->real_start_time = p->start_time;
1163
monotonic_to_bootbased(&p->real_start_time);
1164
p->io_context = NULL;
1165
p->audit_context = NULL;
1166
if (clone_flags & CLONE_THREAD)
1167
threadgroup_fork_read_lock(current);
1168
cgroup_fork(p);
1169
#ifdef CONFIG_NUMA
1170
p->mempolicy = mpol_dup(p->mempolicy);
1171
if (IS_ERR(p->mempolicy)) {
1172
retval = PTR_ERR(p->mempolicy);
1173
p->mempolicy = NULL;
1174
goto bad_fork_cleanup_cgroup;
1175
}
1176
mpol_fix_fork_child_flag(p);
1177
#endif
1178
#ifdef CONFIG_TRACE_IRQFLAGS
1179
p->irq_events = 0;
1180
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1181
p->hardirqs_enabled = 1;
1182
#else
1183
p->hardirqs_enabled = 0;
1184
#endif
1185
p->hardirq_enable_ip = 0;
1186
p->hardirq_enable_event = 0;
1187
p->hardirq_disable_ip = _THIS_IP_;
1188
p->hardirq_disable_event = 0;
1189
p->softirqs_enabled = 1;
1190
p->softirq_enable_ip = _THIS_IP_;
1191
p->softirq_enable_event = 0;
1192
p->softirq_disable_ip = 0;
1193
p->softirq_disable_event = 0;
1194
p->hardirq_context = 0;
1195
p->softirq_context = 0;
1196
#endif
1197
#ifdef CONFIG_LOCKDEP
1198
p->lockdep_depth = 0; /* no locks held yet */
1199
p->curr_chain_key = 0;
1200
p->lockdep_recursion = 0;
1201
#endif
1202
1203
#ifdef CONFIG_DEBUG_MUTEXES
1204
p->blocked_on = NULL; /* not blocked yet */
1205
#endif
1206
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
1207
p->memcg_batch.do_batch = 0;
1208
p->memcg_batch.memcg = NULL;
1209
#endif
1210
1211
/* Perform scheduler related setup. Assign this task to a CPU. */
1212
sched_fork(p);
1213
1214
retval = perf_event_init_task(p);
1215
if (retval)
1216
goto bad_fork_cleanup_policy;
1217
1218
if ((retval = audit_alloc(p)))
1219
goto bad_fork_cleanup_policy;
1220
/* copy all the process information */
1221
if ((retval = copy_semundo(clone_flags, p)))
1222
goto bad_fork_cleanup_audit;
1223
if ((retval = copy_files(clone_flags, p)))
1224
goto bad_fork_cleanup_semundo;
1225
if ((retval = copy_fs(clone_flags, p)))
1226
goto bad_fork_cleanup_files;
1227
if ((retval = copy_sighand(clone_flags, p)))
1228
goto bad_fork_cleanup_fs;
1229
if ((retval = copy_signal(clone_flags, p)))
1230
goto bad_fork_cleanup_sighand;
1231
if ((retval = copy_mm(clone_flags, p)))
1232
goto bad_fork_cleanup_signal;
1233
if ((retval = copy_namespaces(clone_flags, p)))
1234
goto bad_fork_cleanup_mm;
1235
if ((retval = copy_io(clone_flags, p)))
1236
goto bad_fork_cleanup_namespaces;
1237
retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1238
if (retval)
1239
goto bad_fork_cleanup_io;
1240
1241
if (pid != &init_struct_pid) {
1242
retval = -ENOMEM;
1243
pid = alloc_pid(p->nsproxy->pid_ns);
1244
if (!pid)
1245
goto bad_fork_cleanup_io;
1246
}
1247
1248
p->pid = pid_nr(pid);
1249
p->tgid = p->pid;
1250
if (clone_flags & CLONE_THREAD)
1251
p->tgid = current->tgid;
1252
1253
p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1254
/*
1255
* Clear TID on mm_release()?
1256
*/
1257
p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1258
#ifdef CONFIG_BLOCK
1259
p->plug = NULL;
1260
#endif
1261
#ifdef CONFIG_FUTEX
1262
p->robust_list = NULL;
1263
#ifdef CONFIG_COMPAT
1264
p->compat_robust_list = NULL;
1265
#endif
1266
INIT_LIST_HEAD(&p->pi_state_list);
1267
p->pi_state_cache = NULL;
1268
#endif
1269
/*
1270
* sigaltstack should be cleared when sharing the same VM
1271
*/
1272
if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1273
p->sas_ss_sp = p->sas_ss_size = 0;
1274
1275
/*
1276
* Syscall tracing and stepping should be turned off in the
1277
* child regardless of CLONE_PTRACE.
1278
*/
1279
user_disable_single_step(p);
1280
clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1281
#ifdef TIF_SYSCALL_EMU
1282
clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1283
#endif
1284
clear_all_latency_tracing(p);
1285
1286
/* ok, now we should be set up.. */
1287
p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1288
p->pdeath_signal = 0;
1289
p->exit_state = 0;
1290
1291
/*
1292
* Ok, make it visible to the rest of the system.
1293
* We dont wake it up yet.
1294
*/
1295
p->group_leader = p;
1296
INIT_LIST_HEAD(&p->thread_group);
1297
1298
/* Now that the task is set up, run cgroup callbacks if
1299
* necessary. We need to run them before the task is visible
1300
* on the tasklist. */
1301
cgroup_fork_callbacks(p);
1302
cgroup_callbacks_done = 1;
1303
1304
/* Need tasklist lock for parent etc handling! */
1305
write_lock_irq(&tasklist_lock);
1306
1307
/* CLONE_PARENT re-uses the old parent */
1308
if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1309
p->real_parent = current->real_parent;
1310
p->parent_exec_id = current->parent_exec_id;
1311
} else {
1312
p->real_parent = current;
1313
p->parent_exec_id = current->self_exec_id;
1314
}
1315
1316
spin_lock(&current->sighand->siglock);
1317
1318
/*
1319
* Process group and session signals need to be delivered to just the
1320
* parent before the fork or both the parent and the child after the
1321
* fork. Restart if a signal comes in before we add the new process to
1322
* it's process group.
1323
* A fatal signal pending means that current will exit, so the new
1324
* thread can't slip out of an OOM kill (or normal SIGKILL).
1325
*/
1326
recalc_sigpending();
1327
if (signal_pending(current)) {
1328
spin_unlock(&current->sighand->siglock);
1329
write_unlock_irq(&tasklist_lock);
1330
retval = -ERESTARTNOINTR;
1331
goto bad_fork_free_pid;
1332
}
1333
1334
if (clone_flags & CLONE_THREAD) {
1335
current->signal->nr_threads++;
1336
atomic_inc(&current->signal->live);
1337
atomic_inc(&current->signal->sigcnt);
1338
p->group_leader = current->group_leader;
1339
list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1340
}
1341
1342
if (likely(p->pid)) {
1343
tracehook_finish_clone(p, clone_flags, trace);
1344
1345
if (thread_group_leader(p)) {
1346
if (is_child_reaper(pid))
1347
p->nsproxy->pid_ns->child_reaper = p;
1348
1349
p->signal->leader_pid = pid;
1350
p->signal->tty = tty_kref_get(current->signal->tty);
1351
attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1352
attach_pid(p, PIDTYPE_SID, task_session(current));
1353
list_add_tail(&p->sibling, &p->real_parent->children);
1354
list_add_tail_rcu(&p->tasks, &init_task.tasks);
1355
__this_cpu_inc(process_counts);
1356
}
1357
attach_pid(p, PIDTYPE_PID, pid);
1358
nr_threads++;
1359
}
1360
1361
total_forks++;
1362
spin_unlock(&current->sighand->siglock);
1363
write_unlock_irq(&tasklist_lock);
1364
proc_fork_connector(p);
1365
cgroup_post_fork(p);
1366
if (clone_flags & CLONE_THREAD)
1367
threadgroup_fork_read_unlock(current);
1368
perf_event_fork(p);
1369
return p;
1370
1371
bad_fork_free_pid:
1372
if (pid != &init_struct_pid)
1373
free_pid(pid);
1374
bad_fork_cleanup_io:
1375
if (p->io_context)
1376
exit_io_context(p);
1377
bad_fork_cleanup_namespaces:
1378
exit_task_namespaces(p);
1379
bad_fork_cleanup_mm:
1380
if (p->mm) {
1381
task_lock(p);
1382
if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1383
atomic_dec(&p->mm->oom_disable_count);
1384
task_unlock(p);
1385
mmput(p->mm);
1386
}
1387
bad_fork_cleanup_signal:
1388
if (!(clone_flags & CLONE_THREAD))
1389
free_signal_struct(p->signal);
1390
bad_fork_cleanup_sighand:
1391
__cleanup_sighand(p->sighand);
1392
bad_fork_cleanup_fs:
1393
exit_fs(p); /* blocking */
1394
bad_fork_cleanup_files:
1395
exit_files(p); /* blocking */
1396
bad_fork_cleanup_semundo:
1397
exit_sem(p);
1398
bad_fork_cleanup_audit:
1399
audit_free(p);
1400
bad_fork_cleanup_policy:
1401
perf_event_free_task(p);
1402
#ifdef CONFIG_NUMA
1403
mpol_put(p->mempolicy);
1404
bad_fork_cleanup_cgroup:
1405
#endif
1406
if (clone_flags & CLONE_THREAD)
1407
threadgroup_fork_read_unlock(current);
1408
cgroup_exit(p, cgroup_callbacks_done);
1409
delayacct_tsk_free(p);
1410
module_put(task_thread_info(p)->exec_domain->module);
1411
bad_fork_cleanup_count:
1412
atomic_dec(&p->cred->user->processes);
1413
exit_creds(p);
1414
bad_fork_free:
1415
free_task(p);
1416
fork_out:
1417
return ERR_PTR(retval);
1418
}
1419
1420
noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1421
{
1422
memset(regs, 0, sizeof(struct pt_regs));
1423
return regs;
1424
}
1425
1426
static inline void init_idle_pids(struct pid_link *links)
1427
{
1428
enum pid_type type;
1429
1430
for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1431
INIT_HLIST_NODE(&links[type].node); /* not really needed */
1432
links[type].pid = &init_struct_pid;
1433
}
1434
}
1435
1436
struct task_struct * __cpuinit fork_idle(int cpu)
1437
{
1438
struct task_struct *task;
1439
struct pt_regs regs;
1440
1441
task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1442
&init_struct_pid, 0);
1443
if (!IS_ERR(task)) {
1444
init_idle_pids(task->pids);
1445
init_idle(task, cpu);
1446
}
1447
1448
return task;
1449
}
1450
1451
/*
1452
* Ok, this is the main fork-routine.
1453
*
1454
* It copies the process, and if successful kick-starts
1455
* it and waits for it to finish using the VM if required.
1456
*/
1457
long do_fork(unsigned long clone_flags,
1458
unsigned long stack_start,
1459
struct pt_regs *regs,
1460
unsigned long stack_size,
1461
int __user *parent_tidptr,
1462
int __user *child_tidptr)
1463
{
1464
struct task_struct *p;
1465
int trace = 0;
1466
long nr;
1467
1468
/*
1469
* Do some preliminary argument and permissions checking before we
1470
* actually start allocating stuff
1471
*/
1472
if (clone_flags & CLONE_NEWUSER) {
1473
if (clone_flags & CLONE_THREAD)
1474
return -EINVAL;
1475
/* hopefully this check will go away when userns support is
1476
* complete
1477
*/
1478
if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1479
!capable(CAP_SETGID))
1480
return -EPERM;
1481
}
1482
1483
/*
1484
* When called from kernel_thread, don't do user tracing stuff.
1485
*/
1486
if (likely(user_mode(regs)))
1487
trace = tracehook_prepare_clone(clone_flags);
1488
1489
p = copy_process(clone_flags, stack_start, regs, stack_size,
1490
child_tidptr, NULL, trace);
1491
/*
1492
* Do this prior waking up the new thread - the thread pointer
1493
* might get invalid after that point, if the thread exits quickly.
1494
*/
1495
if (!IS_ERR(p)) {
1496
struct completion vfork;
1497
1498
trace_sched_process_fork(current, p);
1499
1500
nr = task_pid_vnr(p);
1501
1502
if (clone_flags & CLONE_PARENT_SETTID)
1503
put_user(nr, parent_tidptr);
1504
1505
if (clone_flags & CLONE_VFORK) {
1506
p->vfork_done = &vfork;
1507
init_completion(&vfork);
1508
}
1509
1510
audit_finish_fork(p);
1511
tracehook_report_clone(regs, clone_flags, nr, p);
1512
1513
/*
1514
* We set PF_STARTING at creation in case tracing wants to
1515
* use this to distinguish a fully live task from one that
1516
* hasn't gotten to tracehook_report_clone() yet. Now we
1517
* clear it and set the child going.
1518
*/
1519
p->flags &= ~PF_STARTING;
1520
1521
wake_up_new_task(p);
1522
1523
tracehook_report_clone_complete(trace, regs,
1524
clone_flags, nr, p);
1525
1526
if (clone_flags & CLONE_VFORK) {
1527
freezer_do_not_count();
1528
wait_for_completion(&vfork);
1529
freezer_count();
1530
tracehook_report_vfork_done(p, nr);
1531
}
1532
} else {
1533
nr = PTR_ERR(p);
1534
}
1535
return nr;
1536
}
1537
1538
#ifndef ARCH_MIN_MMSTRUCT_ALIGN
1539
#define ARCH_MIN_MMSTRUCT_ALIGN 0
1540
#endif
1541
1542
static void sighand_ctor(void *data)
1543
{
1544
struct sighand_struct *sighand = data;
1545
1546
spin_lock_init(&sighand->siglock);
1547
init_waitqueue_head(&sighand->signalfd_wqh);
1548
}
1549
1550
void __init proc_caches_init(void)
1551
{
1552
sighand_cachep = kmem_cache_create("sighand_cache",
1553
sizeof(struct sighand_struct), 0,
1554
SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1555
SLAB_NOTRACK, sighand_ctor);
1556
signal_cachep = kmem_cache_create("signal_cache",
1557
sizeof(struct signal_struct), 0,
1558
SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1559
files_cachep = kmem_cache_create("files_cache",
1560
sizeof(struct files_struct), 0,
1561
SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1562
fs_cachep = kmem_cache_create("fs_cache",
1563
sizeof(struct fs_struct), 0,
1564
SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1565
/*
1566
* FIXME! The "sizeof(struct mm_struct)" currently includes the
1567
* whole struct cpumask for the OFFSTACK case. We could change
1568
* this to *only* allocate as much of it as required by the
1569
* maximum number of CPU's we can ever have. The cpumask_allocation
1570
* is at the end of the structure, exactly for that reason.
1571
*/
1572
mm_cachep = kmem_cache_create("mm_struct",
1573
sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1574
SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1575
vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1576
mmap_init();
1577
}
1578
1579
/*
1580
* Check constraints on flags passed to the unshare system call.
1581
*/
1582
static int check_unshare_flags(unsigned long unshare_flags)
1583
{
1584
if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1585
CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1586
CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1587
return -EINVAL;
1588
/*
1589
* Not implemented, but pretend it works if there is nothing to
1590
* unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1591
* needs to unshare vm.
1592
*/
1593
if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1594
/* FIXME: get_task_mm() increments ->mm_users */
1595
if (atomic_read(&current->mm->mm_users) > 1)
1596
return -EINVAL;
1597
}
1598
1599
return 0;
1600
}
1601
1602
/*
1603
* Unshare the filesystem structure if it is being shared
1604
*/
1605
static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1606
{
1607
struct fs_struct *fs = current->fs;
1608
1609
if (!(unshare_flags & CLONE_FS) || !fs)
1610
return 0;
1611
1612
/* don't need lock here; in the worst case we'll do useless copy */
1613
if (fs->users == 1)
1614
return 0;
1615
1616
*new_fsp = copy_fs_struct(fs);
1617
if (!*new_fsp)
1618
return -ENOMEM;
1619
1620
return 0;
1621
}
1622
1623
/*
1624
* Unshare file descriptor table if it is being shared
1625
*/
1626
static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1627
{
1628
struct files_struct *fd = current->files;
1629
int error = 0;
1630
1631
if ((unshare_flags & CLONE_FILES) &&
1632
(fd && atomic_read(&fd->count) > 1)) {
1633
*new_fdp = dup_fd(fd, &error);
1634
if (!*new_fdp)
1635
return error;
1636
}
1637
1638
return 0;
1639
}
1640
1641
/*
1642
* unshare allows a process to 'unshare' part of the process
1643
* context which was originally shared using clone. copy_*
1644
* functions used by do_fork() cannot be used here directly
1645
* because they modify an inactive task_struct that is being
1646
* constructed. Here we are modifying the current, active,
1647
* task_struct.
1648
*/
1649
SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1650
{
1651
struct fs_struct *fs, *new_fs = NULL;
1652
struct files_struct *fd, *new_fd = NULL;
1653
struct nsproxy *new_nsproxy = NULL;
1654
int do_sysvsem = 0;
1655
int err;
1656
1657
err = check_unshare_flags(unshare_flags);
1658
if (err)
1659
goto bad_unshare_out;
1660
1661
/*
1662
* If unsharing namespace, must also unshare filesystem information.
1663
*/
1664
if (unshare_flags & CLONE_NEWNS)
1665
unshare_flags |= CLONE_FS;
1666
/*
1667
* CLONE_NEWIPC must also detach from the undolist: after switching
1668
* to a new ipc namespace, the semaphore arrays from the old
1669
* namespace are unreachable.
1670
*/
1671
if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1672
do_sysvsem = 1;
1673
if ((err = unshare_fs(unshare_flags, &new_fs)))
1674
goto bad_unshare_out;
1675
if ((err = unshare_fd(unshare_flags, &new_fd)))
1676
goto bad_unshare_cleanup_fs;
1677
if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1678
new_fs)))
1679
goto bad_unshare_cleanup_fd;
1680
1681
if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1682
if (do_sysvsem) {
1683
/*
1684
* CLONE_SYSVSEM is equivalent to sys_exit().
1685
*/
1686
exit_sem(current);
1687
}
1688
1689
if (new_nsproxy) {
1690
switch_task_namespaces(current, new_nsproxy);
1691
new_nsproxy = NULL;
1692
}
1693
1694
task_lock(current);
1695
1696
if (new_fs) {
1697
fs = current->fs;
1698
spin_lock(&fs->lock);
1699
current->fs = new_fs;
1700
if (--fs->users)
1701
new_fs = NULL;
1702
else
1703
new_fs = fs;
1704
spin_unlock(&fs->lock);
1705
}
1706
1707
if (new_fd) {
1708
fd = current->files;
1709
current->files = new_fd;
1710
new_fd = fd;
1711
}
1712
1713
task_unlock(current);
1714
}
1715
1716
if (new_nsproxy)
1717
put_nsproxy(new_nsproxy);
1718
1719
bad_unshare_cleanup_fd:
1720
if (new_fd)
1721
put_files_struct(new_fd);
1722
1723
bad_unshare_cleanup_fs:
1724
if (new_fs)
1725
free_fs_struct(new_fs);
1726
1727
bad_unshare_out:
1728
return err;
1729
}
1730
1731
/*
1732
* Helper to unshare the files of the current task.
1733
* We don't want to expose copy_files internals to
1734
* the exec layer of the kernel.
1735
*/
1736
1737
int unshare_files(struct files_struct **displaced)
1738
{
1739
struct task_struct *task = current;
1740
struct files_struct *copy = NULL;
1741
int error;
1742
1743
error = unshare_fd(CLONE_FILES, &copy);
1744
if (error || !copy) {
1745
*displaced = NULL;
1746
return error;
1747
}
1748
*displaced = task->files;
1749
task_lock(task);
1750
task->files = copy;
1751
task_unlock(task);
1752
return 0;
1753
}
1754
1755