Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/kernel/hrtimer.c
10818 views
1
/*
2
* linux/kernel/hrtimer.c
3
*
4
* Copyright(C) 2005-2006, Thomas Gleixner <[email protected]>
5
* Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
* Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7
*
8
* High-resolution kernel timers
9
*
10
* In contrast to the low-resolution timeout API implemented in
11
* kernel/timer.c, hrtimers provide finer resolution and accuracy
12
* depending on system configuration and capabilities.
13
*
14
* These timers are currently used for:
15
* - itimers
16
* - POSIX timers
17
* - nanosleep
18
* - precise in-kernel timing
19
*
20
* Started by: Thomas Gleixner and Ingo Molnar
21
*
22
* Credits:
23
* based on kernel/timer.c
24
*
25
* Help, testing, suggestions, bugfixes, improvements were
26
* provided by:
27
*
28
* George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29
* et. al.
30
*
31
* For licencing details see kernel-base/COPYING
32
*/
33
34
#include <linux/cpu.h>
35
#include <linux/module.h>
36
#include <linux/percpu.h>
37
#include <linux/hrtimer.h>
38
#include <linux/notifier.h>
39
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43
#include <linux/seq_file.h>
44
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched.h>
47
#include <linux/timer.h>
48
49
#include <asm/uaccess.h>
50
51
#include <trace/events/timer.h>
52
53
/*
54
* The timer bases:
55
*
56
* There are more clockids then hrtimer bases. Thus, we index
57
* into the timer bases by the hrtimer_base_type enum. When trying
58
* to reach a base using a clockid, hrtimer_clockid_to_base()
59
* is used to convert from clockid to the proper hrtimer_base_type.
60
*/
61
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
62
{
63
64
.clock_base =
65
{
66
{
67
.index = HRTIMER_BASE_MONOTONIC,
68
.clockid = CLOCK_MONOTONIC,
69
.get_time = &ktime_get,
70
.resolution = KTIME_LOW_RES,
71
},
72
{
73
.index = HRTIMER_BASE_REALTIME,
74
.clockid = CLOCK_REALTIME,
75
.get_time = &ktime_get_real,
76
.resolution = KTIME_LOW_RES,
77
},
78
{
79
.index = HRTIMER_BASE_BOOTTIME,
80
.clockid = CLOCK_BOOTTIME,
81
.get_time = &ktime_get_boottime,
82
.resolution = KTIME_LOW_RES,
83
},
84
}
85
};
86
87
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
88
[CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
89
[CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
90
[CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
91
};
92
93
static inline int hrtimer_clockid_to_base(clockid_t clock_id)
94
{
95
return hrtimer_clock_to_base_table[clock_id];
96
}
97
98
99
/*
100
* Get the coarse grained time at the softirq based on xtime and
101
* wall_to_monotonic.
102
*/
103
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
104
{
105
ktime_t xtim, mono, boot;
106
struct timespec xts, tom, slp;
107
108
get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
109
110
xtim = timespec_to_ktime(xts);
111
mono = ktime_add(xtim, timespec_to_ktime(tom));
112
boot = ktime_add(mono, timespec_to_ktime(slp));
113
base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
114
base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
115
base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
116
}
117
118
/*
119
* Functions and macros which are different for UP/SMP systems are kept in a
120
* single place
121
*/
122
#ifdef CONFIG_SMP
123
124
/*
125
* We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
126
* means that all timers which are tied to this base via timer->base are
127
* locked, and the base itself is locked too.
128
*
129
* So __run_timers/migrate_timers can safely modify all timers which could
130
* be found on the lists/queues.
131
*
132
* When the timer's base is locked, and the timer removed from list, it is
133
* possible to set timer->base = NULL and drop the lock: the timer remains
134
* locked.
135
*/
136
static
137
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
138
unsigned long *flags)
139
{
140
struct hrtimer_clock_base *base;
141
142
for (;;) {
143
base = timer->base;
144
if (likely(base != NULL)) {
145
raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
146
if (likely(base == timer->base))
147
return base;
148
/* The timer has migrated to another CPU: */
149
raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
150
}
151
cpu_relax();
152
}
153
}
154
155
156
/*
157
* Get the preferred target CPU for NOHZ
158
*/
159
static int hrtimer_get_target(int this_cpu, int pinned)
160
{
161
#ifdef CONFIG_NO_HZ
162
if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
163
return get_nohz_timer_target();
164
#endif
165
return this_cpu;
166
}
167
168
/*
169
* With HIGHRES=y we do not migrate the timer when it is expiring
170
* before the next event on the target cpu because we cannot reprogram
171
* the target cpu hardware and we would cause it to fire late.
172
*
173
* Called with cpu_base->lock of target cpu held.
174
*/
175
static int
176
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
177
{
178
#ifdef CONFIG_HIGH_RES_TIMERS
179
ktime_t expires;
180
181
if (!new_base->cpu_base->hres_active)
182
return 0;
183
184
expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
185
return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
186
#else
187
return 0;
188
#endif
189
}
190
191
/*
192
* Switch the timer base to the current CPU when possible.
193
*/
194
static inline struct hrtimer_clock_base *
195
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
196
int pinned)
197
{
198
struct hrtimer_clock_base *new_base;
199
struct hrtimer_cpu_base *new_cpu_base;
200
int this_cpu = smp_processor_id();
201
int cpu = hrtimer_get_target(this_cpu, pinned);
202
int basenum = base->index;
203
204
again:
205
new_cpu_base = &per_cpu(hrtimer_bases, cpu);
206
new_base = &new_cpu_base->clock_base[basenum];
207
208
if (base != new_base) {
209
/*
210
* We are trying to move timer to new_base.
211
* However we can't change timer's base while it is running,
212
* so we keep it on the same CPU. No hassle vs. reprogramming
213
* the event source in the high resolution case. The softirq
214
* code will take care of this when the timer function has
215
* completed. There is no conflict as we hold the lock until
216
* the timer is enqueued.
217
*/
218
if (unlikely(hrtimer_callback_running(timer)))
219
return base;
220
221
/* See the comment in lock_timer_base() */
222
timer->base = NULL;
223
raw_spin_unlock(&base->cpu_base->lock);
224
raw_spin_lock(&new_base->cpu_base->lock);
225
226
if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
227
cpu = this_cpu;
228
raw_spin_unlock(&new_base->cpu_base->lock);
229
raw_spin_lock(&base->cpu_base->lock);
230
timer->base = base;
231
goto again;
232
}
233
timer->base = new_base;
234
}
235
return new_base;
236
}
237
238
#else /* CONFIG_SMP */
239
240
static inline struct hrtimer_clock_base *
241
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
242
{
243
struct hrtimer_clock_base *base = timer->base;
244
245
raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
246
247
return base;
248
}
249
250
# define switch_hrtimer_base(t, b, p) (b)
251
252
#endif /* !CONFIG_SMP */
253
254
/*
255
* Functions for the union type storage format of ktime_t which are
256
* too large for inlining:
257
*/
258
#if BITS_PER_LONG < 64
259
# ifndef CONFIG_KTIME_SCALAR
260
/**
261
* ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
262
* @kt: addend
263
* @nsec: the scalar nsec value to add
264
*
265
* Returns the sum of kt and nsec in ktime_t format
266
*/
267
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
268
{
269
ktime_t tmp;
270
271
if (likely(nsec < NSEC_PER_SEC)) {
272
tmp.tv64 = nsec;
273
} else {
274
unsigned long rem = do_div(nsec, NSEC_PER_SEC);
275
276
tmp = ktime_set((long)nsec, rem);
277
}
278
279
return ktime_add(kt, tmp);
280
}
281
282
EXPORT_SYMBOL_GPL(ktime_add_ns);
283
284
/**
285
* ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
286
* @kt: minuend
287
* @nsec: the scalar nsec value to subtract
288
*
289
* Returns the subtraction of @nsec from @kt in ktime_t format
290
*/
291
ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
292
{
293
ktime_t tmp;
294
295
if (likely(nsec < NSEC_PER_SEC)) {
296
tmp.tv64 = nsec;
297
} else {
298
unsigned long rem = do_div(nsec, NSEC_PER_SEC);
299
300
tmp = ktime_set((long)nsec, rem);
301
}
302
303
return ktime_sub(kt, tmp);
304
}
305
306
EXPORT_SYMBOL_GPL(ktime_sub_ns);
307
# endif /* !CONFIG_KTIME_SCALAR */
308
309
/*
310
* Divide a ktime value by a nanosecond value
311
*/
312
u64 ktime_divns(const ktime_t kt, s64 div)
313
{
314
u64 dclc;
315
int sft = 0;
316
317
dclc = ktime_to_ns(kt);
318
/* Make sure the divisor is less than 2^32: */
319
while (div >> 32) {
320
sft++;
321
div >>= 1;
322
}
323
dclc >>= sft;
324
do_div(dclc, (unsigned long) div);
325
326
return dclc;
327
}
328
#endif /* BITS_PER_LONG >= 64 */
329
330
/*
331
* Add two ktime values and do a safety check for overflow:
332
*/
333
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
334
{
335
ktime_t res = ktime_add(lhs, rhs);
336
337
/*
338
* We use KTIME_SEC_MAX here, the maximum timeout which we can
339
* return to user space in a timespec:
340
*/
341
if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
342
res = ktime_set(KTIME_SEC_MAX, 0);
343
344
return res;
345
}
346
347
EXPORT_SYMBOL_GPL(ktime_add_safe);
348
349
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
350
351
static struct debug_obj_descr hrtimer_debug_descr;
352
353
static void *hrtimer_debug_hint(void *addr)
354
{
355
return ((struct hrtimer *) addr)->function;
356
}
357
358
/*
359
* fixup_init is called when:
360
* - an active object is initialized
361
*/
362
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
363
{
364
struct hrtimer *timer = addr;
365
366
switch (state) {
367
case ODEBUG_STATE_ACTIVE:
368
hrtimer_cancel(timer);
369
debug_object_init(timer, &hrtimer_debug_descr);
370
return 1;
371
default:
372
return 0;
373
}
374
}
375
376
/*
377
* fixup_activate is called when:
378
* - an active object is activated
379
* - an unknown object is activated (might be a statically initialized object)
380
*/
381
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
382
{
383
switch (state) {
384
385
case ODEBUG_STATE_NOTAVAILABLE:
386
WARN_ON_ONCE(1);
387
return 0;
388
389
case ODEBUG_STATE_ACTIVE:
390
WARN_ON(1);
391
392
default:
393
return 0;
394
}
395
}
396
397
/*
398
* fixup_free is called when:
399
* - an active object is freed
400
*/
401
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
402
{
403
struct hrtimer *timer = addr;
404
405
switch (state) {
406
case ODEBUG_STATE_ACTIVE:
407
hrtimer_cancel(timer);
408
debug_object_free(timer, &hrtimer_debug_descr);
409
return 1;
410
default:
411
return 0;
412
}
413
}
414
415
static struct debug_obj_descr hrtimer_debug_descr = {
416
.name = "hrtimer",
417
.debug_hint = hrtimer_debug_hint,
418
.fixup_init = hrtimer_fixup_init,
419
.fixup_activate = hrtimer_fixup_activate,
420
.fixup_free = hrtimer_fixup_free,
421
};
422
423
static inline void debug_hrtimer_init(struct hrtimer *timer)
424
{
425
debug_object_init(timer, &hrtimer_debug_descr);
426
}
427
428
static inline void debug_hrtimer_activate(struct hrtimer *timer)
429
{
430
debug_object_activate(timer, &hrtimer_debug_descr);
431
}
432
433
static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
434
{
435
debug_object_deactivate(timer, &hrtimer_debug_descr);
436
}
437
438
static inline void debug_hrtimer_free(struct hrtimer *timer)
439
{
440
debug_object_free(timer, &hrtimer_debug_descr);
441
}
442
443
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
444
enum hrtimer_mode mode);
445
446
void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
447
enum hrtimer_mode mode)
448
{
449
debug_object_init_on_stack(timer, &hrtimer_debug_descr);
450
__hrtimer_init(timer, clock_id, mode);
451
}
452
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
453
454
void destroy_hrtimer_on_stack(struct hrtimer *timer)
455
{
456
debug_object_free(timer, &hrtimer_debug_descr);
457
}
458
459
#else
460
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
461
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
462
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
463
#endif
464
465
static inline void
466
debug_init(struct hrtimer *timer, clockid_t clockid,
467
enum hrtimer_mode mode)
468
{
469
debug_hrtimer_init(timer);
470
trace_hrtimer_init(timer, clockid, mode);
471
}
472
473
static inline void debug_activate(struct hrtimer *timer)
474
{
475
debug_hrtimer_activate(timer);
476
trace_hrtimer_start(timer);
477
}
478
479
static inline void debug_deactivate(struct hrtimer *timer)
480
{
481
debug_hrtimer_deactivate(timer);
482
trace_hrtimer_cancel(timer);
483
}
484
485
/* High resolution timer related functions */
486
#ifdef CONFIG_HIGH_RES_TIMERS
487
488
/*
489
* High resolution timer enabled ?
490
*/
491
static int hrtimer_hres_enabled __read_mostly = 1;
492
493
/*
494
* Enable / Disable high resolution mode
495
*/
496
static int __init setup_hrtimer_hres(char *str)
497
{
498
if (!strcmp(str, "off"))
499
hrtimer_hres_enabled = 0;
500
else if (!strcmp(str, "on"))
501
hrtimer_hres_enabled = 1;
502
else
503
return 0;
504
return 1;
505
}
506
507
__setup("highres=", setup_hrtimer_hres);
508
509
/*
510
* hrtimer_high_res_enabled - query, if the highres mode is enabled
511
*/
512
static inline int hrtimer_is_hres_enabled(void)
513
{
514
return hrtimer_hres_enabled;
515
}
516
517
/*
518
* Is the high resolution mode active ?
519
*/
520
static inline int hrtimer_hres_active(void)
521
{
522
return __this_cpu_read(hrtimer_bases.hres_active);
523
}
524
525
/*
526
* Reprogram the event source with checking both queues for the
527
* next event
528
* Called with interrupts disabled and base->lock held
529
*/
530
static void
531
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
532
{
533
int i;
534
struct hrtimer_clock_base *base = cpu_base->clock_base;
535
ktime_t expires, expires_next;
536
537
expires_next.tv64 = KTIME_MAX;
538
539
for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
540
struct hrtimer *timer;
541
struct timerqueue_node *next;
542
543
next = timerqueue_getnext(&base->active);
544
if (!next)
545
continue;
546
timer = container_of(next, struct hrtimer, node);
547
548
expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
549
/*
550
* clock_was_set() has changed base->offset so the
551
* result might be negative. Fix it up to prevent a
552
* false positive in clockevents_program_event()
553
*/
554
if (expires.tv64 < 0)
555
expires.tv64 = 0;
556
if (expires.tv64 < expires_next.tv64)
557
expires_next = expires;
558
}
559
560
if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
561
return;
562
563
cpu_base->expires_next.tv64 = expires_next.tv64;
564
565
if (cpu_base->expires_next.tv64 != KTIME_MAX)
566
tick_program_event(cpu_base->expires_next, 1);
567
}
568
569
/*
570
* Shared reprogramming for clock_realtime and clock_monotonic
571
*
572
* When a timer is enqueued and expires earlier than the already enqueued
573
* timers, we have to check, whether it expires earlier than the timer for
574
* which the clock event device was armed.
575
*
576
* Called with interrupts disabled and base->cpu_base.lock held
577
*/
578
static int hrtimer_reprogram(struct hrtimer *timer,
579
struct hrtimer_clock_base *base)
580
{
581
struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
582
ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
583
int res;
584
585
WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
586
587
/*
588
* When the callback is running, we do not reprogram the clock event
589
* device. The timer callback is either running on a different CPU or
590
* the callback is executed in the hrtimer_interrupt context. The
591
* reprogramming is handled either by the softirq, which called the
592
* callback or at the end of the hrtimer_interrupt.
593
*/
594
if (hrtimer_callback_running(timer))
595
return 0;
596
597
/*
598
* CLOCK_REALTIME timer might be requested with an absolute
599
* expiry time which is less than base->offset. Nothing wrong
600
* about that, just avoid to call into the tick code, which
601
* has now objections against negative expiry values.
602
*/
603
if (expires.tv64 < 0)
604
return -ETIME;
605
606
if (expires.tv64 >= cpu_base->expires_next.tv64)
607
return 0;
608
609
/*
610
* If a hang was detected in the last timer interrupt then we
611
* do not schedule a timer which is earlier than the expiry
612
* which we enforced in the hang detection. We want the system
613
* to make progress.
614
*/
615
if (cpu_base->hang_detected)
616
return 0;
617
618
/*
619
* Clockevents returns -ETIME, when the event was in the past.
620
*/
621
res = tick_program_event(expires, 0);
622
if (!IS_ERR_VALUE(res))
623
cpu_base->expires_next = expires;
624
return res;
625
}
626
627
/*
628
* Initialize the high resolution related parts of cpu_base
629
*/
630
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
631
{
632
base->expires_next.tv64 = KTIME_MAX;
633
base->hres_active = 0;
634
}
635
636
/*
637
* When High resolution timers are active, try to reprogram. Note, that in case
638
* the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
639
* check happens. The timer gets enqueued into the rbtree. The reprogramming
640
* and expiry check is done in the hrtimer_interrupt or in the softirq.
641
*/
642
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
643
struct hrtimer_clock_base *base,
644
int wakeup)
645
{
646
if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
647
if (wakeup) {
648
raw_spin_unlock(&base->cpu_base->lock);
649
raise_softirq_irqoff(HRTIMER_SOFTIRQ);
650
raw_spin_lock(&base->cpu_base->lock);
651
} else
652
__raise_softirq_irqoff(HRTIMER_SOFTIRQ);
653
654
return 1;
655
}
656
657
return 0;
658
}
659
660
/*
661
* Retrigger next event is called after clock was set
662
*
663
* Called with interrupts disabled via on_each_cpu()
664
*/
665
static void retrigger_next_event(void *arg)
666
{
667
struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
668
struct timespec realtime_offset, xtim, wtm, sleep;
669
670
if (!hrtimer_hres_active())
671
return;
672
673
/* Optimized out for !HIGH_RES */
674
get_xtime_and_monotonic_and_sleep_offset(&xtim, &wtm, &sleep);
675
set_normalized_timespec(&realtime_offset, -wtm.tv_sec, -wtm.tv_nsec);
676
677
/* Adjust CLOCK_REALTIME offset */
678
raw_spin_lock(&base->lock);
679
base->clock_base[HRTIMER_BASE_REALTIME].offset =
680
timespec_to_ktime(realtime_offset);
681
base->clock_base[HRTIMER_BASE_BOOTTIME].offset =
682
timespec_to_ktime(sleep);
683
684
hrtimer_force_reprogram(base, 0);
685
raw_spin_unlock(&base->lock);
686
}
687
688
/*
689
* Switch to high resolution mode
690
*/
691
static int hrtimer_switch_to_hres(void)
692
{
693
int i, cpu = smp_processor_id();
694
struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
695
unsigned long flags;
696
697
if (base->hres_active)
698
return 1;
699
700
local_irq_save(flags);
701
702
if (tick_init_highres()) {
703
local_irq_restore(flags);
704
printk(KERN_WARNING "Could not switch to high resolution "
705
"mode on CPU %d\n", cpu);
706
return 0;
707
}
708
base->hres_active = 1;
709
for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
710
base->clock_base[i].resolution = KTIME_HIGH_RES;
711
712
tick_setup_sched_timer();
713
714
/* "Retrigger" the interrupt to get things going */
715
retrigger_next_event(NULL);
716
local_irq_restore(flags);
717
return 1;
718
}
719
720
#else
721
722
static inline int hrtimer_hres_active(void) { return 0; }
723
static inline int hrtimer_is_hres_enabled(void) { return 0; }
724
static inline int hrtimer_switch_to_hres(void) { return 0; }
725
static inline void
726
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
727
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
728
struct hrtimer_clock_base *base,
729
int wakeup)
730
{
731
return 0;
732
}
733
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
734
static inline void retrigger_next_event(void *arg) { }
735
736
#endif /* CONFIG_HIGH_RES_TIMERS */
737
738
/*
739
* Clock realtime was set
740
*
741
* Change the offset of the realtime clock vs. the monotonic
742
* clock.
743
*
744
* We might have to reprogram the high resolution timer interrupt. On
745
* SMP we call the architecture specific code to retrigger _all_ high
746
* resolution timer interrupts. On UP we just disable interrupts and
747
* call the high resolution interrupt code.
748
*/
749
void clock_was_set(void)
750
{
751
#ifdef CONFIG_HIGH_RES_TIMERS
752
/* Retrigger the CPU local events everywhere */
753
on_each_cpu(retrigger_next_event, NULL, 1);
754
#endif
755
timerfd_clock_was_set();
756
}
757
758
/*
759
* During resume we might have to reprogram the high resolution timer
760
* interrupt (on the local CPU):
761
*/
762
void hrtimers_resume(void)
763
{
764
WARN_ONCE(!irqs_disabled(),
765
KERN_INFO "hrtimers_resume() called with IRQs enabled!");
766
767
retrigger_next_event(NULL);
768
timerfd_clock_was_set();
769
}
770
771
static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
772
{
773
#ifdef CONFIG_TIMER_STATS
774
if (timer->start_site)
775
return;
776
timer->start_site = __builtin_return_address(0);
777
memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
778
timer->start_pid = current->pid;
779
#endif
780
}
781
782
static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
783
{
784
#ifdef CONFIG_TIMER_STATS
785
timer->start_site = NULL;
786
#endif
787
}
788
789
static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
790
{
791
#ifdef CONFIG_TIMER_STATS
792
if (likely(!timer_stats_active))
793
return;
794
timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
795
timer->function, timer->start_comm, 0);
796
#endif
797
}
798
799
/*
800
* Counterpart to lock_hrtimer_base above:
801
*/
802
static inline
803
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
804
{
805
raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
806
}
807
808
/**
809
* hrtimer_forward - forward the timer expiry
810
* @timer: hrtimer to forward
811
* @now: forward past this time
812
* @interval: the interval to forward
813
*
814
* Forward the timer expiry so it will expire in the future.
815
* Returns the number of overruns.
816
*/
817
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
818
{
819
u64 orun = 1;
820
ktime_t delta;
821
822
delta = ktime_sub(now, hrtimer_get_expires(timer));
823
824
if (delta.tv64 < 0)
825
return 0;
826
827
if (interval.tv64 < timer->base->resolution.tv64)
828
interval.tv64 = timer->base->resolution.tv64;
829
830
if (unlikely(delta.tv64 >= interval.tv64)) {
831
s64 incr = ktime_to_ns(interval);
832
833
orun = ktime_divns(delta, incr);
834
hrtimer_add_expires_ns(timer, incr * orun);
835
if (hrtimer_get_expires_tv64(timer) > now.tv64)
836
return orun;
837
/*
838
* This (and the ktime_add() below) is the
839
* correction for exact:
840
*/
841
orun++;
842
}
843
hrtimer_add_expires(timer, interval);
844
845
return orun;
846
}
847
EXPORT_SYMBOL_GPL(hrtimer_forward);
848
849
/*
850
* enqueue_hrtimer - internal function to (re)start a timer
851
*
852
* The timer is inserted in expiry order. Insertion into the
853
* red black tree is O(log(n)). Must hold the base lock.
854
*
855
* Returns 1 when the new timer is the leftmost timer in the tree.
856
*/
857
static int enqueue_hrtimer(struct hrtimer *timer,
858
struct hrtimer_clock_base *base)
859
{
860
debug_activate(timer);
861
862
timerqueue_add(&base->active, &timer->node);
863
base->cpu_base->active_bases |= 1 << base->index;
864
865
/*
866
* HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
867
* state of a possibly running callback.
868
*/
869
timer->state |= HRTIMER_STATE_ENQUEUED;
870
871
return (&timer->node == base->active.next);
872
}
873
874
/*
875
* __remove_hrtimer - internal function to remove a timer
876
*
877
* Caller must hold the base lock.
878
*
879
* High resolution timer mode reprograms the clock event device when the
880
* timer is the one which expires next. The caller can disable this by setting
881
* reprogram to zero. This is useful, when the context does a reprogramming
882
* anyway (e.g. timer interrupt)
883
*/
884
static void __remove_hrtimer(struct hrtimer *timer,
885
struct hrtimer_clock_base *base,
886
unsigned long newstate, int reprogram)
887
{
888
if (!(timer->state & HRTIMER_STATE_ENQUEUED))
889
goto out;
890
891
if (&timer->node == timerqueue_getnext(&base->active)) {
892
#ifdef CONFIG_HIGH_RES_TIMERS
893
/* Reprogram the clock event device. if enabled */
894
if (reprogram && hrtimer_hres_active()) {
895
ktime_t expires;
896
897
expires = ktime_sub(hrtimer_get_expires(timer),
898
base->offset);
899
if (base->cpu_base->expires_next.tv64 == expires.tv64)
900
hrtimer_force_reprogram(base->cpu_base, 1);
901
}
902
#endif
903
}
904
timerqueue_del(&base->active, &timer->node);
905
if (!timerqueue_getnext(&base->active))
906
base->cpu_base->active_bases &= ~(1 << base->index);
907
out:
908
timer->state = newstate;
909
}
910
911
/*
912
* remove hrtimer, called with base lock held
913
*/
914
static inline int
915
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
916
{
917
if (hrtimer_is_queued(timer)) {
918
unsigned long state;
919
int reprogram;
920
921
/*
922
* Remove the timer and force reprogramming when high
923
* resolution mode is active and the timer is on the current
924
* CPU. If we remove a timer on another CPU, reprogramming is
925
* skipped. The interrupt event on this CPU is fired and
926
* reprogramming happens in the interrupt handler. This is a
927
* rare case and less expensive than a smp call.
928
*/
929
debug_deactivate(timer);
930
timer_stats_hrtimer_clear_start_info(timer);
931
reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
932
/*
933
* We must preserve the CALLBACK state flag here,
934
* otherwise we could move the timer base in
935
* switch_hrtimer_base.
936
*/
937
state = timer->state & HRTIMER_STATE_CALLBACK;
938
__remove_hrtimer(timer, base, state, reprogram);
939
return 1;
940
}
941
return 0;
942
}
943
944
int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
945
unsigned long delta_ns, const enum hrtimer_mode mode,
946
int wakeup)
947
{
948
struct hrtimer_clock_base *base, *new_base;
949
unsigned long flags;
950
int ret, leftmost;
951
952
base = lock_hrtimer_base(timer, &flags);
953
954
/* Remove an active timer from the queue: */
955
ret = remove_hrtimer(timer, base);
956
957
/* Switch the timer base, if necessary: */
958
new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
959
960
if (mode & HRTIMER_MODE_REL) {
961
tim = ktime_add_safe(tim, new_base->get_time());
962
/*
963
* CONFIG_TIME_LOW_RES is a temporary way for architectures
964
* to signal that they simply return xtime in
965
* do_gettimeoffset(). In this case we want to round up by
966
* resolution when starting a relative timer, to avoid short
967
* timeouts. This will go away with the GTOD framework.
968
*/
969
#ifdef CONFIG_TIME_LOW_RES
970
tim = ktime_add_safe(tim, base->resolution);
971
#endif
972
}
973
974
hrtimer_set_expires_range_ns(timer, tim, delta_ns);
975
976
timer_stats_hrtimer_set_start_info(timer);
977
978
leftmost = enqueue_hrtimer(timer, new_base);
979
980
/*
981
* Only allow reprogramming if the new base is on this CPU.
982
* (it might still be on another CPU if the timer was pending)
983
*
984
* XXX send_remote_softirq() ?
985
*/
986
if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
987
hrtimer_enqueue_reprogram(timer, new_base, wakeup);
988
989
unlock_hrtimer_base(timer, &flags);
990
991
return ret;
992
}
993
994
/**
995
* hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
996
* @timer: the timer to be added
997
* @tim: expiry time
998
* @delta_ns: "slack" range for the timer
999
* @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1000
*
1001
* Returns:
1002
* 0 on success
1003
* 1 when the timer was active
1004
*/
1005
int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1006
unsigned long delta_ns, const enum hrtimer_mode mode)
1007
{
1008
return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1009
}
1010
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1011
1012
/**
1013
* hrtimer_start - (re)start an hrtimer on the current CPU
1014
* @timer: the timer to be added
1015
* @tim: expiry time
1016
* @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1017
*
1018
* Returns:
1019
* 0 on success
1020
* 1 when the timer was active
1021
*/
1022
int
1023
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1024
{
1025
return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1026
}
1027
EXPORT_SYMBOL_GPL(hrtimer_start);
1028
1029
1030
/**
1031
* hrtimer_try_to_cancel - try to deactivate a timer
1032
* @timer: hrtimer to stop
1033
*
1034
* Returns:
1035
* 0 when the timer was not active
1036
* 1 when the timer was active
1037
* -1 when the timer is currently excuting the callback function and
1038
* cannot be stopped
1039
*/
1040
int hrtimer_try_to_cancel(struct hrtimer *timer)
1041
{
1042
struct hrtimer_clock_base *base;
1043
unsigned long flags;
1044
int ret = -1;
1045
1046
base = lock_hrtimer_base(timer, &flags);
1047
1048
if (!hrtimer_callback_running(timer))
1049
ret = remove_hrtimer(timer, base);
1050
1051
unlock_hrtimer_base(timer, &flags);
1052
1053
return ret;
1054
1055
}
1056
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1057
1058
/**
1059
* hrtimer_cancel - cancel a timer and wait for the handler to finish.
1060
* @timer: the timer to be cancelled
1061
*
1062
* Returns:
1063
* 0 when the timer was not active
1064
* 1 when the timer was active
1065
*/
1066
int hrtimer_cancel(struct hrtimer *timer)
1067
{
1068
for (;;) {
1069
int ret = hrtimer_try_to_cancel(timer);
1070
1071
if (ret >= 0)
1072
return ret;
1073
cpu_relax();
1074
}
1075
}
1076
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1077
1078
/**
1079
* hrtimer_get_remaining - get remaining time for the timer
1080
* @timer: the timer to read
1081
*/
1082
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1083
{
1084
unsigned long flags;
1085
ktime_t rem;
1086
1087
lock_hrtimer_base(timer, &flags);
1088
rem = hrtimer_expires_remaining(timer);
1089
unlock_hrtimer_base(timer, &flags);
1090
1091
return rem;
1092
}
1093
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1094
1095
#ifdef CONFIG_NO_HZ
1096
/**
1097
* hrtimer_get_next_event - get the time until next expiry event
1098
*
1099
* Returns the delta to the next expiry event or KTIME_MAX if no timer
1100
* is pending.
1101
*/
1102
ktime_t hrtimer_get_next_event(void)
1103
{
1104
struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1105
struct hrtimer_clock_base *base = cpu_base->clock_base;
1106
ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1107
unsigned long flags;
1108
int i;
1109
1110
raw_spin_lock_irqsave(&cpu_base->lock, flags);
1111
1112
if (!hrtimer_hres_active()) {
1113
for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1114
struct hrtimer *timer;
1115
struct timerqueue_node *next;
1116
1117
next = timerqueue_getnext(&base->active);
1118
if (!next)
1119
continue;
1120
1121
timer = container_of(next, struct hrtimer, node);
1122
delta.tv64 = hrtimer_get_expires_tv64(timer);
1123
delta = ktime_sub(delta, base->get_time());
1124
if (delta.tv64 < mindelta.tv64)
1125
mindelta.tv64 = delta.tv64;
1126
}
1127
}
1128
1129
raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1130
1131
if (mindelta.tv64 < 0)
1132
mindelta.tv64 = 0;
1133
return mindelta;
1134
}
1135
#endif
1136
1137
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1138
enum hrtimer_mode mode)
1139
{
1140
struct hrtimer_cpu_base *cpu_base;
1141
int base;
1142
1143
memset(timer, 0, sizeof(struct hrtimer));
1144
1145
cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1146
1147
if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1148
clock_id = CLOCK_MONOTONIC;
1149
1150
base = hrtimer_clockid_to_base(clock_id);
1151
timer->base = &cpu_base->clock_base[base];
1152
timerqueue_init(&timer->node);
1153
1154
#ifdef CONFIG_TIMER_STATS
1155
timer->start_site = NULL;
1156
timer->start_pid = -1;
1157
memset(timer->start_comm, 0, TASK_COMM_LEN);
1158
#endif
1159
}
1160
1161
/**
1162
* hrtimer_init - initialize a timer to the given clock
1163
* @timer: the timer to be initialized
1164
* @clock_id: the clock to be used
1165
* @mode: timer mode abs/rel
1166
*/
1167
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1168
enum hrtimer_mode mode)
1169
{
1170
debug_init(timer, clock_id, mode);
1171
__hrtimer_init(timer, clock_id, mode);
1172
}
1173
EXPORT_SYMBOL_GPL(hrtimer_init);
1174
1175
/**
1176
* hrtimer_get_res - get the timer resolution for a clock
1177
* @which_clock: which clock to query
1178
* @tp: pointer to timespec variable to store the resolution
1179
*
1180
* Store the resolution of the clock selected by @which_clock in the
1181
* variable pointed to by @tp.
1182
*/
1183
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1184
{
1185
struct hrtimer_cpu_base *cpu_base;
1186
int base = hrtimer_clockid_to_base(which_clock);
1187
1188
cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1189
*tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1190
1191
return 0;
1192
}
1193
EXPORT_SYMBOL_GPL(hrtimer_get_res);
1194
1195
static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1196
{
1197
struct hrtimer_clock_base *base = timer->base;
1198
struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1199
enum hrtimer_restart (*fn)(struct hrtimer *);
1200
int restart;
1201
1202
WARN_ON(!irqs_disabled());
1203
1204
debug_deactivate(timer);
1205
__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1206
timer_stats_account_hrtimer(timer);
1207
fn = timer->function;
1208
1209
/*
1210
* Because we run timers from hardirq context, there is no chance
1211
* they get migrated to another cpu, therefore its safe to unlock
1212
* the timer base.
1213
*/
1214
raw_spin_unlock(&cpu_base->lock);
1215
trace_hrtimer_expire_entry(timer, now);
1216
restart = fn(timer);
1217
trace_hrtimer_expire_exit(timer);
1218
raw_spin_lock(&cpu_base->lock);
1219
1220
/*
1221
* Note: We clear the CALLBACK bit after enqueue_hrtimer and
1222
* we do not reprogramm the event hardware. Happens either in
1223
* hrtimer_start_range_ns() or in hrtimer_interrupt()
1224
*/
1225
if (restart != HRTIMER_NORESTART) {
1226
BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1227
enqueue_hrtimer(timer, base);
1228
}
1229
1230
WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1231
1232
timer->state &= ~HRTIMER_STATE_CALLBACK;
1233
}
1234
1235
#ifdef CONFIG_HIGH_RES_TIMERS
1236
1237
/*
1238
* High resolution timer interrupt
1239
* Called with interrupts disabled
1240
*/
1241
void hrtimer_interrupt(struct clock_event_device *dev)
1242
{
1243
struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1244
ktime_t expires_next, now, entry_time, delta;
1245
int i, retries = 0;
1246
1247
BUG_ON(!cpu_base->hres_active);
1248
cpu_base->nr_events++;
1249
dev->next_event.tv64 = KTIME_MAX;
1250
1251
entry_time = now = ktime_get();
1252
retry:
1253
expires_next.tv64 = KTIME_MAX;
1254
1255
raw_spin_lock(&cpu_base->lock);
1256
/*
1257
* We set expires_next to KTIME_MAX here with cpu_base->lock
1258
* held to prevent that a timer is enqueued in our queue via
1259
* the migration code. This does not affect enqueueing of
1260
* timers which run their callback and need to be requeued on
1261
* this CPU.
1262
*/
1263
cpu_base->expires_next.tv64 = KTIME_MAX;
1264
1265
for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1266
struct hrtimer_clock_base *base;
1267
struct timerqueue_node *node;
1268
ktime_t basenow;
1269
1270
if (!(cpu_base->active_bases & (1 << i)))
1271
continue;
1272
1273
base = cpu_base->clock_base + i;
1274
basenow = ktime_add(now, base->offset);
1275
1276
while ((node = timerqueue_getnext(&base->active))) {
1277
struct hrtimer *timer;
1278
1279
timer = container_of(node, struct hrtimer, node);
1280
1281
/*
1282
* The immediate goal for using the softexpires is
1283
* minimizing wakeups, not running timers at the
1284
* earliest interrupt after their soft expiration.
1285
* This allows us to avoid using a Priority Search
1286
* Tree, which can answer a stabbing querry for
1287
* overlapping intervals and instead use the simple
1288
* BST we already have.
1289
* We don't add extra wakeups by delaying timers that
1290
* are right-of a not yet expired timer, because that
1291
* timer will have to trigger a wakeup anyway.
1292
*/
1293
1294
if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1295
ktime_t expires;
1296
1297
expires = ktime_sub(hrtimer_get_expires(timer),
1298
base->offset);
1299
if (expires.tv64 < expires_next.tv64)
1300
expires_next = expires;
1301
break;
1302
}
1303
1304
__run_hrtimer(timer, &basenow);
1305
}
1306
}
1307
1308
/*
1309
* Store the new expiry value so the migration code can verify
1310
* against it.
1311
*/
1312
cpu_base->expires_next = expires_next;
1313
raw_spin_unlock(&cpu_base->lock);
1314
1315
/* Reprogramming necessary ? */
1316
if (expires_next.tv64 == KTIME_MAX ||
1317
!tick_program_event(expires_next, 0)) {
1318
cpu_base->hang_detected = 0;
1319
return;
1320
}
1321
1322
/*
1323
* The next timer was already expired due to:
1324
* - tracing
1325
* - long lasting callbacks
1326
* - being scheduled away when running in a VM
1327
*
1328
* We need to prevent that we loop forever in the hrtimer
1329
* interrupt routine. We give it 3 attempts to avoid
1330
* overreacting on some spurious event.
1331
*/
1332
now = ktime_get();
1333
cpu_base->nr_retries++;
1334
if (++retries < 3)
1335
goto retry;
1336
/*
1337
* Give the system a chance to do something else than looping
1338
* here. We stored the entry time, so we know exactly how long
1339
* we spent here. We schedule the next event this amount of
1340
* time away.
1341
*/
1342
cpu_base->nr_hangs++;
1343
cpu_base->hang_detected = 1;
1344
delta = ktime_sub(now, entry_time);
1345
if (delta.tv64 > cpu_base->max_hang_time.tv64)
1346
cpu_base->max_hang_time = delta;
1347
/*
1348
* Limit it to a sensible value as we enforce a longer
1349
* delay. Give the CPU at least 100ms to catch up.
1350
*/
1351
if (delta.tv64 > 100 * NSEC_PER_MSEC)
1352
expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1353
else
1354
expires_next = ktime_add(now, delta);
1355
tick_program_event(expires_next, 1);
1356
printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1357
ktime_to_ns(delta));
1358
}
1359
1360
/*
1361
* local version of hrtimer_peek_ahead_timers() called with interrupts
1362
* disabled.
1363
*/
1364
static void __hrtimer_peek_ahead_timers(void)
1365
{
1366
struct tick_device *td;
1367
1368
if (!hrtimer_hres_active())
1369
return;
1370
1371
td = &__get_cpu_var(tick_cpu_device);
1372
if (td && td->evtdev)
1373
hrtimer_interrupt(td->evtdev);
1374
}
1375
1376
/**
1377
* hrtimer_peek_ahead_timers -- run soft-expired timers now
1378
*
1379
* hrtimer_peek_ahead_timers will peek at the timer queue of
1380
* the current cpu and check if there are any timers for which
1381
* the soft expires time has passed. If any such timers exist,
1382
* they are run immediately and then removed from the timer queue.
1383
*
1384
*/
1385
void hrtimer_peek_ahead_timers(void)
1386
{
1387
unsigned long flags;
1388
1389
local_irq_save(flags);
1390
__hrtimer_peek_ahead_timers();
1391
local_irq_restore(flags);
1392
}
1393
1394
static void run_hrtimer_softirq(struct softirq_action *h)
1395
{
1396
hrtimer_peek_ahead_timers();
1397
}
1398
1399
#else /* CONFIG_HIGH_RES_TIMERS */
1400
1401
static inline void __hrtimer_peek_ahead_timers(void) { }
1402
1403
#endif /* !CONFIG_HIGH_RES_TIMERS */
1404
1405
/*
1406
* Called from timer softirq every jiffy, expire hrtimers:
1407
*
1408
* For HRT its the fall back code to run the softirq in the timer
1409
* softirq context in case the hrtimer initialization failed or has
1410
* not been done yet.
1411
*/
1412
void hrtimer_run_pending(void)
1413
{
1414
if (hrtimer_hres_active())
1415
return;
1416
1417
/*
1418
* This _is_ ugly: We have to check in the softirq context,
1419
* whether we can switch to highres and / or nohz mode. The
1420
* clocksource switch happens in the timer interrupt with
1421
* xtime_lock held. Notification from there only sets the
1422
* check bit in the tick_oneshot code, otherwise we might
1423
* deadlock vs. xtime_lock.
1424
*/
1425
if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1426
hrtimer_switch_to_hres();
1427
}
1428
1429
/*
1430
* Called from hardirq context every jiffy
1431
*/
1432
void hrtimer_run_queues(void)
1433
{
1434
struct timerqueue_node *node;
1435
struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1436
struct hrtimer_clock_base *base;
1437
int index, gettime = 1;
1438
1439
if (hrtimer_hres_active())
1440
return;
1441
1442
for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1443
base = &cpu_base->clock_base[index];
1444
if (!timerqueue_getnext(&base->active))
1445
continue;
1446
1447
if (gettime) {
1448
hrtimer_get_softirq_time(cpu_base);
1449
gettime = 0;
1450
}
1451
1452
raw_spin_lock(&cpu_base->lock);
1453
1454
while ((node = timerqueue_getnext(&base->active))) {
1455
struct hrtimer *timer;
1456
1457
timer = container_of(node, struct hrtimer, node);
1458
if (base->softirq_time.tv64 <=
1459
hrtimer_get_expires_tv64(timer))
1460
break;
1461
1462
__run_hrtimer(timer, &base->softirq_time);
1463
}
1464
raw_spin_unlock(&cpu_base->lock);
1465
}
1466
}
1467
1468
/*
1469
* Sleep related functions:
1470
*/
1471
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1472
{
1473
struct hrtimer_sleeper *t =
1474
container_of(timer, struct hrtimer_sleeper, timer);
1475
struct task_struct *task = t->task;
1476
1477
t->task = NULL;
1478
if (task)
1479
wake_up_process(task);
1480
1481
return HRTIMER_NORESTART;
1482
}
1483
1484
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1485
{
1486
sl->timer.function = hrtimer_wakeup;
1487
sl->task = task;
1488
}
1489
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1490
1491
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1492
{
1493
hrtimer_init_sleeper(t, current);
1494
1495
do {
1496
set_current_state(TASK_INTERRUPTIBLE);
1497
hrtimer_start_expires(&t->timer, mode);
1498
if (!hrtimer_active(&t->timer))
1499
t->task = NULL;
1500
1501
if (likely(t->task))
1502
schedule();
1503
1504
hrtimer_cancel(&t->timer);
1505
mode = HRTIMER_MODE_ABS;
1506
1507
} while (t->task && !signal_pending(current));
1508
1509
__set_current_state(TASK_RUNNING);
1510
1511
return t->task == NULL;
1512
}
1513
1514
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1515
{
1516
struct timespec rmt;
1517
ktime_t rem;
1518
1519
rem = hrtimer_expires_remaining(timer);
1520
if (rem.tv64 <= 0)
1521
return 0;
1522
rmt = ktime_to_timespec(rem);
1523
1524
if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1525
return -EFAULT;
1526
1527
return 1;
1528
}
1529
1530
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1531
{
1532
struct hrtimer_sleeper t;
1533
struct timespec __user *rmtp;
1534
int ret = 0;
1535
1536
hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1537
HRTIMER_MODE_ABS);
1538
hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1539
1540
if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1541
goto out;
1542
1543
rmtp = restart->nanosleep.rmtp;
1544
if (rmtp) {
1545
ret = update_rmtp(&t.timer, rmtp);
1546
if (ret <= 0)
1547
goto out;
1548
}
1549
1550
/* The other values in restart are already filled in */
1551
ret = -ERESTART_RESTARTBLOCK;
1552
out:
1553
destroy_hrtimer_on_stack(&t.timer);
1554
return ret;
1555
}
1556
1557
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1558
const enum hrtimer_mode mode, const clockid_t clockid)
1559
{
1560
struct restart_block *restart;
1561
struct hrtimer_sleeper t;
1562
int ret = 0;
1563
unsigned long slack;
1564
1565
slack = current->timer_slack_ns;
1566
if (rt_task(current))
1567
slack = 0;
1568
1569
hrtimer_init_on_stack(&t.timer, clockid, mode);
1570
hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1571
if (do_nanosleep(&t, mode))
1572
goto out;
1573
1574
/* Absolute timers do not update the rmtp value and restart: */
1575
if (mode == HRTIMER_MODE_ABS) {
1576
ret = -ERESTARTNOHAND;
1577
goto out;
1578
}
1579
1580
if (rmtp) {
1581
ret = update_rmtp(&t.timer, rmtp);
1582
if (ret <= 0)
1583
goto out;
1584
}
1585
1586
restart = &current_thread_info()->restart_block;
1587
restart->fn = hrtimer_nanosleep_restart;
1588
restart->nanosleep.clockid = t.timer.base->clockid;
1589
restart->nanosleep.rmtp = rmtp;
1590
restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1591
1592
ret = -ERESTART_RESTARTBLOCK;
1593
out:
1594
destroy_hrtimer_on_stack(&t.timer);
1595
return ret;
1596
}
1597
1598
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1599
struct timespec __user *, rmtp)
1600
{
1601
struct timespec tu;
1602
1603
if (copy_from_user(&tu, rqtp, sizeof(tu)))
1604
return -EFAULT;
1605
1606
if (!timespec_valid(&tu))
1607
return -EINVAL;
1608
1609
return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1610
}
1611
1612
/*
1613
* Functions related to boot-time initialization:
1614
*/
1615
static void __cpuinit init_hrtimers_cpu(int cpu)
1616
{
1617
struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1618
int i;
1619
1620
raw_spin_lock_init(&cpu_base->lock);
1621
1622
for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1623
cpu_base->clock_base[i].cpu_base = cpu_base;
1624
timerqueue_init_head(&cpu_base->clock_base[i].active);
1625
}
1626
1627
hrtimer_init_hres(cpu_base);
1628
}
1629
1630
#ifdef CONFIG_HOTPLUG_CPU
1631
1632
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1633
struct hrtimer_clock_base *new_base)
1634
{
1635
struct hrtimer *timer;
1636
struct timerqueue_node *node;
1637
1638
while ((node = timerqueue_getnext(&old_base->active))) {
1639
timer = container_of(node, struct hrtimer, node);
1640
BUG_ON(hrtimer_callback_running(timer));
1641
debug_deactivate(timer);
1642
1643
/*
1644
* Mark it as STATE_MIGRATE not INACTIVE otherwise the
1645
* timer could be seen as !active and just vanish away
1646
* under us on another CPU
1647
*/
1648
__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1649
timer->base = new_base;
1650
/*
1651
* Enqueue the timers on the new cpu. This does not
1652
* reprogram the event device in case the timer
1653
* expires before the earliest on this CPU, but we run
1654
* hrtimer_interrupt after we migrated everything to
1655
* sort out already expired timers and reprogram the
1656
* event device.
1657
*/
1658
enqueue_hrtimer(timer, new_base);
1659
1660
/* Clear the migration state bit */
1661
timer->state &= ~HRTIMER_STATE_MIGRATE;
1662
}
1663
}
1664
1665
static void migrate_hrtimers(int scpu)
1666
{
1667
struct hrtimer_cpu_base *old_base, *new_base;
1668
int i;
1669
1670
BUG_ON(cpu_online(scpu));
1671
tick_cancel_sched_timer(scpu);
1672
1673
local_irq_disable();
1674
old_base = &per_cpu(hrtimer_bases, scpu);
1675
new_base = &__get_cpu_var(hrtimer_bases);
1676
/*
1677
* The caller is globally serialized and nobody else
1678
* takes two locks at once, deadlock is not possible.
1679
*/
1680
raw_spin_lock(&new_base->lock);
1681
raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1682
1683
for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1684
migrate_hrtimer_list(&old_base->clock_base[i],
1685
&new_base->clock_base[i]);
1686
}
1687
1688
raw_spin_unlock(&old_base->lock);
1689
raw_spin_unlock(&new_base->lock);
1690
1691
/* Check, if we got expired work to do */
1692
__hrtimer_peek_ahead_timers();
1693
local_irq_enable();
1694
}
1695
1696
#endif /* CONFIG_HOTPLUG_CPU */
1697
1698
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1699
unsigned long action, void *hcpu)
1700
{
1701
int scpu = (long)hcpu;
1702
1703
switch (action) {
1704
1705
case CPU_UP_PREPARE:
1706
case CPU_UP_PREPARE_FROZEN:
1707
init_hrtimers_cpu(scpu);
1708
break;
1709
1710
#ifdef CONFIG_HOTPLUG_CPU
1711
case CPU_DYING:
1712
case CPU_DYING_FROZEN:
1713
clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1714
break;
1715
case CPU_DEAD:
1716
case CPU_DEAD_FROZEN:
1717
{
1718
clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1719
migrate_hrtimers(scpu);
1720
break;
1721
}
1722
#endif
1723
1724
default:
1725
break;
1726
}
1727
1728
return NOTIFY_OK;
1729
}
1730
1731
static struct notifier_block __cpuinitdata hrtimers_nb = {
1732
.notifier_call = hrtimer_cpu_notify,
1733
};
1734
1735
void __init hrtimers_init(void)
1736
{
1737
hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1738
(void *)(long)smp_processor_id());
1739
register_cpu_notifier(&hrtimers_nb);
1740
#ifdef CONFIG_HIGH_RES_TIMERS
1741
open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1742
#endif
1743
}
1744
1745
/**
1746
* schedule_hrtimeout_range_clock - sleep until timeout
1747
* @expires: timeout value (ktime_t)
1748
* @delta: slack in expires timeout (ktime_t)
1749
* @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1750
* @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1751
*/
1752
int __sched
1753
schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1754
const enum hrtimer_mode mode, int clock)
1755
{
1756
struct hrtimer_sleeper t;
1757
1758
/*
1759
* Optimize when a zero timeout value is given. It does not
1760
* matter whether this is an absolute or a relative time.
1761
*/
1762
if (expires && !expires->tv64) {
1763
__set_current_state(TASK_RUNNING);
1764
return 0;
1765
}
1766
1767
/*
1768
* A NULL parameter means "infinite"
1769
*/
1770
if (!expires) {
1771
schedule();
1772
__set_current_state(TASK_RUNNING);
1773
return -EINTR;
1774
}
1775
1776
hrtimer_init_on_stack(&t.timer, clock, mode);
1777
hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1778
1779
hrtimer_init_sleeper(&t, current);
1780
1781
hrtimer_start_expires(&t.timer, mode);
1782
if (!hrtimer_active(&t.timer))
1783
t.task = NULL;
1784
1785
if (likely(t.task))
1786
schedule();
1787
1788
hrtimer_cancel(&t.timer);
1789
destroy_hrtimer_on_stack(&t.timer);
1790
1791
__set_current_state(TASK_RUNNING);
1792
1793
return !t.task ? 0 : -EINTR;
1794
}
1795
1796
/**
1797
* schedule_hrtimeout_range - sleep until timeout
1798
* @expires: timeout value (ktime_t)
1799
* @delta: slack in expires timeout (ktime_t)
1800
* @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1801
*
1802
* Make the current task sleep until the given expiry time has
1803
* elapsed. The routine will return immediately unless
1804
* the current task state has been set (see set_current_state()).
1805
*
1806
* The @delta argument gives the kernel the freedom to schedule the
1807
* actual wakeup to a time that is both power and performance friendly.
1808
* The kernel give the normal best effort behavior for "@expires+@delta",
1809
* but may decide to fire the timer earlier, but no earlier than @expires.
1810
*
1811
* You can set the task state as follows -
1812
*
1813
* %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1814
* pass before the routine returns.
1815
*
1816
* %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1817
* delivered to the current task.
1818
*
1819
* The current task state is guaranteed to be TASK_RUNNING when this
1820
* routine returns.
1821
*
1822
* Returns 0 when the timer has expired otherwise -EINTR
1823
*/
1824
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1825
const enum hrtimer_mode mode)
1826
{
1827
return schedule_hrtimeout_range_clock(expires, delta, mode,
1828
CLOCK_MONOTONIC);
1829
}
1830
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1831
1832
/**
1833
* schedule_hrtimeout - sleep until timeout
1834
* @expires: timeout value (ktime_t)
1835
* @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1836
*
1837
* Make the current task sleep until the given expiry time has
1838
* elapsed. The routine will return immediately unless
1839
* the current task state has been set (see set_current_state()).
1840
*
1841
* You can set the task state as follows -
1842
*
1843
* %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1844
* pass before the routine returns.
1845
*
1846
* %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1847
* delivered to the current task.
1848
*
1849
* The current task state is guaranteed to be TASK_RUNNING when this
1850
* routine returns.
1851
*
1852
* Returns 0 when the timer has expired otherwise -EINTR
1853
*/
1854
int __sched schedule_hrtimeout(ktime_t *expires,
1855
const enum hrtimer_mode mode)
1856
{
1857
return schedule_hrtimeout_range(expires, 0, mode);
1858
}
1859
EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1860
1861