Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/mm/kmemleak.c
10814 views
1
/*
2
* mm/kmemleak.c
3
*
4
* Copyright (C) 2008 ARM Limited
5
* Written by Catalin Marinas <[email protected]>
6
*
7
* This program is free software; you can redistribute it and/or modify
8
* it under the terms of the GNU General Public License version 2 as
9
* published by the Free Software Foundation.
10
*
11
* This program is distributed in the hope that it will be useful,
12
* but WITHOUT ANY WARRANTY; without even the implied warranty of
13
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14
* GNU General Public License for more details.
15
*
16
* You should have received a copy of the GNU General Public License
17
* along with this program; if not, write to the Free Software
18
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19
*
20
*
21
* For more information on the algorithm and kmemleak usage, please see
22
* Documentation/kmemleak.txt.
23
*
24
* Notes on locking
25
* ----------------
26
*
27
* The following locks and mutexes are used by kmemleak:
28
*
29
* - kmemleak_lock (rwlock): protects the object_list modifications and
30
* accesses to the object_tree_root. The object_list is the main list
31
* holding the metadata (struct kmemleak_object) for the allocated memory
32
* blocks. The object_tree_root is a priority search tree used to look-up
33
* metadata based on a pointer to the corresponding memory block. The
34
* kmemleak_object structures are added to the object_list and
35
* object_tree_root in the create_object() function called from the
36
* kmemleak_alloc() callback and removed in delete_object() called from the
37
* kmemleak_free() callback
38
* - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39
* the metadata (e.g. count) are protected by this lock. Note that some
40
* members of this structure may be protected by other means (atomic or
41
* kmemleak_lock). This lock is also held when scanning the corresponding
42
* memory block to avoid the kernel freeing it via the kmemleak_free()
43
* callback. This is less heavyweight than holding a global lock like
44
* kmemleak_lock during scanning
45
* - scan_mutex (mutex): ensures that only one thread may scan the memory for
46
* unreferenced objects at a time. The gray_list contains the objects which
47
* are already referenced or marked as false positives and need to be
48
* scanned. This list is only modified during a scanning episode when the
49
* scan_mutex is held. At the end of a scan, the gray_list is always empty.
50
* Note that the kmemleak_object.use_count is incremented when an object is
51
* added to the gray_list and therefore cannot be freed. This mutex also
52
* prevents multiple users of the "kmemleak" debugfs file together with
53
* modifications to the memory scanning parameters including the scan_thread
54
* pointer
55
*
56
* The kmemleak_object structures have a use_count incremented or decremented
57
* using the get_object()/put_object() functions. When the use_count becomes
58
* 0, this count can no longer be incremented and put_object() schedules the
59
* kmemleak_object freeing via an RCU callback. All calls to the get_object()
60
* function must be protected by rcu_read_lock() to avoid accessing a freed
61
* structure.
62
*/
63
64
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65
66
#include <linux/init.h>
67
#include <linux/kernel.h>
68
#include <linux/list.h>
69
#include <linux/sched.h>
70
#include <linux/jiffies.h>
71
#include <linux/delay.h>
72
#include <linux/module.h>
73
#include <linux/kthread.h>
74
#include <linux/prio_tree.h>
75
#include <linux/fs.h>
76
#include <linux/debugfs.h>
77
#include <linux/seq_file.h>
78
#include <linux/cpumask.h>
79
#include <linux/spinlock.h>
80
#include <linux/mutex.h>
81
#include <linux/rcupdate.h>
82
#include <linux/stacktrace.h>
83
#include <linux/cache.h>
84
#include <linux/percpu.h>
85
#include <linux/hardirq.h>
86
#include <linux/mmzone.h>
87
#include <linux/slab.h>
88
#include <linux/thread_info.h>
89
#include <linux/err.h>
90
#include <linux/uaccess.h>
91
#include <linux/string.h>
92
#include <linux/nodemask.h>
93
#include <linux/mm.h>
94
#include <linux/workqueue.h>
95
#include <linux/crc32.h>
96
97
#include <asm/sections.h>
98
#include <asm/processor.h>
99
#include <asm/atomic.h>
100
101
#include <linux/kmemcheck.h>
102
#include <linux/kmemleak.h>
103
104
/*
105
* Kmemleak configuration and common defines.
106
*/
107
#define MAX_TRACE 16 /* stack trace length */
108
#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
109
#define SECS_FIRST_SCAN 60 /* delay before the first scan */
110
#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
111
#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
112
113
#define BYTES_PER_POINTER sizeof(void *)
114
115
/* GFP bitmask for kmemleak internal allocations */
116
#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
117
__GFP_NORETRY | __GFP_NOMEMALLOC | \
118
__GFP_NOWARN)
119
120
/* scanning area inside a memory block */
121
struct kmemleak_scan_area {
122
struct hlist_node node;
123
unsigned long start;
124
size_t size;
125
};
126
127
#define KMEMLEAK_GREY 0
128
#define KMEMLEAK_BLACK -1
129
130
/*
131
* Structure holding the metadata for each allocated memory block.
132
* Modifications to such objects should be made while holding the
133
* object->lock. Insertions or deletions from object_list, gray_list or
134
* tree_node are already protected by the corresponding locks or mutex (see
135
* the notes on locking above). These objects are reference-counted
136
* (use_count) and freed using the RCU mechanism.
137
*/
138
struct kmemleak_object {
139
spinlock_t lock;
140
unsigned long flags; /* object status flags */
141
struct list_head object_list;
142
struct list_head gray_list;
143
struct prio_tree_node tree_node;
144
struct rcu_head rcu; /* object_list lockless traversal */
145
/* object usage count; object freed when use_count == 0 */
146
atomic_t use_count;
147
unsigned long pointer;
148
size_t size;
149
/* minimum number of a pointers found before it is considered leak */
150
int min_count;
151
/* the total number of pointers found pointing to this object */
152
int count;
153
/* checksum for detecting modified objects */
154
u32 checksum;
155
/* memory ranges to be scanned inside an object (empty for all) */
156
struct hlist_head area_list;
157
unsigned long trace[MAX_TRACE];
158
unsigned int trace_len;
159
unsigned long jiffies; /* creation timestamp */
160
pid_t pid; /* pid of the current task */
161
char comm[TASK_COMM_LEN]; /* executable name */
162
};
163
164
/* flag representing the memory block allocation status */
165
#define OBJECT_ALLOCATED (1 << 0)
166
/* flag set after the first reporting of an unreference object */
167
#define OBJECT_REPORTED (1 << 1)
168
/* flag set to not scan the object */
169
#define OBJECT_NO_SCAN (1 << 2)
170
171
/* number of bytes to print per line; must be 16 or 32 */
172
#define HEX_ROW_SIZE 16
173
/* number of bytes to print at a time (1, 2, 4, 8) */
174
#define HEX_GROUP_SIZE 1
175
/* include ASCII after the hex output */
176
#define HEX_ASCII 1
177
/* max number of lines to be printed */
178
#define HEX_MAX_LINES 2
179
180
/* the list of all allocated objects */
181
static LIST_HEAD(object_list);
182
/* the list of gray-colored objects (see color_gray comment below) */
183
static LIST_HEAD(gray_list);
184
/* prio search tree for object boundaries */
185
static struct prio_tree_root object_tree_root;
186
/* rw_lock protecting the access to object_list and prio_tree_root */
187
static DEFINE_RWLOCK(kmemleak_lock);
188
189
/* allocation caches for kmemleak internal data */
190
static struct kmem_cache *object_cache;
191
static struct kmem_cache *scan_area_cache;
192
193
/* set if tracing memory operations is enabled */
194
static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
195
/* set in the late_initcall if there were no errors */
196
static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
197
/* enables or disables early logging of the memory operations */
198
static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
199
/* set if a fata kmemleak error has occurred */
200
static atomic_t kmemleak_error = ATOMIC_INIT(0);
201
202
/* minimum and maximum address that may be valid pointers */
203
static unsigned long min_addr = ULONG_MAX;
204
static unsigned long max_addr;
205
206
static struct task_struct *scan_thread;
207
/* used to avoid reporting of recently allocated objects */
208
static unsigned long jiffies_min_age;
209
static unsigned long jiffies_last_scan;
210
/* delay between automatic memory scannings */
211
static signed long jiffies_scan_wait;
212
/* enables or disables the task stacks scanning */
213
static int kmemleak_stack_scan = 1;
214
/* protects the memory scanning, parameters and debug/kmemleak file access */
215
static DEFINE_MUTEX(scan_mutex);
216
/* setting kmemleak=on, will set this var, skipping the disable */
217
static int kmemleak_skip_disable;
218
219
220
/*
221
* Early object allocation/freeing logging. Kmemleak is initialized after the
222
* kernel allocator. However, both the kernel allocator and kmemleak may
223
* allocate memory blocks which need to be tracked. Kmemleak defines an
224
* arbitrary buffer to hold the allocation/freeing information before it is
225
* fully initialized.
226
*/
227
228
/* kmemleak operation type for early logging */
229
enum {
230
KMEMLEAK_ALLOC,
231
KMEMLEAK_FREE,
232
KMEMLEAK_FREE_PART,
233
KMEMLEAK_NOT_LEAK,
234
KMEMLEAK_IGNORE,
235
KMEMLEAK_SCAN_AREA,
236
KMEMLEAK_NO_SCAN
237
};
238
239
/*
240
* Structure holding the information passed to kmemleak callbacks during the
241
* early logging.
242
*/
243
struct early_log {
244
int op_type; /* kmemleak operation type */
245
const void *ptr; /* allocated/freed memory block */
246
size_t size; /* memory block size */
247
int min_count; /* minimum reference count */
248
unsigned long trace[MAX_TRACE]; /* stack trace */
249
unsigned int trace_len; /* stack trace length */
250
};
251
252
/* early logging buffer and current position */
253
static struct early_log
254
early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
255
static int crt_early_log __initdata;
256
257
static void kmemleak_disable(void);
258
259
/*
260
* Print a warning and dump the stack trace.
261
*/
262
#define kmemleak_warn(x...) do { \
263
pr_warning(x); \
264
dump_stack(); \
265
} while (0)
266
267
/*
268
* Macro invoked when a serious kmemleak condition occurred and cannot be
269
* recovered from. Kmemleak will be disabled and further allocation/freeing
270
* tracing no longer available.
271
*/
272
#define kmemleak_stop(x...) do { \
273
kmemleak_warn(x); \
274
kmemleak_disable(); \
275
} while (0)
276
277
/*
278
* Printing of the objects hex dump to the seq file. The number of lines to be
279
* printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
280
* actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
281
* with the object->lock held.
282
*/
283
static void hex_dump_object(struct seq_file *seq,
284
struct kmemleak_object *object)
285
{
286
const u8 *ptr = (const u8 *)object->pointer;
287
int i, len, remaining;
288
unsigned char linebuf[HEX_ROW_SIZE * 5];
289
290
/* limit the number of lines to HEX_MAX_LINES */
291
remaining = len =
292
min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
293
294
seq_printf(seq, " hex dump (first %d bytes):\n", len);
295
for (i = 0; i < len; i += HEX_ROW_SIZE) {
296
int linelen = min(remaining, HEX_ROW_SIZE);
297
298
remaining -= HEX_ROW_SIZE;
299
hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
300
HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
301
HEX_ASCII);
302
seq_printf(seq, " %s\n", linebuf);
303
}
304
}
305
306
/*
307
* Object colors, encoded with count and min_count:
308
* - white - orphan object, not enough references to it (count < min_count)
309
* - gray - not orphan, not marked as false positive (min_count == 0) or
310
* sufficient references to it (count >= min_count)
311
* - black - ignore, it doesn't contain references (e.g. text section)
312
* (min_count == -1). No function defined for this color.
313
* Newly created objects don't have any color assigned (object->count == -1)
314
* before the next memory scan when they become white.
315
*/
316
static bool color_white(const struct kmemleak_object *object)
317
{
318
return object->count != KMEMLEAK_BLACK &&
319
object->count < object->min_count;
320
}
321
322
static bool color_gray(const struct kmemleak_object *object)
323
{
324
return object->min_count != KMEMLEAK_BLACK &&
325
object->count >= object->min_count;
326
}
327
328
/*
329
* Objects are considered unreferenced only if their color is white, they have
330
* not be deleted and have a minimum age to avoid false positives caused by
331
* pointers temporarily stored in CPU registers.
332
*/
333
static bool unreferenced_object(struct kmemleak_object *object)
334
{
335
return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
336
time_before_eq(object->jiffies + jiffies_min_age,
337
jiffies_last_scan);
338
}
339
340
/*
341
* Printing of the unreferenced objects information to the seq file. The
342
* print_unreferenced function must be called with the object->lock held.
343
*/
344
static void print_unreferenced(struct seq_file *seq,
345
struct kmemleak_object *object)
346
{
347
int i;
348
unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
349
350
seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
351
object->pointer, object->size);
352
seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
353
object->comm, object->pid, object->jiffies,
354
msecs_age / 1000, msecs_age % 1000);
355
hex_dump_object(seq, object);
356
seq_printf(seq, " backtrace:\n");
357
358
for (i = 0; i < object->trace_len; i++) {
359
void *ptr = (void *)object->trace[i];
360
seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
361
}
362
}
363
364
/*
365
* Print the kmemleak_object information. This function is used mainly for
366
* debugging special cases when kmemleak operations. It must be called with
367
* the object->lock held.
368
*/
369
static void dump_object_info(struct kmemleak_object *object)
370
{
371
struct stack_trace trace;
372
373
trace.nr_entries = object->trace_len;
374
trace.entries = object->trace;
375
376
pr_notice("Object 0x%08lx (size %zu):\n",
377
object->tree_node.start, object->size);
378
pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
379
object->comm, object->pid, object->jiffies);
380
pr_notice(" min_count = %d\n", object->min_count);
381
pr_notice(" count = %d\n", object->count);
382
pr_notice(" flags = 0x%lx\n", object->flags);
383
pr_notice(" checksum = %d\n", object->checksum);
384
pr_notice(" backtrace:\n");
385
print_stack_trace(&trace, 4);
386
}
387
388
/*
389
* Look-up a memory block metadata (kmemleak_object) in the priority search
390
* tree based on a pointer value. If alias is 0, only values pointing to the
391
* beginning of the memory block are allowed. The kmemleak_lock must be held
392
* when calling this function.
393
*/
394
static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
395
{
396
struct prio_tree_node *node;
397
struct prio_tree_iter iter;
398
struct kmemleak_object *object;
399
400
prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
401
node = prio_tree_next(&iter);
402
if (node) {
403
object = prio_tree_entry(node, struct kmemleak_object,
404
tree_node);
405
if (!alias && object->pointer != ptr) {
406
pr_warning("Found object by alias at 0x%08lx\n", ptr);
407
dump_stack();
408
dump_object_info(object);
409
object = NULL;
410
}
411
} else
412
object = NULL;
413
414
return object;
415
}
416
417
/*
418
* Increment the object use_count. Return 1 if successful or 0 otherwise. Note
419
* that once an object's use_count reached 0, the RCU freeing was already
420
* registered and the object should no longer be used. This function must be
421
* called under the protection of rcu_read_lock().
422
*/
423
static int get_object(struct kmemleak_object *object)
424
{
425
return atomic_inc_not_zero(&object->use_count);
426
}
427
428
/*
429
* RCU callback to free a kmemleak_object.
430
*/
431
static void free_object_rcu(struct rcu_head *rcu)
432
{
433
struct hlist_node *elem, *tmp;
434
struct kmemleak_scan_area *area;
435
struct kmemleak_object *object =
436
container_of(rcu, struct kmemleak_object, rcu);
437
438
/*
439
* Once use_count is 0 (guaranteed by put_object), there is no other
440
* code accessing this object, hence no need for locking.
441
*/
442
hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
443
hlist_del(elem);
444
kmem_cache_free(scan_area_cache, area);
445
}
446
kmem_cache_free(object_cache, object);
447
}
448
449
/*
450
* Decrement the object use_count. Once the count is 0, free the object using
451
* an RCU callback. Since put_object() may be called via the kmemleak_free() ->
452
* delete_object() path, the delayed RCU freeing ensures that there is no
453
* recursive call to the kernel allocator. Lock-less RCU object_list traversal
454
* is also possible.
455
*/
456
static void put_object(struct kmemleak_object *object)
457
{
458
if (!atomic_dec_and_test(&object->use_count))
459
return;
460
461
/* should only get here after delete_object was called */
462
WARN_ON(object->flags & OBJECT_ALLOCATED);
463
464
call_rcu(&object->rcu, free_object_rcu);
465
}
466
467
/*
468
* Look up an object in the prio search tree and increase its use_count.
469
*/
470
static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
471
{
472
unsigned long flags;
473
struct kmemleak_object *object = NULL;
474
475
rcu_read_lock();
476
read_lock_irqsave(&kmemleak_lock, flags);
477
if (ptr >= min_addr && ptr < max_addr)
478
object = lookup_object(ptr, alias);
479
read_unlock_irqrestore(&kmemleak_lock, flags);
480
481
/* check whether the object is still available */
482
if (object && !get_object(object))
483
object = NULL;
484
rcu_read_unlock();
485
486
return object;
487
}
488
489
/*
490
* Save stack trace to the given array of MAX_TRACE size.
491
*/
492
static int __save_stack_trace(unsigned long *trace)
493
{
494
struct stack_trace stack_trace;
495
496
stack_trace.max_entries = MAX_TRACE;
497
stack_trace.nr_entries = 0;
498
stack_trace.entries = trace;
499
stack_trace.skip = 2;
500
save_stack_trace(&stack_trace);
501
502
return stack_trace.nr_entries;
503
}
504
505
/*
506
* Create the metadata (struct kmemleak_object) corresponding to an allocated
507
* memory block and add it to the object_list and object_tree_root.
508
*/
509
static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
510
int min_count, gfp_t gfp)
511
{
512
unsigned long flags;
513
struct kmemleak_object *object;
514
struct prio_tree_node *node;
515
516
object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
517
if (!object) {
518
pr_warning("Cannot allocate a kmemleak_object structure\n");
519
kmemleak_disable();
520
return NULL;
521
}
522
523
INIT_LIST_HEAD(&object->object_list);
524
INIT_LIST_HEAD(&object->gray_list);
525
INIT_HLIST_HEAD(&object->area_list);
526
spin_lock_init(&object->lock);
527
atomic_set(&object->use_count, 1);
528
object->flags = OBJECT_ALLOCATED;
529
object->pointer = ptr;
530
object->size = size;
531
object->min_count = min_count;
532
object->count = 0; /* white color initially */
533
object->jiffies = jiffies;
534
object->checksum = 0;
535
536
/* task information */
537
if (in_irq()) {
538
object->pid = 0;
539
strncpy(object->comm, "hardirq", sizeof(object->comm));
540
} else if (in_softirq()) {
541
object->pid = 0;
542
strncpy(object->comm, "softirq", sizeof(object->comm));
543
} else {
544
object->pid = current->pid;
545
/*
546
* There is a small chance of a race with set_task_comm(),
547
* however using get_task_comm() here may cause locking
548
* dependency issues with current->alloc_lock. In the worst
549
* case, the command line is not correct.
550
*/
551
strncpy(object->comm, current->comm, sizeof(object->comm));
552
}
553
554
/* kernel backtrace */
555
object->trace_len = __save_stack_trace(object->trace);
556
557
INIT_PRIO_TREE_NODE(&object->tree_node);
558
object->tree_node.start = ptr;
559
object->tree_node.last = ptr + size - 1;
560
561
write_lock_irqsave(&kmemleak_lock, flags);
562
563
min_addr = min(min_addr, ptr);
564
max_addr = max(max_addr, ptr + size);
565
node = prio_tree_insert(&object_tree_root, &object->tree_node);
566
/*
567
* The code calling the kernel does not yet have the pointer to the
568
* memory block to be able to free it. However, we still hold the
569
* kmemleak_lock here in case parts of the kernel started freeing
570
* random memory blocks.
571
*/
572
if (node != &object->tree_node) {
573
kmemleak_stop("Cannot insert 0x%lx into the object search tree "
574
"(already existing)\n", ptr);
575
object = lookup_object(ptr, 1);
576
spin_lock(&object->lock);
577
dump_object_info(object);
578
spin_unlock(&object->lock);
579
580
goto out;
581
}
582
list_add_tail_rcu(&object->object_list, &object_list);
583
out:
584
write_unlock_irqrestore(&kmemleak_lock, flags);
585
return object;
586
}
587
588
/*
589
* Remove the metadata (struct kmemleak_object) for a memory block from the
590
* object_list and object_tree_root and decrement its use_count.
591
*/
592
static void __delete_object(struct kmemleak_object *object)
593
{
594
unsigned long flags;
595
596
write_lock_irqsave(&kmemleak_lock, flags);
597
prio_tree_remove(&object_tree_root, &object->tree_node);
598
list_del_rcu(&object->object_list);
599
write_unlock_irqrestore(&kmemleak_lock, flags);
600
601
WARN_ON(!(object->flags & OBJECT_ALLOCATED));
602
WARN_ON(atomic_read(&object->use_count) < 2);
603
604
/*
605
* Locking here also ensures that the corresponding memory block
606
* cannot be freed when it is being scanned.
607
*/
608
spin_lock_irqsave(&object->lock, flags);
609
object->flags &= ~OBJECT_ALLOCATED;
610
spin_unlock_irqrestore(&object->lock, flags);
611
put_object(object);
612
}
613
614
/*
615
* Look up the metadata (struct kmemleak_object) corresponding to ptr and
616
* delete it.
617
*/
618
static void delete_object_full(unsigned long ptr)
619
{
620
struct kmemleak_object *object;
621
622
object = find_and_get_object(ptr, 0);
623
if (!object) {
624
#ifdef DEBUG
625
kmemleak_warn("Freeing unknown object at 0x%08lx\n",
626
ptr);
627
#endif
628
return;
629
}
630
__delete_object(object);
631
put_object(object);
632
}
633
634
/*
635
* Look up the metadata (struct kmemleak_object) corresponding to ptr and
636
* delete it. If the memory block is partially freed, the function may create
637
* additional metadata for the remaining parts of the block.
638
*/
639
static void delete_object_part(unsigned long ptr, size_t size)
640
{
641
struct kmemleak_object *object;
642
unsigned long start, end;
643
644
object = find_and_get_object(ptr, 1);
645
if (!object) {
646
#ifdef DEBUG
647
kmemleak_warn("Partially freeing unknown object at 0x%08lx "
648
"(size %zu)\n", ptr, size);
649
#endif
650
return;
651
}
652
__delete_object(object);
653
654
/*
655
* Create one or two objects that may result from the memory block
656
* split. Note that partial freeing is only done by free_bootmem() and
657
* this happens before kmemleak_init() is called. The path below is
658
* only executed during early log recording in kmemleak_init(), so
659
* GFP_KERNEL is enough.
660
*/
661
start = object->pointer;
662
end = object->pointer + object->size;
663
if (ptr > start)
664
create_object(start, ptr - start, object->min_count,
665
GFP_KERNEL);
666
if (ptr + size < end)
667
create_object(ptr + size, end - ptr - size, object->min_count,
668
GFP_KERNEL);
669
670
put_object(object);
671
}
672
673
static void __paint_it(struct kmemleak_object *object, int color)
674
{
675
object->min_count = color;
676
if (color == KMEMLEAK_BLACK)
677
object->flags |= OBJECT_NO_SCAN;
678
}
679
680
static void paint_it(struct kmemleak_object *object, int color)
681
{
682
unsigned long flags;
683
684
spin_lock_irqsave(&object->lock, flags);
685
__paint_it(object, color);
686
spin_unlock_irqrestore(&object->lock, flags);
687
}
688
689
static void paint_ptr(unsigned long ptr, int color)
690
{
691
struct kmemleak_object *object;
692
693
object = find_and_get_object(ptr, 0);
694
if (!object) {
695
kmemleak_warn("Trying to color unknown object "
696
"at 0x%08lx as %s\n", ptr,
697
(color == KMEMLEAK_GREY) ? "Grey" :
698
(color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
699
return;
700
}
701
paint_it(object, color);
702
put_object(object);
703
}
704
705
/*
706
* Mark an object permanently as gray-colored so that it can no longer be
707
* reported as a leak. This is used in general to mark a false positive.
708
*/
709
static void make_gray_object(unsigned long ptr)
710
{
711
paint_ptr(ptr, KMEMLEAK_GREY);
712
}
713
714
/*
715
* Mark the object as black-colored so that it is ignored from scans and
716
* reporting.
717
*/
718
static void make_black_object(unsigned long ptr)
719
{
720
paint_ptr(ptr, KMEMLEAK_BLACK);
721
}
722
723
/*
724
* Add a scanning area to the object. If at least one such area is added,
725
* kmemleak will only scan these ranges rather than the whole memory block.
726
*/
727
static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
728
{
729
unsigned long flags;
730
struct kmemleak_object *object;
731
struct kmemleak_scan_area *area;
732
733
object = find_and_get_object(ptr, 1);
734
if (!object) {
735
kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
736
ptr);
737
return;
738
}
739
740
area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
741
if (!area) {
742
pr_warning("Cannot allocate a scan area\n");
743
goto out;
744
}
745
746
spin_lock_irqsave(&object->lock, flags);
747
if (ptr + size > object->pointer + object->size) {
748
kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
749
dump_object_info(object);
750
kmem_cache_free(scan_area_cache, area);
751
goto out_unlock;
752
}
753
754
INIT_HLIST_NODE(&area->node);
755
area->start = ptr;
756
area->size = size;
757
758
hlist_add_head(&area->node, &object->area_list);
759
out_unlock:
760
spin_unlock_irqrestore(&object->lock, flags);
761
out:
762
put_object(object);
763
}
764
765
/*
766
* Set the OBJECT_NO_SCAN flag for the object corresponding to the give
767
* pointer. Such object will not be scanned by kmemleak but references to it
768
* are searched.
769
*/
770
static void object_no_scan(unsigned long ptr)
771
{
772
unsigned long flags;
773
struct kmemleak_object *object;
774
775
object = find_and_get_object(ptr, 0);
776
if (!object) {
777
kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
778
return;
779
}
780
781
spin_lock_irqsave(&object->lock, flags);
782
object->flags |= OBJECT_NO_SCAN;
783
spin_unlock_irqrestore(&object->lock, flags);
784
put_object(object);
785
}
786
787
/*
788
* Log an early kmemleak_* call to the early_log buffer. These calls will be
789
* processed later once kmemleak is fully initialized.
790
*/
791
static void __init log_early(int op_type, const void *ptr, size_t size,
792
int min_count)
793
{
794
unsigned long flags;
795
struct early_log *log;
796
797
if (crt_early_log >= ARRAY_SIZE(early_log)) {
798
pr_warning("Early log buffer exceeded, "
799
"please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n");
800
kmemleak_disable();
801
return;
802
}
803
804
/*
805
* There is no need for locking since the kernel is still in UP mode
806
* at this stage. Disabling the IRQs is enough.
807
*/
808
local_irq_save(flags);
809
log = &early_log[crt_early_log];
810
log->op_type = op_type;
811
log->ptr = ptr;
812
log->size = size;
813
log->min_count = min_count;
814
if (op_type == KMEMLEAK_ALLOC)
815
log->trace_len = __save_stack_trace(log->trace);
816
crt_early_log++;
817
local_irq_restore(flags);
818
}
819
820
/*
821
* Log an early allocated block and populate the stack trace.
822
*/
823
static void early_alloc(struct early_log *log)
824
{
825
struct kmemleak_object *object;
826
unsigned long flags;
827
int i;
828
829
if (!atomic_read(&kmemleak_enabled) || !log->ptr || IS_ERR(log->ptr))
830
return;
831
832
/*
833
* RCU locking needed to ensure object is not freed via put_object().
834
*/
835
rcu_read_lock();
836
object = create_object((unsigned long)log->ptr, log->size,
837
log->min_count, GFP_ATOMIC);
838
if (!object)
839
goto out;
840
spin_lock_irqsave(&object->lock, flags);
841
for (i = 0; i < log->trace_len; i++)
842
object->trace[i] = log->trace[i];
843
object->trace_len = log->trace_len;
844
spin_unlock_irqrestore(&object->lock, flags);
845
out:
846
rcu_read_unlock();
847
}
848
849
/**
850
* kmemleak_alloc - register a newly allocated object
851
* @ptr: pointer to beginning of the object
852
* @size: size of the object
853
* @min_count: minimum number of references to this object. If during memory
854
* scanning a number of references less than @min_count is found,
855
* the object is reported as a memory leak. If @min_count is 0,
856
* the object is never reported as a leak. If @min_count is -1,
857
* the object is ignored (not scanned and not reported as a leak)
858
* @gfp: kmalloc() flags used for kmemleak internal memory allocations
859
*
860
* This function is called from the kernel allocators when a new object
861
* (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
862
*/
863
void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
864
gfp_t gfp)
865
{
866
pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
867
868
if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
869
create_object((unsigned long)ptr, size, min_count, gfp);
870
else if (atomic_read(&kmemleak_early_log))
871
log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
872
}
873
EXPORT_SYMBOL_GPL(kmemleak_alloc);
874
875
/**
876
* kmemleak_free - unregister a previously registered object
877
* @ptr: pointer to beginning of the object
878
*
879
* This function is called from the kernel allocators when an object (memory
880
* block) is freed (kmem_cache_free, kfree, vfree etc.).
881
*/
882
void __ref kmemleak_free(const void *ptr)
883
{
884
pr_debug("%s(0x%p)\n", __func__, ptr);
885
886
if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
887
delete_object_full((unsigned long)ptr);
888
else if (atomic_read(&kmemleak_early_log))
889
log_early(KMEMLEAK_FREE, ptr, 0, 0);
890
}
891
EXPORT_SYMBOL_GPL(kmemleak_free);
892
893
/**
894
* kmemleak_free_part - partially unregister a previously registered object
895
* @ptr: pointer to the beginning or inside the object. This also
896
* represents the start of the range to be freed
897
* @size: size to be unregistered
898
*
899
* This function is called when only a part of a memory block is freed
900
* (usually from the bootmem allocator).
901
*/
902
void __ref kmemleak_free_part(const void *ptr, size_t size)
903
{
904
pr_debug("%s(0x%p)\n", __func__, ptr);
905
906
if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
907
delete_object_part((unsigned long)ptr, size);
908
else if (atomic_read(&kmemleak_early_log))
909
log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
910
}
911
EXPORT_SYMBOL_GPL(kmemleak_free_part);
912
913
/**
914
* kmemleak_not_leak - mark an allocated object as false positive
915
* @ptr: pointer to beginning of the object
916
*
917
* Calling this function on an object will cause the memory block to no longer
918
* be reported as leak and always be scanned.
919
*/
920
void __ref kmemleak_not_leak(const void *ptr)
921
{
922
pr_debug("%s(0x%p)\n", __func__, ptr);
923
924
if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
925
make_gray_object((unsigned long)ptr);
926
else if (atomic_read(&kmemleak_early_log))
927
log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
928
}
929
EXPORT_SYMBOL(kmemleak_not_leak);
930
931
/**
932
* kmemleak_ignore - ignore an allocated object
933
* @ptr: pointer to beginning of the object
934
*
935
* Calling this function on an object will cause the memory block to be
936
* ignored (not scanned and not reported as a leak). This is usually done when
937
* it is known that the corresponding block is not a leak and does not contain
938
* any references to other allocated memory blocks.
939
*/
940
void __ref kmemleak_ignore(const void *ptr)
941
{
942
pr_debug("%s(0x%p)\n", __func__, ptr);
943
944
if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
945
make_black_object((unsigned long)ptr);
946
else if (atomic_read(&kmemleak_early_log))
947
log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
948
}
949
EXPORT_SYMBOL(kmemleak_ignore);
950
951
/**
952
* kmemleak_scan_area - limit the range to be scanned in an allocated object
953
* @ptr: pointer to beginning or inside the object. This also
954
* represents the start of the scan area
955
* @size: size of the scan area
956
* @gfp: kmalloc() flags used for kmemleak internal memory allocations
957
*
958
* This function is used when it is known that only certain parts of an object
959
* contain references to other objects. Kmemleak will only scan these areas
960
* reducing the number false negatives.
961
*/
962
void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
963
{
964
pr_debug("%s(0x%p)\n", __func__, ptr);
965
966
if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
967
add_scan_area((unsigned long)ptr, size, gfp);
968
else if (atomic_read(&kmemleak_early_log))
969
log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
970
}
971
EXPORT_SYMBOL(kmemleak_scan_area);
972
973
/**
974
* kmemleak_no_scan - do not scan an allocated object
975
* @ptr: pointer to beginning of the object
976
*
977
* This function notifies kmemleak not to scan the given memory block. Useful
978
* in situations where it is known that the given object does not contain any
979
* references to other objects. Kmemleak will not scan such objects reducing
980
* the number of false negatives.
981
*/
982
void __ref kmemleak_no_scan(const void *ptr)
983
{
984
pr_debug("%s(0x%p)\n", __func__, ptr);
985
986
if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
987
object_no_scan((unsigned long)ptr);
988
else if (atomic_read(&kmemleak_early_log))
989
log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
990
}
991
EXPORT_SYMBOL(kmemleak_no_scan);
992
993
/*
994
* Update an object's checksum and return true if it was modified.
995
*/
996
static bool update_checksum(struct kmemleak_object *object)
997
{
998
u32 old_csum = object->checksum;
999
1000
if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1001
return false;
1002
1003
object->checksum = crc32(0, (void *)object->pointer, object->size);
1004
return object->checksum != old_csum;
1005
}
1006
1007
/*
1008
* Memory scanning is a long process and it needs to be interruptable. This
1009
* function checks whether such interrupt condition occurred.
1010
*/
1011
static int scan_should_stop(void)
1012
{
1013
if (!atomic_read(&kmemleak_enabled))
1014
return 1;
1015
1016
/*
1017
* This function may be called from either process or kthread context,
1018
* hence the need to check for both stop conditions.
1019
*/
1020
if (current->mm)
1021
return signal_pending(current);
1022
else
1023
return kthread_should_stop();
1024
1025
return 0;
1026
}
1027
1028
/*
1029
* Scan a memory block (exclusive range) for valid pointers and add those
1030
* found to the gray list.
1031
*/
1032
static void scan_block(void *_start, void *_end,
1033
struct kmemleak_object *scanned, int allow_resched)
1034
{
1035
unsigned long *ptr;
1036
unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1037
unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1038
1039
for (ptr = start; ptr < end; ptr++) {
1040
struct kmemleak_object *object;
1041
unsigned long flags;
1042
unsigned long pointer;
1043
1044
if (allow_resched)
1045
cond_resched();
1046
if (scan_should_stop())
1047
break;
1048
1049
/* don't scan uninitialized memory */
1050
if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1051
BYTES_PER_POINTER))
1052
continue;
1053
1054
pointer = *ptr;
1055
1056
object = find_and_get_object(pointer, 1);
1057
if (!object)
1058
continue;
1059
if (object == scanned) {
1060
/* self referenced, ignore */
1061
put_object(object);
1062
continue;
1063
}
1064
1065
/*
1066
* Avoid the lockdep recursive warning on object->lock being
1067
* previously acquired in scan_object(). These locks are
1068
* enclosed by scan_mutex.
1069
*/
1070
spin_lock_irqsave_nested(&object->lock, flags,
1071
SINGLE_DEPTH_NESTING);
1072
if (!color_white(object)) {
1073
/* non-orphan, ignored or new */
1074
spin_unlock_irqrestore(&object->lock, flags);
1075
put_object(object);
1076
continue;
1077
}
1078
1079
/*
1080
* Increase the object's reference count (number of pointers
1081
* to the memory block). If this count reaches the required
1082
* minimum, the object's color will become gray and it will be
1083
* added to the gray_list.
1084
*/
1085
object->count++;
1086
if (color_gray(object)) {
1087
list_add_tail(&object->gray_list, &gray_list);
1088
spin_unlock_irqrestore(&object->lock, flags);
1089
continue;
1090
}
1091
1092
spin_unlock_irqrestore(&object->lock, flags);
1093
put_object(object);
1094
}
1095
}
1096
1097
/*
1098
* Scan a memory block corresponding to a kmemleak_object. A condition is
1099
* that object->use_count >= 1.
1100
*/
1101
static void scan_object(struct kmemleak_object *object)
1102
{
1103
struct kmemleak_scan_area *area;
1104
struct hlist_node *elem;
1105
unsigned long flags;
1106
1107
/*
1108
* Once the object->lock is acquired, the corresponding memory block
1109
* cannot be freed (the same lock is acquired in delete_object).
1110
*/
1111
spin_lock_irqsave(&object->lock, flags);
1112
if (object->flags & OBJECT_NO_SCAN)
1113
goto out;
1114
if (!(object->flags & OBJECT_ALLOCATED))
1115
/* already freed object */
1116
goto out;
1117
if (hlist_empty(&object->area_list)) {
1118
void *start = (void *)object->pointer;
1119
void *end = (void *)(object->pointer + object->size);
1120
1121
while (start < end && (object->flags & OBJECT_ALLOCATED) &&
1122
!(object->flags & OBJECT_NO_SCAN)) {
1123
scan_block(start, min(start + MAX_SCAN_SIZE, end),
1124
object, 0);
1125
start += MAX_SCAN_SIZE;
1126
1127
spin_unlock_irqrestore(&object->lock, flags);
1128
cond_resched();
1129
spin_lock_irqsave(&object->lock, flags);
1130
}
1131
} else
1132
hlist_for_each_entry(area, elem, &object->area_list, node)
1133
scan_block((void *)area->start,
1134
(void *)(area->start + area->size),
1135
object, 0);
1136
out:
1137
spin_unlock_irqrestore(&object->lock, flags);
1138
}
1139
1140
/*
1141
* Scan the objects already referenced (gray objects). More objects will be
1142
* referenced and, if there are no memory leaks, all the objects are scanned.
1143
*/
1144
static void scan_gray_list(void)
1145
{
1146
struct kmemleak_object *object, *tmp;
1147
1148
/*
1149
* The list traversal is safe for both tail additions and removals
1150
* from inside the loop. The kmemleak objects cannot be freed from
1151
* outside the loop because their use_count was incremented.
1152
*/
1153
object = list_entry(gray_list.next, typeof(*object), gray_list);
1154
while (&object->gray_list != &gray_list) {
1155
cond_resched();
1156
1157
/* may add new objects to the list */
1158
if (!scan_should_stop())
1159
scan_object(object);
1160
1161
tmp = list_entry(object->gray_list.next, typeof(*object),
1162
gray_list);
1163
1164
/* remove the object from the list and release it */
1165
list_del(&object->gray_list);
1166
put_object(object);
1167
1168
object = tmp;
1169
}
1170
WARN_ON(!list_empty(&gray_list));
1171
}
1172
1173
/*
1174
* Scan data sections and all the referenced memory blocks allocated via the
1175
* kernel's standard allocators. This function must be called with the
1176
* scan_mutex held.
1177
*/
1178
static void kmemleak_scan(void)
1179
{
1180
unsigned long flags;
1181
struct kmemleak_object *object;
1182
int i;
1183
int new_leaks = 0;
1184
1185
jiffies_last_scan = jiffies;
1186
1187
/* prepare the kmemleak_object's */
1188
rcu_read_lock();
1189
list_for_each_entry_rcu(object, &object_list, object_list) {
1190
spin_lock_irqsave(&object->lock, flags);
1191
#ifdef DEBUG
1192
/*
1193
* With a few exceptions there should be a maximum of
1194
* 1 reference to any object at this point.
1195
*/
1196
if (atomic_read(&object->use_count) > 1) {
1197
pr_debug("object->use_count = %d\n",
1198
atomic_read(&object->use_count));
1199
dump_object_info(object);
1200
}
1201
#endif
1202
/* reset the reference count (whiten the object) */
1203
object->count = 0;
1204
if (color_gray(object) && get_object(object))
1205
list_add_tail(&object->gray_list, &gray_list);
1206
1207
spin_unlock_irqrestore(&object->lock, flags);
1208
}
1209
rcu_read_unlock();
1210
1211
/* data/bss scanning */
1212
scan_block(_sdata, _edata, NULL, 1);
1213
scan_block(__bss_start, __bss_stop, NULL, 1);
1214
1215
#ifdef CONFIG_SMP
1216
/* per-cpu sections scanning */
1217
for_each_possible_cpu(i)
1218
scan_block(__per_cpu_start + per_cpu_offset(i),
1219
__per_cpu_end + per_cpu_offset(i), NULL, 1);
1220
#endif
1221
1222
/*
1223
* Struct page scanning for each node. The code below is not yet safe
1224
* with MEMORY_HOTPLUG.
1225
*/
1226
for_each_online_node(i) {
1227
pg_data_t *pgdat = NODE_DATA(i);
1228
unsigned long start_pfn = pgdat->node_start_pfn;
1229
unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1230
unsigned long pfn;
1231
1232
for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1233
struct page *page;
1234
1235
if (!pfn_valid(pfn))
1236
continue;
1237
page = pfn_to_page(pfn);
1238
/* only scan if page is in use */
1239
if (page_count(page) == 0)
1240
continue;
1241
scan_block(page, page + 1, NULL, 1);
1242
}
1243
}
1244
1245
/*
1246
* Scanning the task stacks (may introduce false negatives).
1247
*/
1248
if (kmemleak_stack_scan) {
1249
struct task_struct *p, *g;
1250
1251
read_lock(&tasklist_lock);
1252
do_each_thread(g, p) {
1253
scan_block(task_stack_page(p), task_stack_page(p) +
1254
THREAD_SIZE, NULL, 0);
1255
} while_each_thread(g, p);
1256
read_unlock(&tasklist_lock);
1257
}
1258
1259
/*
1260
* Scan the objects already referenced from the sections scanned
1261
* above.
1262
*/
1263
scan_gray_list();
1264
1265
/*
1266
* Check for new or unreferenced objects modified since the previous
1267
* scan and color them gray until the next scan.
1268
*/
1269
rcu_read_lock();
1270
list_for_each_entry_rcu(object, &object_list, object_list) {
1271
spin_lock_irqsave(&object->lock, flags);
1272
if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1273
&& update_checksum(object) && get_object(object)) {
1274
/* color it gray temporarily */
1275
object->count = object->min_count;
1276
list_add_tail(&object->gray_list, &gray_list);
1277
}
1278
spin_unlock_irqrestore(&object->lock, flags);
1279
}
1280
rcu_read_unlock();
1281
1282
/*
1283
* Re-scan the gray list for modified unreferenced objects.
1284
*/
1285
scan_gray_list();
1286
1287
/*
1288
* If scanning was stopped do not report any new unreferenced objects.
1289
*/
1290
if (scan_should_stop())
1291
return;
1292
1293
/*
1294
* Scanning result reporting.
1295
*/
1296
rcu_read_lock();
1297
list_for_each_entry_rcu(object, &object_list, object_list) {
1298
spin_lock_irqsave(&object->lock, flags);
1299
if (unreferenced_object(object) &&
1300
!(object->flags & OBJECT_REPORTED)) {
1301
object->flags |= OBJECT_REPORTED;
1302
new_leaks++;
1303
}
1304
spin_unlock_irqrestore(&object->lock, flags);
1305
}
1306
rcu_read_unlock();
1307
1308
if (new_leaks)
1309
pr_info("%d new suspected memory leaks (see "
1310
"/sys/kernel/debug/kmemleak)\n", new_leaks);
1311
1312
}
1313
1314
/*
1315
* Thread function performing automatic memory scanning. Unreferenced objects
1316
* at the end of a memory scan are reported but only the first time.
1317
*/
1318
static int kmemleak_scan_thread(void *arg)
1319
{
1320
static int first_run = 1;
1321
1322
pr_info("Automatic memory scanning thread started\n");
1323
set_user_nice(current, 10);
1324
1325
/*
1326
* Wait before the first scan to allow the system to fully initialize.
1327
*/
1328
if (first_run) {
1329
first_run = 0;
1330
ssleep(SECS_FIRST_SCAN);
1331
}
1332
1333
while (!kthread_should_stop()) {
1334
signed long timeout = jiffies_scan_wait;
1335
1336
mutex_lock(&scan_mutex);
1337
kmemleak_scan();
1338
mutex_unlock(&scan_mutex);
1339
1340
/* wait before the next scan */
1341
while (timeout && !kthread_should_stop())
1342
timeout = schedule_timeout_interruptible(timeout);
1343
}
1344
1345
pr_info("Automatic memory scanning thread ended\n");
1346
1347
return 0;
1348
}
1349
1350
/*
1351
* Start the automatic memory scanning thread. This function must be called
1352
* with the scan_mutex held.
1353
*/
1354
static void start_scan_thread(void)
1355
{
1356
if (scan_thread)
1357
return;
1358
scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1359
if (IS_ERR(scan_thread)) {
1360
pr_warning("Failed to create the scan thread\n");
1361
scan_thread = NULL;
1362
}
1363
}
1364
1365
/*
1366
* Stop the automatic memory scanning thread. This function must be called
1367
* with the scan_mutex held.
1368
*/
1369
static void stop_scan_thread(void)
1370
{
1371
if (scan_thread) {
1372
kthread_stop(scan_thread);
1373
scan_thread = NULL;
1374
}
1375
}
1376
1377
/*
1378
* Iterate over the object_list and return the first valid object at or after
1379
* the required position with its use_count incremented. The function triggers
1380
* a memory scanning when the pos argument points to the first position.
1381
*/
1382
static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1383
{
1384
struct kmemleak_object *object;
1385
loff_t n = *pos;
1386
int err;
1387
1388
err = mutex_lock_interruptible(&scan_mutex);
1389
if (err < 0)
1390
return ERR_PTR(err);
1391
1392
rcu_read_lock();
1393
list_for_each_entry_rcu(object, &object_list, object_list) {
1394
if (n-- > 0)
1395
continue;
1396
if (get_object(object))
1397
goto out;
1398
}
1399
object = NULL;
1400
out:
1401
return object;
1402
}
1403
1404
/*
1405
* Return the next object in the object_list. The function decrements the
1406
* use_count of the previous object and increases that of the next one.
1407
*/
1408
static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1409
{
1410
struct kmemleak_object *prev_obj = v;
1411
struct kmemleak_object *next_obj = NULL;
1412
struct list_head *n = &prev_obj->object_list;
1413
1414
++(*pos);
1415
1416
list_for_each_continue_rcu(n, &object_list) {
1417
struct kmemleak_object *obj =
1418
list_entry(n, struct kmemleak_object, object_list);
1419
if (get_object(obj)) {
1420
next_obj = obj;
1421
break;
1422
}
1423
}
1424
1425
put_object(prev_obj);
1426
return next_obj;
1427
}
1428
1429
/*
1430
* Decrement the use_count of the last object required, if any.
1431
*/
1432
static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1433
{
1434
if (!IS_ERR(v)) {
1435
/*
1436
* kmemleak_seq_start may return ERR_PTR if the scan_mutex
1437
* waiting was interrupted, so only release it if !IS_ERR.
1438
*/
1439
rcu_read_unlock();
1440
mutex_unlock(&scan_mutex);
1441
if (v)
1442
put_object(v);
1443
}
1444
}
1445
1446
/*
1447
* Print the information for an unreferenced object to the seq file.
1448
*/
1449
static int kmemleak_seq_show(struct seq_file *seq, void *v)
1450
{
1451
struct kmemleak_object *object = v;
1452
unsigned long flags;
1453
1454
spin_lock_irqsave(&object->lock, flags);
1455
if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1456
print_unreferenced(seq, object);
1457
spin_unlock_irqrestore(&object->lock, flags);
1458
return 0;
1459
}
1460
1461
static const struct seq_operations kmemleak_seq_ops = {
1462
.start = kmemleak_seq_start,
1463
.next = kmemleak_seq_next,
1464
.stop = kmemleak_seq_stop,
1465
.show = kmemleak_seq_show,
1466
};
1467
1468
static int kmemleak_open(struct inode *inode, struct file *file)
1469
{
1470
if (!atomic_read(&kmemleak_enabled))
1471
return -EBUSY;
1472
1473
return seq_open(file, &kmemleak_seq_ops);
1474
}
1475
1476
static int kmemleak_release(struct inode *inode, struct file *file)
1477
{
1478
return seq_release(inode, file);
1479
}
1480
1481
static int dump_str_object_info(const char *str)
1482
{
1483
unsigned long flags;
1484
struct kmemleak_object *object;
1485
unsigned long addr;
1486
1487
addr= simple_strtoul(str, NULL, 0);
1488
object = find_and_get_object(addr, 0);
1489
if (!object) {
1490
pr_info("Unknown object at 0x%08lx\n", addr);
1491
return -EINVAL;
1492
}
1493
1494
spin_lock_irqsave(&object->lock, flags);
1495
dump_object_info(object);
1496
spin_unlock_irqrestore(&object->lock, flags);
1497
1498
put_object(object);
1499
return 0;
1500
}
1501
1502
/*
1503
* We use grey instead of black to ensure we can do future scans on the same
1504
* objects. If we did not do future scans these black objects could
1505
* potentially contain references to newly allocated objects in the future and
1506
* we'd end up with false positives.
1507
*/
1508
static void kmemleak_clear(void)
1509
{
1510
struct kmemleak_object *object;
1511
unsigned long flags;
1512
1513
rcu_read_lock();
1514
list_for_each_entry_rcu(object, &object_list, object_list) {
1515
spin_lock_irqsave(&object->lock, flags);
1516
if ((object->flags & OBJECT_REPORTED) &&
1517
unreferenced_object(object))
1518
__paint_it(object, KMEMLEAK_GREY);
1519
spin_unlock_irqrestore(&object->lock, flags);
1520
}
1521
rcu_read_unlock();
1522
}
1523
1524
/*
1525
* File write operation to configure kmemleak at run-time. The following
1526
* commands can be written to the /sys/kernel/debug/kmemleak file:
1527
* off - disable kmemleak (irreversible)
1528
* stack=on - enable the task stacks scanning
1529
* stack=off - disable the tasks stacks scanning
1530
* scan=on - start the automatic memory scanning thread
1531
* scan=off - stop the automatic memory scanning thread
1532
* scan=... - set the automatic memory scanning period in seconds (0 to
1533
* disable it)
1534
* scan - trigger a memory scan
1535
* clear - mark all current reported unreferenced kmemleak objects as
1536
* grey to ignore printing them
1537
* dump=... - dump information about the object found at the given address
1538
*/
1539
static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1540
size_t size, loff_t *ppos)
1541
{
1542
char buf[64];
1543
int buf_size;
1544
int ret;
1545
1546
buf_size = min(size, (sizeof(buf) - 1));
1547
if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1548
return -EFAULT;
1549
buf[buf_size] = 0;
1550
1551
ret = mutex_lock_interruptible(&scan_mutex);
1552
if (ret < 0)
1553
return ret;
1554
1555
if (strncmp(buf, "off", 3) == 0)
1556
kmemleak_disable();
1557
else if (strncmp(buf, "stack=on", 8) == 0)
1558
kmemleak_stack_scan = 1;
1559
else if (strncmp(buf, "stack=off", 9) == 0)
1560
kmemleak_stack_scan = 0;
1561
else if (strncmp(buf, "scan=on", 7) == 0)
1562
start_scan_thread();
1563
else if (strncmp(buf, "scan=off", 8) == 0)
1564
stop_scan_thread();
1565
else if (strncmp(buf, "scan=", 5) == 0) {
1566
unsigned long secs;
1567
1568
ret = strict_strtoul(buf + 5, 0, &secs);
1569
if (ret < 0)
1570
goto out;
1571
stop_scan_thread();
1572
if (secs) {
1573
jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1574
start_scan_thread();
1575
}
1576
} else if (strncmp(buf, "scan", 4) == 0)
1577
kmemleak_scan();
1578
else if (strncmp(buf, "clear", 5) == 0)
1579
kmemleak_clear();
1580
else if (strncmp(buf, "dump=", 5) == 0)
1581
ret = dump_str_object_info(buf + 5);
1582
else
1583
ret = -EINVAL;
1584
1585
out:
1586
mutex_unlock(&scan_mutex);
1587
if (ret < 0)
1588
return ret;
1589
1590
/* ignore the rest of the buffer, only one command at a time */
1591
*ppos += size;
1592
return size;
1593
}
1594
1595
static const struct file_operations kmemleak_fops = {
1596
.owner = THIS_MODULE,
1597
.open = kmemleak_open,
1598
.read = seq_read,
1599
.write = kmemleak_write,
1600
.llseek = seq_lseek,
1601
.release = kmemleak_release,
1602
};
1603
1604
/*
1605
* Perform the freeing of the kmemleak internal objects after waiting for any
1606
* current memory scan to complete.
1607
*/
1608
static void kmemleak_do_cleanup(struct work_struct *work)
1609
{
1610
struct kmemleak_object *object;
1611
1612
mutex_lock(&scan_mutex);
1613
stop_scan_thread();
1614
1615
rcu_read_lock();
1616
list_for_each_entry_rcu(object, &object_list, object_list)
1617
delete_object_full(object->pointer);
1618
rcu_read_unlock();
1619
mutex_unlock(&scan_mutex);
1620
}
1621
1622
static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1623
1624
/*
1625
* Disable kmemleak. No memory allocation/freeing will be traced once this
1626
* function is called. Disabling kmemleak is an irreversible operation.
1627
*/
1628
static void kmemleak_disable(void)
1629
{
1630
/* atomically check whether it was already invoked */
1631
if (atomic_cmpxchg(&kmemleak_error, 0, 1))
1632
return;
1633
1634
/* stop any memory operation tracing */
1635
atomic_set(&kmemleak_early_log, 0);
1636
atomic_set(&kmemleak_enabled, 0);
1637
1638
/* check whether it is too early for a kernel thread */
1639
if (atomic_read(&kmemleak_initialized))
1640
schedule_work(&cleanup_work);
1641
1642
pr_info("Kernel memory leak detector disabled\n");
1643
}
1644
1645
/*
1646
* Allow boot-time kmemleak disabling (enabled by default).
1647
*/
1648
static int kmemleak_boot_config(char *str)
1649
{
1650
if (!str)
1651
return -EINVAL;
1652
if (strcmp(str, "off") == 0)
1653
kmemleak_disable();
1654
else if (strcmp(str, "on") == 0)
1655
kmemleak_skip_disable = 1;
1656
else
1657
return -EINVAL;
1658
return 0;
1659
}
1660
early_param("kmemleak", kmemleak_boot_config);
1661
1662
/*
1663
* Kmemleak initialization.
1664
*/
1665
void __init kmemleak_init(void)
1666
{
1667
int i;
1668
unsigned long flags;
1669
1670
#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1671
if (!kmemleak_skip_disable) {
1672
kmemleak_disable();
1673
return;
1674
}
1675
#endif
1676
1677
jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1678
jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1679
1680
object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1681
scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1682
INIT_PRIO_TREE_ROOT(&object_tree_root);
1683
1684
/* the kernel is still in UP mode, so disabling the IRQs is enough */
1685
local_irq_save(flags);
1686
if (!atomic_read(&kmemleak_error)) {
1687
atomic_set(&kmemleak_enabled, 1);
1688
atomic_set(&kmemleak_early_log, 0);
1689
}
1690
local_irq_restore(flags);
1691
1692
/*
1693
* This is the point where tracking allocations is safe. Automatic
1694
* scanning is started during the late initcall. Add the early logged
1695
* callbacks to the kmemleak infrastructure.
1696
*/
1697
for (i = 0; i < crt_early_log; i++) {
1698
struct early_log *log = &early_log[i];
1699
1700
switch (log->op_type) {
1701
case KMEMLEAK_ALLOC:
1702
early_alloc(log);
1703
break;
1704
case KMEMLEAK_FREE:
1705
kmemleak_free(log->ptr);
1706
break;
1707
case KMEMLEAK_FREE_PART:
1708
kmemleak_free_part(log->ptr, log->size);
1709
break;
1710
case KMEMLEAK_NOT_LEAK:
1711
kmemleak_not_leak(log->ptr);
1712
break;
1713
case KMEMLEAK_IGNORE:
1714
kmemleak_ignore(log->ptr);
1715
break;
1716
case KMEMLEAK_SCAN_AREA:
1717
kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1718
break;
1719
case KMEMLEAK_NO_SCAN:
1720
kmemleak_no_scan(log->ptr);
1721
break;
1722
default:
1723
WARN_ON(1);
1724
}
1725
}
1726
}
1727
1728
/*
1729
* Late initialization function.
1730
*/
1731
static int __init kmemleak_late_init(void)
1732
{
1733
struct dentry *dentry;
1734
1735
atomic_set(&kmemleak_initialized, 1);
1736
1737
if (atomic_read(&kmemleak_error)) {
1738
/*
1739
* Some error occurred and kmemleak was disabled. There is a
1740
* small chance that kmemleak_disable() was called immediately
1741
* after setting kmemleak_initialized and we may end up with
1742
* two clean-up threads but serialized by scan_mutex.
1743
*/
1744
schedule_work(&cleanup_work);
1745
return -ENOMEM;
1746
}
1747
1748
dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1749
&kmemleak_fops);
1750
if (!dentry)
1751
pr_warning("Failed to create the debugfs kmemleak file\n");
1752
mutex_lock(&scan_mutex);
1753
start_scan_thread();
1754
mutex_unlock(&scan_mutex);
1755
1756
pr_info("Kernel memory leak detector initialized\n");
1757
1758
return 0;
1759
}
1760
late_initcall(kmemleak_late_init);
1761
1762