Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/lib/bch.c
10811 views
1
/*
2
* Generic binary BCH encoding/decoding library
3
*
4
* This program is free software; you can redistribute it and/or modify it
5
* under the terms of the GNU General Public License version 2 as published by
6
* the Free Software Foundation.
7
*
8
* This program is distributed in the hope that it will be useful, but WITHOUT
9
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11
* more details.
12
*
13
* You should have received a copy of the GNU General Public License along with
14
* this program; if not, write to the Free Software Foundation, Inc., 51
15
* Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
16
*
17
* Copyright © 2011 Parrot S.A.
18
*
19
* Author: Ivan Djelic <[email protected]>
20
*
21
* Description:
22
*
23
* This library provides runtime configurable encoding/decoding of binary
24
* Bose-Chaudhuri-Hocquenghem (BCH) codes.
25
*
26
* Call init_bch to get a pointer to a newly allocated bch_control structure for
27
* the given m (Galois field order), t (error correction capability) and
28
* (optional) primitive polynomial parameters.
29
*
30
* Call encode_bch to compute and store ecc parity bytes to a given buffer.
31
* Call decode_bch to detect and locate errors in received data.
32
*
33
* On systems supporting hw BCH features, intermediate results may be provided
34
* to decode_bch in order to skip certain steps. See decode_bch() documentation
35
* for details.
36
*
37
* Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of
38
* parameters m and t; thus allowing extra compiler optimizations and providing
39
* better (up to 2x) encoding performance. Using this option makes sense when
40
* (m,t) are fixed and known in advance, e.g. when using BCH error correction
41
* on a particular NAND flash device.
42
*
43
* Algorithmic details:
44
*
45
* Encoding is performed by processing 32 input bits in parallel, using 4
46
* remainder lookup tables.
47
*
48
* The final stage of decoding involves the following internal steps:
49
* a. Syndrome computation
50
* b. Error locator polynomial computation using Berlekamp-Massey algorithm
51
* c. Error locator root finding (by far the most expensive step)
52
*
53
* In this implementation, step c is not performed using the usual Chien search.
54
* Instead, an alternative approach described in [1] is used. It consists in
55
* factoring the error locator polynomial using the Berlekamp Trace algorithm
56
* (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial
57
* solving techniques [2] are used. The resulting algorithm, called BTZ, yields
58
* much better performance than Chien search for usual (m,t) values (typically
59
* m >= 13, t < 32, see [1]).
60
*
61
* [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields
62
* of characteristic 2, in: Western European Workshop on Research in Cryptology
63
* - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear.
64
* [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over
65
* finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996.
66
*/
67
68
#include <linux/kernel.h>
69
#include <linux/errno.h>
70
#include <linux/init.h>
71
#include <linux/module.h>
72
#include <linux/slab.h>
73
#include <linux/bitops.h>
74
#include <asm/byteorder.h>
75
#include <linux/bch.h>
76
77
#if defined(CONFIG_BCH_CONST_PARAMS)
78
#define GF_M(_p) (CONFIG_BCH_CONST_M)
79
#define GF_T(_p) (CONFIG_BCH_CONST_T)
80
#define GF_N(_p) ((1 << (CONFIG_BCH_CONST_M))-1)
81
#else
82
#define GF_M(_p) ((_p)->m)
83
#define GF_T(_p) ((_p)->t)
84
#define GF_N(_p) ((_p)->n)
85
#endif
86
87
#define BCH_ECC_WORDS(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32)
88
#define BCH_ECC_BYTES(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
89
90
#ifndef dbg
91
#define dbg(_fmt, args...) do {} while (0)
92
#endif
93
94
/*
95
* represent a polynomial over GF(2^m)
96
*/
97
struct gf_poly {
98
unsigned int deg; /* polynomial degree */
99
unsigned int c[0]; /* polynomial terms */
100
};
101
102
/* given its degree, compute a polynomial size in bytes */
103
#define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
104
105
/* polynomial of degree 1 */
106
struct gf_poly_deg1 {
107
struct gf_poly poly;
108
unsigned int c[2];
109
};
110
111
/*
112
* same as encode_bch(), but process input data one byte at a time
113
*/
114
static void encode_bch_unaligned(struct bch_control *bch,
115
const unsigned char *data, unsigned int len,
116
uint32_t *ecc)
117
{
118
int i;
119
const uint32_t *p;
120
const int l = BCH_ECC_WORDS(bch)-1;
121
122
while (len--) {
123
p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff);
124
125
for (i = 0; i < l; i++)
126
ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++);
127
128
ecc[l] = (ecc[l] << 8)^(*p);
129
}
130
}
131
132
/*
133
* convert ecc bytes to aligned, zero-padded 32-bit ecc words
134
*/
135
static void load_ecc8(struct bch_control *bch, uint32_t *dst,
136
const uint8_t *src)
137
{
138
uint8_t pad[4] = {0, 0, 0, 0};
139
unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
140
141
for (i = 0; i < nwords; i++, src += 4)
142
dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3];
143
144
memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords);
145
dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3];
146
}
147
148
/*
149
* convert 32-bit ecc words to ecc bytes
150
*/
151
static void store_ecc8(struct bch_control *bch, uint8_t *dst,
152
const uint32_t *src)
153
{
154
uint8_t pad[4];
155
unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
156
157
for (i = 0; i < nwords; i++) {
158
*dst++ = (src[i] >> 24);
159
*dst++ = (src[i] >> 16) & 0xff;
160
*dst++ = (src[i] >> 8) & 0xff;
161
*dst++ = (src[i] >> 0) & 0xff;
162
}
163
pad[0] = (src[nwords] >> 24);
164
pad[1] = (src[nwords] >> 16) & 0xff;
165
pad[2] = (src[nwords] >> 8) & 0xff;
166
pad[3] = (src[nwords] >> 0) & 0xff;
167
memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords);
168
}
169
170
/**
171
* encode_bch - calculate BCH ecc parity of data
172
* @bch: BCH control structure
173
* @data: data to encode
174
* @len: data length in bytes
175
* @ecc: ecc parity data, must be initialized by caller
176
*
177
* The @ecc parity array is used both as input and output parameter, in order to
178
* allow incremental computations. It should be of the size indicated by member
179
* @ecc_bytes of @bch, and should be initialized to 0 before the first call.
180
*
181
* The exact number of computed ecc parity bits is given by member @ecc_bits of
182
* @bch; it may be less than m*t for large values of t.
183
*/
184
void encode_bch(struct bch_control *bch, const uint8_t *data,
185
unsigned int len, uint8_t *ecc)
186
{
187
const unsigned int l = BCH_ECC_WORDS(bch)-1;
188
unsigned int i, mlen;
189
unsigned long m;
190
uint32_t w, r[l+1];
191
const uint32_t * const tab0 = bch->mod8_tab;
192
const uint32_t * const tab1 = tab0 + 256*(l+1);
193
const uint32_t * const tab2 = tab1 + 256*(l+1);
194
const uint32_t * const tab3 = tab2 + 256*(l+1);
195
const uint32_t *pdata, *p0, *p1, *p2, *p3;
196
197
if (ecc) {
198
/* load ecc parity bytes into internal 32-bit buffer */
199
load_ecc8(bch, bch->ecc_buf, ecc);
200
} else {
201
memset(bch->ecc_buf, 0, sizeof(r));
202
}
203
204
/* process first unaligned data bytes */
205
m = ((unsigned long)data) & 3;
206
if (m) {
207
mlen = (len < (4-m)) ? len : 4-m;
208
encode_bch_unaligned(bch, data, mlen, bch->ecc_buf);
209
data += mlen;
210
len -= mlen;
211
}
212
213
/* process 32-bit aligned data words */
214
pdata = (uint32_t *)data;
215
mlen = len/4;
216
data += 4*mlen;
217
len -= 4*mlen;
218
memcpy(r, bch->ecc_buf, sizeof(r));
219
220
/*
221
* split each 32-bit word into 4 polynomials of weight 8 as follows:
222
*
223
* 31 ...24 23 ...16 15 ... 8 7 ... 0
224
* xxxxxxxx yyyyyyyy zzzzzzzz tttttttt
225
* tttttttt mod g = r0 (precomputed)
226
* zzzzzzzz 00000000 mod g = r1 (precomputed)
227
* yyyyyyyy 00000000 00000000 mod g = r2 (precomputed)
228
* xxxxxxxx 00000000 00000000 00000000 mod g = r3 (precomputed)
229
* xxxxxxxx yyyyyyyy zzzzzzzz tttttttt mod g = r0^r1^r2^r3
230
*/
231
while (mlen--) {
232
/* input data is read in big-endian format */
233
w = r[0]^cpu_to_be32(*pdata++);
234
p0 = tab0 + (l+1)*((w >> 0) & 0xff);
235
p1 = tab1 + (l+1)*((w >> 8) & 0xff);
236
p2 = tab2 + (l+1)*((w >> 16) & 0xff);
237
p3 = tab3 + (l+1)*((w >> 24) & 0xff);
238
239
for (i = 0; i < l; i++)
240
r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i];
241
242
r[l] = p0[l]^p1[l]^p2[l]^p3[l];
243
}
244
memcpy(bch->ecc_buf, r, sizeof(r));
245
246
/* process last unaligned bytes */
247
if (len)
248
encode_bch_unaligned(bch, data, len, bch->ecc_buf);
249
250
/* store ecc parity bytes into original parity buffer */
251
if (ecc)
252
store_ecc8(bch, ecc, bch->ecc_buf);
253
}
254
EXPORT_SYMBOL_GPL(encode_bch);
255
256
static inline int modulo(struct bch_control *bch, unsigned int v)
257
{
258
const unsigned int n = GF_N(bch);
259
while (v >= n) {
260
v -= n;
261
v = (v & n) + (v >> GF_M(bch));
262
}
263
return v;
264
}
265
266
/*
267
* shorter and faster modulo function, only works when v < 2N.
268
*/
269
static inline int mod_s(struct bch_control *bch, unsigned int v)
270
{
271
const unsigned int n = GF_N(bch);
272
return (v < n) ? v : v-n;
273
}
274
275
static inline int deg(unsigned int poly)
276
{
277
/* polynomial degree is the most-significant bit index */
278
return fls(poly)-1;
279
}
280
281
static inline int parity(unsigned int x)
282
{
283
/*
284
* public domain code snippet, lifted from
285
* http://www-graphics.stanford.edu/~seander/bithacks.html
286
*/
287
x ^= x >> 1;
288
x ^= x >> 2;
289
x = (x & 0x11111111U) * 0x11111111U;
290
return (x >> 28) & 1;
291
}
292
293
/* Galois field basic operations: multiply, divide, inverse, etc. */
294
295
static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a,
296
unsigned int b)
297
{
298
return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
299
bch->a_log_tab[b])] : 0;
300
}
301
302
static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a)
303
{
304
return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0;
305
}
306
307
static inline unsigned int gf_div(struct bch_control *bch, unsigned int a,
308
unsigned int b)
309
{
310
return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
311
GF_N(bch)-bch->a_log_tab[b])] : 0;
312
}
313
314
static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a)
315
{
316
return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]];
317
}
318
319
static inline unsigned int a_pow(struct bch_control *bch, int i)
320
{
321
return bch->a_pow_tab[modulo(bch, i)];
322
}
323
324
static inline int a_log(struct bch_control *bch, unsigned int x)
325
{
326
return bch->a_log_tab[x];
327
}
328
329
static inline int a_ilog(struct bch_control *bch, unsigned int x)
330
{
331
return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]);
332
}
333
334
/*
335
* compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t
336
*/
337
static void compute_syndromes(struct bch_control *bch, uint32_t *ecc,
338
unsigned int *syn)
339
{
340
int i, j, s;
341
unsigned int m;
342
uint32_t poly;
343
const int t = GF_T(bch);
344
345
s = bch->ecc_bits;
346
347
/* make sure extra bits in last ecc word are cleared */
348
m = ((unsigned int)s) & 31;
349
if (m)
350
ecc[s/32] &= ~((1u << (32-m))-1);
351
memset(syn, 0, 2*t*sizeof(*syn));
352
353
/* compute v(a^j) for j=1 .. 2t-1 */
354
do {
355
poly = *ecc++;
356
s -= 32;
357
while (poly) {
358
i = deg(poly);
359
for (j = 0; j < 2*t; j += 2)
360
syn[j] ^= a_pow(bch, (j+1)*(i+s));
361
362
poly ^= (1 << i);
363
}
364
} while (s > 0);
365
366
/* v(a^(2j)) = v(a^j)^2 */
367
for (j = 0; j < t; j++)
368
syn[2*j+1] = gf_sqr(bch, syn[j]);
369
}
370
371
static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src)
372
{
373
memcpy(dst, src, GF_POLY_SZ(src->deg));
374
}
375
376
static int compute_error_locator_polynomial(struct bch_control *bch,
377
const unsigned int *syn)
378
{
379
const unsigned int t = GF_T(bch);
380
const unsigned int n = GF_N(bch);
381
unsigned int i, j, tmp, l, pd = 1, d = syn[0];
382
struct gf_poly *elp = bch->elp;
383
struct gf_poly *pelp = bch->poly_2t[0];
384
struct gf_poly *elp_copy = bch->poly_2t[1];
385
int k, pp = -1;
386
387
memset(pelp, 0, GF_POLY_SZ(2*t));
388
memset(elp, 0, GF_POLY_SZ(2*t));
389
390
pelp->deg = 0;
391
pelp->c[0] = 1;
392
elp->deg = 0;
393
elp->c[0] = 1;
394
395
/* use simplified binary Berlekamp-Massey algorithm */
396
for (i = 0; (i < t) && (elp->deg <= t); i++) {
397
if (d) {
398
k = 2*i-pp;
399
gf_poly_copy(elp_copy, elp);
400
/* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */
401
tmp = a_log(bch, d)+n-a_log(bch, pd);
402
for (j = 0; j <= pelp->deg; j++) {
403
if (pelp->c[j]) {
404
l = a_log(bch, pelp->c[j]);
405
elp->c[j+k] ^= a_pow(bch, tmp+l);
406
}
407
}
408
/* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */
409
tmp = pelp->deg+k;
410
if (tmp > elp->deg) {
411
elp->deg = tmp;
412
gf_poly_copy(pelp, elp_copy);
413
pd = d;
414
pp = 2*i;
415
}
416
}
417
/* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */
418
if (i < t-1) {
419
d = syn[2*i+2];
420
for (j = 1; j <= elp->deg; j++)
421
d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]);
422
}
423
}
424
dbg("elp=%s\n", gf_poly_str(elp));
425
return (elp->deg > t) ? -1 : (int)elp->deg;
426
}
427
428
/*
429
* solve a m x m linear system in GF(2) with an expected number of solutions,
430
* and return the number of found solutions
431
*/
432
static int solve_linear_system(struct bch_control *bch, unsigned int *rows,
433
unsigned int *sol, int nsol)
434
{
435
const int m = GF_M(bch);
436
unsigned int tmp, mask;
437
int rem, c, r, p, k, param[m];
438
439
k = 0;
440
mask = 1 << m;
441
442
/* Gaussian elimination */
443
for (c = 0; c < m; c++) {
444
rem = 0;
445
p = c-k;
446
/* find suitable row for elimination */
447
for (r = p; r < m; r++) {
448
if (rows[r] & mask) {
449
if (r != p) {
450
tmp = rows[r];
451
rows[r] = rows[p];
452
rows[p] = tmp;
453
}
454
rem = r+1;
455
break;
456
}
457
}
458
if (rem) {
459
/* perform elimination on remaining rows */
460
tmp = rows[p];
461
for (r = rem; r < m; r++) {
462
if (rows[r] & mask)
463
rows[r] ^= tmp;
464
}
465
} else {
466
/* elimination not needed, store defective row index */
467
param[k++] = c;
468
}
469
mask >>= 1;
470
}
471
/* rewrite system, inserting fake parameter rows */
472
if (k > 0) {
473
p = k;
474
for (r = m-1; r >= 0; r--) {
475
if ((r > m-1-k) && rows[r])
476
/* system has no solution */
477
return 0;
478
479
rows[r] = (p && (r == param[p-1])) ?
480
p--, 1u << (m-r) : rows[r-p];
481
}
482
}
483
484
if (nsol != (1 << k))
485
/* unexpected number of solutions */
486
return 0;
487
488
for (p = 0; p < nsol; p++) {
489
/* set parameters for p-th solution */
490
for (c = 0; c < k; c++)
491
rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1);
492
493
/* compute unique solution */
494
tmp = 0;
495
for (r = m-1; r >= 0; r--) {
496
mask = rows[r] & (tmp|1);
497
tmp |= parity(mask) << (m-r);
498
}
499
sol[p] = tmp >> 1;
500
}
501
return nsol;
502
}
503
504
/*
505
* this function builds and solves a linear system for finding roots of a degree
506
* 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m).
507
*/
508
static int find_affine4_roots(struct bch_control *bch, unsigned int a,
509
unsigned int b, unsigned int c,
510
unsigned int *roots)
511
{
512
int i, j, k;
513
const int m = GF_M(bch);
514
unsigned int mask = 0xff, t, rows[16] = {0,};
515
516
j = a_log(bch, b);
517
k = a_log(bch, a);
518
rows[0] = c;
519
520
/* buid linear system to solve X^4+aX^2+bX+c = 0 */
521
for (i = 0; i < m; i++) {
522
rows[i+1] = bch->a_pow_tab[4*i]^
523
(a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^
524
(b ? bch->a_pow_tab[mod_s(bch, j)] : 0);
525
j++;
526
k += 2;
527
}
528
/*
529
* transpose 16x16 matrix before passing it to linear solver
530
* warning: this code assumes m < 16
531
*/
532
for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) {
533
for (k = 0; k < 16; k = (k+j+1) & ~j) {
534
t = ((rows[k] >> j)^rows[k+j]) & mask;
535
rows[k] ^= (t << j);
536
rows[k+j] ^= t;
537
}
538
}
539
return solve_linear_system(bch, rows, roots, 4);
540
}
541
542
/*
543
* compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r))
544
*/
545
static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly,
546
unsigned int *roots)
547
{
548
int n = 0;
549
550
if (poly->c[0])
551
/* poly[X] = bX+c with c!=0, root=c/b */
552
roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+
553
bch->a_log_tab[poly->c[1]]);
554
return n;
555
}
556
557
/*
558
* compute roots of a degree 2 polynomial over GF(2^m)
559
*/
560
static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly,
561
unsigned int *roots)
562
{
563
int n = 0, i, l0, l1, l2;
564
unsigned int u, v, r;
565
566
if (poly->c[0] && poly->c[1]) {
567
568
l0 = bch->a_log_tab[poly->c[0]];
569
l1 = bch->a_log_tab[poly->c[1]];
570
l2 = bch->a_log_tab[poly->c[2]];
571
572
/* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */
573
u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1));
574
/*
575
* let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi):
576
* r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) =
577
* u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u)
578
* i.e. r and r+1 are roots iff Tr(u)=0
579
*/
580
r = 0;
581
v = u;
582
while (v) {
583
i = deg(v);
584
r ^= bch->xi_tab[i];
585
v ^= (1 << i);
586
}
587
/* verify root */
588
if ((gf_sqr(bch, r)^r) == u) {
589
/* reverse z=a/bX transformation and compute log(1/r) */
590
roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
591
bch->a_log_tab[r]+l2);
592
roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
593
bch->a_log_tab[r^1]+l2);
594
}
595
}
596
return n;
597
}
598
599
/*
600
* compute roots of a degree 3 polynomial over GF(2^m)
601
*/
602
static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly,
603
unsigned int *roots)
604
{
605
int i, n = 0;
606
unsigned int a, b, c, a2, b2, c2, e3, tmp[4];
607
608
if (poly->c[0]) {
609
/* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */
610
e3 = poly->c[3];
611
c2 = gf_div(bch, poly->c[0], e3);
612
b2 = gf_div(bch, poly->c[1], e3);
613
a2 = gf_div(bch, poly->c[2], e3);
614
615
/* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */
616
c = gf_mul(bch, a2, c2); /* c = a2c2 */
617
b = gf_mul(bch, a2, b2)^c2; /* b = a2b2 + c2 */
618
a = gf_sqr(bch, a2)^b2; /* a = a2^2 + b2 */
619
620
/* find the 4 roots of this affine polynomial */
621
if (find_affine4_roots(bch, a, b, c, tmp) == 4) {
622
/* remove a2 from final list of roots */
623
for (i = 0; i < 4; i++) {
624
if (tmp[i] != a2)
625
roots[n++] = a_ilog(bch, tmp[i]);
626
}
627
}
628
}
629
return n;
630
}
631
632
/*
633
* compute roots of a degree 4 polynomial over GF(2^m)
634
*/
635
static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly,
636
unsigned int *roots)
637
{
638
int i, l, n = 0;
639
unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4;
640
641
if (poly->c[0] == 0)
642
return 0;
643
644
/* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */
645
e4 = poly->c[4];
646
d = gf_div(bch, poly->c[0], e4);
647
c = gf_div(bch, poly->c[1], e4);
648
b = gf_div(bch, poly->c[2], e4);
649
a = gf_div(bch, poly->c[3], e4);
650
651
/* use Y=1/X transformation to get an affine polynomial */
652
if (a) {
653
/* first, eliminate cX by using z=X+e with ae^2+c=0 */
654
if (c) {
655
/* compute e such that e^2 = c/a */
656
f = gf_div(bch, c, a);
657
l = a_log(bch, f);
658
l += (l & 1) ? GF_N(bch) : 0;
659
e = a_pow(bch, l/2);
660
/*
661
* use transformation z=X+e:
662
* z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d
663
* z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d
664
* z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d
665
* z^4 + az^3 + b'z^2 + d'
666
*/
667
d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d;
668
b = gf_mul(bch, a, e)^b;
669
}
670
/* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */
671
if (d == 0)
672
/* assume all roots have multiplicity 1 */
673
return 0;
674
675
c2 = gf_inv(bch, d);
676
b2 = gf_div(bch, a, d);
677
a2 = gf_div(bch, b, d);
678
} else {
679
/* polynomial is already affine */
680
c2 = d;
681
b2 = c;
682
a2 = b;
683
}
684
/* find the 4 roots of this affine polynomial */
685
if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) {
686
for (i = 0; i < 4; i++) {
687
/* post-process roots (reverse transformations) */
688
f = a ? gf_inv(bch, roots[i]) : roots[i];
689
roots[i] = a_ilog(bch, f^e);
690
}
691
n = 4;
692
}
693
return n;
694
}
695
696
/*
697
* build monic, log-based representation of a polynomial
698
*/
699
static void gf_poly_logrep(struct bch_control *bch,
700
const struct gf_poly *a, int *rep)
701
{
702
int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]);
703
704
/* represent 0 values with -1; warning, rep[d] is not set to 1 */
705
for (i = 0; i < d; i++)
706
rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1;
707
}
708
709
/*
710
* compute polynomial Euclidean division remainder in GF(2^m)[X]
711
*/
712
static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a,
713
const struct gf_poly *b, int *rep)
714
{
715
int la, p, m;
716
unsigned int i, j, *c = a->c;
717
const unsigned int d = b->deg;
718
719
if (a->deg < d)
720
return;
721
722
/* reuse or compute log representation of denominator */
723
if (!rep) {
724
rep = bch->cache;
725
gf_poly_logrep(bch, b, rep);
726
}
727
728
for (j = a->deg; j >= d; j--) {
729
if (c[j]) {
730
la = a_log(bch, c[j]);
731
p = j-d;
732
for (i = 0; i < d; i++, p++) {
733
m = rep[i];
734
if (m >= 0)
735
c[p] ^= bch->a_pow_tab[mod_s(bch,
736
m+la)];
737
}
738
}
739
}
740
a->deg = d-1;
741
while (!c[a->deg] && a->deg)
742
a->deg--;
743
}
744
745
/*
746
* compute polynomial Euclidean division quotient in GF(2^m)[X]
747
*/
748
static void gf_poly_div(struct bch_control *bch, struct gf_poly *a,
749
const struct gf_poly *b, struct gf_poly *q)
750
{
751
if (a->deg >= b->deg) {
752
q->deg = a->deg-b->deg;
753
/* compute a mod b (modifies a) */
754
gf_poly_mod(bch, a, b, NULL);
755
/* quotient is stored in upper part of polynomial a */
756
memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int));
757
} else {
758
q->deg = 0;
759
q->c[0] = 0;
760
}
761
}
762
763
/*
764
* compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X]
765
*/
766
static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a,
767
struct gf_poly *b)
768
{
769
struct gf_poly *tmp;
770
771
dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b));
772
773
if (a->deg < b->deg) {
774
tmp = b;
775
b = a;
776
a = tmp;
777
}
778
779
while (b->deg > 0) {
780
gf_poly_mod(bch, a, b, NULL);
781
tmp = b;
782
b = a;
783
a = tmp;
784
}
785
786
dbg("%s\n", gf_poly_str(a));
787
788
return a;
789
}
790
791
/*
792
* Given a polynomial f and an integer k, compute Tr(a^kX) mod f
793
* This is used in Berlekamp Trace algorithm for splitting polynomials
794
*/
795
static void compute_trace_bk_mod(struct bch_control *bch, int k,
796
const struct gf_poly *f, struct gf_poly *z,
797
struct gf_poly *out)
798
{
799
const int m = GF_M(bch);
800
int i, j;
801
802
/* z contains z^2j mod f */
803
z->deg = 1;
804
z->c[0] = 0;
805
z->c[1] = bch->a_pow_tab[k];
806
807
out->deg = 0;
808
memset(out, 0, GF_POLY_SZ(f->deg));
809
810
/* compute f log representation only once */
811
gf_poly_logrep(bch, f, bch->cache);
812
813
for (i = 0; i < m; i++) {
814
/* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */
815
for (j = z->deg; j >= 0; j--) {
816
out->c[j] ^= z->c[j];
817
z->c[2*j] = gf_sqr(bch, z->c[j]);
818
z->c[2*j+1] = 0;
819
}
820
if (z->deg > out->deg)
821
out->deg = z->deg;
822
823
if (i < m-1) {
824
z->deg *= 2;
825
/* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */
826
gf_poly_mod(bch, z, f, bch->cache);
827
}
828
}
829
while (!out->c[out->deg] && out->deg)
830
out->deg--;
831
832
dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out));
833
}
834
835
/*
836
* factor a polynomial using Berlekamp Trace algorithm (BTA)
837
*/
838
static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f,
839
struct gf_poly **g, struct gf_poly **h)
840
{
841
struct gf_poly *f2 = bch->poly_2t[0];
842
struct gf_poly *q = bch->poly_2t[1];
843
struct gf_poly *tk = bch->poly_2t[2];
844
struct gf_poly *z = bch->poly_2t[3];
845
struct gf_poly *gcd;
846
847
dbg("factoring %s...\n", gf_poly_str(f));
848
849
*g = f;
850
*h = NULL;
851
852
/* tk = Tr(a^k.X) mod f */
853
compute_trace_bk_mod(bch, k, f, z, tk);
854
855
if (tk->deg > 0) {
856
/* compute g = gcd(f, tk) (destructive operation) */
857
gf_poly_copy(f2, f);
858
gcd = gf_poly_gcd(bch, f2, tk);
859
if (gcd->deg < f->deg) {
860
/* compute h=f/gcd(f,tk); this will modify f and q */
861
gf_poly_div(bch, f, gcd, q);
862
/* store g and h in-place (clobbering f) */
863
*h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly;
864
gf_poly_copy(*g, gcd);
865
gf_poly_copy(*h, q);
866
}
867
}
868
}
869
870
/*
871
* find roots of a polynomial, using BTZ algorithm; see the beginning of this
872
* file for details
873
*/
874
static int find_poly_roots(struct bch_control *bch, unsigned int k,
875
struct gf_poly *poly, unsigned int *roots)
876
{
877
int cnt;
878
struct gf_poly *f1, *f2;
879
880
switch (poly->deg) {
881
/* handle low degree polynomials with ad hoc techniques */
882
case 1:
883
cnt = find_poly_deg1_roots(bch, poly, roots);
884
break;
885
case 2:
886
cnt = find_poly_deg2_roots(bch, poly, roots);
887
break;
888
case 3:
889
cnt = find_poly_deg3_roots(bch, poly, roots);
890
break;
891
case 4:
892
cnt = find_poly_deg4_roots(bch, poly, roots);
893
break;
894
default:
895
/* factor polynomial using Berlekamp Trace Algorithm (BTA) */
896
cnt = 0;
897
if (poly->deg && (k <= GF_M(bch))) {
898
factor_polynomial(bch, k, poly, &f1, &f2);
899
if (f1)
900
cnt += find_poly_roots(bch, k+1, f1, roots);
901
if (f2)
902
cnt += find_poly_roots(bch, k+1, f2, roots+cnt);
903
}
904
break;
905
}
906
return cnt;
907
}
908
909
#if defined(USE_CHIEN_SEARCH)
910
/*
911
* exhaustive root search (Chien) implementation - not used, included only for
912
* reference/comparison tests
913
*/
914
static int chien_search(struct bch_control *bch, unsigned int len,
915
struct gf_poly *p, unsigned int *roots)
916
{
917
int m;
918
unsigned int i, j, syn, syn0, count = 0;
919
const unsigned int k = 8*len+bch->ecc_bits;
920
921
/* use a log-based representation of polynomial */
922
gf_poly_logrep(bch, p, bch->cache);
923
bch->cache[p->deg] = 0;
924
syn0 = gf_div(bch, p->c[0], p->c[p->deg]);
925
926
for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) {
927
/* compute elp(a^i) */
928
for (j = 1, syn = syn0; j <= p->deg; j++) {
929
m = bch->cache[j];
930
if (m >= 0)
931
syn ^= a_pow(bch, m+j*i);
932
}
933
if (syn == 0) {
934
roots[count++] = GF_N(bch)-i;
935
if (count == p->deg)
936
break;
937
}
938
}
939
return (count == p->deg) ? count : 0;
940
}
941
#define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc)
942
#endif /* USE_CHIEN_SEARCH */
943
944
/**
945
* decode_bch - decode received codeword and find bit error locations
946
* @bch: BCH control structure
947
* @data: received data, ignored if @calc_ecc is provided
948
* @len: data length in bytes, must always be provided
949
* @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc
950
* @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data
951
* @syn: hw computed syndrome data (if NULL, syndrome is calculated)
952
* @errloc: output array of error locations
953
*
954
* Returns:
955
* The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if
956
* invalid parameters were provided
957
*
958
* Depending on the available hw BCH support and the need to compute @calc_ecc
959
* separately (using encode_bch()), this function should be called with one of
960
* the following parameter configurations -
961
*
962
* by providing @data and @recv_ecc only:
963
* decode_bch(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc)
964
*
965
* by providing @recv_ecc and @calc_ecc:
966
* decode_bch(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc)
967
*
968
* by providing ecc = recv_ecc XOR calc_ecc:
969
* decode_bch(@bch, NULL, @len, NULL, ecc, NULL, @errloc)
970
*
971
* by providing syndrome results @syn:
972
* decode_bch(@bch, NULL, @len, NULL, NULL, @syn, @errloc)
973
*
974
* Once decode_bch() has successfully returned with a positive value, error
975
* locations returned in array @errloc should be interpreted as follows -
976
*
977
* if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for
978
* data correction)
979
*
980
* if (errloc[n] < 8*len), then n-th error is located in data and can be
981
* corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8);
982
*
983
* Note that this function does not perform any data correction by itself, it
984
* merely indicates error locations.
985
*/
986
int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len,
987
const uint8_t *recv_ecc, const uint8_t *calc_ecc,
988
const unsigned int *syn, unsigned int *errloc)
989
{
990
const unsigned int ecc_words = BCH_ECC_WORDS(bch);
991
unsigned int nbits;
992
int i, err, nroots;
993
uint32_t sum;
994
995
/* sanity check: make sure data length can be handled */
996
if (8*len > (bch->n-bch->ecc_bits))
997
return -EINVAL;
998
999
/* if caller does not provide syndromes, compute them */
1000
if (!syn) {
1001
if (!calc_ecc) {
1002
/* compute received data ecc into an internal buffer */
1003
if (!data || !recv_ecc)
1004
return -EINVAL;
1005
encode_bch(bch, data, len, NULL);
1006
} else {
1007
/* load provided calculated ecc */
1008
load_ecc8(bch, bch->ecc_buf, calc_ecc);
1009
}
1010
/* load received ecc or assume it was XORed in calc_ecc */
1011
if (recv_ecc) {
1012
load_ecc8(bch, bch->ecc_buf2, recv_ecc);
1013
/* XOR received and calculated ecc */
1014
for (i = 0, sum = 0; i < (int)ecc_words; i++) {
1015
bch->ecc_buf[i] ^= bch->ecc_buf2[i];
1016
sum |= bch->ecc_buf[i];
1017
}
1018
if (!sum)
1019
/* no error found */
1020
return 0;
1021
}
1022
compute_syndromes(bch, bch->ecc_buf, bch->syn);
1023
syn = bch->syn;
1024
}
1025
1026
err = compute_error_locator_polynomial(bch, syn);
1027
if (err > 0) {
1028
nroots = find_poly_roots(bch, 1, bch->elp, errloc);
1029
if (err != nroots)
1030
err = -1;
1031
}
1032
if (err > 0) {
1033
/* post-process raw error locations for easier correction */
1034
nbits = (len*8)+bch->ecc_bits;
1035
for (i = 0; i < err; i++) {
1036
if (errloc[i] >= nbits) {
1037
err = -1;
1038
break;
1039
}
1040
errloc[i] = nbits-1-errloc[i];
1041
errloc[i] = (errloc[i] & ~7)|(7-(errloc[i] & 7));
1042
}
1043
}
1044
return (err >= 0) ? err : -EBADMSG;
1045
}
1046
EXPORT_SYMBOL_GPL(decode_bch);
1047
1048
/*
1049
* generate Galois field lookup tables
1050
*/
1051
static int build_gf_tables(struct bch_control *bch, unsigned int poly)
1052
{
1053
unsigned int i, x = 1;
1054
const unsigned int k = 1 << deg(poly);
1055
1056
/* primitive polynomial must be of degree m */
1057
if (k != (1u << GF_M(bch)))
1058
return -1;
1059
1060
for (i = 0; i < GF_N(bch); i++) {
1061
bch->a_pow_tab[i] = x;
1062
bch->a_log_tab[x] = i;
1063
if (i && (x == 1))
1064
/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
1065
return -1;
1066
x <<= 1;
1067
if (x & k)
1068
x ^= poly;
1069
}
1070
bch->a_pow_tab[GF_N(bch)] = 1;
1071
bch->a_log_tab[0] = 0;
1072
1073
return 0;
1074
}
1075
1076
/*
1077
* compute generator polynomial remainder tables for fast encoding
1078
*/
1079
static void build_mod8_tables(struct bch_control *bch, const uint32_t *g)
1080
{
1081
int i, j, b, d;
1082
uint32_t data, hi, lo, *tab;
1083
const int l = BCH_ECC_WORDS(bch);
1084
const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32);
1085
const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32);
1086
1087
memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab));
1088
1089
for (i = 0; i < 256; i++) {
1090
/* p(X)=i is a small polynomial of weight <= 8 */
1091
for (b = 0; b < 4; b++) {
1092
/* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
1093
tab = bch->mod8_tab + (b*256+i)*l;
1094
data = i << (8*b);
1095
while (data) {
1096
d = deg(data);
1097
/* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
1098
data ^= g[0] >> (31-d);
1099
for (j = 0; j < ecclen; j++) {
1100
hi = (d < 31) ? g[j] << (d+1) : 0;
1101
lo = (j+1 < plen) ?
1102
g[j+1] >> (31-d) : 0;
1103
tab[j] ^= hi|lo;
1104
}
1105
}
1106
}
1107
}
1108
}
1109
1110
/*
1111
* build a base for factoring degree 2 polynomials
1112
*/
1113
static int build_deg2_base(struct bch_control *bch)
1114
{
1115
const int m = GF_M(bch);
1116
int i, j, r;
1117
unsigned int sum, x, y, remaining, ak = 0, xi[m];
1118
1119
/* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
1120
for (i = 0; i < m; i++) {
1121
for (j = 0, sum = 0; j < m; j++)
1122
sum ^= a_pow(bch, i*(1 << j));
1123
1124
if (sum) {
1125
ak = bch->a_pow_tab[i];
1126
break;
1127
}
1128
}
1129
/* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
1130
remaining = m;
1131
memset(xi, 0, sizeof(xi));
1132
1133
for (x = 0; (x <= GF_N(bch)) && remaining; x++) {
1134
y = gf_sqr(bch, x)^x;
1135
for (i = 0; i < 2; i++) {
1136
r = a_log(bch, y);
1137
if (y && (r < m) && !xi[r]) {
1138
bch->xi_tab[r] = x;
1139
xi[r] = 1;
1140
remaining--;
1141
dbg("x%d = %x\n", r, x);
1142
break;
1143
}
1144
y ^= ak;
1145
}
1146
}
1147
/* should not happen but check anyway */
1148
return remaining ? -1 : 0;
1149
}
1150
1151
static void *bch_alloc(size_t size, int *err)
1152
{
1153
void *ptr;
1154
1155
ptr = kmalloc(size, GFP_KERNEL);
1156
if (ptr == NULL)
1157
*err = 1;
1158
return ptr;
1159
}
1160
1161
/*
1162
* compute generator polynomial for given (m,t) parameters.
1163
*/
1164
static uint32_t *compute_generator_polynomial(struct bch_control *bch)
1165
{
1166
const unsigned int m = GF_M(bch);
1167
const unsigned int t = GF_T(bch);
1168
int n, err = 0;
1169
unsigned int i, j, nbits, r, word, *roots;
1170
struct gf_poly *g;
1171
uint32_t *genpoly;
1172
1173
g = bch_alloc(GF_POLY_SZ(m*t), &err);
1174
roots = bch_alloc((bch->n+1)*sizeof(*roots), &err);
1175
genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err);
1176
1177
if (err) {
1178
kfree(genpoly);
1179
genpoly = NULL;
1180
goto finish;
1181
}
1182
1183
/* enumerate all roots of g(X) */
1184
memset(roots , 0, (bch->n+1)*sizeof(*roots));
1185
for (i = 0; i < t; i++) {
1186
for (j = 0, r = 2*i+1; j < m; j++) {
1187
roots[r] = 1;
1188
r = mod_s(bch, 2*r);
1189
}
1190
}
1191
/* build generator polynomial g(X) */
1192
g->deg = 0;
1193
g->c[0] = 1;
1194
for (i = 0; i < GF_N(bch); i++) {
1195
if (roots[i]) {
1196
/* multiply g(X) by (X+root) */
1197
r = bch->a_pow_tab[i];
1198
g->c[g->deg+1] = 1;
1199
for (j = g->deg; j > 0; j--)
1200
g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1];
1201
1202
g->c[0] = gf_mul(bch, g->c[0], r);
1203
g->deg++;
1204
}
1205
}
1206
/* store left-justified binary representation of g(X) */
1207
n = g->deg+1;
1208
i = 0;
1209
1210
while (n > 0) {
1211
nbits = (n > 32) ? 32 : n;
1212
for (j = 0, word = 0; j < nbits; j++) {
1213
if (g->c[n-1-j])
1214
word |= 1u << (31-j);
1215
}
1216
genpoly[i++] = word;
1217
n -= nbits;
1218
}
1219
bch->ecc_bits = g->deg;
1220
1221
finish:
1222
kfree(g);
1223
kfree(roots);
1224
1225
return genpoly;
1226
}
1227
1228
/**
1229
* init_bch - initialize a BCH encoder/decoder
1230
* @m: Galois field order, should be in the range 5-15
1231
* @t: maximum error correction capability, in bits
1232
* @prim_poly: user-provided primitive polynomial (or 0 to use default)
1233
*
1234
* Returns:
1235
* a newly allocated BCH control structure if successful, NULL otherwise
1236
*
1237
* This initialization can take some time, as lookup tables are built for fast
1238
* encoding/decoding; make sure not to call this function from a time critical
1239
* path. Usually, init_bch() should be called on module/driver init and
1240
* free_bch() should be called to release memory on exit.
1241
*
1242
* You may provide your own primitive polynomial of degree @m in argument
1243
* @prim_poly, or let init_bch() use its default polynomial.
1244
*
1245
* Once init_bch() has successfully returned a pointer to a newly allocated
1246
* BCH control structure, ecc length in bytes is given by member @ecc_bytes of
1247
* the structure.
1248
*/
1249
struct bch_control *init_bch(int m, int t, unsigned int prim_poly)
1250
{
1251
int err = 0;
1252
unsigned int i, words;
1253
uint32_t *genpoly;
1254
struct bch_control *bch = NULL;
1255
1256
const int min_m = 5;
1257
const int max_m = 15;
1258
1259
/* default primitive polynomials */
1260
static const unsigned int prim_poly_tab[] = {
1261
0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
1262
0x402b, 0x8003,
1263
};
1264
1265
#if defined(CONFIG_BCH_CONST_PARAMS)
1266
if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) {
1267
printk(KERN_ERR "bch encoder/decoder was configured to support "
1268
"parameters m=%d, t=%d only!\n",
1269
CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T);
1270
goto fail;
1271
}
1272
#endif
1273
if ((m < min_m) || (m > max_m))
1274
/*
1275
* values of m greater than 15 are not currently supported;
1276
* supporting m > 15 would require changing table base type
1277
* (uint16_t) and a small patch in matrix transposition
1278
*/
1279
goto fail;
1280
1281
/* sanity checks */
1282
if ((t < 1) || (m*t >= ((1 << m)-1)))
1283
/* invalid t value */
1284
goto fail;
1285
1286
/* select a primitive polynomial for generating GF(2^m) */
1287
if (prim_poly == 0)
1288
prim_poly = prim_poly_tab[m-min_m];
1289
1290
bch = kzalloc(sizeof(*bch), GFP_KERNEL);
1291
if (bch == NULL)
1292
goto fail;
1293
1294
bch->m = m;
1295
bch->t = t;
1296
bch->n = (1 << m)-1;
1297
words = DIV_ROUND_UP(m*t, 32);
1298
bch->ecc_bytes = DIV_ROUND_UP(m*t, 8);
1299
bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err);
1300
bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
1301
bch->mod8_tab = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
1302
bch->ecc_buf = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
1303
bch->ecc_buf2 = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
1304
bch->xi_tab = bch_alloc(m*sizeof(*bch->xi_tab), &err);
1305
bch->syn = bch_alloc(2*t*sizeof(*bch->syn), &err);
1306
bch->cache = bch_alloc(2*t*sizeof(*bch->cache), &err);
1307
bch->elp = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err);
1308
1309
for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1310
bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err);
1311
1312
if (err)
1313
goto fail;
1314
1315
err = build_gf_tables(bch, prim_poly);
1316
if (err)
1317
goto fail;
1318
1319
/* use generator polynomial for computing encoding tables */
1320
genpoly = compute_generator_polynomial(bch);
1321
if (genpoly == NULL)
1322
goto fail;
1323
1324
build_mod8_tables(bch, genpoly);
1325
kfree(genpoly);
1326
1327
err = build_deg2_base(bch);
1328
if (err)
1329
goto fail;
1330
1331
return bch;
1332
1333
fail:
1334
free_bch(bch);
1335
return NULL;
1336
}
1337
EXPORT_SYMBOL_GPL(init_bch);
1338
1339
/**
1340
* free_bch - free the BCH control structure
1341
* @bch: BCH control structure to release
1342
*/
1343
void free_bch(struct bch_control *bch)
1344
{
1345
unsigned int i;
1346
1347
if (bch) {
1348
kfree(bch->a_pow_tab);
1349
kfree(bch->a_log_tab);
1350
kfree(bch->mod8_tab);
1351
kfree(bch->ecc_buf);
1352
kfree(bch->ecc_buf2);
1353
kfree(bch->xi_tab);
1354
kfree(bch->syn);
1355
kfree(bch->cache);
1356
kfree(bch->elp);
1357
1358
for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1359
kfree(bch->poly_2t[i]);
1360
1361
kfree(bch);
1362
}
1363
}
1364
EXPORT_SYMBOL_GPL(free_bch);
1365
1366
MODULE_LICENSE("GPL");
1367
MODULE_AUTHOR("Ivan Djelic <[email protected]>");
1368
MODULE_DESCRIPTION("Binary BCH encoder/decoder");
1369
1370