#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/poison.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/wait.h>
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
#define DMAPOOL_DEBUG 1
#endif
struct dma_pool {
struct list_head page_list;
spinlock_t lock;
size_t size;
struct device *dev;
size_t allocation;
size_t boundary;
char name[32];
wait_queue_head_t waitq;
struct list_head pools;
};
struct dma_page {
struct list_head page_list;
void *vaddr;
dma_addr_t dma;
unsigned int in_use;
unsigned int offset;
};
#define POOL_TIMEOUT_JIFFIES ((100 * HZ) / 1000)
static DEFINE_MUTEX(pools_lock);
static ssize_t
show_pools(struct device *dev, struct device_attribute *attr, char *buf)
{
unsigned temp;
unsigned size;
char *next;
struct dma_page *page;
struct dma_pool *pool;
next = buf;
size = PAGE_SIZE;
temp = scnprintf(next, size, "poolinfo - 0.1\n");
size -= temp;
next += temp;
mutex_lock(&pools_lock);
list_for_each_entry(pool, &dev->dma_pools, pools) {
unsigned pages = 0;
unsigned blocks = 0;
spin_lock_irq(&pool->lock);
list_for_each_entry(page, &pool->page_list, page_list) {
pages++;
blocks += page->in_use;
}
spin_unlock_irq(&pool->lock);
temp = scnprintf(next, size, "%-16s %4u %4Zu %4Zu %2u\n",
pool->name, blocks,
pages * (pool->allocation / pool->size),
pool->size, pages);
size -= temp;
next += temp;
}
mutex_unlock(&pools_lock);
return PAGE_SIZE - size;
}
static DEVICE_ATTR(pools, S_IRUGO, show_pools, NULL);
struct dma_pool *dma_pool_create(const char *name, struct device *dev,
size_t size, size_t align, size_t boundary)
{
struct dma_pool *retval;
size_t allocation;
if (align == 0) {
align = 1;
} else if (align & (align - 1)) {
return NULL;
}
if (size == 0) {
return NULL;
} else if (size < 4) {
size = 4;
}
if ((size % align) != 0)
size = ALIGN(size, align);
allocation = max_t(size_t, size, PAGE_SIZE);
if (!boundary) {
boundary = allocation;
} else if ((boundary < size) || (boundary & (boundary - 1))) {
return NULL;
}
retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev));
if (!retval)
return retval;
strlcpy(retval->name, name, sizeof(retval->name));
retval->dev = dev;
INIT_LIST_HEAD(&retval->page_list);
spin_lock_init(&retval->lock);
retval->size = size;
retval->boundary = boundary;
retval->allocation = allocation;
init_waitqueue_head(&retval->waitq);
if (dev) {
int ret;
mutex_lock(&pools_lock);
if (list_empty(&dev->dma_pools))
ret = device_create_file(dev, &dev_attr_pools);
else
ret = 0;
if (!ret)
list_add(&retval->pools, &dev->dma_pools);
else {
kfree(retval);
retval = NULL;
}
mutex_unlock(&pools_lock);
} else
INIT_LIST_HEAD(&retval->pools);
return retval;
}
EXPORT_SYMBOL(dma_pool_create);
static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
{
unsigned int offset = 0;
unsigned int next_boundary = pool->boundary;
do {
unsigned int next = offset + pool->size;
if (unlikely((next + pool->size) >= next_boundary)) {
next = next_boundary;
next_boundary += pool->boundary;
}
*(int *)(page->vaddr + offset) = next;
offset = next;
} while (offset < pool->allocation);
}
static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
{
struct dma_page *page;
page = kmalloc(sizeof(*page), mem_flags);
if (!page)
return NULL;
page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
&page->dma, mem_flags);
if (page->vaddr) {
#ifdef DMAPOOL_DEBUG
memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
#endif
pool_initialise_page(pool, page);
list_add(&page->page_list, &pool->page_list);
page->in_use = 0;
page->offset = 0;
} else {
kfree(page);
page = NULL;
}
return page;
}
static inline int is_page_busy(struct dma_page *page)
{
return page->in_use != 0;
}
static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
{
dma_addr_t dma = page->dma;
#ifdef DMAPOOL_DEBUG
memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
#endif
dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
list_del(&page->page_list);
kfree(page);
}
void dma_pool_destroy(struct dma_pool *pool)
{
mutex_lock(&pools_lock);
list_del(&pool->pools);
if (pool->dev && list_empty(&pool->dev->dma_pools))
device_remove_file(pool->dev, &dev_attr_pools);
mutex_unlock(&pools_lock);
while (!list_empty(&pool->page_list)) {
struct dma_page *page;
page = list_entry(pool->page_list.next,
struct dma_page, page_list);
if (is_page_busy(page)) {
if (pool->dev)
dev_err(pool->dev,
"dma_pool_destroy %s, %p busy\n",
pool->name, page->vaddr);
else
printk(KERN_ERR
"dma_pool_destroy %s, %p busy\n",
pool->name, page->vaddr);
list_del(&page->page_list);
kfree(page);
} else
pool_free_page(pool, page);
}
kfree(pool);
}
EXPORT_SYMBOL(dma_pool_destroy);
void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
dma_addr_t *handle)
{
unsigned long flags;
struct dma_page *page;
size_t offset;
void *retval;
might_sleep_if(mem_flags & __GFP_WAIT);
spin_lock_irqsave(&pool->lock, flags);
restart:
list_for_each_entry(page, &pool->page_list, page_list) {
if (page->offset < pool->allocation)
goto ready;
}
page = pool_alloc_page(pool, GFP_ATOMIC);
if (!page) {
if (mem_flags & __GFP_WAIT) {
DECLARE_WAITQUEUE(wait, current);
__set_current_state(TASK_UNINTERRUPTIBLE);
__add_wait_queue(&pool->waitq, &wait);
spin_unlock_irqrestore(&pool->lock, flags);
schedule_timeout(POOL_TIMEOUT_JIFFIES);
spin_lock_irqsave(&pool->lock, flags);
__remove_wait_queue(&pool->waitq, &wait);
goto restart;
}
retval = NULL;
goto done;
}
ready:
page->in_use++;
offset = page->offset;
page->offset = *(int *)(page->vaddr + offset);
retval = offset + page->vaddr;
*handle = offset + page->dma;
#ifdef DMAPOOL_DEBUG
memset(retval, POOL_POISON_ALLOCATED, pool->size);
#endif
done:
spin_unlock_irqrestore(&pool->lock, flags);
return retval;
}
EXPORT_SYMBOL(dma_pool_alloc);
static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
{
struct dma_page *page;
list_for_each_entry(page, &pool->page_list, page_list) {
if (dma < page->dma)
continue;
if (dma < (page->dma + pool->allocation))
return page;
}
return NULL;
}
void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
{
struct dma_page *page;
unsigned long flags;
unsigned int offset;
spin_lock_irqsave(&pool->lock, flags);
page = pool_find_page(pool, dma);
if (!page) {
spin_unlock_irqrestore(&pool->lock, flags);
if (pool->dev)
dev_err(pool->dev,
"dma_pool_free %s, %p/%lx (bad dma)\n",
pool->name, vaddr, (unsigned long)dma);
else
printk(KERN_ERR "dma_pool_free %s, %p/%lx (bad dma)\n",
pool->name, vaddr, (unsigned long)dma);
return;
}
offset = vaddr - page->vaddr;
#ifdef DMAPOOL_DEBUG
if ((dma - page->dma) != offset) {
spin_unlock_irqrestore(&pool->lock, flags);
if (pool->dev)
dev_err(pool->dev,
"dma_pool_free %s, %p (bad vaddr)/%Lx\n",
pool->name, vaddr, (unsigned long long)dma);
else
printk(KERN_ERR
"dma_pool_free %s, %p (bad vaddr)/%Lx\n",
pool->name, vaddr, (unsigned long long)dma);
return;
}
{
unsigned int chain = page->offset;
while (chain < pool->allocation) {
if (chain != offset) {
chain = *(int *)(page->vaddr + chain);
continue;
}
spin_unlock_irqrestore(&pool->lock, flags);
if (pool->dev)
dev_err(pool->dev, "dma_pool_free %s, dma %Lx "
"already free\n", pool->name,
(unsigned long long)dma);
else
printk(KERN_ERR "dma_pool_free %s, dma %Lx "
"already free\n", pool->name,
(unsigned long long)dma);
return;
}
}
memset(vaddr, POOL_POISON_FREED, pool->size);
#endif
page->in_use--;
*(int *)vaddr = page->offset;
page->offset = offset;
if (waitqueue_active(&pool->waitq))
wake_up_locked(&pool->waitq);
spin_unlock_irqrestore(&pool->lock, flags);
}
EXPORT_SYMBOL(dma_pool_free);
static void dmam_pool_release(struct device *dev, void *res)
{
struct dma_pool *pool = *(struct dma_pool **)res;
dma_pool_destroy(pool);
}
static int dmam_pool_match(struct device *dev, void *res, void *match_data)
{
return *(struct dma_pool **)res == match_data;
}
struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
size_t size, size_t align, size_t allocation)
{
struct dma_pool **ptr, *pool;
ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
if (!ptr)
return NULL;
pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
if (pool)
devres_add(dev, ptr);
else
devres_free(ptr);
return pool;
}
EXPORT_SYMBOL(dmam_pool_create);
void dmam_pool_destroy(struct dma_pool *pool)
{
struct device *dev = pool->dev;
dma_pool_destroy(pool);
WARN_ON(devres_destroy(dev, dmam_pool_release, dmam_pool_match, pool));
}
EXPORT_SYMBOL(dmam_pool_destroy);