Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/lib/crc32.c
10814 views
1
/*
2
* Oct 15, 2000 Matt Domsch <[email protected]>
3
* Nicer crc32 functions/docs submitted by [email protected]. Thanks!
4
* Code was from the public domain, copyright abandoned. Code was
5
* subsequently included in the kernel, thus was re-licensed under the
6
* GNU GPL v2.
7
*
8
* Oct 12, 2000 Matt Domsch <[email protected]>
9
* Same crc32 function was used in 5 other places in the kernel.
10
* I made one version, and deleted the others.
11
* There are various incantations of crc32(). Some use a seed of 0 or ~0.
12
* Some xor at the end with ~0. The generic crc32() function takes
13
* seed as an argument, and doesn't xor at the end. Then individual
14
* users can do whatever they need.
15
* drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0.
16
* fs/jffs2 uses seed 0, doesn't xor with ~0.
17
* fs/partitions/efi.c uses seed ~0, xor's with ~0.
18
*
19
* This source code is licensed under the GNU General Public License,
20
* Version 2. See the file COPYING for more details.
21
*/
22
23
#include <linux/crc32.h>
24
#include <linux/kernel.h>
25
#include <linux/module.h>
26
#include <linux/compiler.h>
27
#include <linux/types.h>
28
#include <linux/init.h>
29
#include <asm/atomic.h>
30
#include "crc32defs.h"
31
#if CRC_LE_BITS == 8
32
# define tole(x) __constant_cpu_to_le32(x)
33
#else
34
# define tole(x) (x)
35
#endif
36
37
#if CRC_BE_BITS == 8
38
# define tobe(x) __constant_cpu_to_be32(x)
39
#else
40
# define tobe(x) (x)
41
#endif
42
#include "crc32table.h"
43
44
MODULE_AUTHOR("Matt Domsch <[email protected]>");
45
MODULE_DESCRIPTION("Ethernet CRC32 calculations");
46
MODULE_LICENSE("GPL");
47
48
#if CRC_LE_BITS == 8 || CRC_BE_BITS == 8
49
50
static inline u32
51
crc32_body(u32 crc, unsigned char const *buf, size_t len, const u32 (*tab)[256])
52
{
53
# ifdef __LITTLE_ENDIAN
54
# define DO_CRC(x) crc = tab[0][(crc ^ (x)) & 255] ^ (crc >> 8)
55
# define DO_CRC4 crc = tab[3][(crc) & 255] ^ \
56
tab[2][(crc >> 8) & 255] ^ \
57
tab[1][(crc >> 16) & 255] ^ \
58
tab[0][(crc >> 24) & 255]
59
# else
60
# define DO_CRC(x) crc = tab[0][((crc >> 24) ^ (x)) & 255] ^ (crc << 8)
61
# define DO_CRC4 crc = tab[0][(crc) & 255] ^ \
62
tab[1][(crc >> 8) & 255] ^ \
63
tab[2][(crc >> 16) & 255] ^ \
64
tab[3][(crc >> 24) & 255]
65
# endif
66
const u32 *b;
67
size_t rem_len;
68
69
/* Align it */
70
if (unlikely((long)buf & 3 && len)) {
71
do {
72
DO_CRC(*buf++);
73
} while ((--len) && ((long)buf)&3);
74
}
75
rem_len = len & 3;
76
/* load data 32 bits wide, xor data 32 bits wide. */
77
len = len >> 2;
78
b = (const u32 *)buf;
79
for (--b; len; --len) {
80
crc ^= *++b; /* use pre increment for speed */
81
DO_CRC4;
82
}
83
len = rem_len;
84
/* And the last few bytes */
85
if (len) {
86
u8 *p = (u8 *)(b + 1) - 1;
87
do {
88
DO_CRC(*++p); /* use pre increment for speed */
89
} while (--len);
90
}
91
return crc;
92
#undef DO_CRC
93
#undef DO_CRC4
94
}
95
#endif
96
/**
97
* crc32_le() - Calculate bitwise little-endian Ethernet AUTODIN II CRC32
98
* @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for
99
* other uses, or the previous crc32 value if computing incrementally.
100
* @p: pointer to buffer over which CRC is run
101
* @len: length of buffer @p
102
*/
103
u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len);
104
105
#if CRC_LE_BITS == 1
106
/*
107
* In fact, the table-based code will work in this case, but it can be
108
* simplified by inlining the table in ?: form.
109
*/
110
111
u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len)
112
{
113
int i;
114
while (len--) {
115
crc ^= *p++;
116
for (i = 0; i < 8; i++)
117
crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
118
}
119
return crc;
120
}
121
#else /* Table-based approach */
122
123
u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len)
124
{
125
# if CRC_LE_BITS == 8
126
const u32 (*tab)[] = crc32table_le;
127
128
crc = __cpu_to_le32(crc);
129
crc = crc32_body(crc, p, len, tab);
130
return __le32_to_cpu(crc);
131
# elif CRC_LE_BITS == 4
132
while (len--) {
133
crc ^= *p++;
134
crc = (crc >> 4) ^ crc32table_le[crc & 15];
135
crc = (crc >> 4) ^ crc32table_le[crc & 15];
136
}
137
return crc;
138
# elif CRC_LE_BITS == 2
139
while (len--) {
140
crc ^= *p++;
141
crc = (crc >> 2) ^ crc32table_le[crc & 3];
142
crc = (crc >> 2) ^ crc32table_le[crc & 3];
143
crc = (crc >> 2) ^ crc32table_le[crc & 3];
144
crc = (crc >> 2) ^ crc32table_le[crc & 3];
145
}
146
return crc;
147
# endif
148
}
149
#endif
150
151
/**
152
* crc32_be() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32
153
* @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for
154
* other uses, or the previous crc32 value if computing incrementally.
155
* @p: pointer to buffer over which CRC is run
156
* @len: length of buffer @p
157
*/
158
u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len);
159
160
#if CRC_BE_BITS == 1
161
/*
162
* In fact, the table-based code will work in this case, but it can be
163
* simplified by inlining the table in ?: form.
164
*/
165
166
u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len)
167
{
168
int i;
169
while (len--) {
170
crc ^= *p++ << 24;
171
for (i = 0; i < 8; i++)
172
crc =
173
(crc << 1) ^ ((crc & 0x80000000) ? CRCPOLY_BE :
174
0);
175
}
176
return crc;
177
}
178
179
#else /* Table-based approach */
180
u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len)
181
{
182
# if CRC_BE_BITS == 8
183
const u32 (*tab)[] = crc32table_be;
184
185
crc = __cpu_to_be32(crc);
186
crc = crc32_body(crc, p, len, tab);
187
return __be32_to_cpu(crc);
188
# elif CRC_BE_BITS == 4
189
while (len--) {
190
crc ^= *p++ << 24;
191
crc = (crc << 4) ^ crc32table_be[crc >> 28];
192
crc = (crc << 4) ^ crc32table_be[crc >> 28];
193
}
194
return crc;
195
# elif CRC_BE_BITS == 2
196
while (len--) {
197
crc ^= *p++ << 24;
198
crc = (crc << 2) ^ crc32table_be[crc >> 30];
199
crc = (crc << 2) ^ crc32table_be[crc >> 30];
200
crc = (crc << 2) ^ crc32table_be[crc >> 30];
201
crc = (crc << 2) ^ crc32table_be[crc >> 30];
202
}
203
return crc;
204
# endif
205
}
206
#endif
207
208
EXPORT_SYMBOL(crc32_le);
209
EXPORT_SYMBOL(crc32_be);
210
211
/*
212
* A brief CRC tutorial.
213
*
214
* A CRC is a long-division remainder. You add the CRC to the message,
215
* and the whole thing (message+CRC) is a multiple of the given
216
* CRC polynomial. To check the CRC, you can either check that the
217
* CRC matches the recomputed value, *or* you can check that the
218
* remainder computed on the message+CRC is 0. This latter approach
219
* is used by a lot of hardware implementations, and is why so many
220
* protocols put the end-of-frame flag after the CRC.
221
*
222
* It's actually the same long division you learned in school, except that
223
* - We're working in binary, so the digits are only 0 and 1, and
224
* - When dividing polynomials, there are no carries. Rather than add and
225
* subtract, we just xor. Thus, we tend to get a bit sloppy about
226
* the difference between adding and subtracting.
227
*
228
* A 32-bit CRC polynomial is actually 33 bits long. But since it's
229
* 33 bits long, bit 32 is always going to be set, so usually the CRC
230
* is written in hex with the most significant bit omitted. (If you're
231
* familiar with the IEEE 754 floating-point format, it's the same idea.)
232
*
233
* Note that a CRC is computed over a string of *bits*, so you have
234
* to decide on the endianness of the bits within each byte. To get
235
* the best error-detecting properties, this should correspond to the
236
* order they're actually sent. For example, standard RS-232 serial is
237
* little-endian; the most significant bit (sometimes used for parity)
238
* is sent last. And when appending a CRC word to a message, you should
239
* do it in the right order, matching the endianness.
240
*
241
* Just like with ordinary division, the remainder is always smaller than
242
* the divisor (the CRC polynomial) you're dividing by. Each step of the
243
* division, you take one more digit (bit) of the dividend and append it
244
* to the current remainder. Then you figure out the appropriate multiple
245
* of the divisor to subtract to being the remainder back into range.
246
* In binary, it's easy - it has to be either 0 or 1, and to make the
247
* XOR cancel, it's just a copy of bit 32 of the remainder.
248
*
249
* When computing a CRC, we don't care about the quotient, so we can
250
* throw the quotient bit away, but subtract the appropriate multiple of
251
* the polynomial from the remainder and we're back to where we started,
252
* ready to process the next bit.
253
*
254
* A big-endian CRC written this way would be coded like:
255
* for (i = 0; i < input_bits; i++) {
256
* multiple = remainder & 0x80000000 ? CRCPOLY : 0;
257
* remainder = (remainder << 1 | next_input_bit()) ^ multiple;
258
* }
259
* Notice how, to get at bit 32 of the shifted remainder, we look
260
* at bit 31 of the remainder *before* shifting it.
261
*
262
* But also notice how the next_input_bit() bits we're shifting into
263
* the remainder don't actually affect any decision-making until
264
* 32 bits later. Thus, the first 32 cycles of this are pretty boring.
265
* Also, to add the CRC to a message, we need a 32-bit-long hole for it at
266
* the end, so we have to add 32 extra cycles shifting in zeros at the
267
* end of every message,
268
*
269
* So the standard trick is to rearrage merging in the next_input_bit()
270
* until the moment it's needed. Then the first 32 cycles can be precomputed,
271
* and merging in the final 32 zero bits to make room for the CRC can be
272
* skipped entirely.
273
* This changes the code to:
274
* for (i = 0; i < input_bits; i++) {
275
* remainder ^= next_input_bit() << 31;
276
* multiple = (remainder & 0x80000000) ? CRCPOLY : 0;
277
* remainder = (remainder << 1) ^ multiple;
278
* }
279
* With this optimization, the little-endian code is simpler:
280
* for (i = 0; i < input_bits; i++) {
281
* remainder ^= next_input_bit();
282
* multiple = (remainder & 1) ? CRCPOLY : 0;
283
* remainder = (remainder >> 1) ^ multiple;
284
* }
285
*
286
* Note that the other details of endianness have been hidden in CRCPOLY
287
* (which must be bit-reversed) and next_input_bit().
288
*
289
* However, as long as next_input_bit is returning the bits in a sensible
290
* order, we can actually do the merging 8 or more bits at a time rather
291
* than one bit at a time:
292
* for (i = 0; i < input_bytes; i++) {
293
* remainder ^= next_input_byte() << 24;
294
* for (j = 0; j < 8; j++) {
295
* multiple = (remainder & 0x80000000) ? CRCPOLY : 0;
296
* remainder = (remainder << 1) ^ multiple;
297
* }
298
* }
299
* Or in little-endian:
300
* for (i = 0; i < input_bytes; i++) {
301
* remainder ^= next_input_byte();
302
* for (j = 0; j < 8; j++) {
303
* multiple = (remainder & 1) ? CRCPOLY : 0;
304
* remainder = (remainder << 1) ^ multiple;
305
* }
306
* }
307
* If the input is a multiple of 32 bits, you can even XOR in a 32-bit
308
* word at a time and increase the inner loop count to 32.
309
*
310
* You can also mix and match the two loop styles, for example doing the
311
* bulk of a message byte-at-a-time and adding bit-at-a-time processing
312
* for any fractional bytes at the end.
313
*
314
* The only remaining optimization is to the byte-at-a-time table method.
315
* Here, rather than just shifting one bit of the remainder to decide
316
* in the correct multiple to subtract, we can shift a byte at a time.
317
* This produces a 40-bit (rather than a 33-bit) intermediate remainder,
318
* but again the multiple of the polynomial to subtract depends only on
319
* the high bits, the high 8 bits in this case.
320
*
321
* The multiple we need in that case is the low 32 bits of a 40-bit
322
* value whose high 8 bits are given, and which is a multiple of the
323
* generator polynomial. This is simply the CRC-32 of the given
324
* one-byte message.
325
*
326
* Two more details: normally, appending zero bits to a message which
327
* is already a multiple of a polynomial produces a larger multiple of that
328
* polynomial. To enable a CRC to detect this condition, it's common to
329
* invert the CRC before appending it. This makes the remainder of the
330
* message+crc come out not as zero, but some fixed non-zero value.
331
*
332
* The same problem applies to zero bits prepended to the message, and
333
* a similar solution is used. Instead of starting with a remainder of
334
* 0, an initial remainder of all ones is used. As long as you start
335
* the same way on decoding, it doesn't make a difference.
336
*/
337
338
#ifdef UNITTEST
339
340
#include <stdlib.h>
341
#include <stdio.h>
342
343
#if 0 /*Not used at present */
344
static void
345
buf_dump(char const *prefix, unsigned char const *buf, size_t len)
346
{
347
fputs(prefix, stdout);
348
while (len--)
349
printf(" %02x", *buf++);
350
putchar('\n');
351
352
}
353
#endif
354
355
static void bytereverse(unsigned char *buf, size_t len)
356
{
357
while (len--) {
358
unsigned char x = bitrev8(*buf);
359
*buf++ = x;
360
}
361
}
362
363
static void random_garbage(unsigned char *buf, size_t len)
364
{
365
while (len--)
366
*buf++ = (unsigned char) random();
367
}
368
369
#if 0 /* Not used at present */
370
static void store_le(u32 x, unsigned char *buf)
371
{
372
buf[0] = (unsigned char) x;
373
buf[1] = (unsigned char) (x >> 8);
374
buf[2] = (unsigned char) (x >> 16);
375
buf[3] = (unsigned char) (x >> 24);
376
}
377
#endif
378
379
static void store_be(u32 x, unsigned char *buf)
380
{
381
buf[0] = (unsigned char) (x >> 24);
382
buf[1] = (unsigned char) (x >> 16);
383
buf[2] = (unsigned char) (x >> 8);
384
buf[3] = (unsigned char) x;
385
}
386
387
/*
388
* This checks that CRC(buf + CRC(buf)) = 0, and that
389
* CRC commutes with bit-reversal. This has the side effect
390
* of bytewise bit-reversing the input buffer, and returns
391
* the CRC of the reversed buffer.
392
*/
393
static u32 test_step(u32 init, unsigned char *buf, size_t len)
394
{
395
u32 crc1, crc2;
396
size_t i;
397
398
crc1 = crc32_be(init, buf, len);
399
store_be(crc1, buf + len);
400
crc2 = crc32_be(init, buf, len + 4);
401
if (crc2)
402
printf("\nCRC cancellation fail: 0x%08x should be 0\n",
403
crc2);
404
405
for (i = 0; i <= len + 4; i++) {
406
crc2 = crc32_be(init, buf, i);
407
crc2 = crc32_be(crc2, buf + i, len + 4 - i);
408
if (crc2)
409
printf("\nCRC split fail: 0x%08x\n", crc2);
410
}
411
412
/* Now swap it around for the other test */
413
414
bytereverse(buf, len + 4);
415
init = bitrev32(init);
416
crc2 = bitrev32(crc1);
417
if (crc1 != bitrev32(crc2))
418
printf("\nBit reversal fail: 0x%08x -> 0x%08x -> 0x%08x\n",
419
crc1, crc2, bitrev32(crc2));
420
crc1 = crc32_le(init, buf, len);
421
if (crc1 != crc2)
422
printf("\nCRC endianness fail: 0x%08x != 0x%08x\n", crc1,
423
crc2);
424
crc2 = crc32_le(init, buf, len + 4);
425
if (crc2)
426
printf("\nCRC cancellation fail: 0x%08x should be 0\n",
427
crc2);
428
429
for (i = 0; i <= len + 4; i++) {
430
crc2 = crc32_le(init, buf, i);
431
crc2 = crc32_le(crc2, buf + i, len + 4 - i);
432
if (crc2)
433
printf("\nCRC split fail: 0x%08x\n", crc2);
434
}
435
436
return crc1;
437
}
438
439
#define SIZE 64
440
#define INIT1 0
441
#define INIT2 0
442
443
int main(void)
444
{
445
unsigned char buf1[SIZE + 4];
446
unsigned char buf2[SIZE + 4];
447
unsigned char buf3[SIZE + 4];
448
int i, j;
449
u32 crc1, crc2, crc3;
450
451
for (i = 0; i <= SIZE; i++) {
452
printf("\rTesting length %d...", i);
453
fflush(stdout);
454
random_garbage(buf1, i);
455
random_garbage(buf2, i);
456
for (j = 0; j < i; j++)
457
buf3[j] = buf1[j] ^ buf2[j];
458
459
crc1 = test_step(INIT1, buf1, i);
460
crc2 = test_step(INIT2, buf2, i);
461
/* Now check that CRC(buf1 ^ buf2) = CRC(buf1) ^ CRC(buf2) */
462
crc3 = test_step(INIT1 ^ INIT2, buf3, i);
463
if (crc3 != (crc1 ^ crc2))
464
printf("CRC XOR fail: 0x%08x != 0x%08x ^ 0x%08x\n",
465
crc3, crc1, crc2);
466
}
467
printf("\nAll test complete. No failures expected.\n");
468
return 0;
469
}
470
471
#endif /* UNITTEST */
472
473