Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/lib/bitmap.c
10811 views
1
/*
2
* lib/bitmap.c
3
* Helper functions for bitmap.h.
4
*
5
* This source code is licensed under the GNU General Public License,
6
* Version 2. See the file COPYING for more details.
7
*/
8
#include <linux/module.h>
9
#include <linux/ctype.h>
10
#include <linux/errno.h>
11
#include <linux/bitmap.h>
12
#include <linux/bitops.h>
13
#include <asm/uaccess.h>
14
15
/*
16
* bitmaps provide an array of bits, implemented using an an
17
* array of unsigned longs. The number of valid bits in a
18
* given bitmap does _not_ need to be an exact multiple of
19
* BITS_PER_LONG.
20
*
21
* The possible unused bits in the last, partially used word
22
* of a bitmap are 'don't care'. The implementation makes
23
* no particular effort to keep them zero. It ensures that
24
* their value will not affect the results of any operation.
25
* The bitmap operations that return Boolean (bitmap_empty,
26
* for example) or scalar (bitmap_weight, for example) results
27
* carefully filter out these unused bits from impacting their
28
* results.
29
*
30
* These operations actually hold to a slightly stronger rule:
31
* if you don't input any bitmaps to these ops that have some
32
* unused bits set, then they won't output any set unused bits
33
* in output bitmaps.
34
*
35
* The byte ordering of bitmaps is more natural on little
36
* endian architectures. See the big-endian headers
37
* include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
38
* for the best explanations of this ordering.
39
*/
40
41
int __bitmap_empty(const unsigned long *bitmap, int bits)
42
{
43
int k, lim = bits/BITS_PER_LONG;
44
for (k = 0; k < lim; ++k)
45
if (bitmap[k])
46
return 0;
47
48
if (bits % BITS_PER_LONG)
49
if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
50
return 0;
51
52
return 1;
53
}
54
EXPORT_SYMBOL(__bitmap_empty);
55
56
int __bitmap_full(const unsigned long *bitmap, int bits)
57
{
58
int k, lim = bits/BITS_PER_LONG;
59
for (k = 0; k < lim; ++k)
60
if (~bitmap[k])
61
return 0;
62
63
if (bits % BITS_PER_LONG)
64
if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
65
return 0;
66
67
return 1;
68
}
69
EXPORT_SYMBOL(__bitmap_full);
70
71
int __bitmap_equal(const unsigned long *bitmap1,
72
const unsigned long *bitmap2, int bits)
73
{
74
int k, lim = bits/BITS_PER_LONG;
75
for (k = 0; k < lim; ++k)
76
if (bitmap1[k] != bitmap2[k])
77
return 0;
78
79
if (bits % BITS_PER_LONG)
80
if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
81
return 0;
82
83
return 1;
84
}
85
EXPORT_SYMBOL(__bitmap_equal);
86
87
void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits)
88
{
89
int k, lim = bits/BITS_PER_LONG;
90
for (k = 0; k < lim; ++k)
91
dst[k] = ~src[k];
92
93
if (bits % BITS_PER_LONG)
94
dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
95
}
96
EXPORT_SYMBOL(__bitmap_complement);
97
98
/**
99
* __bitmap_shift_right - logical right shift of the bits in a bitmap
100
* @dst : destination bitmap
101
* @src : source bitmap
102
* @shift : shift by this many bits
103
* @bits : bitmap size, in bits
104
*
105
* Shifting right (dividing) means moving bits in the MS -> LS bit
106
* direction. Zeros are fed into the vacated MS positions and the
107
* LS bits shifted off the bottom are lost.
108
*/
109
void __bitmap_shift_right(unsigned long *dst,
110
const unsigned long *src, int shift, int bits)
111
{
112
int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
113
int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
114
unsigned long mask = (1UL << left) - 1;
115
for (k = 0; off + k < lim; ++k) {
116
unsigned long upper, lower;
117
118
/*
119
* If shift is not word aligned, take lower rem bits of
120
* word above and make them the top rem bits of result.
121
*/
122
if (!rem || off + k + 1 >= lim)
123
upper = 0;
124
else {
125
upper = src[off + k + 1];
126
if (off + k + 1 == lim - 1 && left)
127
upper &= mask;
128
}
129
lower = src[off + k];
130
if (left && off + k == lim - 1)
131
lower &= mask;
132
dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem;
133
if (left && k == lim - 1)
134
dst[k] &= mask;
135
}
136
if (off)
137
memset(&dst[lim - off], 0, off*sizeof(unsigned long));
138
}
139
EXPORT_SYMBOL(__bitmap_shift_right);
140
141
142
/**
143
* __bitmap_shift_left - logical left shift of the bits in a bitmap
144
* @dst : destination bitmap
145
* @src : source bitmap
146
* @shift : shift by this many bits
147
* @bits : bitmap size, in bits
148
*
149
* Shifting left (multiplying) means moving bits in the LS -> MS
150
* direction. Zeros are fed into the vacated LS bit positions
151
* and those MS bits shifted off the top are lost.
152
*/
153
154
void __bitmap_shift_left(unsigned long *dst,
155
const unsigned long *src, int shift, int bits)
156
{
157
int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
158
int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
159
for (k = lim - off - 1; k >= 0; --k) {
160
unsigned long upper, lower;
161
162
/*
163
* If shift is not word aligned, take upper rem bits of
164
* word below and make them the bottom rem bits of result.
165
*/
166
if (rem && k > 0)
167
lower = src[k - 1];
168
else
169
lower = 0;
170
upper = src[k];
171
if (left && k == lim - 1)
172
upper &= (1UL << left) - 1;
173
dst[k + off] = lower >> (BITS_PER_LONG - rem) | upper << rem;
174
if (left && k + off == lim - 1)
175
dst[k + off] &= (1UL << left) - 1;
176
}
177
if (off)
178
memset(dst, 0, off*sizeof(unsigned long));
179
}
180
EXPORT_SYMBOL(__bitmap_shift_left);
181
182
int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
183
const unsigned long *bitmap2, int bits)
184
{
185
int k;
186
int nr = BITS_TO_LONGS(bits);
187
unsigned long result = 0;
188
189
for (k = 0; k < nr; k++)
190
result |= (dst[k] = bitmap1[k] & bitmap2[k]);
191
return result != 0;
192
}
193
EXPORT_SYMBOL(__bitmap_and);
194
195
void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
196
const unsigned long *bitmap2, int bits)
197
{
198
int k;
199
int nr = BITS_TO_LONGS(bits);
200
201
for (k = 0; k < nr; k++)
202
dst[k] = bitmap1[k] | bitmap2[k];
203
}
204
EXPORT_SYMBOL(__bitmap_or);
205
206
void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
207
const unsigned long *bitmap2, int bits)
208
{
209
int k;
210
int nr = BITS_TO_LONGS(bits);
211
212
for (k = 0; k < nr; k++)
213
dst[k] = bitmap1[k] ^ bitmap2[k];
214
}
215
EXPORT_SYMBOL(__bitmap_xor);
216
217
int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
218
const unsigned long *bitmap2, int bits)
219
{
220
int k;
221
int nr = BITS_TO_LONGS(bits);
222
unsigned long result = 0;
223
224
for (k = 0; k < nr; k++)
225
result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
226
return result != 0;
227
}
228
EXPORT_SYMBOL(__bitmap_andnot);
229
230
int __bitmap_intersects(const unsigned long *bitmap1,
231
const unsigned long *bitmap2, int bits)
232
{
233
int k, lim = bits/BITS_PER_LONG;
234
for (k = 0; k < lim; ++k)
235
if (bitmap1[k] & bitmap2[k])
236
return 1;
237
238
if (bits % BITS_PER_LONG)
239
if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
240
return 1;
241
return 0;
242
}
243
EXPORT_SYMBOL(__bitmap_intersects);
244
245
int __bitmap_subset(const unsigned long *bitmap1,
246
const unsigned long *bitmap2, int bits)
247
{
248
int k, lim = bits/BITS_PER_LONG;
249
for (k = 0; k < lim; ++k)
250
if (bitmap1[k] & ~bitmap2[k])
251
return 0;
252
253
if (bits % BITS_PER_LONG)
254
if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
255
return 0;
256
return 1;
257
}
258
EXPORT_SYMBOL(__bitmap_subset);
259
260
int __bitmap_weight(const unsigned long *bitmap, int bits)
261
{
262
int k, w = 0, lim = bits/BITS_PER_LONG;
263
264
for (k = 0; k < lim; k++)
265
w += hweight_long(bitmap[k]);
266
267
if (bits % BITS_PER_LONG)
268
w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
269
270
return w;
271
}
272
EXPORT_SYMBOL(__bitmap_weight);
273
274
#define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) % BITS_PER_LONG))
275
276
void bitmap_set(unsigned long *map, int start, int nr)
277
{
278
unsigned long *p = map + BIT_WORD(start);
279
const int size = start + nr;
280
int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
281
unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
282
283
while (nr - bits_to_set >= 0) {
284
*p |= mask_to_set;
285
nr -= bits_to_set;
286
bits_to_set = BITS_PER_LONG;
287
mask_to_set = ~0UL;
288
p++;
289
}
290
if (nr) {
291
mask_to_set &= BITMAP_LAST_WORD_MASK(size);
292
*p |= mask_to_set;
293
}
294
}
295
EXPORT_SYMBOL(bitmap_set);
296
297
void bitmap_clear(unsigned long *map, int start, int nr)
298
{
299
unsigned long *p = map + BIT_WORD(start);
300
const int size = start + nr;
301
int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
302
unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
303
304
while (nr - bits_to_clear >= 0) {
305
*p &= ~mask_to_clear;
306
nr -= bits_to_clear;
307
bits_to_clear = BITS_PER_LONG;
308
mask_to_clear = ~0UL;
309
p++;
310
}
311
if (nr) {
312
mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
313
*p &= ~mask_to_clear;
314
}
315
}
316
EXPORT_SYMBOL(bitmap_clear);
317
318
/*
319
* bitmap_find_next_zero_area - find a contiguous aligned zero area
320
* @map: The address to base the search on
321
* @size: The bitmap size in bits
322
* @start: The bitnumber to start searching at
323
* @nr: The number of zeroed bits we're looking for
324
* @align_mask: Alignment mask for zero area
325
*
326
* The @align_mask should be one less than a power of 2; the effect is that
327
* the bit offset of all zero areas this function finds is multiples of that
328
* power of 2. A @align_mask of 0 means no alignment is required.
329
*/
330
unsigned long bitmap_find_next_zero_area(unsigned long *map,
331
unsigned long size,
332
unsigned long start,
333
unsigned int nr,
334
unsigned long align_mask)
335
{
336
unsigned long index, end, i;
337
again:
338
index = find_next_zero_bit(map, size, start);
339
340
/* Align allocation */
341
index = __ALIGN_MASK(index, align_mask);
342
343
end = index + nr;
344
if (end > size)
345
return end;
346
i = find_next_bit(map, end, index);
347
if (i < end) {
348
start = i + 1;
349
goto again;
350
}
351
return index;
352
}
353
EXPORT_SYMBOL(bitmap_find_next_zero_area);
354
355
/*
356
* Bitmap printing & parsing functions: first version by Bill Irwin,
357
* second version by Paul Jackson, third by Joe Korty.
358
*/
359
360
#define CHUNKSZ 32
361
#define nbits_to_hold_value(val) fls(val)
362
#define BASEDEC 10 /* fancier cpuset lists input in decimal */
363
364
/**
365
* bitmap_scnprintf - convert bitmap to an ASCII hex string.
366
* @buf: byte buffer into which string is placed
367
* @buflen: reserved size of @buf, in bytes
368
* @maskp: pointer to bitmap to convert
369
* @nmaskbits: size of bitmap, in bits
370
*
371
* Exactly @nmaskbits bits are displayed. Hex digits are grouped into
372
* comma-separated sets of eight digits per set.
373
*/
374
int bitmap_scnprintf(char *buf, unsigned int buflen,
375
const unsigned long *maskp, int nmaskbits)
376
{
377
int i, word, bit, len = 0;
378
unsigned long val;
379
const char *sep = "";
380
int chunksz;
381
u32 chunkmask;
382
383
chunksz = nmaskbits & (CHUNKSZ - 1);
384
if (chunksz == 0)
385
chunksz = CHUNKSZ;
386
387
i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
388
for (; i >= 0; i -= CHUNKSZ) {
389
chunkmask = ((1ULL << chunksz) - 1);
390
word = i / BITS_PER_LONG;
391
bit = i % BITS_PER_LONG;
392
val = (maskp[word] >> bit) & chunkmask;
393
len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
394
(chunksz+3)/4, val);
395
chunksz = CHUNKSZ;
396
sep = ",";
397
}
398
return len;
399
}
400
EXPORT_SYMBOL(bitmap_scnprintf);
401
402
/**
403
* __bitmap_parse - convert an ASCII hex string into a bitmap.
404
* @buf: pointer to buffer containing string.
405
* @buflen: buffer size in bytes. If string is smaller than this
406
* then it must be terminated with a \0.
407
* @is_user: location of buffer, 0 indicates kernel space
408
* @maskp: pointer to bitmap array that will contain result.
409
* @nmaskbits: size of bitmap, in bits.
410
*
411
* Commas group hex digits into chunks. Each chunk defines exactly 32
412
* bits of the resultant bitmask. No chunk may specify a value larger
413
* than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
414
* then leading 0-bits are prepended. %-EINVAL is returned for illegal
415
* characters and for grouping errors such as "1,,5", ",44", "," and "".
416
* Leading and trailing whitespace accepted, but not embedded whitespace.
417
*/
418
int __bitmap_parse(const char *buf, unsigned int buflen,
419
int is_user, unsigned long *maskp,
420
int nmaskbits)
421
{
422
int c, old_c, totaldigits, ndigits, nchunks, nbits;
423
u32 chunk;
424
const char __user *ubuf = buf;
425
426
bitmap_zero(maskp, nmaskbits);
427
428
nchunks = nbits = totaldigits = c = 0;
429
do {
430
chunk = ndigits = 0;
431
432
/* Get the next chunk of the bitmap */
433
while (buflen) {
434
old_c = c;
435
if (is_user) {
436
if (__get_user(c, ubuf++))
437
return -EFAULT;
438
}
439
else
440
c = *buf++;
441
buflen--;
442
if (isspace(c))
443
continue;
444
445
/*
446
* If the last character was a space and the current
447
* character isn't '\0', we've got embedded whitespace.
448
* This is a no-no, so throw an error.
449
*/
450
if (totaldigits && c && isspace(old_c))
451
return -EINVAL;
452
453
/* A '\0' or a ',' signal the end of the chunk */
454
if (c == '\0' || c == ',')
455
break;
456
457
if (!isxdigit(c))
458
return -EINVAL;
459
460
/*
461
* Make sure there are at least 4 free bits in 'chunk'.
462
* If not, this hexdigit will overflow 'chunk', so
463
* throw an error.
464
*/
465
if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
466
return -EOVERFLOW;
467
468
chunk = (chunk << 4) | hex_to_bin(c);
469
ndigits++; totaldigits++;
470
}
471
if (ndigits == 0)
472
return -EINVAL;
473
if (nchunks == 0 && chunk == 0)
474
continue;
475
476
__bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
477
*maskp |= chunk;
478
nchunks++;
479
nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
480
if (nbits > nmaskbits)
481
return -EOVERFLOW;
482
} while (buflen && c == ',');
483
484
return 0;
485
}
486
EXPORT_SYMBOL(__bitmap_parse);
487
488
/**
489
* bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
490
*
491
* @ubuf: pointer to user buffer containing string.
492
* @ulen: buffer size in bytes. If string is smaller than this
493
* then it must be terminated with a \0.
494
* @maskp: pointer to bitmap array that will contain result.
495
* @nmaskbits: size of bitmap, in bits.
496
*
497
* Wrapper for __bitmap_parse(), providing it with user buffer.
498
*
499
* We cannot have this as an inline function in bitmap.h because it needs
500
* linux/uaccess.h to get the access_ok() declaration and this causes
501
* cyclic dependencies.
502
*/
503
int bitmap_parse_user(const char __user *ubuf,
504
unsigned int ulen, unsigned long *maskp,
505
int nmaskbits)
506
{
507
if (!access_ok(VERIFY_READ, ubuf, ulen))
508
return -EFAULT;
509
return __bitmap_parse((const char *)ubuf, ulen, 1, maskp, nmaskbits);
510
}
511
EXPORT_SYMBOL(bitmap_parse_user);
512
513
/*
514
* bscnl_emit(buf, buflen, rbot, rtop, bp)
515
*
516
* Helper routine for bitmap_scnlistprintf(). Write decimal number
517
* or range to buf, suppressing output past buf+buflen, with optional
518
* comma-prefix. Return len of what would be written to buf, if it
519
* all fit.
520
*/
521
static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
522
{
523
if (len > 0)
524
len += scnprintf(buf + len, buflen - len, ",");
525
if (rbot == rtop)
526
len += scnprintf(buf + len, buflen - len, "%d", rbot);
527
else
528
len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
529
return len;
530
}
531
532
/**
533
* bitmap_scnlistprintf - convert bitmap to list format ASCII string
534
* @buf: byte buffer into which string is placed
535
* @buflen: reserved size of @buf, in bytes
536
* @maskp: pointer to bitmap to convert
537
* @nmaskbits: size of bitmap, in bits
538
*
539
* Output format is a comma-separated list of decimal numbers and
540
* ranges. Consecutively set bits are shown as two hyphen-separated
541
* decimal numbers, the smallest and largest bit numbers set in
542
* the range. Output format is compatible with the format
543
* accepted as input by bitmap_parselist().
544
*
545
* The return value is the number of characters which would be
546
* generated for the given input, excluding the trailing '\0', as
547
* per ISO C99.
548
*/
549
int bitmap_scnlistprintf(char *buf, unsigned int buflen,
550
const unsigned long *maskp, int nmaskbits)
551
{
552
int len = 0;
553
/* current bit is 'cur', most recently seen range is [rbot, rtop] */
554
int cur, rbot, rtop;
555
556
if (buflen == 0)
557
return 0;
558
buf[0] = 0;
559
560
rbot = cur = find_first_bit(maskp, nmaskbits);
561
while (cur < nmaskbits) {
562
rtop = cur;
563
cur = find_next_bit(maskp, nmaskbits, cur+1);
564
if (cur >= nmaskbits || cur > rtop + 1) {
565
len = bscnl_emit(buf, buflen, rbot, rtop, len);
566
rbot = cur;
567
}
568
}
569
return len;
570
}
571
EXPORT_SYMBOL(bitmap_scnlistprintf);
572
573
/**
574
* __bitmap_parselist - convert list format ASCII string to bitmap
575
* @buf: read nul-terminated user string from this buffer
576
* @buflen: buffer size in bytes. If string is smaller than this
577
* then it must be terminated with a \0.
578
* @is_user: location of buffer, 0 indicates kernel space
579
* @maskp: write resulting mask here
580
* @nmaskbits: number of bits in mask to be written
581
*
582
* Input format is a comma-separated list of decimal numbers and
583
* ranges. Consecutively set bits are shown as two hyphen-separated
584
* decimal numbers, the smallest and largest bit numbers set in
585
* the range.
586
*
587
* Returns 0 on success, -errno on invalid input strings.
588
* Error values:
589
* %-EINVAL: second number in range smaller than first
590
* %-EINVAL: invalid character in string
591
* %-ERANGE: bit number specified too large for mask
592
*/
593
static int __bitmap_parselist(const char *buf, unsigned int buflen,
594
int is_user, unsigned long *maskp,
595
int nmaskbits)
596
{
597
unsigned a, b;
598
int c, old_c, totaldigits;
599
const char __user *ubuf = buf;
600
int exp_digit, in_range;
601
602
totaldigits = c = 0;
603
bitmap_zero(maskp, nmaskbits);
604
do {
605
exp_digit = 1;
606
in_range = 0;
607
a = b = 0;
608
609
/* Get the next cpu# or a range of cpu#'s */
610
while (buflen) {
611
old_c = c;
612
if (is_user) {
613
if (__get_user(c, ubuf++))
614
return -EFAULT;
615
} else
616
c = *buf++;
617
buflen--;
618
if (isspace(c))
619
continue;
620
621
/*
622
* If the last character was a space and the current
623
* character isn't '\0', we've got embedded whitespace.
624
* This is a no-no, so throw an error.
625
*/
626
if (totaldigits && c && isspace(old_c))
627
return -EINVAL;
628
629
/* A '\0' or a ',' signal the end of a cpu# or range */
630
if (c == '\0' || c == ',')
631
break;
632
633
if (c == '-') {
634
if (exp_digit || in_range)
635
return -EINVAL;
636
b = 0;
637
in_range = 1;
638
exp_digit = 1;
639
continue;
640
}
641
642
if (!isdigit(c))
643
return -EINVAL;
644
645
b = b * 10 + (c - '0');
646
if (!in_range)
647
a = b;
648
exp_digit = 0;
649
totaldigits++;
650
}
651
if (!(a <= b))
652
return -EINVAL;
653
if (b >= nmaskbits)
654
return -ERANGE;
655
while (a <= b) {
656
set_bit(a, maskp);
657
a++;
658
}
659
} while (buflen && c == ',');
660
return 0;
661
}
662
663
int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
664
{
665
char *nl = strchr(bp, '\n');
666
int len;
667
668
if (nl)
669
len = nl - bp;
670
else
671
len = strlen(bp);
672
673
return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
674
}
675
EXPORT_SYMBOL(bitmap_parselist);
676
677
678
/**
679
* bitmap_parselist_user()
680
*
681
* @ubuf: pointer to user buffer containing string.
682
* @ulen: buffer size in bytes. If string is smaller than this
683
* then it must be terminated with a \0.
684
* @maskp: pointer to bitmap array that will contain result.
685
* @nmaskbits: size of bitmap, in bits.
686
*
687
* Wrapper for bitmap_parselist(), providing it with user buffer.
688
*
689
* We cannot have this as an inline function in bitmap.h because it needs
690
* linux/uaccess.h to get the access_ok() declaration and this causes
691
* cyclic dependencies.
692
*/
693
int bitmap_parselist_user(const char __user *ubuf,
694
unsigned int ulen, unsigned long *maskp,
695
int nmaskbits)
696
{
697
if (!access_ok(VERIFY_READ, ubuf, ulen))
698
return -EFAULT;
699
return __bitmap_parselist((const char *)ubuf,
700
ulen, 1, maskp, nmaskbits);
701
}
702
EXPORT_SYMBOL(bitmap_parselist_user);
703
704
705
/**
706
* bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
707
* @buf: pointer to a bitmap
708
* @pos: a bit position in @buf (0 <= @pos < @bits)
709
* @bits: number of valid bit positions in @buf
710
*
711
* Map the bit at position @pos in @buf (of length @bits) to the
712
* ordinal of which set bit it is. If it is not set or if @pos
713
* is not a valid bit position, map to -1.
714
*
715
* If for example, just bits 4 through 7 are set in @buf, then @pos
716
* values 4 through 7 will get mapped to 0 through 3, respectively,
717
* and other @pos values will get mapped to 0. When @pos value 7
718
* gets mapped to (returns) @ord value 3 in this example, that means
719
* that bit 7 is the 3rd (starting with 0th) set bit in @buf.
720
*
721
* The bit positions 0 through @bits are valid positions in @buf.
722
*/
723
static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
724
{
725
int i, ord;
726
727
if (pos < 0 || pos >= bits || !test_bit(pos, buf))
728
return -1;
729
730
i = find_first_bit(buf, bits);
731
ord = 0;
732
while (i < pos) {
733
i = find_next_bit(buf, bits, i + 1);
734
ord++;
735
}
736
BUG_ON(i != pos);
737
738
return ord;
739
}
740
741
/**
742
* bitmap_ord_to_pos - find position of n-th set bit in bitmap
743
* @buf: pointer to bitmap
744
* @ord: ordinal bit position (n-th set bit, n >= 0)
745
* @bits: number of valid bit positions in @buf
746
*
747
* Map the ordinal offset of bit @ord in @buf to its position in @buf.
748
* Value of @ord should be in range 0 <= @ord < weight(buf), else
749
* results are undefined.
750
*
751
* If for example, just bits 4 through 7 are set in @buf, then @ord
752
* values 0 through 3 will get mapped to 4 through 7, respectively,
753
* and all other @ord values return undefined values. When @ord value 3
754
* gets mapped to (returns) @pos value 7 in this example, that means
755
* that the 3rd set bit (starting with 0th) is at position 7 in @buf.
756
*
757
* The bit positions 0 through @bits are valid positions in @buf.
758
*/
759
static int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
760
{
761
int pos = 0;
762
763
if (ord >= 0 && ord < bits) {
764
int i;
765
766
for (i = find_first_bit(buf, bits);
767
i < bits && ord > 0;
768
i = find_next_bit(buf, bits, i + 1))
769
ord--;
770
if (i < bits && ord == 0)
771
pos = i;
772
}
773
774
return pos;
775
}
776
777
/**
778
* bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
779
* @dst: remapped result
780
* @src: subset to be remapped
781
* @old: defines domain of map
782
* @new: defines range of map
783
* @bits: number of bits in each of these bitmaps
784
*
785
* Let @old and @new define a mapping of bit positions, such that
786
* whatever position is held by the n-th set bit in @old is mapped
787
* to the n-th set bit in @new. In the more general case, allowing
788
* for the possibility that the weight 'w' of @new is less than the
789
* weight of @old, map the position of the n-th set bit in @old to
790
* the position of the m-th set bit in @new, where m == n % w.
791
*
792
* If either of the @old and @new bitmaps are empty, or if @src and
793
* @dst point to the same location, then this routine copies @src
794
* to @dst.
795
*
796
* The positions of unset bits in @old are mapped to themselves
797
* (the identify map).
798
*
799
* Apply the above specified mapping to @src, placing the result in
800
* @dst, clearing any bits previously set in @dst.
801
*
802
* For example, lets say that @old has bits 4 through 7 set, and
803
* @new has bits 12 through 15 set. This defines the mapping of bit
804
* position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
805
* bit positions unchanged. So if say @src comes into this routine
806
* with bits 1, 5 and 7 set, then @dst should leave with bits 1,
807
* 13 and 15 set.
808
*/
809
void bitmap_remap(unsigned long *dst, const unsigned long *src,
810
const unsigned long *old, const unsigned long *new,
811
int bits)
812
{
813
int oldbit, w;
814
815
if (dst == src) /* following doesn't handle inplace remaps */
816
return;
817
bitmap_zero(dst, bits);
818
819
w = bitmap_weight(new, bits);
820
for_each_set_bit(oldbit, src, bits) {
821
int n = bitmap_pos_to_ord(old, oldbit, bits);
822
823
if (n < 0 || w == 0)
824
set_bit(oldbit, dst); /* identity map */
825
else
826
set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
827
}
828
}
829
EXPORT_SYMBOL(bitmap_remap);
830
831
/**
832
* bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
833
* @oldbit: bit position to be mapped
834
* @old: defines domain of map
835
* @new: defines range of map
836
* @bits: number of bits in each of these bitmaps
837
*
838
* Let @old and @new define a mapping of bit positions, such that
839
* whatever position is held by the n-th set bit in @old is mapped
840
* to the n-th set bit in @new. In the more general case, allowing
841
* for the possibility that the weight 'w' of @new is less than the
842
* weight of @old, map the position of the n-th set bit in @old to
843
* the position of the m-th set bit in @new, where m == n % w.
844
*
845
* The positions of unset bits in @old are mapped to themselves
846
* (the identify map).
847
*
848
* Apply the above specified mapping to bit position @oldbit, returning
849
* the new bit position.
850
*
851
* For example, lets say that @old has bits 4 through 7 set, and
852
* @new has bits 12 through 15 set. This defines the mapping of bit
853
* position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
854
* bit positions unchanged. So if say @oldbit is 5, then this routine
855
* returns 13.
856
*/
857
int bitmap_bitremap(int oldbit, const unsigned long *old,
858
const unsigned long *new, int bits)
859
{
860
int w = bitmap_weight(new, bits);
861
int n = bitmap_pos_to_ord(old, oldbit, bits);
862
if (n < 0 || w == 0)
863
return oldbit;
864
else
865
return bitmap_ord_to_pos(new, n % w, bits);
866
}
867
EXPORT_SYMBOL(bitmap_bitremap);
868
869
/**
870
* bitmap_onto - translate one bitmap relative to another
871
* @dst: resulting translated bitmap
872
* @orig: original untranslated bitmap
873
* @relmap: bitmap relative to which translated
874
* @bits: number of bits in each of these bitmaps
875
*
876
* Set the n-th bit of @dst iff there exists some m such that the
877
* n-th bit of @relmap is set, the m-th bit of @orig is set, and
878
* the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
879
* (If you understood the previous sentence the first time your
880
* read it, you're overqualified for your current job.)
881
*
882
* In other words, @orig is mapped onto (surjectively) @dst,
883
* using the the map { <n, m> | the n-th bit of @relmap is the
884
* m-th set bit of @relmap }.
885
*
886
* Any set bits in @orig above bit number W, where W is the
887
* weight of (number of set bits in) @relmap are mapped nowhere.
888
* In particular, if for all bits m set in @orig, m >= W, then
889
* @dst will end up empty. In situations where the possibility
890
* of such an empty result is not desired, one way to avoid it is
891
* to use the bitmap_fold() operator, below, to first fold the
892
* @orig bitmap over itself so that all its set bits x are in the
893
* range 0 <= x < W. The bitmap_fold() operator does this by
894
* setting the bit (m % W) in @dst, for each bit (m) set in @orig.
895
*
896
* Example [1] for bitmap_onto():
897
* Let's say @relmap has bits 30-39 set, and @orig has bits
898
* 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
899
* @dst will have bits 31, 33, 35, 37 and 39 set.
900
*
901
* When bit 0 is set in @orig, it means turn on the bit in
902
* @dst corresponding to whatever is the first bit (if any)
903
* that is turned on in @relmap. Since bit 0 was off in the
904
* above example, we leave off that bit (bit 30) in @dst.
905
*
906
* When bit 1 is set in @orig (as in the above example), it
907
* means turn on the bit in @dst corresponding to whatever
908
* is the second bit that is turned on in @relmap. The second
909
* bit in @relmap that was turned on in the above example was
910
* bit 31, so we turned on bit 31 in @dst.
911
*
912
* Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
913
* because they were the 4th, 6th, 8th and 10th set bits
914
* set in @relmap, and the 4th, 6th, 8th and 10th bits of
915
* @orig (i.e. bits 3, 5, 7 and 9) were also set.
916
*
917
* When bit 11 is set in @orig, it means turn on the bit in
918
* @dst corresponding to whatever is the twelfth bit that is
919
* turned on in @relmap. In the above example, there were
920
* only ten bits turned on in @relmap (30..39), so that bit
921
* 11 was set in @orig had no affect on @dst.
922
*
923
* Example [2] for bitmap_fold() + bitmap_onto():
924
* Let's say @relmap has these ten bits set:
925
* 40 41 42 43 45 48 53 61 74 95
926
* (for the curious, that's 40 plus the first ten terms of the
927
* Fibonacci sequence.)
928
*
929
* Further lets say we use the following code, invoking
930
* bitmap_fold() then bitmap_onto, as suggested above to
931
* avoid the possitility of an empty @dst result:
932
*
933
* unsigned long *tmp; // a temporary bitmap's bits
934
*
935
* bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
936
* bitmap_onto(dst, tmp, relmap, bits);
937
*
938
* Then this table shows what various values of @dst would be, for
939
* various @orig's. I list the zero-based positions of each set bit.
940
* The tmp column shows the intermediate result, as computed by
941
* using bitmap_fold() to fold the @orig bitmap modulo ten
942
* (the weight of @relmap).
943
*
944
* @orig tmp @dst
945
* 0 0 40
946
* 1 1 41
947
* 9 9 95
948
* 10 0 40 (*)
949
* 1 3 5 7 1 3 5 7 41 43 48 61
950
* 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
951
* 0 9 18 27 0 9 8 7 40 61 74 95
952
* 0 10 20 30 0 40
953
* 0 11 22 33 0 1 2 3 40 41 42 43
954
* 0 12 24 36 0 2 4 6 40 42 45 53
955
* 78 102 211 1 2 8 41 42 74 (*)
956
*
957
* (*) For these marked lines, if we hadn't first done bitmap_fold()
958
* into tmp, then the @dst result would have been empty.
959
*
960
* If either of @orig or @relmap is empty (no set bits), then @dst
961
* will be returned empty.
962
*
963
* If (as explained above) the only set bits in @orig are in positions
964
* m where m >= W, (where W is the weight of @relmap) then @dst will
965
* once again be returned empty.
966
*
967
* All bits in @dst not set by the above rule are cleared.
968
*/
969
void bitmap_onto(unsigned long *dst, const unsigned long *orig,
970
const unsigned long *relmap, int bits)
971
{
972
int n, m; /* same meaning as in above comment */
973
974
if (dst == orig) /* following doesn't handle inplace mappings */
975
return;
976
bitmap_zero(dst, bits);
977
978
/*
979
* The following code is a more efficient, but less
980
* obvious, equivalent to the loop:
981
* for (m = 0; m < bitmap_weight(relmap, bits); m++) {
982
* n = bitmap_ord_to_pos(orig, m, bits);
983
* if (test_bit(m, orig))
984
* set_bit(n, dst);
985
* }
986
*/
987
988
m = 0;
989
for_each_set_bit(n, relmap, bits) {
990
/* m == bitmap_pos_to_ord(relmap, n, bits) */
991
if (test_bit(m, orig))
992
set_bit(n, dst);
993
m++;
994
}
995
}
996
EXPORT_SYMBOL(bitmap_onto);
997
998
/**
999
* bitmap_fold - fold larger bitmap into smaller, modulo specified size
1000
* @dst: resulting smaller bitmap
1001
* @orig: original larger bitmap
1002
* @sz: specified size
1003
* @bits: number of bits in each of these bitmaps
1004
*
1005
* For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1006
* Clear all other bits in @dst. See further the comment and
1007
* Example [2] for bitmap_onto() for why and how to use this.
1008
*/
1009
void bitmap_fold(unsigned long *dst, const unsigned long *orig,
1010
int sz, int bits)
1011
{
1012
int oldbit;
1013
1014
if (dst == orig) /* following doesn't handle inplace mappings */
1015
return;
1016
bitmap_zero(dst, bits);
1017
1018
for_each_set_bit(oldbit, orig, bits)
1019
set_bit(oldbit % sz, dst);
1020
}
1021
EXPORT_SYMBOL(bitmap_fold);
1022
1023
/*
1024
* Common code for bitmap_*_region() routines.
1025
* bitmap: array of unsigned longs corresponding to the bitmap
1026
* pos: the beginning of the region
1027
* order: region size (log base 2 of number of bits)
1028
* reg_op: operation(s) to perform on that region of bitmap
1029
*
1030
* Can set, verify and/or release a region of bits in a bitmap,
1031
* depending on which combination of REG_OP_* flag bits is set.
1032
*
1033
* A region of a bitmap is a sequence of bits in the bitmap, of
1034
* some size '1 << order' (a power of two), aligned to that same
1035
* '1 << order' power of two.
1036
*
1037
* Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1038
* Returns 0 in all other cases and reg_ops.
1039
*/
1040
1041
enum {
1042
REG_OP_ISFREE, /* true if region is all zero bits */
1043
REG_OP_ALLOC, /* set all bits in region */
1044
REG_OP_RELEASE, /* clear all bits in region */
1045
};
1046
1047
static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op)
1048
{
1049
int nbits_reg; /* number of bits in region */
1050
int index; /* index first long of region in bitmap */
1051
int offset; /* bit offset region in bitmap[index] */
1052
int nlongs_reg; /* num longs spanned by region in bitmap */
1053
int nbitsinlong; /* num bits of region in each spanned long */
1054
unsigned long mask; /* bitmask for one long of region */
1055
int i; /* scans bitmap by longs */
1056
int ret = 0; /* return value */
1057
1058
/*
1059
* Either nlongs_reg == 1 (for small orders that fit in one long)
1060
* or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1061
*/
1062
nbits_reg = 1 << order;
1063
index = pos / BITS_PER_LONG;
1064
offset = pos - (index * BITS_PER_LONG);
1065
nlongs_reg = BITS_TO_LONGS(nbits_reg);
1066
nbitsinlong = min(nbits_reg, BITS_PER_LONG);
1067
1068
/*
1069
* Can't do "mask = (1UL << nbitsinlong) - 1", as that
1070
* overflows if nbitsinlong == BITS_PER_LONG.
1071
*/
1072
mask = (1UL << (nbitsinlong - 1));
1073
mask += mask - 1;
1074
mask <<= offset;
1075
1076
switch (reg_op) {
1077
case REG_OP_ISFREE:
1078
for (i = 0; i < nlongs_reg; i++) {
1079
if (bitmap[index + i] & mask)
1080
goto done;
1081
}
1082
ret = 1; /* all bits in region free (zero) */
1083
break;
1084
1085
case REG_OP_ALLOC:
1086
for (i = 0; i < nlongs_reg; i++)
1087
bitmap[index + i] |= mask;
1088
break;
1089
1090
case REG_OP_RELEASE:
1091
for (i = 0; i < nlongs_reg; i++)
1092
bitmap[index + i] &= ~mask;
1093
break;
1094
}
1095
done:
1096
return ret;
1097
}
1098
1099
/**
1100
* bitmap_find_free_region - find a contiguous aligned mem region
1101
* @bitmap: array of unsigned longs corresponding to the bitmap
1102
* @bits: number of bits in the bitmap
1103
* @order: region size (log base 2 of number of bits) to find
1104
*
1105
* Find a region of free (zero) bits in a @bitmap of @bits bits and
1106
* allocate them (set them to one). Only consider regions of length
1107
* a power (@order) of two, aligned to that power of two, which
1108
* makes the search algorithm much faster.
1109
*
1110
* Return the bit offset in bitmap of the allocated region,
1111
* or -errno on failure.
1112
*/
1113
int bitmap_find_free_region(unsigned long *bitmap, int bits, int order)
1114
{
1115
int pos, end; /* scans bitmap by regions of size order */
1116
1117
for (pos = 0 ; (end = pos + (1 << order)) <= bits; pos = end) {
1118
if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1119
continue;
1120
__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1121
return pos;
1122
}
1123
return -ENOMEM;
1124
}
1125
EXPORT_SYMBOL(bitmap_find_free_region);
1126
1127
/**
1128
* bitmap_release_region - release allocated bitmap region
1129
* @bitmap: array of unsigned longs corresponding to the bitmap
1130
* @pos: beginning of bit region to release
1131
* @order: region size (log base 2 of number of bits) to release
1132
*
1133
* This is the complement to __bitmap_find_free_region() and releases
1134
* the found region (by clearing it in the bitmap).
1135
*
1136
* No return value.
1137
*/
1138
void bitmap_release_region(unsigned long *bitmap, int pos, int order)
1139
{
1140
__reg_op(bitmap, pos, order, REG_OP_RELEASE);
1141
}
1142
EXPORT_SYMBOL(bitmap_release_region);
1143
1144
/**
1145
* bitmap_allocate_region - allocate bitmap region
1146
* @bitmap: array of unsigned longs corresponding to the bitmap
1147
* @pos: beginning of bit region to allocate
1148
* @order: region size (log base 2 of number of bits) to allocate
1149
*
1150
* Allocate (set bits in) a specified region of a bitmap.
1151
*
1152
* Return 0 on success, or %-EBUSY if specified region wasn't
1153
* free (not all bits were zero).
1154
*/
1155
int bitmap_allocate_region(unsigned long *bitmap, int pos, int order)
1156
{
1157
if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1158
return -EBUSY;
1159
__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1160
return 0;
1161
}
1162
EXPORT_SYMBOL(bitmap_allocate_region);
1163
1164
/**
1165
* bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1166
* @dst: destination buffer
1167
* @src: bitmap to copy
1168
* @nbits: number of bits in the bitmap
1169
*
1170
* Require nbits % BITS_PER_LONG == 0.
1171
*/
1172
void bitmap_copy_le(void *dst, const unsigned long *src, int nbits)
1173
{
1174
unsigned long *d = dst;
1175
int i;
1176
1177
for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1178
if (BITS_PER_LONG == 64)
1179
d[i] = cpu_to_le64(src[i]);
1180
else
1181
d[i] = cpu_to_le32(src[i]);
1182
}
1183
}
1184
EXPORT_SYMBOL(bitmap_copy_le);
1185
1186