Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/mm/memory-failure.c
10814 views
1
/*
2
* Copyright (C) 2008, 2009 Intel Corporation
3
* Authors: Andi Kleen, Fengguang Wu
4
*
5
* This software may be redistributed and/or modified under the terms of
6
* the GNU General Public License ("GPL") version 2 only as published by the
7
* Free Software Foundation.
8
*
9
* High level machine check handler. Handles pages reported by the
10
* hardware as being corrupted usually due to a multi-bit ECC memory or cache
11
* failure.
12
*
13
* In addition there is a "soft offline" entry point that allows stop using
14
* not-yet-corrupted-by-suspicious pages without killing anything.
15
*
16
* Handles page cache pages in various states. The tricky part
17
* here is that we can access any page asynchronously in respect to
18
* other VM users, because memory failures could happen anytime and
19
* anywhere. This could violate some of their assumptions. This is why
20
* this code has to be extremely careful. Generally it tries to use
21
* normal locking rules, as in get the standard locks, even if that means
22
* the error handling takes potentially a long time.
23
*
24
* There are several operations here with exponential complexity because
25
* of unsuitable VM data structures. For example the operation to map back
26
* from RMAP chains to processes has to walk the complete process list and
27
* has non linear complexity with the number. But since memory corruptions
28
* are rare we hope to get away with this. This avoids impacting the core
29
* VM.
30
*/
31
32
/*
33
* Notebook:
34
* - hugetlb needs more code
35
* - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36
* - pass bad pages to kdump next kernel
37
*/
38
#include <linux/kernel.h>
39
#include <linux/mm.h>
40
#include <linux/page-flags.h>
41
#include <linux/kernel-page-flags.h>
42
#include <linux/sched.h>
43
#include <linux/ksm.h>
44
#include <linux/rmap.h>
45
#include <linux/pagemap.h>
46
#include <linux/swap.h>
47
#include <linux/backing-dev.h>
48
#include <linux/migrate.h>
49
#include <linux/page-isolation.h>
50
#include <linux/suspend.h>
51
#include <linux/slab.h>
52
#include <linux/swapops.h>
53
#include <linux/hugetlb.h>
54
#include <linux/memory_hotplug.h>
55
#include <linux/mm_inline.h>
56
#include "internal.h"
57
58
int sysctl_memory_failure_early_kill __read_mostly = 0;
59
60
int sysctl_memory_failure_recovery __read_mostly = 1;
61
62
atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
63
64
#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
65
66
u32 hwpoison_filter_enable = 0;
67
u32 hwpoison_filter_dev_major = ~0U;
68
u32 hwpoison_filter_dev_minor = ~0U;
69
u64 hwpoison_filter_flags_mask;
70
u64 hwpoison_filter_flags_value;
71
EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
72
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
73
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
74
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
75
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
76
77
static int hwpoison_filter_dev(struct page *p)
78
{
79
struct address_space *mapping;
80
dev_t dev;
81
82
if (hwpoison_filter_dev_major == ~0U &&
83
hwpoison_filter_dev_minor == ~0U)
84
return 0;
85
86
/*
87
* page_mapping() does not accept slab pages.
88
*/
89
if (PageSlab(p))
90
return -EINVAL;
91
92
mapping = page_mapping(p);
93
if (mapping == NULL || mapping->host == NULL)
94
return -EINVAL;
95
96
dev = mapping->host->i_sb->s_dev;
97
if (hwpoison_filter_dev_major != ~0U &&
98
hwpoison_filter_dev_major != MAJOR(dev))
99
return -EINVAL;
100
if (hwpoison_filter_dev_minor != ~0U &&
101
hwpoison_filter_dev_minor != MINOR(dev))
102
return -EINVAL;
103
104
return 0;
105
}
106
107
static int hwpoison_filter_flags(struct page *p)
108
{
109
if (!hwpoison_filter_flags_mask)
110
return 0;
111
112
if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
113
hwpoison_filter_flags_value)
114
return 0;
115
else
116
return -EINVAL;
117
}
118
119
/*
120
* This allows stress tests to limit test scope to a collection of tasks
121
* by putting them under some memcg. This prevents killing unrelated/important
122
* processes such as /sbin/init. Note that the target task may share clean
123
* pages with init (eg. libc text), which is harmless. If the target task
124
* share _dirty_ pages with another task B, the test scheme must make sure B
125
* is also included in the memcg. At last, due to race conditions this filter
126
* can only guarantee that the page either belongs to the memcg tasks, or is
127
* a freed page.
128
*/
129
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
130
u64 hwpoison_filter_memcg;
131
EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
132
static int hwpoison_filter_task(struct page *p)
133
{
134
struct mem_cgroup *mem;
135
struct cgroup_subsys_state *css;
136
unsigned long ino;
137
138
if (!hwpoison_filter_memcg)
139
return 0;
140
141
mem = try_get_mem_cgroup_from_page(p);
142
if (!mem)
143
return -EINVAL;
144
145
css = mem_cgroup_css(mem);
146
/* root_mem_cgroup has NULL dentries */
147
if (!css->cgroup->dentry)
148
return -EINVAL;
149
150
ino = css->cgroup->dentry->d_inode->i_ino;
151
css_put(css);
152
153
if (ino != hwpoison_filter_memcg)
154
return -EINVAL;
155
156
return 0;
157
}
158
#else
159
static int hwpoison_filter_task(struct page *p) { return 0; }
160
#endif
161
162
int hwpoison_filter(struct page *p)
163
{
164
if (!hwpoison_filter_enable)
165
return 0;
166
167
if (hwpoison_filter_dev(p))
168
return -EINVAL;
169
170
if (hwpoison_filter_flags(p))
171
return -EINVAL;
172
173
if (hwpoison_filter_task(p))
174
return -EINVAL;
175
176
return 0;
177
}
178
#else
179
int hwpoison_filter(struct page *p)
180
{
181
return 0;
182
}
183
#endif
184
185
EXPORT_SYMBOL_GPL(hwpoison_filter);
186
187
/*
188
* Send all the processes who have the page mapped an ``action optional''
189
* signal.
190
*/
191
static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
192
unsigned long pfn, struct page *page)
193
{
194
struct siginfo si;
195
int ret;
196
197
printk(KERN_ERR
198
"MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
199
pfn, t->comm, t->pid);
200
si.si_signo = SIGBUS;
201
si.si_errno = 0;
202
si.si_code = BUS_MCEERR_AO;
203
si.si_addr = (void *)addr;
204
#ifdef __ARCH_SI_TRAPNO
205
si.si_trapno = trapno;
206
#endif
207
si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
208
/*
209
* Don't use force here, it's convenient if the signal
210
* can be temporarily blocked.
211
* This could cause a loop when the user sets SIGBUS
212
* to SIG_IGN, but hopefully no one will do that?
213
*/
214
ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
215
if (ret < 0)
216
printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
217
t->comm, t->pid, ret);
218
return ret;
219
}
220
221
/*
222
* When a unknown page type is encountered drain as many buffers as possible
223
* in the hope to turn the page into a LRU or free page, which we can handle.
224
*/
225
void shake_page(struct page *p, int access)
226
{
227
if (!PageSlab(p)) {
228
lru_add_drain_all();
229
if (PageLRU(p))
230
return;
231
drain_all_pages();
232
if (PageLRU(p) || is_free_buddy_page(p))
233
return;
234
}
235
236
/*
237
* Only call shrink_slab here (which would also shrink other caches) if
238
* access is not potentially fatal.
239
*/
240
if (access) {
241
int nr;
242
do {
243
struct shrink_control shrink = {
244
.gfp_mask = GFP_KERNEL,
245
};
246
247
nr = shrink_slab(&shrink, 1000, 1000);
248
if (page_count(p) == 1)
249
break;
250
} while (nr > 10);
251
}
252
}
253
EXPORT_SYMBOL_GPL(shake_page);
254
255
/*
256
* Kill all processes that have a poisoned page mapped and then isolate
257
* the page.
258
*
259
* General strategy:
260
* Find all processes having the page mapped and kill them.
261
* But we keep a page reference around so that the page is not
262
* actually freed yet.
263
* Then stash the page away
264
*
265
* There's no convenient way to get back to mapped processes
266
* from the VMAs. So do a brute-force search over all
267
* running processes.
268
*
269
* Remember that machine checks are not common (or rather
270
* if they are common you have other problems), so this shouldn't
271
* be a performance issue.
272
*
273
* Also there are some races possible while we get from the
274
* error detection to actually handle it.
275
*/
276
277
struct to_kill {
278
struct list_head nd;
279
struct task_struct *tsk;
280
unsigned long addr;
281
char addr_valid;
282
};
283
284
/*
285
* Failure handling: if we can't find or can't kill a process there's
286
* not much we can do. We just print a message and ignore otherwise.
287
*/
288
289
/*
290
* Schedule a process for later kill.
291
* Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
292
* TBD would GFP_NOIO be enough?
293
*/
294
static void add_to_kill(struct task_struct *tsk, struct page *p,
295
struct vm_area_struct *vma,
296
struct list_head *to_kill,
297
struct to_kill **tkc)
298
{
299
struct to_kill *tk;
300
301
if (*tkc) {
302
tk = *tkc;
303
*tkc = NULL;
304
} else {
305
tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
306
if (!tk) {
307
printk(KERN_ERR
308
"MCE: Out of memory while machine check handling\n");
309
return;
310
}
311
}
312
tk->addr = page_address_in_vma(p, vma);
313
tk->addr_valid = 1;
314
315
/*
316
* In theory we don't have to kill when the page was
317
* munmaped. But it could be also a mremap. Since that's
318
* likely very rare kill anyways just out of paranoia, but use
319
* a SIGKILL because the error is not contained anymore.
320
*/
321
if (tk->addr == -EFAULT) {
322
pr_info("MCE: Unable to find user space address %lx in %s\n",
323
page_to_pfn(p), tsk->comm);
324
tk->addr_valid = 0;
325
}
326
get_task_struct(tsk);
327
tk->tsk = tsk;
328
list_add_tail(&tk->nd, to_kill);
329
}
330
331
/*
332
* Kill the processes that have been collected earlier.
333
*
334
* Only do anything when DOIT is set, otherwise just free the list
335
* (this is used for clean pages which do not need killing)
336
* Also when FAIL is set do a force kill because something went
337
* wrong earlier.
338
*/
339
static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
340
int fail, struct page *page, unsigned long pfn)
341
{
342
struct to_kill *tk, *next;
343
344
list_for_each_entry_safe (tk, next, to_kill, nd) {
345
if (doit) {
346
/*
347
* In case something went wrong with munmapping
348
* make sure the process doesn't catch the
349
* signal and then access the memory. Just kill it.
350
*/
351
if (fail || tk->addr_valid == 0) {
352
printk(KERN_ERR
353
"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
354
pfn, tk->tsk->comm, tk->tsk->pid);
355
force_sig(SIGKILL, tk->tsk);
356
}
357
358
/*
359
* In theory the process could have mapped
360
* something else on the address in-between. We could
361
* check for that, but we need to tell the
362
* process anyways.
363
*/
364
else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
365
pfn, page) < 0)
366
printk(KERN_ERR
367
"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
368
pfn, tk->tsk->comm, tk->tsk->pid);
369
}
370
put_task_struct(tk->tsk);
371
kfree(tk);
372
}
373
}
374
375
static int task_early_kill(struct task_struct *tsk)
376
{
377
if (!tsk->mm)
378
return 0;
379
if (tsk->flags & PF_MCE_PROCESS)
380
return !!(tsk->flags & PF_MCE_EARLY);
381
return sysctl_memory_failure_early_kill;
382
}
383
384
/*
385
* Collect processes when the error hit an anonymous page.
386
*/
387
static void collect_procs_anon(struct page *page, struct list_head *to_kill,
388
struct to_kill **tkc)
389
{
390
struct vm_area_struct *vma;
391
struct task_struct *tsk;
392
struct anon_vma *av;
393
394
av = page_lock_anon_vma(page);
395
if (av == NULL) /* Not actually mapped anymore */
396
return;
397
398
read_lock(&tasklist_lock);
399
for_each_process (tsk) {
400
struct anon_vma_chain *vmac;
401
402
if (!task_early_kill(tsk))
403
continue;
404
list_for_each_entry(vmac, &av->head, same_anon_vma) {
405
vma = vmac->vma;
406
if (!page_mapped_in_vma(page, vma))
407
continue;
408
if (vma->vm_mm == tsk->mm)
409
add_to_kill(tsk, page, vma, to_kill, tkc);
410
}
411
}
412
read_unlock(&tasklist_lock);
413
page_unlock_anon_vma(av);
414
}
415
416
/*
417
* Collect processes when the error hit a file mapped page.
418
*/
419
static void collect_procs_file(struct page *page, struct list_head *to_kill,
420
struct to_kill **tkc)
421
{
422
struct vm_area_struct *vma;
423
struct task_struct *tsk;
424
struct prio_tree_iter iter;
425
struct address_space *mapping = page->mapping;
426
427
mutex_lock(&mapping->i_mmap_mutex);
428
read_lock(&tasklist_lock);
429
for_each_process(tsk) {
430
pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
431
432
if (!task_early_kill(tsk))
433
continue;
434
435
vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
436
pgoff) {
437
/*
438
* Send early kill signal to tasks where a vma covers
439
* the page but the corrupted page is not necessarily
440
* mapped it in its pte.
441
* Assume applications who requested early kill want
442
* to be informed of all such data corruptions.
443
*/
444
if (vma->vm_mm == tsk->mm)
445
add_to_kill(tsk, page, vma, to_kill, tkc);
446
}
447
}
448
read_unlock(&tasklist_lock);
449
mutex_unlock(&mapping->i_mmap_mutex);
450
}
451
452
/*
453
* Collect the processes who have the corrupted page mapped to kill.
454
* This is done in two steps for locking reasons.
455
* First preallocate one tokill structure outside the spin locks,
456
* so that we can kill at least one process reasonably reliable.
457
*/
458
static void collect_procs(struct page *page, struct list_head *tokill)
459
{
460
struct to_kill *tk;
461
462
if (!page->mapping)
463
return;
464
465
tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
466
if (!tk)
467
return;
468
if (PageAnon(page))
469
collect_procs_anon(page, tokill, &tk);
470
else
471
collect_procs_file(page, tokill, &tk);
472
kfree(tk);
473
}
474
475
/*
476
* Error handlers for various types of pages.
477
*/
478
479
enum outcome {
480
IGNORED, /* Error: cannot be handled */
481
FAILED, /* Error: handling failed */
482
DELAYED, /* Will be handled later */
483
RECOVERED, /* Successfully recovered */
484
};
485
486
static const char *action_name[] = {
487
[IGNORED] = "Ignored",
488
[FAILED] = "Failed",
489
[DELAYED] = "Delayed",
490
[RECOVERED] = "Recovered",
491
};
492
493
/*
494
* XXX: It is possible that a page is isolated from LRU cache,
495
* and then kept in swap cache or failed to remove from page cache.
496
* The page count will stop it from being freed by unpoison.
497
* Stress tests should be aware of this memory leak problem.
498
*/
499
static int delete_from_lru_cache(struct page *p)
500
{
501
if (!isolate_lru_page(p)) {
502
/*
503
* Clear sensible page flags, so that the buddy system won't
504
* complain when the page is unpoison-and-freed.
505
*/
506
ClearPageActive(p);
507
ClearPageUnevictable(p);
508
/*
509
* drop the page count elevated by isolate_lru_page()
510
*/
511
page_cache_release(p);
512
return 0;
513
}
514
return -EIO;
515
}
516
517
/*
518
* Error hit kernel page.
519
* Do nothing, try to be lucky and not touch this instead. For a few cases we
520
* could be more sophisticated.
521
*/
522
static int me_kernel(struct page *p, unsigned long pfn)
523
{
524
return IGNORED;
525
}
526
527
/*
528
* Page in unknown state. Do nothing.
529
*/
530
static int me_unknown(struct page *p, unsigned long pfn)
531
{
532
printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
533
return FAILED;
534
}
535
536
/*
537
* Clean (or cleaned) page cache page.
538
*/
539
static int me_pagecache_clean(struct page *p, unsigned long pfn)
540
{
541
int err;
542
int ret = FAILED;
543
struct address_space *mapping;
544
545
delete_from_lru_cache(p);
546
547
/*
548
* For anonymous pages we're done the only reference left
549
* should be the one m_f() holds.
550
*/
551
if (PageAnon(p))
552
return RECOVERED;
553
554
/*
555
* Now truncate the page in the page cache. This is really
556
* more like a "temporary hole punch"
557
* Don't do this for block devices when someone else
558
* has a reference, because it could be file system metadata
559
* and that's not safe to truncate.
560
*/
561
mapping = page_mapping(p);
562
if (!mapping) {
563
/*
564
* Page has been teared down in the meanwhile
565
*/
566
return FAILED;
567
}
568
569
/*
570
* Truncation is a bit tricky. Enable it per file system for now.
571
*
572
* Open: to take i_mutex or not for this? Right now we don't.
573
*/
574
if (mapping->a_ops->error_remove_page) {
575
err = mapping->a_ops->error_remove_page(mapping, p);
576
if (err != 0) {
577
printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
578
pfn, err);
579
} else if (page_has_private(p) &&
580
!try_to_release_page(p, GFP_NOIO)) {
581
pr_info("MCE %#lx: failed to release buffers\n", pfn);
582
} else {
583
ret = RECOVERED;
584
}
585
} else {
586
/*
587
* If the file system doesn't support it just invalidate
588
* This fails on dirty or anything with private pages
589
*/
590
if (invalidate_inode_page(p))
591
ret = RECOVERED;
592
else
593
printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
594
pfn);
595
}
596
return ret;
597
}
598
599
/*
600
* Dirty cache page page
601
* Issues: when the error hit a hole page the error is not properly
602
* propagated.
603
*/
604
static int me_pagecache_dirty(struct page *p, unsigned long pfn)
605
{
606
struct address_space *mapping = page_mapping(p);
607
608
SetPageError(p);
609
/* TBD: print more information about the file. */
610
if (mapping) {
611
/*
612
* IO error will be reported by write(), fsync(), etc.
613
* who check the mapping.
614
* This way the application knows that something went
615
* wrong with its dirty file data.
616
*
617
* There's one open issue:
618
*
619
* The EIO will be only reported on the next IO
620
* operation and then cleared through the IO map.
621
* Normally Linux has two mechanisms to pass IO error
622
* first through the AS_EIO flag in the address space
623
* and then through the PageError flag in the page.
624
* Since we drop pages on memory failure handling the
625
* only mechanism open to use is through AS_AIO.
626
*
627
* This has the disadvantage that it gets cleared on
628
* the first operation that returns an error, while
629
* the PageError bit is more sticky and only cleared
630
* when the page is reread or dropped. If an
631
* application assumes it will always get error on
632
* fsync, but does other operations on the fd before
633
* and the page is dropped between then the error
634
* will not be properly reported.
635
*
636
* This can already happen even without hwpoisoned
637
* pages: first on metadata IO errors (which only
638
* report through AS_EIO) or when the page is dropped
639
* at the wrong time.
640
*
641
* So right now we assume that the application DTRT on
642
* the first EIO, but we're not worse than other parts
643
* of the kernel.
644
*/
645
mapping_set_error(mapping, EIO);
646
}
647
648
return me_pagecache_clean(p, pfn);
649
}
650
651
/*
652
* Clean and dirty swap cache.
653
*
654
* Dirty swap cache page is tricky to handle. The page could live both in page
655
* cache and swap cache(ie. page is freshly swapped in). So it could be
656
* referenced concurrently by 2 types of PTEs:
657
* normal PTEs and swap PTEs. We try to handle them consistently by calling
658
* try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
659
* and then
660
* - clear dirty bit to prevent IO
661
* - remove from LRU
662
* - but keep in the swap cache, so that when we return to it on
663
* a later page fault, we know the application is accessing
664
* corrupted data and shall be killed (we installed simple
665
* interception code in do_swap_page to catch it).
666
*
667
* Clean swap cache pages can be directly isolated. A later page fault will
668
* bring in the known good data from disk.
669
*/
670
static int me_swapcache_dirty(struct page *p, unsigned long pfn)
671
{
672
ClearPageDirty(p);
673
/* Trigger EIO in shmem: */
674
ClearPageUptodate(p);
675
676
if (!delete_from_lru_cache(p))
677
return DELAYED;
678
else
679
return FAILED;
680
}
681
682
static int me_swapcache_clean(struct page *p, unsigned long pfn)
683
{
684
delete_from_swap_cache(p);
685
686
if (!delete_from_lru_cache(p))
687
return RECOVERED;
688
else
689
return FAILED;
690
}
691
692
/*
693
* Huge pages. Needs work.
694
* Issues:
695
* - Error on hugepage is contained in hugepage unit (not in raw page unit.)
696
* To narrow down kill region to one page, we need to break up pmd.
697
*/
698
static int me_huge_page(struct page *p, unsigned long pfn)
699
{
700
int res = 0;
701
struct page *hpage = compound_head(p);
702
/*
703
* We can safely recover from error on free or reserved (i.e.
704
* not in-use) hugepage by dequeuing it from freelist.
705
* To check whether a hugepage is in-use or not, we can't use
706
* page->lru because it can be used in other hugepage operations,
707
* such as __unmap_hugepage_range() and gather_surplus_pages().
708
* So instead we use page_mapping() and PageAnon().
709
* We assume that this function is called with page lock held,
710
* so there is no race between isolation and mapping/unmapping.
711
*/
712
if (!(page_mapping(hpage) || PageAnon(hpage))) {
713
res = dequeue_hwpoisoned_huge_page(hpage);
714
if (!res)
715
return RECOVERED;
716
}
717
return DELAYED;
718
}
719
720
/*
721
* Various page states we can handle.
722
*
723
* A page state is defined by its current page->flags bits.
724
* The table matches them in order and calls the right handler.
725
*
726
* This is quite tricky because we can access page at any time
727
* in its live cycle, so all accesses have to be extremely careful.
728
*
729
* This is not complete. More states could be added.
730
* For any missing state don't attempt recovery.
731
*/
732
733
#define dirty (1UL << PG_dirty)
734
#define sc (1UL << PG_swapcache)
735
#define unevict (1UL << PG_unevictable)
736
#define mlock (1UL << PG_mlocked)
737
#define writeback (1UL << PG_writeback)
738
#define lru (1UL << PG_lru)
739
#define swapbacked (1UL << PG_swapbacked)
740
#define head (1UL << PG_head)
741
#define tail (1UL << PG_tail)
742
#define compound (1UL << PG_compound)
743
#define slab (1UL << PG_slab)
744
#define reserved (1UL << PG_reserved)
745
746
static struct page_state {
747
unsigned long mask;
748
unsigned long res;
749
char *msg;
750
int (*action)(struct page *p, unsigned long pfn);
751
} error_states[] = {
752
{ reserved, reserved, "reserved kernel", me_kernel },
753
/*
754
* free pages are specially detected outside this table:
755
* PG_buddy pages only make a small fraction of all free pages.
756
*/
757
758
/*
759
* Could in theory check if slab page is free or if we can drop
760
* currently unused objects without touching them. But just
761
* treat it as standard kernel for now.
762
*/
763
{ slab, slab, "kernel slab", me_kernel },
764
765
#ifdef CONFIG_PAGEFLAGS_EXTENDED
766
{ head, head, "huge", me_huge_page },
767
{ tail, tail, "huge", me_huge_page },
768
#else
769
{ compound, compound, "huge", me_huge_page },
770
#endif
771
772
{ sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
773
{ sc|dirty, sc, "swapcache", me_swapcache_clean },
774
775
{ unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
776
{ unevict, unevict, "unevictable LRU", me_pagecache_clean},
777
778
{ mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
779
{ mlock, mlock, "mlocked LRU", me_pagecache_clean },
780
781
{ lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
782
{ lru|dirty, lru, "clean LRU", me_pagecache_clean },
783
784
/*
785
* Catchall entry: must be at end.
786
*/
787
{ 0, 0, "unknown page state", me_unknown },
788
};
789
790
#undef dirty
791
#undef sc
792
#undef unevict
793
#undef mlock
794
#undef writeback
795
#undef lru
796
#undef swapbacked
797
#undef head
798
#undef tail
799
#undef compound
800
#undef slab
801
#undef reserved
802
803
static void action_result(unsigned long pfn, char *msg, int result)
804
{
805
struct page *page = pfn_to_page(pfn);
806
807
printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
808
pfn,
809
PageDirty(page) ? "dirty " : "",
810
msg, action_name[result]);
811
}
812
813
static int page_action(struct page_state *ps, struct page *p,
814
unsigned long pfn)
815
{
816
int result;
817
int count;
818
819
result = ps->action(p, pfn);
820
action_result(pfn, ps->msg, result);
821
822
count = page_count(p) - 1;
823
if (ps->action == me_swapcache_dirty && result == DELAYED)
824
count--;
825
if (count != 0) {
826
printk(KERN_ERR
827
"MCE %#lx: %s page still referenced by %d users\n",
828
pfn, ps->msg, count);
829
result = FAILED;
830
}
831
832
/* Could do more checks here if page looks ok */
833
/*
834
* Could adjust zone counters here to correct for the missing page.
835
*/
836
837
return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
838
}
839
840
/*
841
* Do all that is necessary to remove user space mappings. Unmap
842
* the pages and send SIGBUS to the processes if the data was dirty.
843
*/
844
static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
845
int trapno)
846
{
847
enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
848
struct address_space *mapping;
849
LIST_HEAD(tokill);
850
int ret;
851
int kill = 1;
852
struct page *hpage = compound_head(p);
853
struct page *ppage;
854
855
if (PageReserved(p) || PageSlab(p))
856
return SWAP_SUCCESS;
857
858
/*
859
* This check implies we don't kill processes if their pages
860
* are in the swap cache early. Those are always late kills.
861
*/
862
if (!page_mapped(hpage))
863
return SWAP_SUCCESS;
864
865
if (PageKsm(p))
866
return SWAP_FAIL;
867
868
if (PageSwapCache(p)) {
869
printk(KERN_ERR
870
"MCE %#lx: keeping poisoned page in swap cache\n", pfn);
871
ttu |= TTU_IGNORE_HWPOISON;
872
}
873
874
/*
875
* Propagate the dirty bit from PTEs to struct page first, because we
876
* need this to decide if we should kill or just drop the page.
877
* XXX: the dirty test could be racy: set_page_dirty() may not always
878
* be called inside page lock (it's recommended but not enforced).
879
*/
880
mapping = page_mapping(hpage);
881
if (!PageDirty(hpage) && mapping &&
882
mapping_cap_writeback_dirty(mapping)) {
883
if (page_mkclean(hpage)) {
884
SetPageDirty(hpage);
885
} else {
886
kill = 0;
887
ttu |= TTU_IGNORE_HWPOISON;
888
printk(KERN_INFO
889
"MCE %#lx: corrupted page was clean: dropped without side effects\n",
890
pfn);
891
}
892
}
893
894
/*
895
* ppage: poisoned page
896
* if p is regular page(4k page)
897
* ppage == real poisoned page;
898
* else p is hugetlb or THP, ppage == head page.
899
*/
900
ppage = hpage;
901
902
if (PageTransHuge(hpage)) {
903
/*
904
* Verify that this isn't a hugetlbfs head page, the check for
905
* PageAnon is just for avoid tripping a split_huge_page
906
* internal debug check, as split_huge_page refuses to deal with
907
* anything that isn't an anon page. PageAnon can't go away fro
908
* under us because we hold a refcount on the hpage, without a
909
* refcount on the hpage. split_huge_page can't be safely called
910
* in the first place, having a refcount on the tail isn't
911
* enough * to be safe.
912
*/
913
if (!PageHuge(hpage) && PageAnon(hpage)) {
914
if (unlikely(split_huge_page(hpage))) {
915
/*
916
* FIXME: if splitting THP is failed, it is
917
* better to stop the following operation rather
918
* than causing panic by unmapping. System might
919
* survive if the page is freed later.
920
*/
921
printk(KERN_INFO
922
"MCE %#lx: failed to split THP\n", pfn);
923
924
BUG_ON(!PageHWPoison(p));
925
return SWAP_FAIL;
926
}
927
/* THP is split, so ppage should be the real poisoned page. */
928
ppage = p;
929
}
930
}
931
932
/*
933
* First collect all the processes that have the page
934
* mapped in dirty form. This has to be done before try_to_unmap,
935
* because ttu takes the rmap data structures down.
936
*
937
* Error handling: We ignore errors here because
938
* there's nothing that can be done.
939
*/
940
if (kill)
941
collect_procs(ppage, &tokill);
942
943
if (hpage != ppage)
944
lock_page(ppage);
945
946
ret = try_to_unmap(ppage, ttu);
947
if (ret != SWAP_SUCCESS)
948
printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
949
pfn, page_mapcount(ppage));
950
951
if (hpage != ppage)
952
unlock_page(ppage);
953
954
/*
955
* Now that the dirty bit has been propagated to the
956
* struct page and all unmaps done we can decide if
957
* killing is needed or not. Only kill when the page
958
* was dirty, otherwise the tokill list is merely
959
* freed. When there was a problem unmapping earlier
960
* use a more force-full uncatchable kill to prevent
961
* any accesses to the poisoned memory.
962
*/
963
kill_procs_ao(&tokill, !!PageDirty(ppage), trapno,
964
ret != SWAP_SUCCESS, p, pfn);
965
966
return ret;
967
}
968
969
static void set_page_hwpoison_huge_page(struct page *hpage)
970
{
971
int i;
972
int nr_pages = 1 << compound_trans_order(hpage);
973
for (i = 0; i < nr_pages; i++)
974
SetPageHWPoison(hpage + i);
975
}
976
977
static void clear_page_hwpoison_huge_page(struct page *hpage)
978
{
979
int i;
980
int nr_pages = 1 << compound_trans_order(hpage);
981
for (i = 0; i < nr_pages; i++)
982
ClearPageHWPoison(hpage + i);
983
}
984
985
int __memory_failure(unsigned long pfn, int trapno, int flags)
986
{
987
struct page_state *ps;
988
struct page *p;
989
struct page *hpage;
990
int res;
991
unsigned int nr_pages;
992
993
if (!sysctl_memory_failure_recovery)
994
panic("Memory failure from trap %d on page %lx", trapno, pfn);
995
996
if (!pfn_valid(pfn)) {
997
printk(KERN_ERR
998
"MCE %#lx: memory outside kernel control\n",
999
pfn);
1000
return -ENXIO;
1001
}
1002
1003
p = pfn_to_page(pfn);
1004
hpage = compound_head(p);
1005
if (TestSetPageHWPoison(p)) {
1006
printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1007
return 0;
1008
}
1009
1010
nr_pages = 1 << compound_trans_order(hpage);
1011
atomic_long_add(nr_pages, &mce_bad_pages);
1012
1013
/*
1014
* We need/can do nothing about count=0 pages.
1015
* 1) it's a free page, and therefore in safe hand:
1016
* prep_new_page() will be the gate keeper.
1017
* 2) it's a free hugepage, which is also safe:
1018
* an affected hugepage will be dequeued from hugepage freelist,
1019
* so there's no concern about reusing it ever after.
1020
* 3) it's part of a non-compound high order page.
1021
* Implies some kernel user: cannot stop them from
1022
* R/W the page; let's pray that the page has been
1023
* used and will be freed some time later.
1024
* In fact it's dangerous to directly bump up page count from 0,
1025
* that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1026
*/
1027
if (!(flags & MF_COUNT_INCREASED) &&
1028
!get_page_unless_zero(hpage)) {
1029
if (is_free_buddy_page(p)) {
1030
action_result(pfn, "free buddy", DELAYED);
1031
return 0;
1032
} else if (PageHuge(hpage)) {
1033
/*
1034
* Check "just unpoisoned", "filter hit", and
1035
* "race with other subpage."
1036
*/
1037
lock_page(hpage);
1038
if (!PageHWPoison(hpage)
1039
|| (hwpoison_filter(p) && TestClearPageHWPoison(p))
1040
|| (p != hpage && TestSetPageHWPoison(hpage))) {
1041
atomic_long_sub(nr_pages, &mce_bad_pages);
1042
return 0;
1043
}
1044
set_page_hwpoison_huge_page(hpage);
1045
res = dequeue_hwpoisoned_huge_page(hpage);
1046
action_result(pfn, "free huge",
1047
res ? IGNORED : DELAYED);
1048
unlock_page(hpage);
1049
return res;
1050
} else {
1051
action_result(pfn, "high order kernel", IGNORED);
1052
return -EBUSY;
1053
}
1054
}
1055
1056
/*
1057
* We ignore non-LRU pages for good reasons.
1058
* - PG_locked is only well defined for LRU pages and a few others
1059
* - to avoid races with __set_page_locked()
1060
* - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1061
* The check (unnecessarily) ignores LRU pages being isolated and
1062
* walked by the page reclaim code, however that's not a big loss.
1063
*/
1064
if (!PageHuge(p) && !PageTransCompound(p)) {
1065
if (!PageLRU(p))
1066
shake_page(p, 0);
1067
if (!PageLRU(p)) {
1068
/*
1069
* shake_page could have turned it free.
1070
*/
1071
if (is_free_buddy_page(p)) {
1072
action_result(pfn, "free buddy, 2nd try",
1073
DELAYED);
1074
return 0;
1075
}
1076
action_result(pfn, "non LRU", IGNORED);
1077
put_page(p);
1078
return -EBUSY;
1079
}
1080
}
1081
1082
/*
1083
* Lock the page and wait for writeback to finish.
1084
* It's very difficult to mess with pages currently under IO
1085
* and in many cases impossible, so we just avoid it here.
1086
*/
1087
lock_page(hpage);
1088
1089
/*
1090
* unpoison always clear PG_hwpoison inside page lock
1091
*/
1092
if (!PageHWPoison(p)) {
1093
printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1094
res = 0;
1095
goto out;
1096
}
1097
if (hwpoison_filter(p)) {
1098
if (TestClearPageHWPoison(p))
1099
atomic_long_sub(nr_pages, &mce_bad_pages);
1100
unlock_page(hpage);
1101
put_page(hpage);
1102
return 0;
1103
}
1104
1105
/*
1106
* For error on the tail page, we should set PG_hwpoison
1107
* on the head page to show that the hugepage is hwpoisoned
1108
*/
1109
if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1110
action_result(pfn, "hugepage already hardware poisoned",
1111
IGNORED);
1112
unlock_page(hpage);
1113
put_page(hpage);
1114
return 0;
1115
}
1116
/*
1117
* Set PG_hwpoison on all pages in an error hugepage,
1118
* because containment is done in hugepage unit for now.
1119
* Since we have done TestSetPageHWPoison() for the head page with
1120
* page lock held, we can safely set PG_hwpoison bits on tail pages.
1121
*/
1122
if (PageHuge(p))
1123
set_page_hwpoison_huge_page(hpage);
1124
1125
wait_on_page_writeback(p);
1126
1127
/*
1128
* Now take care of user space mappings.
1129
* Abort on fail: __delete_from_page_cache() assumes unmapped page.
1130
*/
1131
if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
1132
printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1133
res = -EBUSY;
1134
goto out;
1135
}
1136
1137
/*
1138
* Torn down by someone else?
1139
*/
1140
if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1141
action_result(pfn, "already truncated LRU", IGNORED);
1142
res = -EBUSY;
1143
goto out;
1144
}
1145
1146
res = -EBUSY;
1147
for (ps = error_states;; ps++) {
1148
if ((p->flags & ps->mask) == ps->res) {
1149
res = page_action(ps, p, pfn);
1150
break;
1151
}
1152
}
1153
out:
1154
unlock_page(hpage);
1155
return res;
1156
}
1157
EXPORT_SYMBOL_GPL(__memory_failure);
1158
1159
/**
1160
* memory_failure - Handle memory failure of a page.
1161
* @pfn: Page Number of the corrupted page
1162
* @trapno: Trap number reported in the signal to user space.
1163
*
1164
* This function is called by the low level machine check code
1165
* of an architecture when it detects hardware memory corruption
1166
* of a page. It tries its best to recover, which includes
1167
* dropping pages, killing processes etc.
1168
*
1169
* The function is primarily of use for corruptions that
1170
* happen outside the current execution context (e.g. when
1171
* detected by a background scrubber)
1172
*
1173
* Must run in process context (e.g. a work queue) with interrupts
1174
* enabled and no spinlocks hold.
1175
*/
1176
void memory_failure(unsigned long pfn, int trapno)
1177
{
1178
__memory_failure(pfn, trapno, 0);
1179
}
1180
1181
/**
1182
* unpoison_memory - Unpoison a previously poisoned page
1183
* @pfn: Page number of the to be unpoisoned page
1184
*
1185
* Software-unpoison a page that has been poisoned by
1186
* memory_failure() earlier.
1187
*
1188
* This is only done on the software-level, so it only works
1189
* for linux injected failures, not real hardware failures
1190
*
1191
* Returns 0 for success, otherwise -errno.
1192
*/
1193
int unpoison_memory(unsigned long pfn)
1194
{
1195
struct page *page;
1196
struct page *p;
1197
int freeit = 0;
1198
unsigned int nr_pages;
1199
1200
if (!pfn_valid(pfn))
1201
return -ENXIO;
1202
1203
p = pfn_to_page(pfn);
1204
page = compound_head(p);
1205
1206
if (!PageHWPoison(p)) {
1207
pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1208
return 0;
1209
}
1210
1211
nr_pages = 1 << compound_trans_order(page);
1212
1213
if (!get_page_unless_zero(page)) {
1214
/*
1215
* Since HWPoisoned hugepage should have non-zero refcount,
1216
* race between memory failure and unpoison seems to happen.
1217
* In such case unpoison fails and memory failure runs
1218
* to the end.
1219
*/
1220
if (PageHuge(page)) {
1221
pr_debug("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1222
return 0;
1223
}
1224
if (TestClearPageHWPoison(p))
1225
atomic_long_sub(nr_pages, &mce_bad_pages);
1226
pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1227
return 0;
1228
}
1229
1230
lock_page(page);
1231
/*
1232
* This test is racy because PG_hwpoison is set outside of page lock.
1233
* That's acceptable because that won't trigger kernel panic. Instead,
1234
* the PG_hwpoison page will be caught and isolated on the entrance to
1235
* the free buddy page pool.
1236
*/
1237
if (TestClearPageHWPoison(page)) {
1238
pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1239
atomic_long_sub(nr_pages, &mce_bad_pages);
1240
freeit = 1;
1241
if (PageHuge(page))
1242
clear_page_hwpoison_huge_page(page);
1243
}
1244
unlock_page(page);
1245
1246
put_page(page);
1247
if (freeit)
1248
put_page(page);
1249
1250
return 0;
1251
}
1252
EXPORT_SYMBOL(unpoison_memory);
1253
1254
static struct page *new_page(struct page *p, unsigned long private, int **x)
1255
{
1256
int nid = page_to_nid(p);
1257
if (PageHuge(p))
1258
return alloc_huge_page_node(page_hstate(compound_head(p)),
1259
nid);
1260
else
1261
return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1262
}
1263
1264
/*
1265
* Safely get reference count of an arbitrary page.
1266
* Returns 0 for a free page, -EIO for a zero refcount page
1267
* that is not free, and 1 for any other page type.
1268
* For 1 the page is returned with increased page count, otherwise not.
1269
*/
1270
static int get_any_page(struct page *p, unsigned long pfn, int flags)
1271
{
1272
int ret;
1273
1274
if (flags & MF_COUNT_INCREASED)
1275
return 1;
1276
1277
/*
1278
* The lock_memory_hotplug prevents a race with memory hotplug.
1279
* This is a big hammer, a better would be nicer.
1280
*/
1281
lock_memory_hotplug();
1282
1283
/*
1284
* Isolate the page, so that it doesn't get reallocated if it
1285
* was free.
1286
*/
1287
set_migratetype_isolate(p);
1288
/*
1289
* When the target page is a free hugepage, just remove it
1290
* from free hugepage list.
1291
*/
1292
if (!get_page_unless_zero(compound_head(p))) {
1293
if (PageHuge(p)) {
1294
pr_info("get_any_page: %#lx free huge page\n", pfn);
1295
ret = dequeue_hwpoisoned_huge_page(compound_head(p));
1296
} else if (is_free_buddy_page(p)) {
1297
pr_info("get_any_page: %#lx free buddy page\n", pfn);
1298
/* Set hwpoison bit while page is still isolated */
1299
SetPageHWPoison(p);
1300
ret = 0;
1301
} else {
1302
pr_info("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1303
pfn, p->flags);
1304
ret = -EIO;
1305
}
1306
} else {
1307
/* Not a free page */
1308
ret = 1;
1309
}
1310
unset_migratetype_isolate(p);
1311
unlock_memory_hotplug();
1312
return ret;
1313
}
1314
1315
static int soft_offline_huge_page(struct page *page, int flags)
1316
{
1317
int ret;
1318
unsigned long pfn = page_to_pfn(page);
1319
struct page *hpage = compound_head(page);
1320
LIST_HEAD(pagelist);
1321
1322
ret = get_any_page(page, pfn, flags);
1323
if (ret < 0)
1324
return ret;
1325
if (ret == 0)
1326
goto done;
1327
1328
if (PageHWPoison(hpage)) {
1329
put_page(hpage);
1330
pr_debug("soft offline: %#lx hugepage already poisoned\n", pfn);
1331
return -EBUSY;
1332
}
1333
1334
/* Keep page count to indicate a given hugepage is isolated. */
1335
1336
list_add(&hpage->lru, &pagelist);
1337
ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0,
1338
true);
1339
if (ret) {
1340
struct page *page1, *page2;
1341
list_for_each_entry_safe(page1, page2, &pagelist, lru)
1342
put_page(page1);
1343
1344
pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
1345
pfn, ret, page->flags);
1346
if (ret > 0)
1347
ret = -EIO;
1348
return ret;
1349
}
1350
done:
1351
if (!PageHWPoison(hpage))
1352
atomic_long_add(1 << compound_trans_order(hpage), &mce_bad_pages);
1353
set_page_hwpoison_huge_page(hpage);
1354
dequeue_hwpoisoned_huge_page(hpage);
1355
/* keep elevated page count for bad page */
1356
return ret;
1357
}
1358
1359
/**
1360
* soft_offline_page - Soft offline a page.
1361
* @page: page to offline
1362
* @flags: flags. Same as memory_failure().
1363
*
1364
* Returns 0 on success, otherwise negated errno.
1365
*
1366
* Soft offline a page, by migration or invalidation,
1367
* without killing anything. This is for the case when
1368
* a page is not corrupted yet (so it's still valid to access),
1369
* but has had a number of corrected errors and is better taken
1370
* out.
1371
*
1372
* The actual policy on when to do that is maintained by
1373
* user space.
1374
*
1375
* This should never impact any application or cause data loss,
1376
* however it might take some time.
1377
*
1378
* This is not a 100% solution for all memory, but tries to be
1379
* ``good enough'' for the majority of memory.
1380
*/
1381
int soft_offline_page(struct page *page, int flags)
1382
{
1383
int ret;
1384
unsigned long pfn = page_to_pfn(page);
1385
1386
if (PageHuge(page))
1387
return soft_offline_huge_page(page, flags);
1388
1389
ret = get_any_page(page, pfn, flags);
1390
if (ret < 0)
1391
return ret;
1392
if (ret == 0)
1393
goto done;
1394
1395
/*
1396
* Page cache page we can handle?
1397
*/
1398
if (!PageLRU(page)) {
1399
/*
1400
* Try to free it.
1401
*/
1402
put_page(page);
1403
shake_page(page, 1);
1404
1405
/*
1406
* Did it turn free?
1407
*/
1408
ret = get_any_page(page, pfn, 0);
1409
if (ret < 0)
1410
return ret;
1411
if (ret == 0)
1412
goto done;
1413
}
1414
if (!PageLRU(page)) {
1415
pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1416
pfn, page->flags);
1417
return -EIO;
1418
}
1419
1420
lock_page(page);
1421
wait_on_page_writeback(page);
1422
1423
/*
1424
* Synchronized using the page lock with memory_failure()
1425
*/
1426
if (PageHWPoison(page)) {
1427
unlock_page(page);
1428
put_page(page);
1429
pr_info("soft offline: %#lx page already poisoned\n", pfn);
1430
return -EBUSY;
1431
}
1432
1433
/*
1434
* Try to invalidate first. This should work for
1435
* non dirty unmapped page cache pages.
1436
*/
1437
ret = invalidate_inode_page(page);
1438
unlock_page(page);
1439
/*
1440
* RED-PEN would be better to keep it isolated here, but we
1441
* would need to fix isolation locking first.
1442
*/
1443
if (ret == 1) {
1444
put_page(page);
1445
ret = 0;
1446
pr_info("soft_offline: %#lx: invalidated\n", pfn);
1447
goto done;
1448
}
1449
1450
/*
1451
* Simple invalidation didn't work.
1452
* Try to migrate to a new page instead. migrate.c
1453
* handles a large number of cases for us.
1454
*/
1455
ret = isolate_lru_page(page);
1456
/*
1457
* Drop page reference which is came from get_any_page()
1458
* successful isolate_lru_page() already took another one.
1459
*/
1460
put_page(page);
1461
if (!ret) {
1462
LIST_HEAD(pagelist);
1463
inc_zone_page_state(page, NR_ISOLATED_ANON +
1464
page_is_file_cache(page));
1465
list_add(&page->lru, &pagelist);
1466
ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1467
0, true);
1468
if (ret) {
1469
putback_lru_pages(&pagelist);
1470
pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1471
pfn, ret, page->flags);
1472
if (ret > 0)
1473
ret = -EIO;
1474
}
1475
} else {
1476
pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1477
pfn, ret, page_count(page), page->flags);
1478
}
1479
if (ret)
1480
return ret;
1481
1482
done:
1483
atomic_long_add(1, &mce_bad_pages);
1484
SetPageHWPoison(page);
1485
/* keep elevated page count for bad page */
1486
return ret;
1487
}
1488
1489