Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/mm/compaction.c
10814 views
1
/*
2
* linux/mm/compaction.c
3
*
4
* Memory compaction for the reduction of external fragmentation. Note that
5
* this heavily depends upon page migration to do all the real heavy
6
* lifting
7
*
8
* Copyright IBM Corp. 2007-2010 Mel Gorman <[email protected]>
9
*/
10
#include <linux/swap.h>
11
#include <linux/migrate.h>
12
#include <linux/compaction.h>
13
#include <linux/mm_inline.h>
14
#include <linux/backing-dev.h>
15
#include <linux/sysctl.h>
16
#include <linux/sysfs.h>
17
#include "internal.h"
18
19
#define CREATE_TRACE_POINTS
20
#include <trace/events/compaction.h>
21
22
/*
23
* compact_control is used to track pages being migrated and the free pages
24
* they are being migrated to during memory compaction. The free_pfn starts
25
* at the end of a zone and migrate_pfn begins at the start. Movable pages
26
* are moved to the end of a zone during a compaction run and the run
27
* completes when free_pfn <= migrate_pfn
28
*/
29
struct compact_control {
30
struct list_head freepages; /* List of free pages to migrate to */
31
struct list_head migratepages; /* List of pages being migrated */
32
unsigned long nr_freepages; /* Number of isolated free pages */
33
unsigned long nr_migratepages; /* Number of pages to migrate */
34
unsigned long free_pfn; /* isolate_freepages search base */
35
unsigned long migrate_pfn; /* isolate_migratepages search base */
36
bool sync; /* Synchronous migration */
37
38
/* Account for isolated anon and file pages */
39
unsigned long nr_anon;
40
unsigned long nr_file;
41
42
unsigned int order; /* order a direct compactor needs */
43
int migratetype; /* MOVABLE, RECLAIMABLE etc */
44
struct zone *zone;
45
};
46
47
static unsigned long release_freepages(struct list_head *freelist)
48
{
49
struct page *page, *next;
50
unsigned long count = 0;
51
52
list_for_each_entry_safe(page, next, freelist, lru) {
53
list_del(&page->lru);
54
__free_page(page);
55
count++;
56
}
57
58
return count;
59
}
60
61
/* Isolate free pages onto a private freelist. Must hold zone->lock */
62
static unsigned long isolate_freepages_block(struct zone *zone,
63
unsigned long blockpfn,
64
struct list_head *freelist)
65
{
66
unsigned long zone_end_pfn, end_pfn;
67
int nr_scanned = 0, total_isolated = 0;
68
struct page *cursor;
69
70
/* Get the last PFN we should scan for free pages at */
71
zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
72
end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn);
73
74
/* Find the first usable PFN in the block to initialse page cursor */
75
for (; blockpfn < end_pfn; blockpfn++) {
76
if (pfn_valid_within(blockpfn))
77
break;
78
}
79
cursor = pfn_to_page(blockpfn);
80
81
/* Isolate free pages. This assumes the block is valid */
82
for (; blockpfn < end_pfn; blockpfn++, cursor++) {
83
int isolated, i;
84
struct page *page = cursor;
85
86
if (!pfn_valid_within(blockpfn))
87
continue;
88
nr_scanned++;
89
90
if (!PageBuddy(page))
91
continue;
92
93
/* Found a free page, break it into order-0 pages */
94
isolated = split_free_page(page);
95
total_isolated += isolated;
96
for (i = 0; i < isolated; i++) {
97
list_add(&page->lru, freelist);
98
page++;
99
}
100
101
/* If a page was split, advance to the end of it */
102
if (isolated) {
103
blockpfn += isolated - 1;
104
cursor += isolated - 1;
105
}
106
}
107
108
trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
109
return total_isolated;
110
}
111
112
/* Returns true if the page is within a block suitable for migration to */
113
static bool suitable_migration_target(struct page *page)
114
{
115
116
int migratetype = get_pageblock_migratetype(page);
117
118
/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
119
if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
120
return false;
121
122
/* If the page is a large free page, then allow migration */
123
if (PageBuddy(page) && page_order(page) >= pageblock_order)
124
return true;
125
126
/* If the block is MIGRATE_MOVABLE, allow migration */
127
if (migratetype == MIGRATE_MOVABLE)
128
return true;
129
130
/* Otherwise skip the block */
131
return false;
132
}
133
134
/*
135
* Based on information in the current compact_control, find blocks
136
* suitable for isolating free pages from and then isolate them.
137
*/
138
static void isolate_freepages(struct zone *zone,
139
struct compact_control *cc)
140
{
141
struct page *page;
142
unsigned long high_pfn, low_pfn, pfn;
143
unsigned long flags;
144
int nr_freepages = cc->nr_freepages;
145
struct list_head *freelist = &cc->freepages;
146
147
/*
148
* Initialise the free scanner. The starting point is where we last
149
* scanned from (or the end of the zone if starting). The low point
150
* is the end of the pageblock the migration scanner is using.
151
*/
152
pfn = cc->free_pfn;
153
low_pfn = cc->migrate_pfn + pageblock_nr_pages;
154
155
/*
156
* Take care that if the migration scanner is at the end of the zone
157
* that the free scanner does not accidentally move to the next zone
158
* in the next isolation cycle.
159
*/
160
high_pfn = min(low_pfn, pfn);
161
162
/*
163
* Isolate free pages until enough are available to migrate the
164
* pages on cc->migratepages. We stop searching if the migrate
165
* and free page scanners meet or enough free pages are isolated.
166
*/
167
for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
168
pfn -= pageblock_nr_pages) {
169
unsigned long isolated;
170
171
if (!pfn_valid(pfn))
172
continue;
173
174
/*
175
* Check for overlapping nodes/zones. It's possible on some
176
* configurations to have a setup like
177
* node0 node1 node0
178
* i.e. it's possible that all pages within a zones range of
179
* pages do not belong to a single zone.
180
*/
181
page = pfn_to_page(pfn);
182
if (page_zone(page) != zone)
183
continue;
184
185
/* Check the block is suitable for migration */
186
if (!suitable_migration_target(page))
187
continue;
188
189
/*
190
* Found a block suitable for isolating free pages from. Now
191
* we disabled interrupts, double check things are ok and
192
* isolate the pages. This is to minimise the time IRQs
193
* are disabled
194
*/
195
isolated = 0;
196
spin_lock_irqsave(&zone->lock, flags);
197
if (suitable_migration_target(page)) {
198
isolated = isolate_freepages_block(zone, pfn, freelist);
199
nr_freepages += isolated;
200
}
201
spin_unlock_irqrestore(&zone->lock, flags);
202
203
/*
204
* Record the highest PFN we isolated pages from. When next
205
* looking for free pages, the search will restart here as
206
* page migration may have returned some pages to the allocator
207
*/
208
if (isolated)
209
high_pfn = max(high_pfn, pfn);
210
}
211
212
/* split_free_page does not map the pages */
213
list_for_each_entry(page, freelist, lru) {
214
arch_alloc_page(page, 0);
215
kernel_map_pages(page, 1, 1);
216
}
217
218
cc->free_pfn = high_pfn;
219
cc->nr_freepages = nr_freepages;
220
}
221
222
/* Update the number of anon and file isolated pages in the zone */
223
static void acct_isolated(struct zone *zone, struct compact_control *cc)
224
{
225
struct page *page;
226
unsigned int count[NR_LRU_LISTS] = { 0, };
227
228
list_for_each_entry(page, &cc->migratepages, lru) {
229
int lru = page_lru_base_type(page);
230
count[lru]++;
231
}
232
233
cc->nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
234
cc->nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
235
__mod_zone_page_state(zone, NR_ISOLATED_ANON, cc->nr_anon);
236
__mod_zone_page_state(zone, NR_ISOLATED_FILE, cc->nr_file);
237
}
238
239
/* Similar to reclaim, but different enough that they don't share logic */
240
static bool too_many_isolated(struct zone *zone)
241
{
242
unsigned long active, inactive, isolated;
243
244
inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
245
zone_page_state(zone, NR_INACTIVE_ANON);
246
active = zone_page_state(zone, NR_ACTIVE_FILE) +
247
zone_page_state(zone, NR_ACTIVE_ANON);
248
isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
249
zone_page_state(zone, NR_ISOLATED_ANON);
250
251
return isolated > (inactive + active) / 2;
252
}
253
254
/* possible outcome of isolate_migratepages */
255
typedef enum {
256
ISOLATE_ABORT, /* Abort compaction now */
257
ISOLATE_NONE, /* No pages isolated, continue scanning */
258
ISOLATE_SUCCESS, /* Pages isolated, migrate */
259
} isolate_migrate_t;
260
261
/*
262
* Isolate all pages that can be migrated from the block pointed to by
263
* the migrate scanner within compact_control.
264
*/
265
static isolate_migrate_t isolate_migratepages(struct zone *zone,
266
struct compact_control *cc)
267
{
268
unsigned long low_pfn, end_pfn;
269
unsigned long last_pageblock_nr = 0, pageblock_nr;
270
unsigned long nr_scanned = 0, nr_isolated = 0;
271
struct list_head *migratelist = &cc->migratepages;
272
273
/* Do not scan outside zone boundaries */
274
low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
275
276
/* Only scan within a pageblock boundary */
277
end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
278
279
/* Do not cross the free scanner or scan within a memory hole */
280
if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
281
cc->migrate_pfn = end_pfn;
282
return ISOLATE_NONE;
283
}
284
285
/*
286
* Ensure that there are not too many pages isolated from the LRU
287
* list by either parallel reclaimers or compaction. If there are,
288
* delay for some time until fewer pages are isolated
289
*/
290
while (unlikely(too_many_isolated(zone))) {
291
/* async migration should just abort */
292
if (!cc->sync)
293
return ISOLATE_ABORT;
294
295
congestion_wait(BLK_RW_ASYNC, HZ/10);
296
297
if (fatal_signal_pending(current))
298
return ISOLATE_ABORT;
299
}
300
301
/* Time to isolate some pages for migration */
302
cond_resched();
303
spin_lock_irq(&zone->lru_lock);
304
for (; low_pfn < end_pfn; low_pfn++) {
305
struct page *page;
306
bool locked = true;
307
308
/* give a chance to irqs before checking need_resched() */
309
if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) {
310
spin_unlock_irq(&zone->lru_lock);
311
locked = false;
312
}
313
if (need_resched() || spin_is_contended(&zone->lru_lock)) {
314
if (locked)
315
spin_unlock_irq(&zone->lru_lock);
316
cond_resched();
317
spin_lock_irq(&zone->lru_lock);
318
if (fatal_signal_pending(current))
319
break;
320
} else if (!locked)
321
spin_lock_irq(&zone->lru_lock);
322
323
if (!pfn_valid_within(low_pfn))
324
continue;
325
nr_scanned++;
326
327
/* Get the page and skip if free */
328
page = pfn_to_page(low_pfn);
329
if (PageBuddy(page))
330
continue;
331
332
/*
333
* For async migration, also only scan in MOVABLE blocks. Async
334
* migration is optimistic to see if the minimum amount of work
335
* satisfies the allocation
336
*/
337
pageblock_nr = low_pfn >> pageblock_order;
338
if (!cc->sync && last_pageblock_nr != pageblock_nr &&
339
get_pageblock_migratetype(page) != MIGRATE_MOVABLE) {
340
low_pfn += pageblock_nr_pages;
341
low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
342
last_pageblock_nr = pageblock_nr;
343
continue;
344
}
345
346
if (!PageLRU(page))
347
continue;
348
349
/*
350
* PageLRU is set, and lru_lock excludes isolation,
351
* splitting and collapsing (collapsing has already
352
* happened if PageLRU is set).
353
*/
354
if (PageTransHuge(page)) {
355
low_pfn += (1 << compound_order(page)) - 1;
356
continue;
357
}
358
359
/* Try isolate the page */
360
if (__isolate_lru_page(page, ISOLATE_BOTH, 0) != 0)
361
continue;
362
363
VM_BUG_ON(PageTransCompound(page));
364
365
/* Successfully isolated */
366
del_page_from_lru_list(zone, page, page_lru(page));
367
list_add(&page->lru, migratelist);
368
cc->nr_migratepages++;
369
nr_isolated++;
370
371
/* Avoid isolating too much */
372
if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
373
break;
374
}
375
376
acct_isolated(zone, cc);
377
378
spin_unlock_irq(&zone->lru_lock);
379
cc->migrate_pfn = low_pfn;
380
381
trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
382
383
return ISOLATE_SUCCESS;
384
}
385
386
/*
387
* This is a migrate-callback that "allocates" freepages by taking pages
388
* from the isolated freelists in the block we are migrating to.
389
*/
390
static struct page *compaction_alloc(struct page *migratepage,
391
unsigned long data,
392
int **result)
393
{
394
struct compact_control *cc = (struct compact_control *)data;
395
struct page *freepage;
396
397
/* Isolate free pages if necessary */
398
if (list_empty(&cc->freepages)) {
399
isolate_freepages(cc->zone, cc);
400
401
if (list_empty(&cc->freepages))
402
return NULL;
403
}
404
405
freepage = list_entry(cc->freepages.next, struct page, lru);
406
list_del(&freepage->lru);
407
cc->nr_freepages--;
408
409
return freepage;
410
}
411
412
/*
413
* We cannot control nr_migratepages and nr_freepages fully when migration is
414
* running as migrate_pages() has no knowledge of compact_control. When
415
* migration is complete, we count the number of pages on the lists by hand.
416
*/
417
static void update_nr_listpages(struct compact_control *cc)
418
{
419
int nr_migratepages = 0;
420
int nr_freepages = 0;
421
struct page *page;
422
423
list_for_each_entry(page, &cc->migratepages, lru)
424
nr_migratepages++;
425
list_for_each_entry(page, &cc->freepages, lru)
426
nr_freepages++;
427
428
cc->nr_migratepages = nr_migratepages;
429
cc->nr_freepages = nr_freepages;
430
}
431
432
static int compact_finished(struct zone *zone,
433
struct compact_control *cc)
434
{
435
unsigned int order;
436
unsigned long watermark;
437
438
if (fatal_signal_pending(current))
439
return COMPACT_PARTIAL;
440
441
/* Compaction run completes if the migrate and free scanner meet */
442
if (cc->free_pfn <= cc->migrate_pfn)
443
return COMPACT_COMPLETE;
444
445
/*
446
* order == -1 is expected when compacting via
447
* /proc/sys/vm/compact_memory
448
*/
449
if (cc->order == -1)
450
return COMPACT_CONTINUE;
451
452
/* Compaction run is not finished if the watermark is not met */
453
watermark = low_wmark_pages(zone);
454
watermark += (1 << cc->order);
455
456
if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
457
return COMPACT_CONTINUE;
458
459
/* Direct compactor: Is a suitable page free? */
460
for (order = cc->order; order < MAX_ORDER; order++) {
461
/* Job done if page is free of the right migratetype */
462
if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
463
return COMPACT_PARTIAL;
464
465
/* Job done if allocation would set block type */
466
if (order >= pageblock_order && zone->free_area[order].nr_free)
467
return COMPACT_PARTIAL;
468
}
469
470
return COMPACT_CONTINUE;
471
}
472
473
/*
474
* compaction_suitable: Is this suitable to run compaction on this zone now?
475
* Returns
476
* COMPACT_SKIPPED - If there are too few free pages for compaction
477
* COMPACT_PARTIAL - If the allocation would succeed without compaction
478
* COMPACT_CONTINUE - If compaction should run now
479
*/
480
unsigned long compaction_suitable(struct zone *zone, int order)
481
{
482
int fragindex;
483
unsigned long watermark;
484
485
/*
486
* order == -1 is expected when compacting via
487
* /proc/sys/vm/compact_memory
488
*/
489
if (order == -1)
490
return COMPACT_CONTINUE;
491
492
/*
493
* Watermarks for order-0 must be met for compaction. Note the 2UL.
494
* This is because during migration, copies of pages need to be
495
* allocated and for a short time, the footprint is higher
496
*/
497
watermark = low_wmark_pages(zone) + (2UL << order);
498
if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
499
return COMPACT_SKIPPED;
500
501
/*
502
* fragmentation index determines if allocation failures are due to
503
* low memory or external fragmentation
504
*
505
* index of -1000 implies allocations might succeed depending on
506
* watermarks
507
* index towards 0 implies failure is due to lack of memory
508
* index towards 1000 implies failure is due to fragmentation
509
*
510
* Only compact if a failure would be due to fragmentation.
511
*/
512
fragindex = fragmentation_index(zone, order);
513
if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
514
return COMPACT_SKIPPED;
515
516
if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
517
0, 0))
518
return COMPACT_PARTIAL;
519
520
return COMPACT_CONTINUE;
521
}
522
523
static int compact_zone(struct zone *zone, struct compact_control *cc)
524
{
525
int ret;
526
527
ret = compaction_suitable(zone, cc->order);
528
switch (ret) {
529
case COMPACT_PARTIAL:
530
case COMPACT_SKIPPED:
531
/* Compaction is likely to fail */
532
return ret;
533
case COMPACT_CONTINUE:
534
/* Fall through to compaction */
535
;
536
}
537
538
/* Setup to move all movable pages to the end of the zone */
539
cc->migrate_pfn = zone->zone_start_pfn;
540
cc->free_pfn = cc->migrate_pfn + zone->spanned_pages;
541
cc->free_pfn &= ~(pageblock_nr_pages-1);
542
543
migrate_prep_local();
544
545
while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
546
unsigned long nr_migrate, nr_remaining;
547
int err;
548
549
switch (isolate_migratepages(zone, cc)) {
550
case ISOLATE_ABORT:
551
ret = COMPACT_PARTIAL;
552
goto out;
553
case ISOLATE_NONE:
554
continue;
555
case ISOLATE_SUCCESS:
556
;
557
}
558
559
nr_migrate = cc->nr_migratepages;
560
err = migrate_pages(&cc->migratepages, compaction_alloc,
561
(unsigned long)cc, false,
562
cc->sync);
563
update_nr_listpages(cc);
564
nr_remaining = cc->nr_migratepages;
565
566
count_vm_event(COMPACTBLOCKS);
567
count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
568
if (nr_remaining)
569
count_vm_events(COMPACTPAGEFAILED, nr_remaining);
570
trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
571
nr_remaining);
572
573
/* Release LRU pages not migrated */
574
if (err) {
575
putback_lru_pages(&cc->migratepages);
576
cc->nr_migratepages = 0;
577
}
578
579
}
580
581
out:
582
/* Release free pages and check accounting */
583
cc->nr_freepages -= release_freepages(&cc->freepages);
584
VM_BUG_ON(cc->nr_freepages != 0);
585
586
return ret;
587
}
588
589
unsigned long compact_zone_order(struct zone *zone,
590
int order, gfp_t gfp_mask,
591
bool sync)
592
{
593
struct compact_control cc = {
594
.nr_freepages = 0,
595
.nr_migratepages = 0,
596
.order = order,
597
.migratetype = allocflags_to_migratetype(gfp_mask),
598
.zone = zone,
599
.sync = sync,
600
};
601
INIT_LIST_HEAD(&cc.freepages);
602
INIT_LIST_HEAD(&cc.migratepages);
603
604
return compact_zone(zone, &cc);
605
}
606
607
int sysctl_extfrag_threshold = 500;
608
609
/**
610
* try_to_compact_pages - Direct compact to satisfy a high-order allocation
611
* @zonelist: The zonelist used for the current allocation
612
* @order: The order of the current allocation
613
* @gfp_mask: The GFP mask of the current allocation
614
* @nodemask: The allowed nodes to allocate from
615
* @sync: Whether migration is synchronous or not
616
*
617
* This is the main entry point for direct page compaction.
618
*/
619
unsigned long try_to_compact_pages(struct zonelist *zonelist,
620
int order, gfp_t gfp_mask, nodemask_t *nodemask,
621
bool sync)
622
{
623
enum zone_type high_zoneidx = gfp_zone(gfp_mask);
624
int may_enter_fs = gfp_mask & __GFP_FS;
625
int may_perform_io = gfp_mask & __GFP_IO;
626
struct zoneref *z;
627
struct zone *zone;
628
int rc = COMPACT_SKIPPED;
629
630
/*
631
* Check whether it is worth even starting compaction. The order check is
632
* made because an assumption is made that the page allocator can satisfy
633
* the "cheaper" orders without taking special steps
634
*/
635
if (!order || !may_enter_fs || !may_perform_io)
636
return rc;
637
638
count_vm_event(COMPACTSTALL);
639
640
/* Compact each zone in the list */
641
for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
642
nodemask) {
643
int status;
644
645
status = compact_zone_order(zone, order, gfp_mask, sync);
646
rc = max(status, rc);
647
648
/* If a normal allocation would succeed, stop compacting */
649
if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
650
break;
651
}
652
653
return rc;
654
}
655
656
657
/* Compact all zones within a node */
658
static int compact_node(int nid)
659
{
660
int zoneid;
661
pg_data_t *pgdat;
662
struct zone *zone;
663
664
if (nid < 0 || nid >= nr_node_ids || !node_online(nid))
665
return -EINVAL;
666
pgdat = NODE_DATA(nid);
667
668
/* Flush pending updates to the LRU lists */
669
lru_add_drain_all();
670
671
for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
672
struct compact_control cc = {
673
.nr_freepages = 0,
674
.nr_migratepages = 0,
675
.order = -1,
676
};
677
678
zone = &pgdat->node_zones[zoneid];
679
if (!populated_zone(zone))
680
continue;
681
682
cc.zone = zone;
683
INIT_LIST_HEAD(&cc.freepages);
684
INIT_LIST_HEAD(&cc.migratepages);
685
686
compact_zone(zone, &cc);
687
688
VM_BUG_ON(!list_empty(&cc.freepages));
689
VM_BUG_ON(!list_empty(&cc.migratepages));
690
}
691
692
return 0;
693
}
694
695
/* Compact all nodes in the system */
696
static int compact_nodes(void)
697
{
698
int nid;
699
700
for_each_online_node(nid)
701
compact_node(nid);
702
703
return COMPACT_COMPLETE;
704
}
705
706
/* The written value is actually unused, all memory is compacted */
707
int sysctl_compact_memory;
708
709
/* This is the entry point for compacting all nodes via /proc/sys/vm */
710
int sysctl_compaction_handler(struct ctl_table *table, int write,
711
void __user *buffer, size_t *length, loff_t *ppos)
712
{
713
if (write)
714
return compact_nodes();
715
716
return 0;
717
}
718
719
int sysctl_extfrag_handler(struct ctl_table *table, int write,
720
void __user *buffer, size_t *length, loff_t *ppos)
721
{
722
proc_dointvec_minmax(table, write, buffer, length, ppos);
723
724
return 0;
725
}
726
727
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
728
ssize_t sysfs_compact_node(struct sys_device *dev,
729
struct sysdev_attribute *attr,
730
const char *buf, size_t count)
731
{
732
compact_node(dev->id);
733
734
return count;
735
}
736
static SYSDEV_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
737
738
int compaction_register_node(struct node *node)
739
{
740
return sysdev_create_file(&node->sysdev, &attr_compact);
741
}
742
743
void compaction_unregister_node(struct node *node)
744
{
745
return sysdev_remove_file(&node->sysdev, &attr_compact);
746
}
747
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
748
749