Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/kernel/kmod.c
10818 views
1
/*
2
kmod, the new module loader (replaces kerneld)
3
Kirk Petersen
4
5
Reorganized not to be a daemon by Adam Richter, with guidance
6
from Greg Zornetzer.
7
8
Modified to avoid chroot and file sharing problems.
9
Mikael Pettersson
10
11
Limit the concurrent number of kmod modprobes to catch loops from
12
"modprobe needs a service that is in a module".
13
Keith Owens <[email protected]> December 1999
14
15
Unblock all signals when we exec a usermode process.
16
Shuu Yamaguchi <[email protected]> December 2000
17
18
call_usermodehelper wait flag, and remove exec_usermodehelper.
19
Rusty Russell <[email protected]> Jan 2003
20
*/
21
#include <linux/module.h>
22
#include <linux/sched.h>
23
#include <linux/syscalls.h>
24
#include <linux/unistd.h>
25
#include <linux/kmod.h>
26
#include <linux/slab.h>
27
#include <linux/completion.h>
28
#include <linux/cred.h>
29
#include <linux/file.h>
30
#include <linux/fdtable.h>
31
#include <linux/workqueue.h>
32
#include <linux/security.h>
33
#include <linux/mount.h>
34
#include <linux/kernel.h>
35
#include <linux/init.h>
36
#include <linux/resource.h>
37
#include <linux/notifier.h>
38
#include <linux/suspend.h>
39
#include <asm/uaccess.h>
40
41
#include <trace/events/module.h>
42
43
extern int max_threads;
44
45
static struct workqueue_struct *khelper_wq;
46
47
#define CAP_BSET (void *)1
48
#define CAP_PI (void *)2
49
50
static kernel_cap_t usermodehelper_bset = CAP_FULL_SET;
51
static kernel_cap_t usermodehelper_inheritable = CAP_FULL_SET;
52
static DEFINE_SPINLOCK(umh_sysctl_lock);
53
54
#ifdef CONFIG_MODULES
55
56
/*
57
modprobe_path is set via /proc/sys.
58
*/
59
char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe";
60
61
/**
62
* __request_module - try to load a kernel module
63
* @wait: wait (or not) for the operation to complete
64
* @fmt: printf style format string for the name of the module
65
* @...: arguments as specified in the format string
66
*
67
* Load a module using the user mode module loader. The function returns
68
* zero on success or a negative errno code on failure. Note that a
69
* successful module load does not mean the module did not then unload
70
* and exit on an error of its own. Callers must check that the service
71
* they requested is now available not blindly invoke it.
72
*
73
* If module auto-loading support is disabled then this function
74
* becomes a no-operation.
75
*/
76
int __request_module(bool wait, const char *fmt, ...)
77
{
78
va_list args;
79
char module_name[MODULE_NAME_LEN];
80
unsigned int max_modprobes;
81
int ret;
82
char *argv[] = { modprobe_path, "-q", "--", module_name, NULL };
83
static char *envp[] = { "HOME=/",
84
"TERM=linux",
85
"PATH=/sbin:/usr/sbin:/bin:/usr/bin",
86
NULL };
87
static atomic_t kmod_concurrent = ATOMIC_INIT(0);
88
#define MAX_KMOD_CONCURRENT 50 /* Completely arbitrary value - KAO */
89
static int kmod_loop_msg;
90
91
va_start(args, fmt);
92
ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
93
va_end(args);
94
if (ret >= MODULE_NAME_LEN)
95
return -ENAMETOOLONG;
96
97
ret = security_kernel_module_request(module_name);
98
if (ret)
99
return ret;
100
101
/* If modprobe needs a service that is in a module, we get a recursive
102
* loop. Limit the number of running kmod threads to max_threads/2 or
103
* MAX_KMOD_CONCURRENT, whichever is the smaller. A cleaner method
104
* would be to run the parents of this process, counting how many times
105
* kmod was invoked. That would mean accessing the internals of the
106
* process tables to get the command line, proc_pid_cmdline is static
107
* and it is not worth changing the proc code just to handle this case.
108
* KAO.
109
*
110
* "trace the ppid" is simple, but will fail if someone's
111
* parent exits. I think this is as good as it gets. --RR
112
*/
113
max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT);
114
atomic_inc(&kmod_concurrent);
115
if (atomic_read(&kmod_concurrent) > max_modprobes) {
116
/* We may be blaming an innocent here, but unlikely */
117
if (kmod_loop_msg++ < 5)
118
printk(KERN_ERR
119
"request_module: runaway loop modprobe %s\n",
120
module_name);
121
atomic_dec(&kmod_concurrent);
122
return -ENOMEM;
123
}
124
125
trace_module_request(module_name, wait, _RET_IP_);
126
127
ret = call_usermodehelper_fns(modprobe_path, argv, envp,
128
wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC,
129
NULL, NULL, NULL);
130
131
atomic_dec(&kmod_concurrent);
132
return ret;
133
}
134
EXPORT_SYMBOL(__request_module);
135
#endif /* CONFIG_MODULES */
136
137
/*
138
* This is the task which runs the usermode application
139
*/
140
static int ____call_usermodehelper(void *data)
141
{
142
struct subprocess_info *sub_info = data;
143
struct cred *new;
144
int retval;
145
146
spin_lock_irq(&current->sighand->siglock);
147
flush_signal_handlers(current, 1);
148
spin_unlock_irq(&current->sighand->siglock);
149
150
/* We can run anywhere, unlike our parent keventd(). */
151
set_cpus_allowed_ptr(current, cpu_all_mask);
152
153
/*
154
* Our parent is keventd, which runs with elevated scheduling priority.
155
* Avoid propagating that into the userspace child.
156
*/
157
set_user_nice(current, 0);
158
159
retval = -ENOMEM;
160
new = prepare_kernel_cred(current);
161
if (!new)
162
goto fail;
163
164
spin_lock(&umh_sysctl_lock);
165
new->cap_bset = cap_intersect(usermodehelper_bset, new->cap_bset);
166
new->cap_inheritable = cap_intersect(usermodehelper_inheritable,
167
new->cap_inheritable);
168
spin_unlock(&umh_sysctl_lock);
169
170
if (sub_info->init) {
171
retval = sub_info->init(sub_info, new);
172
if (retval) {
173
abort_creds(new);
174
goto fail;
175
}
176
}
177
178
commit_creds(new);
179
180
retval = kernel_execve(sub_info->path,
181
(const char *const *)sub_info->argv,
182
(const char *const *)sub_info->envp);
183
184
/* Exec failed? */
185
fail:
186
sub_info->retval = retval;
187
do_exit(0);
188
}
189
190
void call_usermodehelper_freeinfo(struct subprocess_info *info)
191
{
192
if (info->cleanup)
193
(*info->cleanup)(info);
194
kfree(info);
195
}
196
EXPORT_SYMBOL(call_usermodehelper_freeinfo);
197
198
/* Keventd can't block, but this (a child) can. */
199
static int wait_for_helper(void *data)
200
{
201
struct subprocess_info *sub_info = data;
202
pid_t pid;
203
204
/* If SIGCLD is ignored sys_wait4 won't populate the status. */
205
spin_lock_irq(&current->sighand->siglock);
206
current->sighand->action[SIGCHLD-1].sa.sa_handler = SIG_DFL;
207
spin_unlock_irq(&current->sighand->siglock);
208
209
pid = kernel_thread(____call_usermodehelper, sub_info, SIGCHLD);
210
if (pid < 0) {
211
sub_info->retval = pid;
212
} else {
213
int ret = -ECHILD;
214
/*
215
* Normally it is bogus to call wait4() from in-kernel because
216
* wait4() wants to write the exit code to a userspace address.
217
* But wait_for_helper() always runs as keventd, and put_user()
218
* to a kernel address works OK for kernel threads, due to their
219
* having an mm_segment_t which spans the entire address space.
220
*
221
* Thus the __user pointer cast is valid here.
222
*/
223
sys_wait4(pid, (int __user *)&ret, 0, NULL);
224
225
/*
226
* If ret is 0, either ____call_usermodehelper failed and the
227
* real error code is already in sub_info->retval or
228
* sub_info->retval is 0 anyway, so don't mess with it then.
229
*/
230
if (ret)
231
sub_info->retval = ret;
232
}
233
234
complete(sub_info->complete);
235
return 0;
236
}
237
238
/* This is run by khelper thread */
239
static void __call_usermodehelper(struct work_struct *work)
240
{
241
struct subprocess_info *sub_info =
242
container_of(work, struct subprocess_info, work);
243
enum umh_wait wait = sub_info->wait;
244
pid_t pid;
245
246
/* CLONE_VFORK: wait until the usermode helper has execve'd
247
* successfully We need the data structures to stay around
248
* until that is done. */
249
if (wait == UMH_WAIT_PROC)
250
pid = kernel_thread(wait_for_helper, sub_info,
251
CLONE_FS | CLONE_FILES | SIGCHLD);
252
else
253
pid = kernel_thread(____call_usermodehelper, sub_info,
254
CLONE_VFORK | SIGCHLD);
255
256
switch (wait) {
257
case UMH_NO_WAIT:
258
call_usermodehelper_freeinfo(sub_info);
259
break;
260
261
case UMH_WAIT_PROC:
262
if (pid > 0)
263
break;
264
/* FALLTHROUGH */
265
case UMH_WAIT_EXEC:
266
if (pid < 0)
267
sub_info->retval = pid;
268
complete(sub_info->complete);
269
}
270
}
271
272
/*
273
* If set, call_usermodehelper_exec() will exit immediately returning -EBUSY
274
* (used for preventing user land processes from being created after the user
275
* land has been frozen during a system-wide hibernation or suspend operation).
276
*/
277
static int usermodehelper_disabled;
278
279
/* Number of helpers running */
280
static atomic_t running_helpers = ATOMIC_INIT(0);
281
282
/*
283
* Wait queue head used by usermodehelper_pm_callback() to wait for all running
284
* helpers to finish.
285
*/
286
static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq);
287
288
/*
289
* Time to wait for running_helpers to become zero before the setting of
290
* usermodehelper_disabled in usermodehelper_pm_callback() fails
291
*/
292
#define RUNNING_HELPERS_TIMEOUT (5 * HZ)
293
294
/**
295
* usermodehelper_disable - prevent new helpers from being started
296
*/
297
int usermodehelper_disable(void)
298
{
299
long retval;
300
301
usermodehelper_disabled = 1;
302
smp_mb();
303
/*
304
* From now on call_usermodehelper_exec() won't start any new
305
* helpers, so it is sufficient if running_helpers turns out to
306
* be zero at one point (it may be increased later, but that
307
* doesn't matter).
308
*/
309
retval = wait_event_timeout(running_helpers_waitq,
310
atomic_read(&running_helpers) == 0,
311
RUNNING_HELPERS_TIMEOUT);
312
if (retval)
313
return 0;
314
315
usermodehelper_disabled = 0;
316
return -EAGAIN;
317
}
318
319
/**
320
* usermodehelper_enable - allow new helpers to be started again
321
*/
322
void usermodehelper_enable(void)
323
{
324
usermodehelper_disabled = 0;
325
}
326
327
/**
328
* usermodehelper_is_disabled - check if new helpers are allowed to be started
329
*/
330
bool usermodehelper_is_disabled(void)
331
{
332
return usermodehelper_disabled;
333
}
334
EXPORT_SYMBOL_GPL(usermodehelper_is_disabled);
335
336
static void helper_lock(void)
337
{
338
atomic_inc(&running_helpers);
339
smp_mb__after_atomic_inc();
340
}
341
342
static void helper_unlock(void)
343
{
344
if (atomic_dec_and_test(&running_helpers))
345
wake_up(&running_helpers_waitq);
346
}
347
348
/**
349
* call_usermodehelper_setup - prepare to call a usermode helper
350
* @path: path to usermode executable
351
* @argv: arg vector for process
352
* @envp: environment for process
353
* @gfp_mask: gfp mask for memory allocation
354
*
355
* Returns either %NULL on allocation failure, or a subprocess_info
356
* structure. This should be passed to call_usermodehelper_exec to
357
* exec the process and free the structure.
358
*/
359
struct subprocess_info *call_usermodehelper_setup(char *path, char **argv,
360
char **envp, gfp_t gfp_mask)
361
{
362
struct subprocess_info *sub_info;
363
sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask);
364
if (!sub_info)
365
goto out;
366
367
INIT_WORK(&sub_info->work, __call_usermodehelper);
368
sub_info->path = path;
369
sub_info->argv = argv;
370
sub_info->envp = envp;
371
out:
372
return sub_info;
373
}
374
EXPORT_SYMBOL(call_usermodehelper_setup);
375
376
/**
377
* call_usermodehelper_setfns - set a cleanup/init function
378
* @info: a subprocess_info returned by call_usermodehelper_setup
379
* @cleanup: a cleanup function
380
* @init: an init function
381
* @data: arbitrary context sensitive data
382
*
383
* The init function is used to customize the helper process prior to
384
* exec. A non-zero return code causes the process to error out, exit,
385
* and return the failure to the calling process
386
*
387
* The cleanup function is just before ethe subprocess_info is about to
388
* be freed. This can be used for freeing the argv and envp. The
389
* Function must be runnable in either a process context or the
390
* context in which call_usermodehelper_exec is called.
391
*/
392
void call_usermodehelper_setfns(struct subprocess_info *info,
393
int (*init)(struct subprocess_info *info, struct cred *new),
394
void (*cleanup)(struct subprocess_info *info),
395
void *data)
396
{
397
info->cleanup = cleanup;
398
info->init = init;
399
info->data = data;
400
}
401
EXPORT_SYMBOL(call_usermodehelper_setfns);
402
403
/**
404
* call_usermodehelper_exec - start a usermode application
405
* @sub_info: information about the subprocessa
406
* @wait: wait for the application to finish and return status.
407
* when -1 don't wait at all, but you get no useful error back when
408
* the program couldn't be exec'ed. This makes it safe to call
409
* from interrupt context.
410
*
411
* Runs a user-space application. The application is started
412
* asynchronously if wait is not set, and runs as a child of keventd.
413
* (ie. it runs with full root capabilities).
414
*/
415
int call_usermodehelper_exec(struct subprocess_info *sub_info,
416
enum umh_wait wait)
417
{
418
DECLARE_COMPLETION_ONSTACK(done);
419
int retval = 0;
420
421
helper_lock();
422
if (sub_info->path[0] == '\0')
423
goto out;
424
425
if (!khelper_wq || usermodehelper_disabled) {
426
retval = -EBUSY;
427
goto out;
428
}
429
430
sub_info->complete = &done;
431
sub_info->wait = wait;
432
433
queue_work(khelper_wq, &sub_info->work);
434
if (wait == UMH_NO_WAIT) /* task has freed sub_info */
435
goto unlock;
436
wait_for_completion(&done);
437
retval = sub_info->retval;
438
439
out:
440
call_usermodehelper_freeinfo(sub_info);
441
unlock:
442
helper_unlock();
443
return retval;
444
}
445
EXPORT_SYMBOL(call_usermodehelper_exec);
446
447
static int proc_cap_handler(struct ctl_table *table, int write,
448
void __user *buffer, size_t *lenp, loff_t *ppos)
449
{
450
struct ctl_table t;
451
unsigned long cap_array[_KERNEL_CAPABILITY_U32S];
452
kernel_cap_t new_cap;
453
int err, i;
454
455
if (write && (!capable(CAP_SETPCAP) ||
456
!capable(CAP_SYS_MODULE)))
457
return -EPERM;
458
459
/*
460
* convert from the global kernel_cap_t to the ulong array to print to
461
* userspace if this is a read.
462
*/
463
spin_lock(&umh_sysctl_lock);
464
for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++) {
465
if (table->data == CAP_BSET)
466
cap_array[i] = usermodehelper_bset.cap[i];
467
else if (table->data == CAP_PI)
468
cap_array[i] = usermodehelper_inheritable.cap[i];
469
else
470
BUG();
471
}
472
spin_unlock(&umh_sysctl_lock);
473
474
t = *table;
475
t.data = &cap_array;
476
477
/*
478
* actually read or write and array of ulongs from userspace. Remember
479
* these are least significant 32 bits first
480
*/
481
err = proc_doulongvec_minmax(&t, write, buffer, lenp, ppos);
482
if (err < 0)
483
return err;
484
485
/*
486
* convert from the sysctl array of ulongs to the kernel_cap_t
487
* internal representation
488
*/
489
for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)
490
new_cap.cap[i] = cap_array[i];
491
492
/*
493
* Drop everything not in the new_cap (but don't add things)
494
*/
495
spin_lock(&umh_sysctl_lock);
496
if (write) {
497
if (table->data == CAP_BSET)
498
usermodehelper_bset = cap_intersect(usermodehelper_bset, new_cap);
499
if (table->data == CAP_PI)
500
usermodehelper_inheritable = cap_intersect(usermodehelper_inheritable, new_cap);
501
}
502
spin_unlock(&umh_sysctl_lock);
503
504
return 0;
505
}
506
507
struct ctl_table usermodehelper_table[] = {
508
{
509
.procname = "bset",
510
.data = CAP_BSET,
511
.maxlen = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
512
.mode = 0600,
513
.proc_handler = proc_cap_handler,
514
},
515
{
516
.procname = "inheritable",
517
.data = CAP_PI,
518
.maxlen = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
519
.mode = 0600,
520
.proc_handler = proc_cap_handler,
521
},
522
{ }
523
};
524
525
void __init usermodehelper_init(void)
526
{
527
khelper_wq = create_singlethread_workqueue("khelper");
528
BUG_ON(!khelper_wq);
529
}
530
531