Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/kernel/futex.c
10814 views
1
/*
2
* Fast Userspace Mutexes (which I call "Futexes!").
3
* (C) Rusty Russell, IBM 2002
4
*
5
* Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6
* (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7
*
8
* Removed page pinning, fix privately mapped COW pages and other cleanups
9
* (C) Copyright 2003, 2004 Jamie Lokier
10
*
11
* Robust futex support started by Ingo Molnar
12
* (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13
* Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14
*
15
* PI-futex support started by Ingo Molnar and Thomas Gleixner
16
* Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <[email protected]>
17
* Copyright (C) 2006 Timesys Corp., Thomas Gleixner <[email protected]>
18
*
19
* PRIVATE futexes by Eric Dumazet
20
* Copyright (C) 2007 Eric Dumazet <[email protected]>
21
*
22
* Requeue-PI support by Darren Hart <[email protected]>
23
* Copyright (C) IBM Corporation, 2009
24
* Thanks to Thomas Gleixner for conceptual design and careful reviews.
25
*
26
* Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27
* enough at me, Linus for the original (flawed) idea, Matthew
28
* Kirkwood for proof-of-concept implementation.
29
*
30
* "The futexes are also cursed."
31
* "But they come in a choice of three flavours!"
32
*
33
* This program is free software; you can redistribute it and/or modify
34
* it under the terms of the GNU General Public License as published by
35
* the Free Software Foundation; either version 2 of the License, or
36
* (at your option) any later version.
37
*
38
* This program is distributed in the hope that it will be useful,
39
* but WITHOUT ANY WARRANTY; without even the implied warranty of
40
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41
* GNU General Public License for more details.
42
*
43
* You should have received a copy of the GNU General Public License
44
* along with this program; if not, write to the Free Software
45
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46
*/
47
#include <linux/slab.h>
48
#include <linux/poll.h>
49
#include <linux/fs.h>
50
#include <linux/file.h>
51
#include <linux/jhash.h>
52
#include <linux/init.h>
53
#include <linux/futex.h>
54
#include <linux/mount.h>
55
#include <linux/pagemap.h>
56
#include <linux/syscalls.h>
57
#include <linux/signal.h>
58
#include <linux/module.h>
59
#include <linux/magic.h>
60
#include <linux/pid.h>
61
#include <linux/nsproxy.h>
62
63
#include <asm/futex.h>
64
65
#include "rtmutex_common.h"
66
67
int __read_mostly futex_cmpxchg_enabled;
68
69
#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
70
71
/*
72
* Futex flags used to encode options to functions and preserve them across
73
* restarts.
74
*/
75
#define FLAGS_SHARED 0x01
76
#define FLAGS_CLOCKRT 0x02
77
#define FLAGS_HAS_TIMEOUT 0x04
78
79
/*
80
* Priority Inheritance state:
81
*/
82
struct futex_pi_state {
83
/*
84
* list of 'owned' pi_state instances - these have to be
85
* cleaned up in do_exit() if the task exits prematurely:
86
*/
87
struct list_head list;
88
89
/*
90
* The PI object:
91
*/
92
struct rt_mutex pi_mutex;
93
94
struct task_struct *owner;
95
atomic_t refcount;
96
97
union futex_key key;
98
};
99
100
/**
101
* struct futex_q - The hashed futex queue entry, one per waiting task
102
* @list: priority-sorted list of tasks waiting on this futex
103
* @task: the task waiting on the futex
104
* @lock_ptr: the hash bucket lock
105
* @key: the key the futex is hashed on
106
* @pi_state: optional priority inheritance state
107
* @rt_waiter: rt_waiter storage for use with requeue_pi
108
* @requeue_pi_key: the requeue_pi target futex key
109
* @bitset: bitset for the optional bitmasked wakeup
110
*
111
* We use this hashed waitqueue, instead of a normal wait_queue_t, so
112
* we can wake only the relevant ones (hashed queues may be shared).
113
*
114
* A futex_q has a woken state, just like tasks have TASK_RUNNING.
115
* It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
116
* The order of wakeup is always to make the first condition true, then
117
* the second.
118
*
119
* PI futexes are typically woken before they are removed from the hash list via
120
* the rt_mutex code. See unqueue_me_pi().
121
*/
122
struct futex_q {
123
struct plist_node list;
124
125
struct task_struct *task;
126
spinlock_t *lock_ptr;
127
union futex_key key;
128
struct futex_pi_state *pi_state;
129
struct rt_mutex_waiter *rt_waiter;
130
union futex_key *requeue_pi_key;
131
u32 bitset;
132
};
133
134
static const struct futex_q futex_q_init = {
135
/* list gets initialized in queue_me()*/
136
.key = FUTEX_KEY_INIT,
137
.bitset = FUTEX_BITSET_MATCH_ANY
138
};
139
140
/*
141
* Hash buckets are shared by all the futex_keys that hash to the same
142
* location. Each key may have multiple futex_q structures, one for each task
143
* waiting on a futex.
144
*/
145
struct futex_hash_bucket {
146
spinlock_t lock;
147
struct plist_head chain;
148
};
149
150
static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
151
152
/*
153
* We hash on the keys returned from get_futex_key (see below).
154
*/
155
static struct futex_hash_bucket *hash_futex(union futex_key *key)
156
{
157
u32 hash = jhash2((u32*)&key->both.word,
158
(sizeof(key->both.word)+sizeof(key->both.ptr))/4,
159
key->both.offset);
160
return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
161
}
162
163
/*
164
* Return 1 if two futex_keys are equal, 0 otherwise.
165
*/
166
static inline int match_futex(union futex_key *key1, union futex_key *key2)
167
{
168
return (key1 && key2
169
&& key1->both.word == key2->both.word
170
&& key1->both.ptr == key2->both.ptr
171
&& key1->both.offset == key2->both.offset);
172
}
173
174
/*
175
* Take a reference to the resource addressed by a key.
176
* Can be called while holding spinlocks.
177
*
178
*/
179
static void get_futex_key_refs(union futex_key *key)
180
{
181
if (!key->both.ptr)
182
return;
183
184
switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
185
case FUT_OFF_INODE:
186
ihold(key->shared.inode);
187
break;
188
case FUT_OFF_MMSHARED:
189
atomic_inc(&key->private.mm->mm_count);
190
break;
191
}
192
}
193
194
/*
195
* Drop a reference to the resource addressed by a key.
196
* The hash bucket spinlock must not be held.
197
*/
198
static void drop_futex_key_refs(union futex_key *key)
199
{
200
if (!key->both.ptr) {
201
/* If we're here then we tried to put a key we failed to get */
202
WARN_ON_ONCE(1);
203
return;
204
}
205
206
switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
207
case FUT_OFF_INODE:
208
iput(key->shared.inode);
209
break;
210
case FUT_OFF_MMSHARED:
211
mmdrop(key->private.mm);
212
break;
213
}
214
}
215
216
/**
217
* get_futex_key() - Get parameters which are the keys for a futex
218
* @uaddr: virtual address of the futex
219
* @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
220
* @key: address where result is stored.
221
*
222
* Returns a negative error code or 0
223
* The key words are stored in *key on success.
224
*
225
* For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
226
* offset_within_page). For private mappings, it's (uaddr, current->mm).
227
* We can usually work out the index without swapping in the page.
228
*
229
* lock_page() might sleep, the caller should not hold a spinlock.
230
*/
231
static int
232
get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
233
{
234
unsigned long address = (unsigned long)uaddr;
235
struct mm_struct *mm = current->mm;
236
struct page *page, *page_head;
237
int err;
238
239
/*
240
* The futex address must be "naturally" aligned.
241
*/
242
key->both.offset = address % PAGE_SIZE;
243
if (unlikely((address % sizeof(u32)) != 0))
244
return -EINVAL;
245
address -= key->both.offset;
246
247
/*
248
* PROCESS_PRIVATE futexes are fast.
249
* As the mm cannot disappear under us and the 'key' only needs
250
* virtual address, we dont even have to find the underlying vma.
251
* Note : We do have to check 'uaddr' is a valid user address,
252
* but access_ok() should be faster than find_vma()
253
*/
254
if (!fshared) {
255
if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
256
return -EFAULT;
257
key->private.mm = mm;
258
key->private.address = address;
259
get_futex_key_refs(key);
260
return 0;
261
}
262
263
again:
264
err = get_user_pages_fast(address, 1, 1, &page);
265
if (err < 0)
266
return err;
267
268
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
269
page_head = page;
270
if (unlikely(PageTail(page))) {
271
put_page(page);
272
/* serialize against __split_huge_page_splitting() */
273
local_irq_disable();
274
if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
275
page_head = compound_head(page);
276
/*
277
* page_head is valid pointer but we must pin
278
* it before taking the PG_lock and/or
279
* PG_compound_lock. The moment we re-enable
280
* irqs __split_huge_page_splitting() can
281
* return and the head page can be freed from
282
* under us. We can't take the PG_lock and/or
283
* PG_compound_lock on a page that could be
284
* freed from under us.
285
*/
286
if (page != page_head) {
287
get_page(page_head);
288
put_page(page);
289
}
290
local_irq_enable();
291
} else {
292
local_irq_enable();
293
goto again;
294
}
295
}
296
#else
297
page_head = compound_head(page);
298
if (page != page_head) {
299
get_page(page_head);
300
put_page(page);
301
}
302
#endif
303
304
lock_page(page_head);
305
if (!page_head->mapping) {
306
unlock_page(page_head);
307
put_page(page_head);
308
goto again;
309
}
310
311
/*
312
* Private mappings are handled in a simple way.
313
*
314
* NOTE: When userspace waits on a MAP_SHARED mapping, even if
315
* it's a read-only handle, it's expected that futexes attach to
316
* the object not the particular process.
317
*/
318
if (PageAnon(page_head)) {
319
key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
320
key->private.mm = mm;
321
key->private.address = address;
322
} else {
323
key->both.offset |= FUT_OFF_INODE; /* inode-based key */
324
key->shared.inode = page_head->mapping->host;
325
key->shared.pgoff = page_head->index;
326
}
327
328
get_futex_key_refs(key);
329
330
unlock_page(page_head);
331
put_page(page_head);
332
return 0;
333
}
334
335
static inline void put_futex_key(union futex_key *key)
336
{
337
drop_futex_key_refs(key);
338
}
339
340
/**
341
* fault_in_user_writeable() - Fault in user address and verify RW access
342
* @uaddr: pointer to faulting user space address
343
*
344
* Slow path to fixup the fault we just took in the atomic write
345
* access to @uaddr.
346
*
347
* We have no generic implementation of a non-destructive write to the
348
* user address. We know that we faulted in the atomic pagefault
349
* disabled section so we can as well avoid the #PF overhead by
350
* calling get_user_pages() right away.
351
*/
352
static int fault_in_user_writeable(u32 __user *uaddr)
353
{
354
struct mm_struct *mm = current->mm;
355
int ret;
356
357
down_read(&mm->mmap_sem);
358
ret = get_user_pages(current, mm, (unsigned long)uaddr,
359
1, 1, 0, NULL, NULL);
360
up_read(&mm->mmap_sem);
361
362
return ret < 0 ? ret : 0;
363
}
364
365
/**
366
* futex_top_waiter() - Return the highest priority waiter on a futex
367
* @hb: the hash bucket the futex_q's reside in
368
* @key: the futex key (to distinguish it from other futex futex_q's)
369
*
370
* Must be called with the hb lock held.
371
*/
372
static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
373
union futex_key *key)
374
{
375
struct futex_q *this;
376
377
plist_for_each_entry(this, &hb->chain, list) {
378
if (match_futex(&this->key, key))
379
return this;
380
}
381
return NULL;
382
}
383
384
static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
385
u32 uval, u32 newval)
386
{
387
int ret;
388
389
pagefault_disable();
390
ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
391
pagefault_enable();
392
393
return ret;
394
}
395
396
static int get_futex_value_locked(u32 *dest, u32 __user *from)
397
{
398
int ret;
399
400
pagefault_disable();
401
ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
402
pagefault_enable();
403
404
return ret ? -EFAULT : 0;
405
}
406
407
408
/*
409
* PI code:
410
*/
411
static int refill_pi_state_cache(void)
412
{
413
struct futex_pi_state *pi_state;
414
415
if (likely(current->pi_state_cache))
416
return 0;
417
418
pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
419
420
if (!pi_state)
421
return -ENOMEM;
422
423
INIT_LIST_HEAD(&pi_state->list);
424
/* pi_mutex gets initialized later */
425
pi_state->owner = NULL;
426
atomic_set(&pi_state->refcount, 1);
427
pi_state->key = FUTEX_KEY_INIT;
428
429
current->pi_state_cache = pi_state;
430
431
return 0;
432
}
433
434
static struct futex_pi_state * alloc_pi_state(void)
435
{
436
struct futex_pi_state *pi_state = current->pi_state_cache;
437
438
WARN_ON(!pi_state);
439
current->pi_state_cache = NULL;
440
441
return pi_state;
442
}
443
444
static void free_pi_state(struct futex_pi_state *pi_state)
445
{
446
if (!atomic_dec_and_test(&pi_state->refcount))
447
return;
448
449
/*
450
* If pi_state->owner is NULL, the owner is most probably dying
451
* and has cleaned up the pi_state already
452
*/
453
if (pi_state->owner) {
454
raw_spin_lock_irq(&pi_state->owner->pi_lock);
455
list_del_init(&pi_state->list);
456
raw_spin_unlock_irq(&pi_state->owner->pi_lock);
457
458
rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
459
}
460
461
if (current->pi_state_cache)
462
kfree(pi_state);
463
else {
464
/*
465
* pi_state->list is already empty.
466
* clear pi_state->owner.
467
* refcount is at 0 - put it back to 1.
468
*/
469
pi_state->owner = NULL;
470
atomic_set(&pi_state->refcount, 1);
471
current->pi_state_cache = pi_state;
472
}
473
}
474
475
/*
476
* Look up the task based on what TID userspace gave us.
477
* We dont trust it.
478
*/
479
static struct task_struct * futex_find_get_task(pid_t pid)
480
{
481
struct task_struct *p;
482
483
rcu_read_lock();
484
p = find_task_by_vpid(pid);
485
if (p)
486
get_task_struct(p);
487
488
rcu_read_unlock();
489
490
return p;
491
}
492
493
/*
494
* This task is holding PI mutexes at exit time => bad.
495
* Kernel cleans up PI-state, but userspace is likely hosed.
496
* (Robust-futex cleanup is separate and might save the day for userspace.)
497
*/
498
void exit_pi_state_list(struct task_struct *curr)
499
{
500
struct list_head *next, *head = &curr->pi_state_list;
501
struct futex_pi_state *pi_state;
502
struct futex_hash_bucket *hb;
503
union futex_key key = FUTEX_KEY_INIT;
504
505
if (!futex_cmpxchg_enabled)
506
return;
507
/*
508
* We are a ZOMBIE and nobody can enqueue itself on
509
* pi_state_list anymore, but we have to be careful
510
* versus waiters unqueueing themselves:
511
*/
512
raw_spin_lock_irq(&curr->pi_lock);
513
while (!list_empty(head)) {
514
515
next = head->next;
516
pi_state = list_entry(next, struct futex_pi_state, list);
517
key = pi_state->key;
518
hb = hash_futex(&key);
519
raw_spin_unlock_irq(&curr->pi_lock);
520
521
spin_lock(&hb->lock);
522
523
raw_spin_lock_irq(&curr->pi_lock);
524
/*
525
* We dropped the pi-lock, so re-check whether this
526
* task still owns the PI-state:
527
*/
528
if (head->next != next) {
529
spin_unlock(&hb->lock);
530
continue;
531
}
532
533
WARN_ON(pi_state->owner != curr);
534
WARN_ON(list_empty(&pi_state->list));
535
list_del_init(&pi_state->list);
536
pi_state->owner = NULL;
537
raw_spin_unlock_irq(&curr->pi_lock);
538
539
rt_mutex_unlock(&pi_state->pi_mutex);
540
541
spin_unlock(&hb->lock);
542
543
raw_spin_lock_irq(&curr->pi_lock);
544
}
545
raw_spin_unlock_irq(&curr->pi_lock);
546
}
547
548
static int
549
lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
550
union futex_key *key, struct futex_pi_state **ps)
551
{
552
struct futex_pi_state *pi_state = NULL;
553
struct futex_q *this, *next;
554
struct plist_head *head;
555
struct task_struct *p;
556
pid_t pid = uval & FUTEX_TID_MASK;
557
558
head = &hb->chain;
559
560
plist_for_each_entry_safe(this, next, head, list) {
561
if (match_futex(&this->key, key)) {
562
/*
563
* Another waiter already exists - bump up
564
* the refcount and return its pi_state:
565
*/
566
pi_state = this->pi_state;
567
/*
568
* Userspace might have messed up non-PI and PI futexes
569
*/
570
if (unlikely(!pi_state))
571
return -EINVAL;
572
573
WARN_ON(!atomic_read(&pi_state->refcount));
574
575
/*
576
* When pi_state->owner is NULL then the owner died
577
* and another waiter is on the fly. pi_state->owner
578
* is fixed up by the task which acquires
579
* pi_state->rt_mutex.
580
*
581
* We do not check for pid == 0 which can happen when
582
* the owner died and robust_list_exit() cleared the
583
* TID.
584
*/
585
if (pid && pi_state->owner) {
586
/*
587
* Bail out if user space manipulated the
588
* futex value.
589
*/
590
if (pid != task_pid_vnr(pi_state->owner))
591
return -EINVAL;
592
}
593
594
atomic_inc(&pi_state->refcount);
595
*ps = pi_state;
596
597
return 0;
598
}
599
}
600
601
/*
602
* We are the first waiter - try to look up the real owner and attach
603
* the new pi_state to it, but bail out when TID = 0
604
*/
605
if (!pid)
606
return -ESRCH;
607
p = futex_find_get_task(pid);
608
if (!p)
609
return -ESRCH;
610
611
/*
612
* We need to look at the task state flags to figure out,
613
* whether the task is exiting. To protect against the do_exit
614
* change of the task flags, we do this protected by
615
* p->pi_lock:
616
*/
617
raw_spin_lock_irq(&p->pi_lock);
618
if (unlikely(p->flags & PF_EXITING)) {
619
/*
620
* The task is on the way out. When PF_EXITPIDONE is
621
* set, we know that the task has finished the
622
* cleanup:
623
*/
624
int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
625
626
raw_spin_unlock_irq(&p->pi_lock);
627
put_task_struct(p);
628
return ret;
629
}
630
631
pi_state = alloc_pi_state();
632
633
/*
634
* Initialize the pi_mutex in locked state and make 'p'
635
* the owner of it:
636
*/
637
rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
638
639
/* Store the key for possible exit cleanups: */
640
pi_state->key = *key;
641
642
WARN_ON(!list_empty(&pi_state->list));
643
list_add(&pi_state->list, &p->pi_state_list);
644
pi_state->owner = p;
645
raw_spin_unlock_irq(&p->pi_lock);
646
647
put_task_struct(p);
648
649
*ps = pi_state;
650
651
return 0;
652
}
653
654
/**
655
* futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
656
* @uaddr: the pi futex user address
657
* @hb: the pi futex hash bucket
658
* @key: the futex key associated with uaddr and hb
659
* @ps: the pi_state pointer where we store the result of the
660
* lookup
661
* @task: the task to perform the atomic lock work for. This will
662
* be "current" except in the case of requeue pi.
663
* @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
664
*
665
* Returns:
666
* 0 - ready to wait
667
* 1 - acquired the lock
668
* <0 - error
669
*
670
* The hb->lock and futex_key refs shall be held by the caller.
671
*/
672
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
673
union futex_key *key,
674
struct futex_pi_state **ps,
675
struct task_struct *task, int set_waiters)
676
{
677
int lock_taken, ret, ownerdied = 0;
678
u32 uval, newval, curval, vpid = task_pid_vnr(task);
679
680
retry:
681
ret = lock_taken = 0;
682
683
/*
684
* To avoid races, we attempt to take the lock here again
685
* (by doing a 0 -> TID atomic cmpxchg), while holding all
686
* the locks. It will most likely not succeed.
687
*/
688
newval = vpid;
689
if (set_waiters)
690
newval |= FUTEX_WAITERS;
691
692
if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
693
return -EFAULT;
694
695
/*
696
* Detect deadlocks.
697
*/
698
if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
699
return -EDEADLK;
700
701
/*
702
* Surprise - we got the lock. Just return to userspace:
703
*/
704
if (unlikely(!curval))
705
return 1;
706
707
uval = curval;
708
709
/*
710
* Set the FUTEX_WAITERS flag, so the owner will know it has someone
711
* to wake at the next unlock.
712
*/
713
newval = curval | FUTEX_WAITERS;
714
715
/*
716
* There are two cases, where a futex might have no owner (the
717
* owner TID is 0): OWNER_DIED. We take over the futex in this
718
* case. We also do an unconditional take over, when the owner
719
* of the futex died.
720
*
721
* This is safe as we are protected by the hash bucket lock !
722
*/
723
if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
724
/* Keep the OWNER_DIED bit */
725
newval = (curval & ~FUTEX_TID_MASK) | vpid;
726
ownerdied = 0;
727
lock_taken = 1;
728
}
729
730
if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
731
return -EFAULT;
732
if (unlikely(curval != uval))
733
goto retry;
734
735
/*
736
* We took the lock due to owner died take over.
737
*/
738
if (unlikely(lock_taken))
739
return 1;
740
741
/*
742
* We dont have the lock. Look up the PI state (or create it if
743
* we are the first waiter):
744
*/
745
ret = lookup_pi_state(uval, hb, key, ps);
746
747
if (unlikely(ret)) {
748
switch (ret) {
749
case -ESRCH:
750
/*
751
* No owner found for this futex. Check if the
752
* OWNER_DIED bit is set to figure out whether
753
* this is a robust futex or not.
754
*/
755
if (get_futex_value_locked(&curval, uaddr))
756
return -EFAULT;
757
758
/*
759
* We simply start over in case of a robust
760
* futex. The code above will take the futex
761
* and return happy.
762
*/
763
if (curval & FUTEX_OWNER_DIED) {
764
ownerdied = 1;
765
goto retry;
766
}
767
default:
768
break;
769
}
770
}
771
772
return ret;
773
}
774
775
/**
776
* __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
777
* @q: The futex_q to unqueue
778
*
779
* The q->lock_ptr must not be NULL and must be held by the caller.
780
*/
781
static void __unqueue_futex(struct futex_q *q)
782
{
783
struct futex_hash_bucket *hb;
784
785
if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
786
|| WARN_ON(plist_node_empty(&q->list)))
787
return;
788
789
hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
790
plist_del(&q->list, &hb->chain);
791
}
792
793
/*
794
* The hash bucket lock must be held when this is called.
795
* Afterwards, the futex_q must not be accessed.
796
*/
797
static void wake_futex(struct futex_q *q)
798
{
799
struct task_struct *p = q->task;
800
801
/*
802
* We set q->lock_ptr = NULL _before_ we wake up the task. If
803
* a non-futex wake up happens on another CPU then the task
804
* might exit and p would dereference a non-existing task
805
* struct. Prevent this by holding a reference on p across the
806
* wake up.
807
*/
808
get_task_struct(p);
809
810
__unqueue_futex(q);
811
/*
812
* The waiting task can free the futex_q as soon as
813
* q->lock_ptr = NULL is written, without taking any locks. A
814
* memory barrier is required here to prevent the following
815
* store to lock_ptr from getting ahead of the plist_del.
816
*/
817
smp_wmb();
818
q->lock_ptr = NULL;
819
820
wake_up_state(p, TASK_NORMAL);
821
put_task_struct(p);
822
}
823
824
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
825
{
826
struct task_struct *new_owner;
827
struct futex_pi_state *pi_state = this->pi_state;
828
u32 curval, newval;
829
830
if (!pi_state)
831
return -EINVAL;
832
833
/*
834
* If current does not own the pi_state then the futex is
835
* inconsistent and user space fiddled with the futex value.
836
*/
837
if (pi_state->owner != current)
838
return -EINVAL;
839
840
raw_spin_lock(&pi_state->pi_mutex.wait_lock);
841
new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
842
843
/*
844
* It is possible that the next waiter (the one that brought
845
* this owner to the kernel) timed out and is no longer
846
* waiting on the lock.
847
*/
848
if (!new_owner)
849
new_owner = this->task;
850
851
/*
852
* We pass it to the next owner. (The WAITERS bit is always
853
* kept enabled while there is PI state around. We must also
854
* preserve the owner died bit.)
855
*/
856
if (!(uval & FUTEX_OWNER_DIED)) {
857
int ret = 0;
858
859
newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
860
861
if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
862
ret = -EFAULT;
863
else if (curval != uval)
864
ret = -EINVAL;
865
if (ret) {
866
raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
867
return ret;
868
}
869
}
870
871
raw_spin_lock_irq(&pi_state->owner->pi_lock);
872
WARN_ON(list_empty(&pi_state->list));
873
list_del_init(&pi_state->list);
874
raw_spin_unlock_irq(&pi_state->owner->pi_lock);
875
876
raw_spin_lock_irq(&new_owner->pi_lock);
877
WARN_ON(!list_empty(&pi_state->list));
878
list_add(&pi_state->list, &new_owner->pi_state_list);
879
pi_state->owner = new_owner;
880
raw_spin_unlock_irq(&new_owner->pi_lock);
881
882
raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
883
rt_mutex_unlock(&pi_state->pi_mutex);
884
885
return 0;
886
}
887
888
static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
889
{
890
u32 oldval;
891
892
/*
893
* There is no waiter, so we unlock the futex. The owner died
894
* bit has not to be preserved here. We are the owner:
895
*/
896
if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
897
return -EFAULT;
898
if (oldval != uval)
899
return -EAGAIN;
900
901
return 0;
902
}
903
904
/*
905
* Express the locking dependencies for lockdep:
906
*/
907
static inline void
908
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
909
{
910
if (hb1 <= hb2) {
911
spin_lock(&hb1->lock);
912
if (hb1 < hb2)
913
spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
914
} else { /* hb1 > hb2 */
915
spin_lock(&hb2->lock);
916
spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
917
}
918
}
919
920
static inline void
921
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
922
{
923
spin_unlock(&hb1->lock);
924
if (hb1 != hb2)
925
spin_unlock(&hb2->lock);
926
}
927
928
/*
929
* Wake up waiters matching bitset queued on this futex (uaddr).
930
*/
931
static int
932
futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
933
{
934
struct futex_hash_bucket *hb;
935
struct futex_q *this, *next;
936
struct plist_head *head;
937
union futex_key key = FUTEX_KEY_INIT;
938
int ret;
939
940
if (!bitset)
941
return -EINVAL;
942
943
ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key);
944
if (unlikely(ret != 0))
945
goto out;
946
947
hb = hash_futex(&key);
948
spin_lock(&hb->lock);
949
head = &hb->chain;
950
951
plist_for_each_entry_safe(this, next, head, list) {
952
if (match_futex (&this->key, &key)) {
953
if (this->pi_state || this->rt_waiter) {
954
ret = -EINVAL;
955
break;
956
}
957
958
/* Check if one of the bits is set in both bitsets */
959
if (!(this->bitset & bitset))
960
continue;
961
962
wake_futex(this);
963
if (++ret >= nr_wake)
964
break;
965
}
966
}
967
968
spin_unlock(&hb->lock);
969
put_futex_key(&key);
970
out:
971
return ret;
972
}
973
974
/*
975
* Wake up all waiters hashed on the physical page that is mapped
976
* to this virtual address:
977
*/
978
static int
979
futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
980
int nr_wake, int nr_wake2, int op)
981
{
982
union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
983
struct futex_hash_bucket *hb1, *hb2;
984
struct plist_head *head;
985
struct futex_q *this, *next;
986
int ret, op_ret;
987
988
retry:
989
ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1);
990
if (unlikely(ret != 0))
991
goto out;
992
ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
993
if (unlikely(ret != 0))
994
goto out_put_key1;
995
996
hb1 = hash_futex(&key1);
997
hb2 = hash_futex(&key2);
998
999
retry_private:
1000
double_lock_hb(hb1, hb2);
1001
op_ret = futex_atomic_op_inuser(op, uaddr2);
1002
if (unlikely(op_ret < 0)) {
1003
1004
double_unlock_hb(hb1, hb2);
1005
1006
#ifndef CONFIG_MMU
1007
/*
1008
* we don't get EFAULT from MMU faults if we don't have an MMU,
1009
* but we might get them from range checking
1010
*/
1011
ret = op_ret;
1012
goto out_put_keys;
1013
#endif
1014
1015
if (unlikely(op_ret != -EFAULT)) {
1016
ret = op_ret;
1017
goto out_put_keys;
1018
}
1019
1020
ret = fault_in_user_writeable(uaddr2);
1021
if (ret)
1022
goto out_put_keys;
1023
1024
if (!(flags & FLAGS_SHARED))
1025
goto retry_private;
1026
1027
put_futex_key(&key2);
1028
put_futex_key(&key1);
1029
goto retry;
1030
}
1031
1032
head = &hb1->chain;
1033
1034
plist_for_each_entry_safe(this, next, head, list) {
1035
if (match_futex (&this->key, &key1)) {
1036
wake_futex(this);
1037
if (++ret >= nr_wake)
1038
break;
1039
}
1040
}
1041
1042
if (op_ret > 0) {
1043
head = &hb2->chain;
1044
1045
op_ret = 0;
1046
plist_for_each_entry_safe(this, next, head, list) {
1047
if (match_futex (&this->key, &key2)) {
1048
wake_futex(this);
1049
if (++op_ret >= nr_wake2)
1050
break;
1051
}
1052
}
1053
ret += op_ret;
1054
}
1055
1056
double_unlock_hb(hb1, hb2);
1057
out_put_keys:
1058
put_futex_key(&key2);
1059
out_put_key1:
1060
put_futex_key(&key1);
1061
out:
1062
return ret;
1063
}
1064
1065
/**
1066
* requeue_futex() - Requeue a futex_q from one hb to another
1067
* @q: the futex_q to requeue
1068
* @hb1: the source hash_bucket
1069
* @hb2: the target hash_bucket
1070
* @key2: the new key for the requeued futex_q
1071
*/
1072
static inline
1073
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1074
struct futex_hash_bucket *hb2, union futex_key *key2)
1075
{
1076
1077
/*
1078
* If key1 and key2 hash to the same bucket, no need to
1079
* requeue.
1080
*/
1081
if (likely(&hb1->chain != &hb2->chain)) {
1082
plist_del(&q->list, &hb1->chain);
1083
plist_add(&q->list, &hb2->chain);
1084
q->lock_ptr = &hb2->lock;
1085
}
1086
get_futex_key_refs(key2);
1087
q->key = *key2;
1088
}
1089
1090
/**
1091
* requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1092
* @q: the futex_q
1093
* @key: the key of the requeue target futex
1094
* @hb: the hash_bucket of the requeue target futex
1095
*
1096
* During futex_requeue, with requeue_pi=1, it is possible to acquire the
1097
* target futex if it is uncontended or via a lock steal. Set the futex_q key
1098
* to the requeue target futex so the waiter can detect the wakeup on the right
1099
* futex, but remove it from the hb and NULL the rt_waiter so it can detect
1100
* atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1101
* to protect access to the pi_state to fixup the owner later. Must be called
1102
* with both q->lock_ptr and hb->lock held.
1103
*/
1104
static inline
1105
void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1106
struct futex_hash_bucket *hb)
1107
{
1108
get_futex_key_refs(key);
1109
q->key = *key;
1110
1111
__unqueue_futex(q);
1112
1113
WARN_ON(!q->rt_waiter);
1114
q->rt_waiter = NULL;
1115
1116
q->lock_ptr = &hb->lock;
1117
1118
wake_up_state(q->task, TASK_NORMAL);
1119
}
1120
1121
/**
1122
* futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1123
* @pifutex: the user address of the to futex
1124
* @hb1: the from futex hash bucket, must be locked by the caller
1125
* @hb2: the to futex hash bucket, must be locked by the caller
1126
* @key1: the from futex key
1127
* @key2: the to futex key
1128
* @ps: address to store the pi_state pointer
1129
* @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1130
*
1131
* Try and get the lock on behalf of the top waiter if we can do it atomically.
1132
* Wake the top waiter if we succeed. If the caller specified set_waiters,
1133
* then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1134
* hb1 and hb2 must be held by the caller.
1135
*
1136
* Returns:
1137
* 0 - failed to acquire the lock atomicly
1138
* 1 - acquired the lock
1139
* <0 - error
1140
*/
1141
static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1142
struct futex_hash_bucket *hb1,
1143
struct futex_hash_bucket *hb2,
1144
union futex_key *key1, union futex_key *key2,
1145
struct futex_pi_state **ps, int set_waiters)
1146
{
1147
struct futex_q *top_waiter = NULL;
1148
u32 curval;
1149
int ret;
1150
1151
if (get_futex_value_locked(&curval, pifutex))
1152
return -EFAULT;
1153
1154
/*
1155
* Find the top_waiter and determine if there are additional waiters.
1156
* If the caller intends to requeue more than 1 waiter to pifutex,
1157
* force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1158
* as we have means to handle the possible fault. If not, don't set
1159
* the bit unecessarily as it will force the subsequent unlock to enter
1160
* the kernel.
1161
*/
1162
top_waiter = futex_top_waiter(hb1, key1);
1163
1164
/* There are no waiters, nothing for us to do. */
1165
if (!top_waiter)
1166
return 0;
1167
1168
/* Ensure we requeue to the expected futex. */
1169
if (!match_futex(top_waiter->requeue_pi_key, key2))
1170
return -EINVAL;
1171
1172
/*
1173
* Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1174
* the contended case or if set_waiters is 1. The pi_state is returned
1175
* in ps in contended cases.
1176
*/
1177
ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1178
set_waiters);
1179
if (ret == 1)
1180
requeue_pi_wake_futex(top_waiter, key2, hb2);
1181
1182
return ret;
1183
}
1184
1185
/**
1186
* futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1187
* @uaddr1: source futex user address
1188
* @flags: futex flags (FLAGS_SHARED, etc.)
1189
* @uaddr2: target futex user address
1190
* @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1191
* @nr_requeue: number of waiters to requeue (0-INT_MAX)
1192
* @cmpval: @uaddr1 expected value (or %NULL)
1193
* @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1194
* pi futex (pi to pi requeue is not supported)
1195
*
1196
* Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1197
* uaddr2 atomically on behalf of the top waiter.
1198
*
1199
* Returns:
1200
* >=0 - on success, the number of tasks requeued or woken
1201
* <0 - on error
1202
*/
1203
static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1204
u32 __user *uaddr2, int nr_wake, int nr_requeue,
1205
u32 *cmpval, int requeue_pi)
1206
{
1207
union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1208
int drop_count = 0, task_count = 0, ret;
1209
struct futex_pi_state *pi_state = NULL;
1210
struct futex_hash_bucket *hb1, *hb2;
1211
struct plist_head *head1;
1212
struct futex_q *this, *next;
1213
u32 curval2;
1214
1215
if (requeue_pi) {
1216
/*
1217
* requeue_pi requires a pi_state, try to allocate it now
1218
* without any locks in case it fails.
1219
*/
1220
if (refill_pi_state_cache())
1221
return -ENOMEM;
1222
/*
1223
* requeue_pi must wake as many tasks as it can, up to nr_wake
1224
* + nr_requeue, since it acquires the rt_mutex prior to
1225
* returning to userspace, so as to not leave the rt_mutex with
1226
* waiters and no owner. However, second and third wake-ups
1227
* cannot be predicted as they involve race conditions with the
1228
* first wake and a fault while looking up the pi_state. Both
1229
* pthread_cond_signal() and pthread_cond_broadcast() should
1230
* use nr_wake=1.
1231
*/
1232
if (nr_wake != 1)
1233
return -EINVAL;
1234
}
1235
1236
retry:
1237
if (pi_state != NULL) {
1238
/*
1239
* We will have to lookup the pi_state again, so free this one
1240
* to keep the accounting correct.
1241
*/
1242
free_pi_state(pi_state);
1243
pi_state = NULL;
1244
}
1245
1246
ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1);
1247
if (unlikely(ret != 0))
1248
goto out;
1249
ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
1250
if (unlikely(ret != 0))
1251
goto out_put_key1;
1252
1253
hb1 = hash_futex(&key1);
1254
hb2 = hash_futex(&key2);
1255
1256
retry_private:
1257
double_lock_hb(hb1, hb2);
1258
1259
if (likely(cmpval != NULL)) {
1260
u32 curval;
1261
1262
ret = get_futex_value_locked(&curval, uaddr1);
1263
1264
if (unlikely(ret)) {
1265
double_unlock_hb(hb1, hb2);
1266
1267
ret = get_user(curval, uaddr1);
1268
if (ret)
1269
goto out_put_keys;
1270
1271
if (!(flags & FLAGS_SHARED))
1272
goto retry_private;
1273
1274
put_futex_key(&key2);
1275
put_futex_key(&key1);
1276
goto retry;
1277
}
1278
if (curval != *cmpval) {
1279
ret = -EAGAIN;
1280
goto out_unlock;
1281
}
1282
}
1283
1284
if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1285
/*
1286
* Attempt to acquire uaddr2 and wake the top waiter. If we
1287
* intend to requeue waiters, force setting the FUTEX_WAITERS
1288
* bit. We force this here where we are able to easily handle
1289
* faults rather in the requeue loop below.
1290
*/
1291
ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1292
&key2, &pi_state, nr_requeue);
1293
1294
/*
1295
* At this point the top_waiter has either taken uaddr2 or is
1296
* waiting on it. If the former, then the pi_state will not
1297
* exist yet, look it up one more time to ensure we have a
1298
* reference to it.
1299
*/
1300
if (ret == 1) {
1301
WARN_ON(pi_state);
1302
drop_count++;
1303
task_count++;
1304
ret = get_futex_value_locked(&curval2, uaddr2);
1305
if (!ret)
1306
ret = lookup_pi_state(curval2, hb2, &key2,
1307
&pi_state);
1308
}
1309
1310
switch (ret) {
1311
case 0:
1312
break;
1313
case -EFAULT:
1314
double_unlock_hb(hb1, hb2);
1315
put_futex_key(&key2);
1316
put_futex_key(&key1);
1317
ret = fault_in_user_writeable(uaddr2);
1318
if (!ret)
1319
goto retry;
1320
goto out;
1321
case -EAGAIN:
1322
/* The owner was exiting, try again. */
1323
double_unlock_hb(hb1, hb2);
1324
put_futex_key(&key2);
1325
put_futex_key(&key1);
1326
cond_resched();
1327
goto retry;
1328
default:
1329
goto out_unlock;
1330
}
1331
}
1332
1333
head1 = &hb1->chain;
1334
plist_for_each_entry_safe(this, next, head1, list) {
1335
if (task_count - nr_wake >= nr_requeue)
1336
break;
1337
1338
if (!match_futex(&this->key, &key1))
1339
continue;
1340
1341
/*
1342
* FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1343
* be paired with each other and no other futex ops.
1344
*/
1345
if ((requeue_pi && !this->rt_waiter) ||
1346
(!requeue_pi && this->rt_waiter)) {
1347
ret = -EINVAL;
1348
break;
1349
}
1350
1351
/*
1352
* Wake nr_wake waiters. For requeue_pi, if we acquired the
1353
* lock, we already woke the top_waiter. If not, it will be
1354
* woken by futex_unlock_pi().
1355
*/
1356
if (++task_count <= nr_wake && !requeue_pi) {
1357
wake_futex(this);
1358
continue;
1359
}
1360
1361
/* Ensure we requeue to the expected futex for requeue_pi. */
1362
if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1363
ret = -EINVAL;
1364
break;
1365
}
1366
1367
/*
1368
* Requeue nr_requeue waiters and possibly one more in the case
1369
* of requeue_pi if we couldn't acquire the lock atomically.
1370
*/
1371
if (requeue_pi) {
1372
/* Prepare the waiter to take the rt_mutex. */
1373
atomic_inc(&pi_state->refcount);
1374
this->pi_state = pi_state;
1375
ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1376
this->rt_waiter,
1377
this->task, 1);
1378
if (ret == 1) {
1379
/* We got the lock. */
1380
requeue_pi_wake_futex(this, &key2, hb2);
1381
drop_count++;
1382
continue;
1383
} else if (ret) {
1384
/* -EDEADLK */
1385
this->pi_state = NULL;
1386
free_pi_state(pi_state);
1387
goto out_unlock;
1388
}
1389
}
1390
requeue_futex(this, hb1, hb2, &key2);
1391
drop_count++;
1392
}
1393
1394
out_unlock:
1395
double_unlock_hb(hb1, hb2);
1396
1397
/*
1398
* drop_futex_key_refs() must be called outside the spinlocks. During
1399
* the requeue we moved futex_q's from the hash bucket at key1 to the
1400
* one at key2 and updated their key pointer. We no longer need to
1401
* hold the references to key1.
1402
*/
1403
while (--drop_count >= 0)
1404
drop_futex_key_refs(&key1);
1405
1406
out_put_keys:
1407
put_futex_key(&key2);
1408
out_put_key1:
1409
put_futex_key(&key1);
1410
out:
1411
if (pi_state != NULL)
1412
free_pi_state(pi_state);
1413
return ret ? ret : task_count;
1414
}
1415
1416
/* The key must be already stored in q->key. */
1417
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1418
__acquires(&hb->lock)
1419
{
1420
struct futex_hash_bucket *hb;
1421
1422
hb = hash_futex(&q->key);
1423
q->lock_ptr = &hb->lock;
1424
1425
spin_lock(&hb->lock);
1426
return hb;
1427
}
1428
1429
static inline void
1430
queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1431
__releases(&hb->lock)
1432
{
1433
spin_unlock(&hb->lock);
1434
}
1435
1436
/**
1437
* queue_me() - Enqueue the futex_q on the futex_hash_bucket
1438
* @q: The futex_q to enqueue
1439
* @hb: The destination hash bucket
1440
*
1441
* The hb->lock must be held by the caller, and is released here. A call to
1442
* queue_me() is typically paired with exactly one call to unqueue_me(). The
1443
* exceptions involve the PI related operations, which may use unqueue_me_pi()
1444
* or nothing if the unqueue is done as part of the wake process and the unqueue
1445
* state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1446
* an example).
1447
*/
1448
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1449
__releases(&hb->lock)
1450
{
1451
int prio;
1452
1453
/*
1454
* The priority used to register this element is
1455
* - either the real thread-priority for the real-time threads
1456
* (i.e. threads with a priority lower than MAX_RT_PRIO)
1457
* - or MAX_RT_PRIO for non-RT threads.
1458
* Thus, all RT-threads are woken first in priority order, and
1459
* the others are woken last, in FIFO order.
1460
*/
1461
prio = min(current->normal_prio, MAX_RT_PRIO);
1462
1463
plist_node_init(&q->list, prio);
1464
plist_add(&q->list, &hb->chain);
1465
q->task = current;
1466
spin_unlock(&hb->lock);
1467
}
1468
1469
/**
1470
* unqueue_me() - Remove the futex_q from its futex_hash_bucket
1471
* @q: The futex_q to unqueue
1472
*
1473
* The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1474
* be paired with exactly one earlier call to queue_me().
1475
*
1476
* Returns:
1477
* 1 - if the futex_q was still queued (and we removed unqueued it)
1478
* 0 - if the futex_q was already removed by the waking thread
1479
*/
1480
static int unqueue_me(struct futex_q *q)
1481
{
1482
spinlock_t *lock_ptr;
1483
int ret = 0;
1484
1485
/* In the common case we don't take the spinlock, which is nice. */
1486
retry:
1487
lock_ptr = q->lock_ptr;
1488
barrier();
1489
if (lock_ptr != NULL) {
1490
spin_lock(lock_ptr);
1491
/*
1492
* q->lock_ptr can change between reading it and
1493
* spin_lock(), causing us to take the wrong lock. This
1494
* corrects the race condition.
1495
*
1496
* Reasoning goes like this: if we have the wrong lock,
1497
* q->lock_ptr must have changed (maybe several times)
1498
* between reading it and the spin_lock(). It can
1499
* change again after the spin_lock() but only if it was
1500
* already changed before the spin_lock(). It cannot,
1501
* however, change back to the original value. Therefore
1502
* we can detect whether we acquired the correct lock.
1503
*/
1504
if (unlikely(lock_ptr != q->lock_ptr)) {
1505
spin_unlock(lock_ptr);
1506
goto retry;
1507
}
1508
__unqueue_futex(q);
1509
1510
BUG_ON(q->pi_state);
1511
1512
spin_unlock(lock_ptr);
1513
ret = 1;
1514
}
1515
1516
drop_futex_key_refs(&q->key);
1517
return ret;
1518
}
1519
1520
/*
1521
* PI futexes can not be requeued and must remove themself from the
1522
* hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1523
* and dropped here.
1524
*/
1525
static void unqueue_me_pi(struct futex_q *q)
1526
__releases(q->lock_ptr)
1527
{
1528
__unqueue_futex(q);
1529
1530
BUG_ON(!q->pi_state);
1531
free_pi_state(q->pi_state);
1532
q->pi_state = NULL;
1533
1534
spin_unlock(q->lock_ptr);
1535
}
1536
1537
/*
1538
* Fixup the pi_state owner with the new owner.
1539
*
1540
* Must be called with hash bucket lock held and mm->sem held for non
1541
* private futexes.
1542
*/
1543
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1544
struct task_struct *newowner)
1545
{
1546
u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1547
struct futex_pi_state *pi_state = q->pi_state;
1548
struct task_struct *oldowner = pi_state->owner;
1549
u32 uval, curval, newval;
1550
int ret;
1551
1552
/* Owner died? */
1553
if (!pi_state->owner)
1554
newtid |= FUTEX_OWNER_DIED;
1555
1556
/*
1557
* We are here either because we stole the rtmutex from the
1558
* previous highest priority waiter or we are the highest priority
1559
* waiter but failed to get the rtmutex the first time.
1560
* We have to replace the newowner TID in the user space variable.
1561
* This must be atomic as we have to preserve the owner died bit here.
1562
*
1563
* Note: We write the user space value _before_ changing the pi_state
1564
* because we can fault here. Imagine swapped out pages or a fork
1565
* that marked all the anonymous memory readonly for cow.
1566
*
1567
* Modifying pi_state _before_ the user space value would
1568
* leave the pi_state in an inconsistent state when we fault
1569
* here, because we need to drop the hash bucket lock to
1570
* handle the fault. This might be observed in the PID check
1571
* in lookup_pi_state.
1572
*/
1573
retry:
1574
if (get_futex_value_locked(&uval, uaddr))
1575
goto handle_fault;
1576
1577
while (1) {
1578
newval = (uval & FUTEX_OWNER_DIED) | newtid;
1579
1580
if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1581
goto handle_fault;
1582
if (curval == uval)
1583
break;
1584
uval = curval;
1585
}
1586
1587
/*
1588
* We fixed up user space. Now we need to fix the pi_state
1589
* itself.
1590
*/
1591
if (pi_state->owner != NULL) {
1592
raw_spin_lock_irq(&pi_state->owner->pi_lock);
1593
WARN_ON(list_empty(&pi_state->list));
1594
list_del_init(&pi_state->list);
1595
raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1596
}
1597
1598
pi_state->owner = newowner;
1599
1600
raw_spin_lock_irq(&newowner->pi_lock);
1601
WARN_ON(!list_empty(&pi_state->list));
1602
list_add(&pi_state->list, &newowner->pi_state_list);
1603
raw_spin_unlock_irq(&newowner->pi_lock);
1604
return 0;
1605
1606
/*
1607
* To handle the page fault we need to drop the hash bucket
1608
* lock here. That gives the other task (either the highest priority
1609
* waiter itself or the task which stole the rtmutex) the
1610
* chance to try the fixup of the pi_state. So once we are
1611
* back from handling the fault we need to check the pi_state
1612
* after reacquiring the hash bucket lock and before trying to
1613
* do another fixup. When the fixup has been done already we
1614
* simply return.
1615
*/
1616
handle_fault:
1617
spin_unlock(q->lock_ptr);
1618
1619
ret = fault_in_user_writeable(uaddr);
1620
1621
spin_lock(q->lock_ptr);
1622
1623
/*
1624
* Check if someone else fixed it for us:
1625
*/
1626
if (pi_state->owner != oldowner)
1627
return 0;
1628
1629
if (ret)
1630
return ret;
1631
1632
goto retry;
1633
}
1634
1635
static long futex_wait_restart(struct restart_block *restart);
1636
1637
/**
1638
* fixup_owner() - Post lock pi_state and corner case management
1639
* @uaddr: user address of the futex
1640
* @q: futex_q (contains pi_state and access to the rt_mutex)
1641
* @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1642
*
1643
* After attempting to lock an rt_mutex, this function is called to cleanup
1644
* the pi_state owner as well as handle race conditions that may allow us to
1645
* acquire the lock. Must be called with the hb lock held.
1646
*
1647
* Returns:
1648
* 1 - success, lock taken
1649
* 0 - success, lock not taken
1650
* <0 - on error (-EFAULT)
1651
*/
1652
static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1653
{
1654
struct task_struct *owner;
1655
int ret = 0;
1656
1657
if (locked) {
1658
/*
1659
* Got the lock. We might not be the anticipated owner if we
1660
* did a lock-steal - fix up the PI-state in that case:
1661
*/
1662
if (q->pi_state->owner != current)
1663
ret = fixup_pi_state_owner(uaddr, q, current);
1664
goto out;
1665
}
1666
1667
/*
1668
* Catch the rare case, where the lock was released when we were on the
1669
* way back before we locked the hash bucket.
1670
*/
1671
if (q->pi_state->owner == current) {
1672
/*
1673
* Try to get the rt_mutex now. This might fail as some other
1674
* task acquired the rt_mutex after we removed ourself from the
1675
* rt_mutex waiters list.
1676
*/
1677
if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1678
locked = 1;
1679
goto out;
1680
}
1681
1682
/*
1683
* pi_state is incorrect, some other task did a lock steal and
1684
* we returned due to timeout or signal without taking the
1685
* rt_mutex. Too late.
1686
*/
1687
raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1688
owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1689
if (!owner)
1690
owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1691
raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1692
ret = fixup_pi_state_owner(uaddr, q, owner);
1693
goto out;
1694
}
1695
1696
/*
1697
* Paranoia check. If we did not take the lock, then we should not be
1698
* the owner of the rt_mutex.
1699
*/
1700
if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1701
printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1702
"pi-state %p\n", ret,
1703
q->pi_state->pi_mutex.owner,
1704
q->pi_state->owner);
1705
1706
out:
1707
return ret ? ret : locked;
1708
}
1709
1710
/**
1711
* futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1712
* @hb: the futex hash bucket, must be locked by the caller
1713
* @q: the futex_q to queue up on
1714
* @timeout: the prepared hrtimer_sleeper, or null for no timeout
1715
*/
1716
static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1717
struct hrtimer_sleeper *timeout)
1718
{
1719
/*
1720
* The task state is guaranteed to be set before another task can
1721
* wake it. set_current_state() is implemented using set_mb() and
1722
* queue_me() calls spin_unlock() upon completion, both serializing
1723
* access to the hash list and forcing another memory barrier.
1724
*/
1725
set_current_state(TASK_INTERRUPTIBLE);
1726
queue_me(q, hb);
1727
1728
/* Arm the timer */
1729
if (timeout) {
1730
hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1731
if (!hrtimer_active(&timeout->timer))
1732
timeout->task = NULL;
1733
}
1734
1735
/*
1736
* If we have been removed from the hash list, then another task
1737
* has tried to wake us, and we can skip the call to schedule().
1738
*/
1739
if (likely(!plist_node_empty(&q->list))) {
1740
/*
1741
* If the timer has already expired, current will already be
1742
* flagged for rescheduling. Only call schedule if there
1743
* is no timeout, or if it has yet to expire.
1744
*/
1745
if (!timeout || timeout->task)
1746
schedule();
1747
}
1748
__set_current_state(TASK_RUNNING);
1749
}
1750
1751
/**
1752
* futex_wait_setup() - Prepare to wait on a futex
1753
* @uaddr: the futex userspace address
1754
* @val: the expected value
1755
* @flags: futex flags (FLAGS_SHARED, etc.)
1756
* @q: the associated futex_q
1757
* @hb: storage for hash_bucket pointer to be returned to caller
1758
*
1759
* Setup the futex_q and locate the hash_bucket. Get the futex value and
1760
* compare it with the expected value. Handle atomic faults internally.
1761
* Return with the hb lock held and a q.key reference on success, and unlocked
1762
* with no q.key reference on failure.
1763
*
1764
* Returns:
1765
* 0 - uaddr contains val and hb has been locked
1766
* <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1767
*/
1768
static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1769
struct futex_q *q, struct futex_hash_bucket **hb)
1770
{
1771
u32 uval;
1772
int ret;
1773
1774
/*
1775
* Access the page AFTER the hash-bucket is locked.
1776
* Order is important:
1777
*
1778
* Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1779
* Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1780
*
1781
* The basic logical guarantee of a futex is that it blocks ONLY
1782
* if cond(var) is known to be true at the time of blocking, for
1783
* any cond. If we locked the hash-bucket after testing *uaddr, that
1784
* would open a race condition where we could block indefinitely with
1785
* cond(var) false, which would violate the guarantee.
1786
*
1787
* On the other hand, we insert q and release the hash-bucket only
1788
* after testing *uaddr. This guarantees that futex_wait() will NOT
1789
* absorb a wakeup if *uaddr does not match the desired values
1790
* while the syscall executes.
1791
*/
1792
retry:
1793
ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key);
1794
if (unlikely(ret != 0))
1795
return ret;
1796
1797
retry_private:
1798
*hb = queue_lock(q);
1799
1800
ret = get_futex_value_locked(&uval, uaddr);
1801
1802
if (ret) {
1803
queue_unlock(q, *hb);
1804
1805
ret = get_user(uval, uaddr);
1806
if (ret)
1807
goto out;
1808
1809
if (!(flags & FLAGS_SHARED))
1810
goto retry_private;
1811
1812
put_futex_key(&q->key);
1813
goto retry;
1814
}
1815
1816
if (uval != val) {
1817
queue_unlock(q, *hb);
1818
ret = -EWOULDBLOCK;
1819
}
1820
1821
out:
1822
if (ret)
1823
put_futex_key(&q->key);
1824
return ret;
1825
}
1826
1827
static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1828
ktime_t *abs_time, u32 bitset)
1829
{
1830
struct hrtimer_sleeper timeout, *to = NULL;
1831
struct restart_block *restart;
1832
struct futex_hash_bucket *hb;
1833
struct futex_q q = futex_q_init;
1834
int ret;
1835
1836
if (!bitset)
1837
return -EINVAL;
1838
q.bitset = bitset;
1839
1840
if (abs_time) {
1841
to = &timeout;
1842
1843
hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1844
CLOCK_REALTIME : CLOCK_MONOTONIC,
1845
HRTIMER_MODE_ABS);
1846
hrtimer_init_sleeper(to, current);
1847
hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1848
current->timer_slack_ns);
1849
}
1850
1851
retry:
1852
/*
1853
* Prepare to wait on uaddr. On success, holds hb lock and increments
1854
* q.key refs.
1855
*/
1856
ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
1857
if (ret)
1858
goto out;
1859
1860
/* queue_me and wait for wakeup, timeout, or a signal. */
1861
futex_wait_queue_me(hb, &q, to);
1862
1863
/* If we were woken (and unqueued), we succeeded, whatever. */
1864
ret = 0;
1865
/* unqueue_me() drops q.key ref */
1866
if (!unqueue_me(&q))
1867
goto out;
1868
ret = -ETIMEDOUT;
1869
if (to && !to->task)
1870
goto out;
1871
1872
/*
1873
* We expect signal_pending(current), but we might be the
1874
* victim of a spurious wakeup as well.
1875
*/
1876
if (!signal_pending(current))
1877
goto retry;
1878
1879
ret = -ERESTARTSYS;
1880
if (!abs_time)
1881
goto out;
1882
1883
restart = &current_thread_info()->restart_block;
1884
restart->fn = futex_wait_restart;
1885
restart->futex.uaddr = uaddr;
1886
restart->futex.val = val;
1887
restart->futex.time = abs_time->tv64;
1888
restart->futex.bitset = bitset;
1889
restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
1890
1891
ret = -ERESTART_RESTARTBLOCK;
1892
1893
out:
1894
if (to) {
1895
hrtimer_cancel(&to->timer);
1896
destroy_hrtimer_on_stack(&to->timer);
1897
}
1898
return ret;
1899
}
1900
1901
1902
static long futex_wait_restart(struct restart_block *restart)
1903
{
1904
u32 __user *uaddr = restart->futex.uaddr;
1905
ktime_t t, *tp = NULL;
1906
1907
if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1908
t.tv64 = restart->futex.time;
1909
tp = &t;
1910
}
1911
restart->fn = do_no_restart_syscall;
1912
1913
return (long)futex_wait(uaddr, restart->futex.flags,
1914
restart->futex.val, tp, restart->futex.bitset);
1915
}
1916
1917
1918
/*
1919
* Userspace tried a 0 -> TID atomic transition of the futex value
1920
* and failed. The kernel side here does the whole locking operation:
1921
* if there are waiters then it will block, it does PI, etc. (Due to
1922
* races the kernel might see a 0 value of the futex too.)
1923
*/
1924
static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
1925
ktime_t *time, int trylock)
1926
{
1927
struct hrtimer_sleeper timeout, *to = NULL;
1928
struct futex_hash_bucket *hb;
1929
struct futex_q q = futex_q_init;
1930
int res, ret;
1931
1932
if (refill_pi_state_cache())
1933
return -ENOMEM;
1934
1935
if (time) {
1936
to = &timeout;
1937
hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1938
HRTIMER_MODE_ABS);
1939
hrtimer_init_sleeper(to, current);
1940
hrtimer_set_expires(&to->timer, *time);
1941
}
1942
1943
retry:
1944
ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key);
1945
if (unlikely(ret != 0))
1946
goto out;
1947
1948
retry_private:
1949
hb = queue_lock(&q);
1950
1951
ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1952
if (unlikely(ret)) {
1953
switch (ret) {
1954
case 1:
1955
/* We got the lock. */
1956
ret = 0;
1957
goto out_unlock_put_key;
1958
case -EFAULT:
1959
goto uaddr_faulted;
1960
case -EAGAIN:
1961
/*
1962
* Task is exiting and we just wait for the
1963
* exit to complete.
1964
*/
1965
queue_unlock(&q, hb);
1966
put_futex_key(&q.key);
1967
cond_resched();
1968
goto retry;
1969
default:
1970
goto out_unlock_put_key;
1971
}
1972
}
1973
1974
/*
1975
* Only actually queue now that the atomic ops are done:
1976
*/
1977
queue_me(&q, hb);
1978
1979
WARN_ON(!q.pi_state);
1980
/*
1981
* Block on the PI mutex:
1982
*/
1983
if (!trylock)
1984
ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1985
else {
1986
ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1987
/* Fixup the trylock return value: */
1988
ret = ret ? 0 : -EWOULDBLOCK;
1989
}
1990
1991
spin_lock(q.lock_ptr);
1992
/*
1993
* Fixup the pi_state owner and possibly acquire the lock if we
1994
* haven't already.
1995
*/
1996
res = fixup_owner(uaddr, &q, !ret);
1997
/*
1998
* If fixup_owner() returned an error, proprogate that. If it acquired
1999
* the lock, clear our -ETIMEDOUT or -EINTR.
2000
*/
2001
if (res)
2002
ret = (res < 0) ? res : 0;
2003
2004
/*
2005
* If fixup_owner() faulted and was unable to handle the fault, unlock
2006
* it and return the fault to userspace.
2007
*/
2008
if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2009
rt_mutex_unlock(&q.pi_state->pi_mutex);
2010
2011
/* Unqueue and drop the lock */
2012
unqueue_me_pi(&q);
2013
2014
goto out_put_key;
2015
2016
out_unlock_put_key:
2017
queue_unlock(&q, hb);
2018
2019
out_put_key:
2020
put_futex_key(&q.key);
2021
out:
2022
if (to)
2023
destroy_hrtimer_on_stack(&to->timer);
2024
return ret != -EINTR ? ret : -ERESTARTNOINTR;
2025
2026
uaddr_faulted:
2027
queue_unlock(&q, hb);
2028
2029
ret = fault_in_user_writeable(uaddr);
2030
if (ret)
2031
goto out_put_key;
2032
2033
if (!(flags & FLAGS_SHARED))
2034
goto retry_private;
2035
2036
put_futex_key(&q.key);
2037
goto retry;
2038
}
2039
2040
/*
2041
* Userspace attempted a TID -> 0 atomic transition, and failed.
2042
* This is the in-kernel slowpath: we look up the PI state (if any),
2043
* and do the rt-mutex unlock.
2044
*/
2045
static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2046
{
2047
struct futex_hash_bucket *hb;
2048
struct futex_q *this, *next;
2049
struct plist_head *head;
2050
union futex_key key = FUTEX_KEY_INIT;
2051
u32 uval, vpid = task_pid_vnr(current);
2052
int ret;
2053
2054
retry:
2055
if (get_user(uval, uaddr))
2056
return -EFAULT;
2057
/*
2058
* We release only a lock we actually own:
2059
*/
2060
if ((uval & FUTEX_TID_MASK) != vpid)
2061
return -EPERM;
2062
2063
ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key);
2064
if (unlikely(ret != 0))
2065
goto out;
2066
2067
hb = hash_futex(&key);
2068
spin_lock(&hb->lock);
2069
2070
/*
2071
* To avoid races, try to do the TID -> 0 atomic transition
2072
* again. If it succeeds then we can return without waking
2073
* anyone else up:
2074
*/
2075
if (!(uval & FUTEX_OWNER_DIED) &&
2076
cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2077
goto pi_faulted;
2078
/*
2079
* Rare case: we managed to release the lock atomically,
2080
* no need to wake anyone else up:
2081
*/
2082
if (unlikely(uval == vpid))
2083
goto out_unlock;
2084
2085
/*
2086
* Ok, other tasks may need to be woken up - check waiters
2087
* and do the wakeup if necessary:
2088
*/
2089
head = &hb->chain;
2090
2091
plist_for_each_entry_safe(this, next, head, list) {
2092
if (!match_futex (&this->key, &key))
2093
continue;
2094
ret = wake_futex_pi(uaddr, uval, this);
2095
/*
2096
* The atomic access to the futex value
2097
* generated a pagefault, so retry the
2098
* user-access and the wakeup:
2099
*/
2100
if (ret == -EFAULT)
2101
goto pi_faulted;
2102
goto out_unlock;
2103
}
2104
/*
2105
* No waiters - kernel unlocks the futex:
2106
*/
2107
if (!(uval & FUTEX_OWNER_DIED)) {
2108
ret = unlock_futex_pi(uaddr, uval);
2109
if (ret == -EFAULT)
2110
goto pi_faulted;
2111
}
2112
2113
out_unlock:
2114
spin_unlock(&hb->lock);
2115
put_futex_key(&key);
2116
2117
out:
2118
return ret;
2119
2120
pi_faulted:
2121
spin_unlock(&hb->lock);
2122
put_futex_key(&key);
2123
2124
ret = fault_in_user_writeable(uaddr);
2125
if (!ret)
2126
goto retry;
2127
2128
return ret;
2129
}
2130
2131
/**
2132
* handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2133
* @hb: the hash_bucket futex_q was original enqueued on
2134
* @q: the futex_q woken while waiting to be requeued
2135
* @key2: the futex_key of the requeue target futex
2136
* @timeout: the timeout associated with the wait (NULL if none)
2137
*
2138
* Detect if the task was woken on the initial futex as opposed to the requeue
2139
* target futex. If so, determine if it was a timeout or a signal that caused
2140
* the wakeup and return the appropriate error code to the caller. Must be
2141
* called with the hb lock held.
2142
*
2143
* Returns
2144
* 0 - no early wakeup detected
2145
* <0 - -ETIMEDOUT or -ERESTARTNOINTR
2146
*/
2147
static inline
2148
int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2149
struct futex_q *q, union futex_key *key2,
2150
struct hrtimer_sleeper *timeout)
2151
{
2152
int ret = 0;
2153
2154
/*
2155
* With the hb lock held, we avoid races while we process the wakeup.
2156
* We only need to hold hb (and not hb2) to ensure atomicity as the
2157
* wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2158
* It can't be requeued from uaddr2 to something else since we don't
2159
* support a PI aware source futex for requeue.
2160
*/
2161
if (!match_futex(&q->key, key2)) {
2162
WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2163
/*
2164
* We were woken prior to requeue by a timeout or a signal.
2165
* Unqueue the futex_q and determine which it was.
2166
*/
2167
plist_del(&q->list, &hb->chain);
2168
2169
/* Handle spurious wakeups gracefully */
2170
ret = -EWOULDBLOCK;
2171
if (timeout && !timeout->task)
2172
ret = -ETIMEDOUT;
2173
else if (signal_pending(current))
2174
ret = -ERESTARTNOINTR;
2175
}
2176
return ret;
2177
}
2178
2179
/**
2180
* futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2181
* @uaddr: the futex we initially wait on (non-pi)
2182
* @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2183
* the same type, no requeueing from private to shared, etc.
2184
* @val: the expected value of uaddr
2185
* @abs_time: absolute timeout
2186
* @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2187
* @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2188
* @uaddr2: the pi futex we will take prior to returning to user-space
2189
*
2190
* The caller will wait on uaddr and will be requeued by futex_requeue() to
2191
* uaddr2 which must be PI aware. Normal wakeup will wake on uaddr2 and
2192
* complete the acquisition of the rt_mutex prior to returning to userspace.
2193
* This ensures the rt_mutex maintains an owner when it has waiters; without
2194
* one, the pi logic wouldn't know which task to boost/deboost, if there was a
2195
* need to.
2196
*
2197
* We call schedule in futex_wait_queue_me() when we enqueue and return there
2198
* via the following:
2199
* 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2200
* 2) wakeup on uaddr2 after a requeue
2201
* 3) signal
2202
* 4) timeout
2203
*
2204
* If 3, cleanup and return -ERESTARTNOINTR.
2205
*
2206
* If 2, we may then block on trying to take the rt_mutex and return via:
2207
* 5) successful lock
2208
* 6) signal
2209
* 7) timeout
2210
* 8) other lock acquisition failure
2211
*
2212
* If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2213
*
2214
* If 4 or 7, we cleanup and return with -ETIMEDOUT.
2215
*
2216
* Returns:
2217
* 0 - On success
2218
* <0 - On error
2219
*/
2220
static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2221
u32 val, ktime_t *abs_time, u32 bitset,
2222
u32 __user *uaddr2)
2223
{
2224
struct hrtimer_sleeper timeout, *to = NULL;
2225
struct rt_mutex_waiter rt_waiter;
2226
struct rt_mutex *pi_mutex = NULL;
2227
struct futex_hash_bucket *hb;
2228
union futex_key key2 = FUTEX_KEY_INIT;
2229
struct futex_q q = futex_q_init;
2230
int res, ret;
2231
2232
if (!bitset)
2233
return -EINVAL;
2234
2235
if (abs_time) {
2236
to = &timeout;
2237
hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2238
CLOCK_REALTIME : CLOCK_MONOTONIC,
2239
HRTIMER_MODE_ABS);
2240
hrtimer_init_sleeper(to, current);
2241
hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2242
current->timer_slack_ns);
2243
}
2244
2245
/*
2246
* The waiter is allocated on our stack, manipulated by the requeue
2247
* code while we sleep on uaddr.
2248
*/
2249
debug_rt_mutex_init_waiter(&rt_waiter);
2250
rt_waiter.task = NULL;
2251
2252
ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
2253
if (unlikely(ret != 0))
2254
goto out;
2255
2256
q.bitset = bitset;
2257
q.rt_waiter = &rt_waiter;
2258
q.requeue_pi_key = &key2;
2259
2260
/*
2261
* Prepare to wait on uaddr. On success, increments q.key (key1) ref
2262
* count.
2263
*/
2264
ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2265
if (ret)
2266
goto out_key2;
2267
2268
/* Queue the futex_q, drop the hb lock, wait for wakeup. */
2269
futex_wait_queue_me(hb, &q, to);
2270
2271
spin_lock(&hb->lock);
2272
ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2273
spin_unlock(&hb->lock);
2274
if (ret)
2275
goto out_put_keys;
2276
2277
/*
2278
* In order for us to be here, we know our q.key == key2, and since
2279
* we took the hb->lock above, we also know that futex_requeue() has
2280
* completed and we no longer have to concern ourselves with a wakeup
2281
* race with the atomic proxy lock acquisition by the requeue code. The
2282
* futex_requeue dropped our key1 reference and incremented our key2
2283
* reference count.
2284
*/
2285
2286
/* Check if the requeue code acquired the second futex for us. */
2287
if (!q.rt_waiter) {
2288
/*
2289
* Got the lock. We might not be the anticipated owner if we
2290
* did a lock-steal - fix up the PI-state in that case.
2291
*/
2292
if (q.pi_state && (q.pi_state->owner != current)) {
2293
spin_lock(q.lock_ptr);
2294
ret = fixup_pi_state_owner(uaddr2, &q, current);
2295
spin_unlock(q.lock_ptr);
2296
}
2297
} else {
2298
/*
2299
* We have been woken up by futex_unlock_pi(), a timeout, or a
2300
* signal. futex_unlock_pi() will not destroy the lock_ptr nor
2301
* the pi_state.
2302
*/
2303
WARN_ON(!&q.pi_state);
2304
pi_mutex = &q.pi_state->pi_mutex;
2305
ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2306
debug_rt_mutex_free_waiter(&rt_waiter);
2307
2308
spin_lock(q.lock_ptr);
2309
/*
2310
* Fixup the pi_state owner and possibly acquire the lock if we
2311
* haven't already.
2312
*/
2313
res = fixup_owner(uaddr2, &q, !ret);
2314
/*
2315
* If fixup_owner() returned an error, proprogate that. If it
2316
* acquired the lock, clear -ETIMEDOUT or -EINTR.
2317
*/
2318
if (res)
2319
ret = (res < 0) ? res : 0;
2320
2321
/* Unqueue and drop the lock. */
2322
unqueue_me_pi(&q);
2323
}
2324
2325
/*
2326
* If fixup_pi_state_owner() faulted and was unable to handle the
2327
* fault, unlock the rt_mutex and return the fault to userspace.
2328
*/
2329
if (ret == -EFAULT) {
2330
if (rt_mutex_owner(pi_mutex) == current)
2331
rt_mutex_unlock(pi_mutex);
2332
} else if (ret == -EINTR) {
2333
/*
2334
* We've already been requeued, but cannot restart by calling
2335
* futex_lock_pi() directly. We could restart this syscall, but
2336
* it would detect that the user space "val" changed and return
2337
* -EWOULDBLOCK. Save the overhead of the restart and return
2338
* -EWOULDBLOCK directly.
2339
*/
2340
ret = -EWOULDBLOCK;
2341
}
2342
2343
out_put_keys:
2344
put_futex_key(&q.key);
2345
out_key2:
2346
put_futex_key(&key2);
2347
2348
out:
2349
if (to) {
2350
hrtimer_cancel(&to->timer);
2351
destroy_hrtimer_on_stack(&to->timer);
2352
}
2353
return ret;
2354
}
2355
2356
/*
2357
* Support for robust futexes: the kernel cleans up held futexes at
2358
* thread exit time.
2359
*
2360
* Implementation: user-space maintains a per-thread list of locks it
2361
* is holding. Upon do_exit(), the kernel carefully walks this list,
2362
* and marks all locks that are owned by this thread with the
2363
* FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2364
* always manipulated with the lock held, so the list is private and
2365
* per-thread. Userspace also maintains a per-thread 'list_op_pending'
2366
* field, to allow the kernel to clean up if the thread dies after
2367
* acquiring the lock, but just before it could have added itself to
2368
* the list. There can only be one such pending lock.
2369
*/
2370
2371
/**
2372
* sys_set_robust_list() - Set the robust-futex list head of a task
2373
* @head: pointer to the list-head
2374
* @len: length of the list-head, as userspace expects
2375
*/
2376
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2377
size_t, len)
2378
{
2379
if (!futex_cmpxchg_enabled)
2380
return -ENOSYS;
2381
/*
2382
* The kernel knows only one size for now:
2383
*/
2384
if (unlikely(len != sizeof(*head)))
2385
return -EINVAL;
2386
2387
current->robust_list = head;
2388
2389
return 0;
2390
}
2391
2392
/**
2393
* sys_get_robust_list() - Get the robust-futex list head of a task
2394
* @pid: pid of the process [zero for current task]
2395
* @head_ptr: pointer to a list-head pointer, the kernel fills it in
2396
* @len_ptr: pointer to a length field, the kernel fills in the header size
2397
*/
2398
SYSCALL_DEFINE3(get_robust_list, int, pid,
2399
struct robust_list_head __user * __user *, head_ptr,
2400
size_t __user *, len_ptr)
2401
{
2402
struct robust_list_head __user *head;
2403
unsigned long ret;
2404
const struct cred *cred = current_cred(), *pcred;
2405
2406
if (!futex_cmpxchg_enabled)
2407
return -ENOSYS;
2408
2409
if (!pid)
2410
head = current->robust_list;
2411
else {
2412
struct task_struct *p;
2413
2414
ret = -ESRCH;
2415
rcu_read_lock();
2416
p = find_task_by_vpid(pid);
2417
if (!p)
2418
goto err_unlock;
2419
ret = -EPERM;
2420
pcred = __task_cred(p);
2421
/* If victim is in different user_ns, then uids are not
2422
comparable, so we must have CAP_SYS_PTRACE */
2423
if (cred->user->user_ns != pcred->user->user_ns) {
2424
if (!ns_capable(pcred->user->user_ns, CAP_SYS_PTRACE))
2425
goto err_unlock;
2426
goto ok;
2427
}
2428
/* If victim is in same user_ns, then uids are comparable */
2429
if (cred->euid != pcred->euid &&
2430
cred->euid != pcred->uid &&
2431
!ns_capable(pcred->user->user_ns, CAP_SYS_PTRACE))
2432
goto err_unlock;
2433
ok:
2434
head = p->robust_list;
2435
rcu_read_unlock();
2436
}
2437
2438
if (put_user(sizeof(*head), len_ptr))
2439
return -EFAULT;
2440
return put_user(head, head_ptr);
2441
2442
err_unlock:
2443
rcu_read_unlock();
2444
2445
return ret;
2446
}
2447
2448
/*
2449
* Process a futex-list entry, check whether it's owned by the
2450
* dying task, and do notification if so:
2451
*/
2452
int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2453
{
2454
u32 uval, nval, mval;
2455
2456
retry:
2457
if (get_user(uval, uaddr))
2458
return -1;
2459
2460
if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2461
/*
2462
* Ok, this dying thread is truly holding a futex
2463
* of interest. Set the OWNER_DIED bit atomically
2464
* via cmpxchg, and if the value had FUTEX_WAITERS
2465
* set, wake up a waiter (if any). (We have to do a
2466
* futex_wake() even if OWNER_DIED is already set -
2467
* to handle the rare but possible case of recursive
2468
* thread-death.) The rest of the cleanup is done in
2469
* userspace.
2470
*/
2471
mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2472
/*
2473
* We are not holding a lock here, but we want to have
2474
* the pagefault_disable/enable() protection because
2475
* we want to handle the fault gracefully. If the
2476
* access fails we try to fault in the futex with R/W
2477
* verification via get_user_pages. get_user() above
2478
* does not guarantee R/W access. If that fails we
2479
* give up and leave the futex locked.
2480
*/
2481
if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2482
if (fault_in_user_writeable(uaddr))
2483
return -1;
2484
goto retry;
2485
}
2486
if (nval != uval)
2487
goto retry;
2488
2489
/*
2490
* Wake robust non-PI futexes here. The wakeup of
2491
* PI futexes happens in exit_pi_state():
2492
*/
2493
if (!pi && (uval & FUTEX_WAITERS))
2494
futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2495
}
2496
return 0;
2497
}
2498
2499
/*
2500
* Fetch a robust-list pointer. Bit 0 signals PI futexes:
2501
*/
2502
static inline int fetch_robust_entry(struct robust_list __user **entry,
2503
struct robust_list __user * __user *head,
2504
unsigned int *pi)
2505
{
2506
unsigned long uentry;
2507
2508
if (get_user(uentry, (unsigned long __user *)head))
2509
return -EFAULT;
2510
2511
*entry = (void __user *)(uentry & ~1UL);
2512
*pi = uentry & 1;
2513
2514
return 0;
2515
}
2516
2517
/*
2518
* Walk curr->robust_list (very carefully, it's a userspace list!)
2519
* and mark any locks found there dead, and notify any waiters.
2520
*
2521
* We silently return on any sign of list-walking problem.
2522
*/
2523
void exit_robust_list(struct task_struct *curr)
2524
{
2525
struct robust_list_head __user *head = curr->robust_list;
2526
struct robust_list __user *entry, *next_entry, *pending;
2527
unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2528
unsigned int uninitialized_var(next_pi);
2529
unsigned long futex_offset;
2530
int rc;
2531
2532
if (!futex_cmpxchg_enabled)
2533
return;
2534
2535
/*
2536
* Fetch the list head (which was registered earlier, via
2537
* sys_set_robust_list()):
2538
*/
2539
if (fetch_robust_entry(&entry, &head->list.next, &pi))
2540
return;
2541
/*
2542
* Fetch the relative futex offset:
2543
*/
2544
if (get_user(futex_offset, &head->futex_offset))
2545
return;
2546
/*
2547
* Fetch any possibly pending lock-add first, and handle it
2548
* if it exists:
2549
*/
2550
if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2551
return;
2552
2553
next_entry = NULL; /* avoid warning with gcc */
2554
while (entry != &head->list) {
2555
/*
2556
* Fetch the next entry in the list before calling
2557
* handle_futex_death:
2558
*/
2559
rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2560
/*
2561
* A pending lock might already be on the list, so
2562
* don't process it twice:
2563
*/
2564
if (entry != pending)
2565
if (handle_futex_death((void __user *)entry + futex_offset,
2566
curr, pi))
2567
return;
2568
if (rc)
2569
return;
2570
entry = next_entry;
2571
pi = next_pi;
2572
/*
2573
* Avoid excessively long or circular lists:
2574
*/
2575
if (!--limit)
2576
break;
2577
2578
cond_resched();
2579
}
2580
2581
if (pending)
2582
handle_futex_death((void __user *)pending + futex_offset,
2583
curr, pip);
2584
}
2585
2586
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2587
u32 __user *uaddr2, u32 val2, u32 val3)
2588
{
2589
int ret = -ENOSYS, cmd = op & FUTEX_CMD_MASK;
2590
unsigned int flags = 0;
2591
2592
if (!(op & FUTEX_PRIVATE_FLAG))
2593
flags |= FLAGS_SHARED;
2594
2595
if (op & FUTEX_CLOCK_REALTIME) {
2596
flags |= FLAGS_CLOCKRT;
2597
if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2598
return -ENOSYS;
2599
}
2600
2601
switch (cmd) {
2602
case FUTEX_WAIT:
2603
val3 = FUTEX_BITSET_MATCH_ANY;
2604
case FUTEX_WAIT_BITSET:
2605
ret = futex_wait(uaddr, flags, val, timeout, val3);
2606
break;
2607
case FUTEX_WAKE:
2608
val3 = FUTEX_BITSET_MATCH_ANY;
2609
case FUTEX_WAKE_BITSET:
2610
ret = futex_wake(uaddr, flags, val, val3);
2611
break;
2612
case FUTEX_REQUEUE:
2613
ret = futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2614
break;
2615
case FUTEX_CMP_REQUEUE:
2616
ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2617
break;
2618
case FUTEX_WAKE_OP:
2619
ret = futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2620
break;
2621
case FUTEX_LOCK_PI:
2622
if (futex_cmpxchg_enabled)
2623
ret = futex_lock_pi(uaddr, flags, val, timeout, 0);
2624
break;
2625
case FUTEX_UNLOCK_PI:
2626
if (futex_cmpxchg_enabled)
2627
ret = futex_unlock_pi(uaddr, flags);
2628
break;
2629
case FUTEX_TRYLOCK_PI:
2630
if (futex_cmpxchg_enabled)
2631
ret = futex_lock_pi(uaddr, flags, 0, timeout, 1);
2632
break;
2633
case FUTEX_WAIT_REQUEUE_PI:
2634
val3 = FUTEX_BITSET_MATCH_ANY;
2635
ret = futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2636
uaddr2);
2637
break;
2638
case FUTEX_CMP_REQUEUE_PI:
2639
ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2640
break;
2641
default:
2642
ret = -ENOSYS;
2643
}
2644
return ret;
2645
}
2646
2647
2648
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2649
struct timespec __user *, utime, u32 __user *, uaddr2,
2650
u32, val3)
2651
{
2652
struct timespec ts;
2653
ktime_t t, *tp = NULL;
2654
u32 val2 = 0;
2655
int cmd = op & FUTEX_CMD_MASK;
2656
2657
if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2658
cmd == FUTEX_WAIT_BITSET ||
2659
cmd == FUTEX_WAIT_REQUEUE_PI)) {
2660
if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2661
return -EFAULT;
2662
if (!timespec_valid(&ts))
2663
return -EINVAL;
2664
2665
t = timespec_to_ktime(ts);
2666
if (cmd == FUTEX_WAIT)
2667
t = ktime_add_safe(ktime_get(), t);
2668
tp = &t;
2669
}
2670
/*
2671
* requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2672
* number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2673
*/
2674
if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2675
cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2676
val2 = (u32) (unsigned long) utime;
2677
2678
return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2679
}
2680
2681
static int __init futex_init(void)
2682
{
2683
u32 curval;
2684
int i;
2685
2686
/*
2687
* This will fail and we want it. Some arch implementations do
2688
* runtime detection of the futex_atomic_cmpxchg_inatomic()
2689
* functionality. We want to know that before we call in any
2690
* of the complex code paths. Also we want to prevent
2691
* registration of robust lists in that case. NULL is
2692
* guaranteed to fault and we get -EFAULT on functional
2693
* implementation, the non-functional ones will return
2694
* -ENOSYS.
2695
*/
2696
if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2697
futex_cmpxchg_enabled = 1;
2698
2699
for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2700
plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2701
spin_lock_init(&futex_queues[i].lock);
2702
}
2703
2704
return 0;
2705
}
2706
__initcall(futex_init);
2707
2708