Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/mm/bootmem.c
10814 views
1
/*
2
* bootmem - A boot-time physical memory allocator and configurator
3
*
4
* Copyright (C) 1999 Ingo Molnar
5
* 1999 Kanoj Sarcar, SGI
6
* 2008 Johannes Weiner
7
*
8
* Access to this subsystem has to be serialized externally (which is true
9
* for the boot process anyway).
10
*/
11
#include <linux/init.h>
12
#include <linux/pfn.h>
13
#include <linux/slab.h>
14
#include <linux/bootmem.h>
15
#include <linux/module.h>
16
#include <linux/kmemleak.h>
17
#include <linux/range.h>
18
#include <linux/memblock.h>
19
20
#include <asm/bug.h>
21
#include <asm/io.h>
22
#include <asm/processor.h>
23
24
#include "internal.h"
25
26
#ifndef CONFIG_NEED_MULTIPLE_NODES
27
struct pglist_data __refdata contig_page_data = {
28
.bdata = &bootmem_node_data[0]
29
};
30
EXPORT_SYMBOL(contig_page_data);
31
#endif
32
33
unsigned long max_low_pfn;
34
unsigned long min_low_pfn;
35
unsigned long max_pfn;
36
37
bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
38
39
static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list);
40
41
static int bootmem_debug;
42
43
static int __init bootmem_debug_setup(char *buf)
44
{
45
bootmem_debug = 1;
46
return 0;
47
}
48
early_param("bootmem_debug", bootmem_debug_setup);
49
50
#define bdebug(fmt, args...) ({ \
51
if (unlikely(bootmem_debug)) \
52
printk(KERN_INFO \
53
"bootmem::%s " fmt, \
54
__func__, ## args); \
55
})
56
57
static unsigned long __init bootmap_bytes(unsigned long pages)
58
{
59
unsigned long bytes = (pages + 7) / 8;
60
61
return ALIGN(bytes, sizeof(long));
62
}
63
64
/**
65
* bootmem_bootmap_pages - calculate bitmap size in pages
66
* @pages: number of pages the bitmap has to represent
67
*/
68
unsigned long __init bootmem_bootmap_pages(unsigned long pages)
69
{
70
unsigned long bytes = bootmap_bytes(pages);
71
72
return PAGE_ALIGN(bytes) >> PAGE_SHIFT;
73
}
74
75
/*
76
* link bdata in order
77
*/
78
static void __init link_bootmem(bootmem_data_t *bdata)
79
{
80
struct list_head *iter;
81
82
list_for_each(iter, &bdata_list) {
83
bootmem_data_t *ent;
84
85
ent = list_entry(iter, bootmem_data_t, list);
86
if (bdata->node_min_pfn < ent->node_min_pfn)
87
break;
88
}
89
list_add_tail(&bdata->list, iter);
90
}
91
92
/*
93
* Called once to set up the allocator itself.
94
*/
95
static unsigned long __init init_bootmem_core(bootmem_data_t *bdata,
96
unsigned long mapstart, unsigned long start, unsigned long end)
97
{
98
unsigned long mapsize;
99
100
mminit_validate_memmodel_limits(&start, &end);
101
bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
102
bdata->node_min_pfn = start;
103
bdata->node_low_pfn = end;
104
link_bootmem(bdata);
105
106
/*
107
* Initially all pages are reserved - setup_arch() has to
108
* register free RAM areas explicitly.
109
*/
110
mapsize = bootmap_bytes(end - start);
111
memset(bdata->node_bootmem_map, 0xff, mapsize);
112
113
bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n",
114
bdata - bootmem_node_data, start, mapstart, end, mapsize);
115
116
return mapsize;
117
}
118
119
/**
120
* init_bootmem_node - register a node as boot memory
121
* @pgdat: node to register
122
* @freepfn: pfn where the bitmap for this node is to be placed
123
* @startpfn: first pfn on the node
124
* @endpfn: first pfn after the node
125
*
126
* Returns the number of bytes needed to hold the bitmap for this node.
127
*/
128
unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
129
unsigned long startpfn, unsigned long endpfn)
130
{
131
return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn);
132
}
133
134
/**
135
* init_bootmem - register boot memory
136
* @start: pfn where the bitmap is to be placed
137
* @pages: number of available physical pages
138
*
139
* Returns the number of bytes needed to hold the bitmap.
140
*/
141
unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
142
{
143
max_low_pfn = pages;
144
min_low_pfn = start;
145
return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
146
}
147
148
/*
149
* free_bootmem_late - free bootmem pages directly to page allocator
150
* @addr: starting address of the range
151
* @size: size of the range in bytes
152
*
153
* This is only useful when the bootmem allocator has already been torn
154
* down, but we are still initializing the system. Pages are given directly
155
* to the page allocator, no bootmem metadata is updated because it is gone.
156
*/
157
void __init free_bootmem_late(unsigned long addr, unsigned long size)
158
{
159
unsigned long cursor, end;
160
161
kmemleak_free_part(__va(addr), size);
162
163
cursor = PFN_UP(addr);
164
end = PFN_DOWN(addr + size);
165
166
for (; cursor < end; cursor++) {
167
__free_pages_bootmem(pfn_to_page(cursor), 0);
168
totalram_pages++;
169
}
170
}
171
172
static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
173
{
174
int aligned;
175
struct page *page;
176
unsigned long start, end, pages, count = 0;
177
178
if (!bdata->node_bootmem_map)
179
return 0;
180
181
start = bdata->node_min_pfn;
182
end = bdata->node_low_pfn;
183
184
/*
185
* If the start is aligned to the machines wordsize, we might
186
* be able to free pages in bulks of that order.
187
*/
188
aligned = !(start & (BITS_PER_LONG - 1));
189
190
bdebug("nid=%td start=%lx end=%lx aligned=%d\n",
191
bdata - bootmem_node_data, start, end, aligned);
192
193
while (start < end) {
194
unsigned long *map, idx, vec;
195
196
map = bdata->node_bootmem_map;
197
idx = start - bdata->node_min_pfn;
198
vec = ~map[idx / BITS_PER_LONG];
199
200
if (aligned && vec == ~0UL && start + BITS_PER_LONG < end) {
201
int order = ilog2(BITS_PER_LONG);
202
203
__free_pages_bootmem(pfn_to_page(start), order);
204
count += BITS_PER_LONG;
205
} else {
206
unsigned long off = 0;
207
208
while (vec && off < BITS_PER_LONG) {
209
if (vec & 1) {
210
page = pfn_to_page(start + off);
211
__free_pages_bootmem(page, 0);
212
count++;
213
}
214
vec >>= 1;
215
off++;
216
}
217
}
218
start += BITS_PER_LONG;
219
}
220
221
page = virt_to_page(bdata->node_bootmem_map);
222
pages = bdata->node_low_pfn - bdata->node_min_pfn;
223
pages = bootmem_bootmap_pages(pages);
224
count += pages;
225
while (pages--)
226
__free_pages_bootmem(page++, 0);
227
228
bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count);
229
230
return count;
231
}
232
233
/**
234
* free_all_bootmem_node - release a node's free pages to the buddy allocator
235
* @pgdat: node to be released
236
*
237
* Returns the number of pages actually released.
238
*/
239
unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
240
{
241
register_page_bootmem_info_node(pgdat);
242
return free_all_bootmem_core(pgdat->bdata);
243
}
244
245
/**
246
* free_all_bootmem - release free pages to the buddy allocator
247
*
248
* Returns the number of pages actually released.
249
*/
250
unsigned long __init free_all_bootmem(void)
251
{
252
unsigned long total_pages = 0;
253
bootmem_data_t *bdata;
254
255
list_for_each_entry(bdata, &bdata_list, list)
256
total_pages += free_all_bootmem_core(bdata);
257
258
return total_pages;
259
}
260
261
static void __init __free(bootmem_data_t *bdata,
262
unsigned long sidx, unsigned long eidx)
263
{
264
unsigned long idx;
265
266
bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data,
267
sidx + bdata->node_min_pfn,
268
eidx + bdata->node_min_pfn);
269
270
if (bdata->hint_idx > sidx)
271
bdata->hint_idx = sidx;
272
273
for (idx = sidx; idx < eidx; idx++)
274
if (!test_and_clear_bit(idx, bdata->node_bootmem_map))
275
BUG();
276
}
277
278
static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx,
279
unsigned long eidx, int flags)
280
{
281
unsigned long idx;
282
int exclusive = flags & BOOTMEM_EXCLUSIVE;
283
284
bdebug("nid=%td start=%lx end=%lx flags=%x\n",
285
bdata - bootmem_node_data,
286
sidx + bdata->node_min_pfn,
287
eidx + bdata->node_min_pfn,
288
flags);
289
290
for (idx = sidx; idx < eidx; idx++)
291
if (test_and_set_bit(idx, bdata->node_bootmem_map)) {
292
if (exclusive) {
293
__free(bdata, sidx, idx);
294
return -EBUSY;
295
}
296
bdebug("silent double reserve of PFN %lx\n",
297
idx + bdata->node_min_pfn);
298
}
299
return 0;
300
}
301
302
static int __init mark_bootmem_node(bootmem_data_t *bdata,
303
unsigned long start, unsigned long end,
304
int reserve, int flags)
305
{
306
unsigned long sidx, eidx;
307
308
bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n",
309
bdata - bootmem_node_data, start, end, reserve, flags);
310
311
BUG_ON(start < bdata->node_min_pfn);
312
BUG_ON(end > bdata->node_low_pfn);
313
314
sidx = start - bdata->node_min_pfn;
315
eidx = end - bdata->node_min_pfn;
316
317
if (reserve)
318
return __reserve(bdata, sidx, eidx, flags);
319
else
320
__free(bdata, sidx, eidx);
321
return 0;
322
}
323
324
static int __init mark_bootmem(unsigned long start, unsigned long end,
325
int reserve, int flags)
326
{
327
unsigned long pos;
328
bootmem_data_t *bdata;
329
330
pos = start;
331
list_for_each_entry(bdata, &bdata_list, list) {
332
int err;
333
unsigned long max;
334
335
if (pos < bdata->node_min_pfn ||
336
pos >= bdata->node_low_pfn) {
337
BUG_ON(pos != start);
338
continue;
339
}
340
341
max = min(bdata->node_low_pfn, end);
342
343
err = mark_bootmem_node(bdata, pos, max, reserve, flags);
344
if (reserve && err) {
345
mark_bootmem(start, pos, 0, 0);
346
return err;
347
}
348
349
if (max == end)
350
return 0;
351
pos = bdata->node_low_pfn;
352
}
353
BUG();
354
}
355
356
/**
357
* free_bootmem_node - mark a page range as usable
358
* @pgdat: node the range resides on
359
* @physaddr: starting address of the range
360
* @size: size of the range in bytes
361
*
362
* Partial pages will be considered reserved and left as they are.
363
*
364
* The range must reside completely on the specified node.
365
*/
366
void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
367
unsigned long size)
368
{
369
unsigned long start, end;
370
371
kmemleak_free_part(__va(physaddr), size);
372
373
start = PFN_UP(physaddr);
374
end = PFN_DOWN(physaddr + size);
375
376
mark_bootmem_node(pgdat->bdata, start, end, 0, 0);
377
}
378
379
/**
380
* free_bootmem - mark a page range as usable
381
* @addr: starting address of the range
382
* @size: size of the range in bytes
383
*
384
* Partial pages will be considered reserved and left as they are.
385
*
386
* The range must be contiguous but may span node boundaries.
387
*/
388
void __init free_bootmem(unsigned long addr, unsigned long size)
389
{
390
unsigned long start, end;
391
392
kmemleak_free_part(__va(addr), size);
393
394
start = PFN_UP(addr);
395
end = PFN_DOWN(addr + size);
396
397
mark_bootmem(start, end, 0, 0);
398
}
399
400
/**
401
* reserve_bootmem_node - mark a page range as reserved
402
* @pgdat: node the range resides on
403
* @physaddr: starting address of the range
404
* @size: size of the range in bytes
405
* @flags: reservation flags (see linux/bootmem.h)
406
*
407
* Partial pages will be reserved.
408
*
409
* The range must reside completely on the specified node.
410
*/
411
int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
412
unsigned long size, int flags)
413
{
414
unsigned long start, end;
415
416
start = PFN_DOWN(physaddr);
417
end = PFN_UP(physaddr + size);
418
419
return mark_bootmem_node(pgdat->bdata, start, end, 1, flags);
420
}
421
422
/**
423
* reserve_bootmem - mark a page range as usable
424
* @addr: starting address of the range
425
* @size: size of the range in bytes
426
* @flags: reservation flags (see linux/bootmem.h)
427
*
428
* Partial pages will be reserved.
429
*
430
* The range must be contiguous but may span node boundaries.
431
*/
432
int __init reserve_bootmem(unsigned long addr, unsigned long size,
433
int flags)
434
{
435
unsigned long start, end;
436
437
start = PFN_DOWN(addr);
438
end = PFN_UP(addr + size);
439
440
return mark_bootmem(start, end, 1, flags);
441
}
442
443
int __weak __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
444
int flags)
445
{
446
return reserve_bootmem(phys, len, flags);
447
}
448
449
static unsigned long __init align_idx(struct bootmem_data *bdata,
450
unsigned long idx, unsigned long step)
451
{
452
unsigned long base = bdata->node_min_pfn;
453
454
/*
455
* Align the index with respect to the node start so that the
456
* combination of both satisfies the requested alignment.
457
*/
458
459
return ALIGN(base + idx, step) - base;
460
}
461
462
static unsigned long __init align_off(struct bootmem_data *bdata,
463
unsigned long off, unsigned long align)
464
{
465
unsigned long base = PFN_PHYS(bdata->node_min_pfn);
466
467
/* Same as align_idx for byte offsets */
468
469
return ALIGN(base + off, align) - base;
470
}
471
472
static void * __init alloc_bootmem_core(struct bootmem_data *bdata,
473
unsigned long size, unsigned long align,
474
unsigned long goal, unsigned long limit)
475
{
476
unsigned long fallback = 0;
477
unsigned long min, max, start, sidx, midx, step;
478
479
bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n",
480
bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT,
481
align, goal, limit);
482
483
BUG_ON(!size);
484
BUG_ON(align & (align - 1));
485
BUG_ON(limit && goal + size > limit);
486
487
if (!bdata->node_bootmem_map)
488
return NULL;
489
490
min = bdata->node_min_pfn;
491
max = bdata->node_low_pfn;
492
493
goal >>= PAGE_SHIFT;
494
limit >>= PAGE_SHIFT;
495
496
if (limit && max > limit)
497
max = limit;
498
if (max <= min)
499
return NULL;
500
501
step = max(align >> PAGE_SHIFT, 1UL);
502
503
if (goal && min < goal && goal < max)
504
start = ALIGN(goal, step);
505
else
506
start = ALIGN(min, step);
507
508
sidx = start - bdata->node_min_pfn;
509
midx = max - bdata->node_min_pfn;
510
511
if (bdata->hint_idx > sidx) {
512
/*
513
* Handle the valid case of sidx being zero and still
514
* catch the fallback below.
515
*/
516
fallback = sidx + 1;
517
sidx = align_idx(bdata, bdata->hint_idx, step);
518
}
519
520
while (1) {
521
int merge;
522
void *region;
523
unsigned long eidx, i, start_off, end_off;
524
find_block:
525
sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx);
526
sidx = align_idx(bdata, sidx, step);
527
eidx = sidx + PFN_UP(size);
528
529
if (sidx >= midx || eidx > midx)
530
break;
531
532
for (i = sidx; i < eidx; i++)
533
if (test_bit(i, bdata->node_bootmem_map)) {
534
sidx = align_idx(bdata, i, step);
535
if (sidx == i)
536
sidx += step;
537
goto find_block;
538
}
539
540
if (bdata->last_end_off & (PAGE_SIZE - 1) &&
541
PFN_DOWN(bdata->last_end_off) + 1 == sidx)
542
start_off = align_off(bdata, bdata->last_end_off, align);
543
else
544
start_off = PFN_PHYS(sidx);
545
546
merge = PFN_DOWN(start_off) < sidx;
547
end_off = start_off + size;
548
549
bdata->last_end_off = end_off;
550
bdata->hint_idx = PFN_UP(end_off);
551
552
/*
553
* Reserve the area now:
554
*/
555
if (__reserve(bdata, PFN_DOWN(start_off) + merge,
556
PFN_UP(end_off), BOOTMEM_EXCLUSIVE))
557
BUG();
558
559
region = phys_to_virt(PFN_PHYS(bdata->node_min_pfn) +
560
start_off);
561
memset(region, 0, size);
562
/*
563
* The min_count is set to 0 so that bootmem allocated blocks
564
* are never reported as leaks.
565
*/
566
kmemleak_alloc(region, size, 0, 0);
567
return region;
568
}
569
570
if (fallback) {
571
sidx = align_idx(bdata, fallback - 1, step);
572
fallback = 0;
573
goto find_block;
574
}
575
576
return NULL;
577
}
578
579
static void * __init alloc_arch_preferred_bootmem(bootmem_data_t *bdata,
580
unsigned long size, unsigned long align,
581
unsigned long goal, unsigned long limit)
582
{
583
if (WARN_ON_ONCE(slab_is_available()))
584
return kzalloc(size, GFP_NOWAIT);
585
586
#ifdef CONFIG_HAVE_ARCH_BOOTMEM
587
{
588
bootmem_data_t *p_bdata;
589
590
p_bdata = bootmem_arch_preferred_node(bdata, size, align,
591
goal, limit);
592
if (p_bdata)
593
return alloc_bootmem_core(p_bdata, size, align,
594
goal, limit);
595
}
596
#endif
597
return NULL;
598
}
599
600
static void * __init ___alloc_bootmem_nopanic(unsigned long size,
601
unsigned long align,
602
unsigned long goal,
603
unsigned long limit)
604
{
605
bootmem_data_t *bdata;
606
void *region;
607
608
restart:
609
region = alloc_arch_preferred_bootmem(NULL, size, align, goal, limit);
610
if (region)
611
return region;
612
613
list_for_each_entry(bdata, &bdata_list, list) {
614
if (goal && bdata->node_low_pfn <= PFN_DOWN(goal))
615
continue;
616
if (limit && bdata->node_min_pfn >= PFN_DOWN(limit))
617
break;
618
619
region = alloc_bootmem_core(bdata, size, align, goal, limit);
620
if (region)
621
return region;
622
}
623
624
if (goal) {
625
goal = 0;
626
goto restart;
627
}
628
629
return NULL;
630
}
631
632
/**
633
* __alloc_bootmem_nopanic - allocate boot memory without panicking
634
* @size: size of the request in bytes
635
* @align: alignment of the region
636
* @goal: preferred starting address of the region
637
*
638
* The goal is dropped if it can not be satisfied and the allocation will
639
* fall back to memory below @goal.
640
*
641
* Allocation may happen on any node in the system.
642
*
643
* Returns NULL on failure.
644
*/
645
void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
646
unsigned long goal)
647
{
648
unsigned long limit = 0;
649
650
return ___alloc_bootmem_nopanic(size, align, goal, limit);
651
}
652
653
static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
654
unsigned long goal, unsigned long limit)
655
{
656
void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
657
658
if (mem)
659
return mem;
660
/*
661
* Whoops, we cannot satisfy the allocation request.
662
*/
663
printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
664
panic("Out of memory");
665
return NULL;
666
}
667
668
/**
669
* __alloc_bootmem - allocate boot memory
670
* @size: size of the request in bytes
671
* @align: alignment of the region
672
* @goal: preferred starting address of the region
673
*
674
* The goal is dropped if it can not be satisfied and the allocation will
675
* fall back to memory below @goal.
676
*
677
* Allocation may happen on any node in the system.
678
*
679
* The function panics if the request can not be satisfied.
680
*/
681
void * __init __alloc_bootmem(unsigned long size, unsigned long align,
682
unsigned long goal)
683
{
684
unsigned long limit = 0;
685
686
return ___alloc_bootmem(size, align, goal, limit);
687
}
688
689
static void * __init ___alloc_bootmem_node(bootmem_data_t *bdata,
690
unsigned long size, unsigned long align,
691
unsigned long goal, unsigned long limit)
692
{
693
void *ptr;
694
695
ptr = alloc_arch_preferred_bootmem(bdata, size, align, goal, limit);
696
if (ptr)
697
return ptr;
698
699
ptr = alloc_bootmem_core(bdata, size, align, goal, limit);
700
if (ptr)
701
return ptr;
702
703
return ___alloc_bootmem(size, align, goal, limit);
704
}
705
706
/**
707
* __alloc_bootmem_node - allocate boot memory from a specific node
708
* @pgdat: node to allocate from
709
* @size: size of the request in bytes
710
* @align: alignment of the region
711
* @goal: preferred starting address of the region
712
*
713
* The goal is dropped if it can not be satisfied and the allocation will
714
* fall back to memory below @goal.
715
*
716
* Allocation may fall back to any node in the system if the specified node
717
* can not hold the requested memory.
718
*
719
* The function panics if the request can not be satisfied.
720
*/
721
void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
722
unsigned long align, unsigned long goal)
723
{
724
if (WARN_ON_ONCE(slab_is_available()))
725
return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
726
727
return ___alloc_bootmem_node(pgdat->bdata, size, align, goal, 0);
728
}
729
730
void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
731
unsigned long align, unsigned long goal)
732
{
733
#ifdef MAX_DMA32_PFN
734
unsigned long end_pfn;
735
736
if (WARN_ON_ONCE(slab_is_available()))
737
return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
738
739
/* update goal according ...MAX_DMA32_PFN */
740
end_pfn = pgdat->node_start_pfn + pgdat->node_spanned_pages;
741
742
if (end_pfn > MAX_DMA32_PFN + (128 >> (20 - PAGE_SHIFT)) &&
743
(goal >> PAGE_SHIFT) < MAX_DMA32_PFN) {
744
void *ptr;
745
unsigned long new_goal;
746
747
new_goal = MAX_DMA32_PFN << PAGE_SHIFT;
748
ptr = alloc_bootmem_core(pgdat->bdata, size, align,
749
new_goal, 0);
750
if (ptr)
751
return ptr;
752
}
753
#endif
754
755
return __alloc_bootmem_node(pgdat, size, align, goal);
756
757
}
758
759
#ifdef CONFIG_SPARSEMEM
760
/**
761
* alloc_bootmem_section - allocate boot memory from a specific section
762
* @size: size of the request in bytes
763
* @section_nr: sparse map section to allocate from
764
*
765
* Return NULL on failure.
766
*/
767
void * __init alloc_bootmem_section(unsigned long size,
768
unsigned long section_nr)
769
{
770
bootmem_data_t *bdata;
771
unsigned long pfn, goal, limit;
772
773
pfn = section_nr_to_pfn(section_nr);
774
goal = pfn << PAGE_SHIFT;
775
limit = section_nr_to_pfn(section_nr + 1) << PAGE_SHIFT;
776
bdata = &bootmem_node_data[early_pfn_to_nid(pfn)];
777
778
return alloc_bootmem_core(bdata, size, SMP_CACHE_BYTES, goal, limit);
779
}
780
#endif
781
782
void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
783
unsigned long align, unsigned long goal)
784
{
785
void *ptr;
786
787
if (WARN_ON_ONCE(slab_is_available()))
788
return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
789
790
ptr = alloc_arch_preferred_bootmem(pgdat->bdata, size, align, goal, 0);
791
if (ptr)
792
return ptr;
793
794
ptr = alloc_bootmem_core(pgdat->bdata, size, align, goal, 0);
795
if (ptr)
796
return ptr;
797
798
return __alloc_bootmem_nopanic(size, align, goal);
799
}
800
801
#ifndef ARCH_LOW_ADDRESS_LIMIT
802
#define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL
803
#endif
804
805
/**
806
* __alloc_bootmem_low - allocate low boot memory
807
* @size: size of the request in bytes
808
* @align: alignment of the region
809
* @goal: preferred starting address of the region
810
*
811
* The goal is dropped if it can not be satisfied and the allocation will
812
* fall back to memory below @goal.
813
*
814
* Allocation may happen on any node in the system.
815
*
816
* The function panics if the request can not be satisfied.
817
*/
818
void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
819
unsigned long goal)
820
{
821
return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
822
}
823
824
/**
825
* __alloc_bootmem_low_node - allocate low boot memory from a specific node
826
* @pgdat: node to allocate from
827
* @size: size of the request in bytes
828
* @align: alignment of the region
829
* @goal: preferred starting address of the region
830
*
831
* The goal is dropped if it can not be satisfied and the allocation will
832
* fall back to memory below @goal.
833
*
834
* Allocation may fall back to any node in the system if the specified node
835
* can not hold the requested memory.
836
*
837
* The function panics if the request can not be satisfied.
838
*/
839
void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
840
unsigned long align, unsigned long goal)
841
{
842
if (WARN_ON_ONCE(slab_is_available()))
843
return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
844
845
return ___alloc_bootmem_node(pgdat->bdata, size, align,
846
goal, ARCH_LOW_ADDRESS_LIMIT);
847
}
848
849