Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/mm/memory.c
10814 views
1
/*
2
* linux/mm/memory.c
3
*
4
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5
*/
6
7
/*
8
* demand-loading started 01.12.91 - seems it is high on the list of
9
* things wanted, and it should be easy to implement. - Linus
10
*/
11
12
/*
13
* Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14
* pages started 02.12.91, seems to work. - Linus.
15
*
16
* Tested sharing by executing about 30 /bin/sh: under the old kernel it
17
* would have taken more than the 6M I have free, but it worked well as
18
* far as I could see.
19
*
20
* Also corrected some "invalidate()"s - I wasn't doing enough of them.
21
*/
22
23
/*
24
* Real VM (paging to/from disk) started 18.12.91. Much more work and
25
* thought has to go into this. Oh, well..
26
* 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27
* Found it. Everything seems to work now.
28
* 20.12.91 - Ok, making the swap-device changeable like the root.
29
*/
30
31
/*
32
* 05.04.94 - Multi-page memory management added for v1.1.
33
* Idea by Alex Bligh ([email protected])
34
*
35
* 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36
* ([email protected])
37
*
38
* Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39
*/
40
41
#include <linux/kernel_stat.h>
42
#include <linux/mm.h>
43
#include <linux/hugetlb.h>
44
#include <linux/mman.h>
45
#include <linux/swap.h>
46
#include <linux/highmem.h>
47
#include <linux/pagemap.h>
48
#include <linux/ksm.h>
49
#include <linux/rmap.h>
50
#include <linux/module.h>
51
#include <linux/delayacct.h>
52
#include <linux/init.h>
53
#include <linux/writeback.h>
54
#include <linux/memcontrol.h>
55
#include <linux/mmu_notifier.h>
56
#include <linux/kallsyms.h>
57
#include <linux/swapops.h>
58
#include <linux/elf.h>
59
#include <linux/gfp.h>
60
61
#include <asm/io.h>
62
#include <asm/pgalloc.h>
63
#include <asm/uaccess.h>
64
#include <asm/tlb.h>
65
#include <asm/tlbflush.h>
66
#include <asm/pgtable.h>
67
68
#include "internal.h"
69
70
#ifndef CONFIG_NEED_MULTIPLE_NODES
71
/* use the per-pgdat data instead for discontigmem - mbligh */
72
unsigned long max_mapnr;
73
struct page *mem_map;
74
75
EXPORT_SYMBOL(max_mapnr);
76
EXPORT_SYMBOL(mem_map);
77
#endif
78
79
unsigned long num_physpages;
80
/*
81
* A number of key systems in x86 including ioremap() rely on the assumption
82
* that high_memory defines the upper bound on direct map memory, then end
83
* of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84
* highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85
* and ZONE_HIGHMEM.
86
*/
87
void * high_memory;
88
89
EXPORT_SYMBOL(num_physpages);
90
EXPORT_SYMBOL(high_memory);
91
92
/*
93
* Randomize the address space (stacks, mmaps, brk, etc.).
94
*
95
* ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96
* as ancient (libc5 based) binaries can segfault. )
97
*/
98
int randomize_va_space __read_mostly =
99
#ifdef CONFIG_COMPAT_BRK
100
1;
101
#else
102
2;
103
#endif
104
105
static int __init disable_randmaps(char *s)
106
{
107
randomize_va_space = 0;
108
return 1;
109
}
110
__setup("norandmaps", disable_randmaps);
111
112
unsigned long zero_pfn __read_mostly;
113
unsigned long highest_memmap_pfn __read_mostly;
114
115
/*
116
* CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117
*/
118
static int __init init_zero_pfn(void)
119
{
120
zero_pfn = page_to_pfn(ZERO_PAGE(0));
121
return 0;
122
}
123
core_initcall(init_zero_pfn);
124
125
126
#if defined(SPLIT_RSS_COUNTING)
127
128
static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
129
{
130
int i;
131
132
for (i = 0; i < NR_MM_COUNTERS; i++) {
133
if (task->rss_stat.count[i]) {
134
add_mm_counter(mm, i, task->rss_stat.count[i]);
135
task->rss_stat.count[i] = 0;
136
}
137
}
138
task->rss_stat.events = 0;
139
}
140
141
static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142
{
143
struct task_struct *task = current;
144
145
if (likely(task->mm == mm))
146
task->rss_stat.count[member] += val;
147
else
148
add_mm_counter(mm, member, val);
149
}
150
#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151
#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153
/* sync counter once per 64 page faults */
154
#define TASK_RSS_EVENTS_THRESH (64)
155
static void check_sync_rss_stat(struct task_struct *task)
156
{
157
if (unlikely(task != current))
158
return;
159
if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160
__sync_task_rss_stat(task, task->mm);
161
}
162
163
unsigned long get_mm_counter(struct mm_struct *mm, int member)
164
{
165
long val = 0;
166
167
/*
168
* Don't use task->mm here...for avoiding to use task_get_mm()..
169
* The caller must guarantee task->mm is not invalid.
170
*/
171
val = atomic_long_read(&mm->rss_stat.count[member]);
172
/*
173
* counter is updated in asynchronous manner and may go to minus.
174
* But it's never be expected number for users.
175
*/
176
if (val < 0)
177
return 0;
178
return (unsigned long)val;
179
}
180
181
void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
182
{
183
__sync_task_rss_stat(task, mm);
184
}
185
#else /* SPLIT_RSS_COUNTING */
186
187
#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188
#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
189
190
static void check_sync_rss_stat(struct task_struct *task)
191
{
192
}
193
194
#endif /* SPLIT_RSS_COUNTING */
195
196
#ifdef HAVE_GENERIC_MMU_GATHER
197
198
static int tlb_next_batch(struct mmu_gather *tlb)
199
{
200
struct mmu_gather_batch *batch;
201
202
batch = tlb->active;
203
if (batch->next) {
204
tlb->active = batch->next;
205
return 1;
206
}
207
208
batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
209
if (!batch)
210
return 0;
211
212
batch->next = NULL;
213
batch->nr = 0;
214
batch->max = MAX_GATHER_BATCH;
215
216
tlb->active->next = batch;
217
tlb->active = batch;
218
219
return 1;
220
}
221
222
/* tlb_gather_mmu
223
* Called to initialize an (on-stack) mmu_gather structure for page-table
224
* tear-down from @mm. The @fullmm argument is used when @mm is without
225
* users and we're going to destroy the full address space (exit/execve).
226
*/
227
void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
228
{
229
tlb->mm = mm;
230
231
tlb->fullmm = fullmm;
232
tlb->need_flush = 0;
233
tlb->fast_mode = (num_possible_cpus() == 1);
234
tlb->local.next = NULL;
235
tlb->local.nr = 0;
236
tlb->local.max = ARRAY_SIZE(tlb->__pages);
237
tlb->active = &tlb->local;
238
239
#ifdef CONFIG_HAVE_RCU_TABLE_FREE
240
tlb->batch = NULL;
241
#endif
242
}
243
244
void tlb_flush_mmu(struct mmu_gather *tlb)
245
{
246
struct mmu_gather_batch *batch;
247
248
if (!tlb->need_flush)
249
return;
250
tlb->need_flush = 0;
251
tlb_flush(tlb);
252
#ifdef CONFIG_HAVE_RCU_TABLE_FREE
253
tlb_table_flush(tlb);
254
#endif
255
256
if (tlb_fast_mode(tlb))
257
return;
258
259
for (batch = &tlb->local; batch; batch = batch->next) {
260
free_pages_and_swap_cache(batch->pages, batch->nr);
261
batch->nr = 0;
262
}
263
tlb->active = &tlb->local;
264
}
265
266
/* tlb_finish_mmu
267
* Called at the end of the shootdown operation to free up any resources
268
* that were required.
269
*/
270
void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
271
{
272
struct mmu_gather_batch *batch, *next;
273
274
tlb_flush_mmu(tlb);
275
276
/* keep the page table cache within bounds */
277
check_pgt_cache();
278
279
for (batch = tlb->local.next; batch; batch = next) {
280
next = batch->next;
281
free_pages((unsigned long)batch, 0);
282
}
283
tlb->local.next = NULL;
284
}
285
286
/* __tlb_remove_page
287
* Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
288
* handling the additional races in SMP caused by other CPUs caching valid
289
* mappings in their TLBs. Returns the number of free page slots left.
290
* When out of page slots we must call tlb_flush_mmu().
291
*/
292
int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
293
{
294
struct mmu_gather_batch *batch;
295
296
tlb->need_flush = 1;
297
298
if (tlb_fast_mode(tlb)) {
299
free_page_and_swap_cache(page);
300
return 1; /* avoid calling tlb_flush_mmu() */
301
}
302
303
batch = tlb->active;
304
batch->pages[batch->nr++] = page;
305
if (batch->nr == batch->max) {
306
if (!tlb_next_batch(tlb))
307
return 0;
308
batch = tlb->active;
309
}
310
VM_BUG_ON(batch->nr > batch->max);
311
312
return batch->max - batch->nr;
313
}
314
315
#endif /* HAVE_GENERIC_MMU_GATHER */
316
317
#ifdef CONFIG_HAVE_RCU_TABLE_FREE
318
319
/*
320
* See the comment near struct mmu_table_batch.
321
*/
322
323
static void tlb_remove_table_smp_sync(void *arg)
324
{
325
/* Simply deliver the interrupt */
326
}
327
328
static void tlb_remove_table_one(void *table)
329
{
330
/*
331
* This isn't an RCU grace period and hence the page-tables cannot be
332
* assumed to be actually RCU-freed.
333
*
334
* It is however sufficient for software page-table walkers that rely on
335
* IRQ disabling. See the comment near struct mmu_table_batch.
336
*/
337
smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
338
__tlb_remove_table(table);
339
}
340
341
static void tlb_remove_table_rcu(struct rcu_head *head)
342
{
343
struct mmu_table_batch *batch;
344
int i;
345
346
batch = container_of(head, struct mmu_table_batch, rcu);
347
348
for (i = 0; i < batch->nr; i++)
349
__tlb_remove_table(batch->tables[i]);
350
351
free_page((unsigned long)batch);
352
}
353
354
void tlb_table_flush(struct mmu_gather *tlb)
355
{
356
struct mmu_table_batch **batch = &tlb->batch;
357
358
if (*batch) {
359
call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
360
*batch = NULL;
361
}
362
}
363
364
void tlb_remove_table(struct mmu_gather *tlb, void *table)
365
{
366
struct mmu_table_batch **batch = &tlb->batch;
367
368
tlb->need_flush = 1;
369
370
/*
371
* When there's less then two users of this mm there cannot be a
372
* concurrent page-table walk.
373
*/
374
if (atomic_read(&tlb->mm->mm_users) < 2) {
375
__tlb_remove_table(table);
376
return;
377
}
378
379
if (*batch == NULL) {
380
*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
381
if (*batch == NULL) {
382
tlb_remove_table_one(table);
383
return;
384
}
385
(*batch)->nr = 0;
386
}
387
(*batch)->tables[(*batch)->nr++] = table;
388
if ((*batch)->nr == MAX_TABLE_BATCH)
389
tlb_table_flush(tlb);
390
}
391
392
#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
393
394
/*
395
* If a p?d_bad entry is found while walking page tables, report
396
* the error, before resetting entry to p?d_none. Usually (but
397
* very seldom) called out from the p?d_none_or_clear_bad macros.
398
*/
399
400
void pgd_clear_bad(pgd_t *pgd)
401
{
402
pgd_ERROR(*pgd);
403
pgd_clear(pgd);
404
}
405
406
void pud_clear_bad(pud_t *pud)
407
{
408
pud_ERROR(*pud);
409
pud_clear(pud);
410
}
411
412
void pmd_clear_bad(pmd_t *pmd)
413
{
414
pmd_ERROR(*pmd);
415
pmd_clear(pmd);
416
}
417
418
/*
419
* Note: this doesn't free the actual pages themselves. That
420
* has been handled earlier when unmapping all the memory regions.
421
*/
422
static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
423
unsigned long addr)
424
{
425
pgtable_t token = pmd_pgtable(*pmd);
426
pmd_clear(pmd);
427
pte_free_tlb(tlb, token, addr);
428
tlb->mm->nr_ptes--;
429
}
430
431
static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
432
unsigned long addr, unsigned long end,
433
unsigned long floor, unsigned long ceiling)
434
{
435
pmd_t *pmd;
436
unsigned long next;
437
unsigned long start;
438
439
start = addr;
440
pmd = pmd_offset(pud, addr);
441
do {
442
next = pmd_addr_end(addr, end);
443
if (pmd_none_or_clear_bad(pmd))
444
continue;
445
free_pte_range(tlb, pmd, addr);
446
} while (pmd++, addr = next, addr != end);
447
448
start &= PUD_MASK;
449
if (start < floor)
450
return;
451
if (ceiling) {
452
ceiling &= PUD_MASK;
453
if (!ceiling)
454
return;
455
}
456
if (end - 1 > ceiling - 1)
457
return;
458
459
pmd = pmd_offset(pud, start);
460
pud_clear(pud);
461
pmd_free_tlb(tlb, pmd, start);
462
}
463
464
static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
465
unsigned long addr, unsigned long end,
466
unsigned long floor, unsigned long ceiling)
467
{
468
pud_t *pud;
469
unsigned long next;
470
unsigned long start;
471
472
start = addr;
473
pud = pud_offset(pgd, addr);
474
do {
475
next = pud_addr_end(addr, end);
476
if (pud_none_or_clear_bad(pud))
477
continue;
478
free_pmd_range(tlb, pud, addr, next, floor, ceiling);
479
} while (pud++, addr = next, addr != end);
480
481
start &= PGDIR_MASK;
482
if (start < floor)
483
return;
484
if (ceiling) {
485
ceiling &= PGDIR_MASK;
486
if (!ceiling)
487
return;
488
}
489
if (end - 1 > ceiling - 1)
490
return;
491
492
pud = pud_offset(pgd, start);
493
pgd_clear(pgd);
494
pud_free_tlb(tlb, pud, start);
495
}
496
497
/*
498
* This function frees user-level page tables of a process.
499
*
500
* Must be called with pagetable lock held.
501
*/
502
void free_pgd_range(struct mmu_gather *tlb,
503
unsigned long addr, unsigned long end,
504
unsigned long floor, unsigned long ceiling)
505
{
506
pgd_t *pgd;
507
unsigned long next;
508
509
/*
510
* The next few lines have given us lots of grief...
511
*
512
* Why are we testing PMD* at this top level? Because often
513
* there will be no work to do at all, and we'd prefer not to
514
* go all the way down to the bottom just to discover that.
515
*
516
* Why all these "- 1"s? Because 0 represents both the bottom
517
* of the address space and the top of it (using -1 for the
518
* top wouldn't help much: the masks would do the wrong thing).
519
* The rule is that addr 0 and floor 0 refer to the bottom of
520
* the address space, but end 0 and ceiling 0 refer to the top
521
* Comparisons need to use "end - 1" and "ceiling - 1" (though
522
* that end 0 case should be mythical).
523
*
524
* Wherever addr is brought up or ceiling brought down, we must
525
* be careful to reject "the opposite 0" before it confuses the
526
* subsequent tests. But what about where end is brought down
527
* by PMD_SIZE below? no, end can't go down to 0 there.
528
*
529
* Whereas we round start (addr) and ceiling down, by different
530
* masks at different levels, in order to test whether a table
531
* now has no other vmas using it, so can be freed, we don't
532
* bother to round floor or end up - the tests don't need that.
533
*/
534
535
addr &= PMD_MASK;
536
if (addr < floor) {
537
addr += PMD_SIZE;
538
if (!addr)
539
return;
540
}
541
if (ceiling) {
542
ceiling &= PMD_MASK;
543
if (!ceiling)
544
return;
545
}
546
if (end - 1 > ceiling - 1)
547
end -= PMD_SIZE;
548
if (addr > end - 1)
549
return;
550
551
pgd = pgd_offset(tlb->mm, addr);
552
do {
553
next = pgd_addr_end(addr, end);
554
if (pgd_none_or_clear_bad(pgd))
555
continue;
556
free_pud_range(tlb, pgd, addr, next, floor, ceiling);
557
} while (pgd++, addr = next, addr != end);
558
}
559
560
void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
561
unsigned long floor, unsigned long ceiling)
562
{
563
while (vma) {
564
struct vm_area_struct *next = vma->vm_next;
565
unsigned long addr = vma->vm_start;
566
567
/*
568
* Hide vma from rmap and truncate_pagecache before freeing
569
* pgtables
570
*/
571
unlink_anon_vmas(vma);
572
unlink_file_vma(vma);
573
574
if (is_vm_hugetlb_page(vma)) {
575
hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
576
floor, next? next->vm_start: ceiling);
577
} else {
578
/*
579
* Optimization: gather nearby vmas into one call down
580
*/
581
while (next && next->vm_start <= vma->vm_end + PMD_SIZE
582
&& !is_vm_hugetlb_page(next)) {
583
vma = next;
584
next = vma->vm_next;
585
unlink_anon_vmas(vma);
586
unlink_file_vma(vma);
587
}
588
free_pgd_range(tlb, addr, vma->vm_end,
589
floor, next? next->vm_start: ceiling);
590
}
591
vma = next;
592
}
593
}
594
595
int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
596
pmd_t *pmd, unsigned long address)
597
{
598
pgtable_t new = pte_alloc_one(mm, address);
599
int wait_split_huge_page;
600
if (!new)
601
return -ENOMEM;
602
603
/*
604
* Ensure all pte setup (eg. pte page lock and page clearing) are
605
* visible before the pte is made visible to other CPUs by being
606
* put into page tables.
607
*
608
* The other side of the story is the pointer chasing in the page
609
* table walking code (when walking the page table without locking;
610
* ie. most of the time). Fortunately, these data accesses consist
611
* of a chain of data-dependent loads, meaning most CPUs (alpha
612
* being the notable exception) will already guarantee loads are
613
* seen in-order. See the alpha page table accessors for the
614
* smp_read_barrier_depends() barriers in page table walking code.
615
*/
616
smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
617
618
spin_lock(&mm->page_table_lock);
619
wait_split_huge_page = 0;
620
if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
621
mm->nr_ptes++;
622
pmd_populate(mm, pmd, new);
623
new = NULL;
624
} else if (unlikely(pmd_trans_splitting(*pmd)))
625
wait_split_huge_page = 1;
626
spin_unlock(&mm->page_table_lock);
627
if (new)
628
pte_free(mm, new);
629
if (wait_split_huge_page)
630
wait_split_huge_page(vma->anon_vma, pmd);
631
return 0;
632
}
633
634
int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
635
{
636
pte_t *new = pte_alloc_one_kernel(&init_mm, address);
637
if (!new)
638
return -ENOMEM;
639
640
smp_wmb(); /* See comment in __pte_alloc */
641
642
spin_lock(&init_mm.page_table_lock);
643
if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
644
pmd_populate_kernel(&init_mm, pmd, new);
645
new = NULL;
646
} else
647
VM_BUG_ON(pmd_trans_splitting(*pmd));
648
spin_unlock(&init_mm.page_table_lock);
649
if (new)
650
pte_free_kernel(&init_mm, new);
651
return 0;
652
}
653
654
static inline void init_rss_vec(int *rss)
655
{
656
memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
657
}
658
659
static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
660
{
661
int i;
662
663
if (current->mm == mm)
664
sync_mm_rss(current, mm);
665
for (i = 0; i < NR_MM_COUNTERS; i++)
666
if (rss[i])
667
add_mm_counter(mm, i, rss[i]);
668
}
669
670
/*
671
* This function is called to print an error when a bad pte
672
* is found. For example, we might have a PFN-mapped pte in
673
* a region that doesn't allow it.
674
*
675
* The calling function must still handle the error.
676
*/
677
static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
678
pte_t pte, struct page *page)
679
{
680
pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
681
pud_t *pud = pud_offset(pgd, addr);
682
pmd_t *pmd = pmd_offset(pud, addr);
683
struct address_space *mapping;
684
pgoff_t index;
685
static unsigned long resume;
686
static unsigned long nr_shown;
687
static unsigned long nr_unshown;
688
689
/*
690
* Allow a burst of 60 reports, then keep quiet for that minute;
691
* or allow a steady drip of one report per second.
692
*/
693
if (nr_shown == 60) {
694
if (time_before(jiffies, resume)) {
695
nr_unshown++;
696
return;
697
}
698
if (nr_unshown) {
699
printk(KERN_ALERT
700
"BUG: Bad page map: %lu messages suppressed\n",
701
nr_unshown);
702
nr_unshown = 0;
703
}
704
nr_shown = 0;
705
}
706
if (nr_shown++ == 0)
707
resume = jiffies + 60 * HZ;
708
709
mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
710
index = linear_page_index(vma, addr);
711
712
printk(KERN_ALERT
713
"BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
714
current->comm,
715
(long long)pte_val(pte), (long long)pmd_val(*pmd));
716
if (page)
717
dump_page(page);
718
printk(KERN_ALERT
719
"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
720
(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
721
/*
722
* Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
723
*/
724
if (vma->vm_ops)
725
print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
726
(unsigned long)vma->vm_ops->fault);
727
if (vma->vm_file && vma->vm_file->f_op)
728
print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
729
(unsigned long)vma->vm_file->f_op->mmap);
730
dump_stack();
731
add_taint(TAINT_BAD_PAGE);
732
}
733
734
static inline int is_cow_mapping(vm_flags_t flags)
735
{
736
return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
737
}
738
739
#ifndef is_zero_pfn
740
static inline int is_zero_pfn(unsigned long pfn)
741
{
742
return pfn == zero_pfn;
743
}
744
#endif
745
746
#ifndef my_zero_pfn
747
static inline unsigned long my_zero_pfn(unsigned long addr)
748
{
749
return zero_pfn;
750
}
751
#endif
752
753
/*
754
* vm_normal_page -- This function gets the "struct page" associated with a pte.
755
*
756
* "Special" mappings do not wish to be associated with a "struct page" (either
757
* it doesn't exist, or it exists but they don't want to touch it). In this
758
* case, NULL is returned here. "Normal" mappings do have a struct page.
759
*
760
* There are 2 broad cases. Firstly, an architecture may define a pte_special()
761
* pte bit, in which case this function is trivial. Secondly, an architecture
762
* may not have a spare pte bit, which requires a more complicated scheme,
763
* described below.
764
*
765
* A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
766
* special mapping (even if there are underlying and valid "struct pages").
767
* COWed pages of a VM_PFNMAP are always normal.
768
*
769
* The way we recognize COWed pages within VM_PFNMAP mappings is through the
770
* rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
771
* set, and the vm_pgoff will point to the first PFN mapped: thus every special
772
* mapping will always honor the rule
773
*
774
* pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
775
*
776
* And for normal mappings this is false.
777
*
778
* This restricts such mappings to be a linear translation from virtual address
779
* to pfn. To get around this restriction, we allow arbitrary mappings so long
780
* as the vma is not a COW mapping; in that case, we know that all ptes are
781
* special (because none can have been COWed).
782
*
783
*
784
* In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
785
*
786
* VM_MIXEDMAP mappings can likewise contain memory with or without "struct
787
* page" backing, however the difference is that _all_ pages with a struct
788
* page (that is, those where pfn_valid is true) are refcounted and considered
789
* normal pages by the VM. The disadvantage is that pages are refcounted
790
* (which can be slower and simply not an option for some PFNMAP users). The
791
* advantage is that we don't have to follow the strict linearity rule of
792
* PFNMAP mappings in order to support COWable mappings.
793
*
794
*/
795
#ifdef __HAVE_ARCH_PTE_SPECIAL
796
# define HAVE_PTE_SPECIAL 1
797
#else
798
# define HAVE_PTE_SPECIAL 0
799
#endif
800
struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
801
pte_t pte)
802
{
803
unsigned long pfn = pte_pfn(pte);
804
805
if (HAVE_PTE_SPECIAL) {
806
if (likely(!pte_special(pte)))
807
goto check_pfn;
808
if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
809
return NULL;
810
if (!is_zero_pfn(pfn))
811
print_bad_pte(vma, addr, pte, NULL);
812
return NULL;
813
}
814
815
/* !HAVE_PTE_SPECIAL case follows: */
816
817
if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
818
if (vma->vm_flags & VM_MIXEDMAP) {
819
if (!pfn_valid(pfn))
820
return NULL;
821
goto out;
822
} else {
823
unsigned long off;
824
off = (addr - vma->vm_start) >> PAGE_SHIFT;
825
if (pfn == vma->vm_pgoff + off)
826
return NULL;
827
if (!is_cow_mapping(vma->vm_flags))
828
return NULL;
829
}
830
}
831
832
if (is_zero_pfn(pfn))
833
return NULL;
834
check_pfn:
835
if (unlikely(pfn > highest_memmap_pfn)) {
836
print_bad_pte(vma, addr, pte, NULL);
837
return NULL;
838
}
839
840
/*
841
* NOTE! We still have PageReserved() pages in the page tables.
842
* eg. VDSO mappings can cause them to exist.
843
*/
844
out:
845
return pfn_to_page(pfn);
846
}
847
848
/*
849
* copy one vm_area from one task to the other. Assumes the page tables
850
* already present in the new task to be cleared in the whole range
851
* covered by this vma.
852
*/
853
854
static inline unsigned long
855
copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
856
pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
857
unsigned long addr, int *rss)
858
{
859
unsigned long vm_flags = vma->vm_flags;
860
pte_t pte = *src_pte;
861
struct page *page;
862
863
/* pte contains position in swap or file, so copy. */
864
if (unlikely(!pte_present(pte))) {
865
if (!pte_file(pte)) {
866
swp_entry_t entry = pte_to_swp_entry(pte);
867
868
if (swap_duplicate(entry) < 0)
869
return entry.val;
870
871
/* make sure dst_mm is on swapoff's mmlist. */
872
if (unlikely(list_empty(&dst_mm->mmlist))) {
873
spin_lock(&mmlist_lock);
874
if (list_empty(&dst_mm->mmlist))
875
list_add(&dst_mm->mmlist,
876
&src_mm->mmlist);
877
spin_unlock(&mmlist_lock);
878
}
879
if (likely(!non_swap_entry(entry)))
880
rss[MM_SWAPENTS]++;
881
else if (is_write_migration_entry(entry) &&
882
is_cow_mapping(vm_flags)) {
883
/*
884
* COW mappings require pages in both parent
885
* and child to be set to read.
886
*/
887
make_migration_entry_read(&entry);
888
pte = swp_entry_to_pte(entry);
889
set_pte_at(src_mm, addr, src_pte, pte);
890
}
891
}
892
goto out_set_pte;
893
}
894
895
/*
896
* If it's a COW mapping, write protect it both
897
* in the parent and the child
898
*/
899
if (is_cow_mapping(vm_flags)) {
900
ptep_set_wrprotect(src_mm, addr, src_pte);
901
pte = pte_wrprotect(pte);
902
}
903
904
/*
905
* If it's a shared mapping, mark it clean in
906
* the child
907
*/
908
if (vm_flags & VM_SHARED)
909
pte = pte_mkclean(pte);
910
pte = pte_mkold(pte);
911
912
page = vm_normal_page(vma, addr, pte);
913
if (page) {
914
get_page(page);
915
page_dup_rmap(page);
916
if (PageAnon(page))
917
rss[MM_ANONPAGES]++;
918
else
919
rss[MM_FILEPAGES]++;
920
}
921
922
out_set_pte:
923
set_pte_at(dst_mm, addr, dst_pte, pte);
924
return 0;
925
}
926
927
int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
928
pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
929
unsigned long addr, unsigned long end)
930
{
931
pte_t *orig_src_pte, *orig_dst_pte;
932
pte_t *src_pte, *dst_pte;
933
spinlock_t *src_ptl, *dst_ptl;
934
int progress = 0;
935
int rss[NR_MM_COUNTERS];
936
swp_entry_t entry = (swp_entry_t){0};
937
938
again:
939
init_rss_vec(rss);
940
941
dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
942
if (!dst_pte)
943
return -ENOMEM;
944
src_pte = pte_offset_map(src_pmd, addr);
945
src_ptl = pte_lockptr(src_mm, src_pmd);
946
spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
947
orig_src_pte = src_pte;
948
orig_dst_pte = dst_pte;
949
arch_enter_lazy_mmu_mode();
950
951
do {
952
/*
953
* We are holding two locks at this point - either of them
954
* could generate latencies in another task on another CPU.
955
*/
956
if (progress >= 32) {
957
progress = 0;
958
if (need_resched() ||
959
spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
960
break;
961
}
962
if (pte_none(*src_pte)) {
963
progress++;
964
continue;
965
}
966
entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
967
vma, addr, rss);
968
if (entry.val)
969
break;
970
progress += 8;
971
} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
972
973
arch_leave_lazy_mmu_mode();
974
spin_unlock(src_ptl);
975
pte_unmap(orig_src_pte);
976
add_mm_rss_vec(dst_mm, rss);
977
pte_unmap_unlock(orig_dst_pte, dst_ptl);
978
cond_resched();
979
980
if (entry.val) {
981
if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
982
return -ENOMEM;
983
progress = 0;
984
}
985
if (addr != end)
986
goto again;
987
return 0;
988
}
989
990
static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
991
pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
992
unsigned long addr, unsigned long end)
993
{
994
pmd_t *src_pmd, *dst_pmd;
995
unsigned long next;
996
997
dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
998
if (!dst_pmd)
999
return -ENOMEM;
1000
src_pmd = pmd_offset(src_pud, addr);
1001
do {
1002
next = pmd_addr_end(addr, end);
1003
if (pmd_trans_huge(*src_pmd)) {
1004
int err;
1005
VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1006
err = copy_huge_pmd(dst_mm, src_mm,
1007
dst_pmd, src_pmd, addr, vma);
1008
if (err == -ENOMEM)
1009
return -ENOMEM;
1010
if (!err)
1011
continue;
1012
/* fall through */
1013
}
1014
if (pmd_none_or_clear_bad(src_pmd))
1015
continue;
1016
if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1017
vma, addr, next))
1018
return -ENOMEM;
1019
} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1020
return 0;
1021
}
1022
1023
static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1024
pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1025
unsigned long addr, unsigned long end)
1026
{
1027
pud_t *src_pud, *dst_pud;
1028
unsigned long next;
1029
1030
dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1031
if (!dst_pud)
1032
return -ENOMEM;
1033
src_pud = pud_offset(src_pgd, addr);
1034
do {
1035
next = pud_addr_end(addr, end);
1036
if (pud_none_or_clear_bad(src_pud))
1037
continue;
1038
if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1039
vma, addr, next))
1040
return -ENOMEM;
1041
} while (dst_pud++, src_pud++, addr = next, addr != end);
1042
return 0;
1043
}
1044
1045
int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1046
struct vm_area_struct *vma)
1047
{
1048
pgd_t *src_pgd, *dst_pgd;
1049
unsigned long next;
1050
unsigned long addr = vma->vm_start;
1051
unsigned long end = vma->vm_end;
1052
int ret;
1053
1054
/*
1055
* Don't copy ptes where a page fault will fill them correctly.
1056
* Fork becomes much lighter when there are big shared or private
1057
* readonly mappings. The tradeoff is that copy_page_range is more
1058
* efficient than faulting.
1059
*/
1060
if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1061
if (!vma->anon_vma)
1062
return 0;
1063
}
1064
1065
if (is_vm_hugetlb_page(vma))
1066
return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1067
1068
if (unlikely(is_pfn_mapping(vma))) {
1069
/*
1070
* We do not free on error cases below as remove_vma
1071
* gets called on error from higher level routine
1072
*/
1073
ret = track_pfn_vma_copy(vma);
1074
if (ret)
1075
return ret;
1076
}
1077
1078
/*
1079
* We need to invalidate the secondary MMU mappings only when
1080
* there could be a permission downgrade on the ptes of the
1081
* parent mm. And a permission downgrade will only happen if
1082
* is_cow_mapping() returns true.
1083
*/
1084
if (is_cow_mapping(vma->vm_flags))
1085
mmu_notifier_invalidate_range_start(src_mm, addr, end);
1086
1087
ret = 0;
1088
dst_pgd = pgd_offset(dst_mm, addr);
1089
src_pgd = pgd_offset(src_mm, addr);
1090
do {
1091
next = pgd_addr_end(addr, end);
1092
if (pgd_none_or_clear_bad(src_pgd))
1093
continue;
1094
if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1095
vma, addr, next))) {
1096
ret = -ENOMEM;
1097
break;
1098
}
1099
} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1100
1101
if (is_cow_mapping(vma->vm_flags))
1102
mmu_notifier_invalidate_range_end(src_mm,
1103
vma->vm_start, end);
1104
return ret;
1105
}
1106
1107
static unsigned long zap_pte_range(struct mmu_gather *tlb,
1108
struct vm_area_struct *vma, pmd_t *pmd,
1109
unsigned long addr, unsigned long end,
1110
struct zap_details *details)
1111
{
1112
struct mm_struct *mm = tlb->mm;
1113
int force_flush = 0;
1114
int rss[NR_MM_COUNTERS];
1115
spinlock_t *ptl;
1116
pte_t *start_pte;
1117
pte_t *pte;
1118
1119
again:
1120
init_rss_vec(rss);
1121
start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1122
pte = start_pte;
1123
arch_enter_lazy_mmu_mode();
1124
do {
1125
pte_t ptent = *pte;
1126
if (pte_none(ptent)) {
1127
continue;
1128
}
1129
1130
if (pte_present(ptent)) {
1131
struct page *page;
1132
1133
page = vm_normal_page(vma, addr, ptent);
1134
if (unlikely(details) && page) {
1135
/*
1136
* unmap_shared_mapping_pages() wants to
1137
* invalidate cache without truncating:
1138
* unmap shared but keep private pages.
1139
*/
1140
if (details->check_mapping &&
1141
details->check_mapping != page->mapping)
1142
continue;
1143
/*
1144
* Each page->index must be checked when
1145
* invalidating or truncating nonlinear.
1146
*/
1147
if (details->nonlinear_vma &&
1148
(page->index < details->first_index ||
1149
page->index > details->last_index))
1150
continue;
1151
}
1152
ptent = ptep_get_and_clear_full(mm, addr, pte,
1153
tlb->fullmm);
1154
tlb_remove_tlb_entry(tlb, pte, addr);
1155
if (unlikely(!page))
1156
continue;
1157
if (unlikely(details) && details->nonlinear_vma
1158
&& linear_page_index(details->nonlinear_vma,
1159
addr) != page->index)
1160
set_pte_at(mm, addr, pte,
1161
pgoff_to_pte(page->index));
1162
if (PageAnon(page))
1163
rss[MM_ANONPAGES]--;
1164
else {
1165
if (pte_dirty(ptent))
1166
set_page_dirty(page);
1167
if (pte_young(ptent) &&
1168
likely(!VM_SequentialReadHint(vma)))
1169
mark_page_accessed(page);
1170
rss[MM_FILEPAGES]--;
1171
}
1172
page_remove_rmap(page);
1173
if (unlikely(page_mapcount(page) < 0))
1174
print_bad_pte(vma, addr, ptent, page);
1175
force_flush = !__tlb_remove_page(tlb, page);
1176
if (force_flush)
1177
break;
1178
continue;
1179
}
1180
/*
1181
* If details->check_mapping, we leave swap entries;
1182
* if details->nonlinear_vma, we leave file entries.
1183
*/
1184
if (unlikely(details))
1185
continue;
1186
if (pte_file(ptent)) {
1187
if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1188
print_bad_pte(vma, addr, ptent, NULL);
1189
} else {
1190
swp_entry_t entry = pte_to_swp_entry(ptent);
1191
1192
if (!non_swap_entry(entry))
1193
rss[MM_SWAPENTS]--;
1194
if (unlikely(!free_swap_and_cache(entry)))
1195
print_bad_pte(vma, addr, ptent, NULL);
1196
}
1197
pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1198
} while (pte++, addr += PAGE_SIZE, addr != end);
1199
1200
add_mm_rss_vec(mm, rss);
1201
arch_leave_lazy_mmu_mode();
1202
pte_unmap_unlock(start_pte, ptl);
1203
1204
/*
1205
* mmu_gather ran out of room to batch pages, we break out of
1206
* the PTE lock to avoid doing the potential expensive TLB invalidate
1207
* and page-free while holding it.
1208
*/
1209
if (force_flush) {
1210
force_flush = 0;
1211
tlb_flush_mmu(tlb);
1212
if (addr != end)
1213
goto again;
1214
}
1215
1216
return addr;
1217
}
1218
1219
static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1220
struct vm_area_struct *vma, pud_t *pud,
1221
unsigned long addr, unsigned long end,
1222
struct zap_details *details)
1223
{
1224
pmd_t *pmd;
1225
unsigned long next;
1226
1227
pmd = pmd_offset(pud, addr);
1228
do {
1229
next = pmd_addr_end(addr, end);
1230
if (pmd_trans_huge(*pmd)) {
1231
if (next-addr != HPAGE_PMD_SIZE) {
1232
VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1233
split_huge_page_pmd(vma->vm_mm, pmd);
1234
} else if (zap_huge_pmd(tlb, vma, pmd))
1235
continue;
1236
/* fall through */
1237
}
1238
if (pmd_none_or_clear_bad(pmd))
1239
continue;
1240
next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1241
cond_resched();
1242
} while (pmd++, addr = next, addr != end);
1243
1244
return addr;
1245
}
1246
1247
static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1248
struct vm_area_struct *vma, pgd_t *pgd,
1249
unsigned long addr, unsigned long end,
1250
struct zap_details *details)
1251
{
1252
pud_t *pud;
1253
unsigned long next;
1254
1255
pud = pud_offset(pgd, addr);
1256
do {
1257
next = pud_addr_end(addr, end);
1258
if (pud_none_or_clear_bad(pud))
1259
continue;
1260
next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1261
} while (pud++, addr = next, addr != end);
1262
1263
return addr;
1264
}
1265
1266
static unsigned long unmap_page_range(struct mmu_gather *tlb,
1267
struct vm_area_struct *vma,
1268
unsigned long addr, unsigned long end,
1269
struct zap_details *details)
1270
{
1271
pgd_t *pgd;
1272
unsigned long next;
1273
1274
if (details && !details->check_mapping && !details->nonlinear_vma)
1275
details = NULL;
1276
1277
BUG_ON(addr >= end);
1278
mem_cgroup_uncharge_start();
1279
tlb_start_vma(tlb, vma);
1280
pgd = pgd_offset(vma->vm_mm, addr);
1281
do {
1282
next = pgd_addr_end(addr, end);
1283
if (pgd_none_or_clear_bad(pgd))
1284
continue;
1285
next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1286
} while (pgd++, addr = next, addr != end);
1287
tlb_end_vma(tlb, vma);
1288
mem_cgroup_uncharge_end();
1289
1290
return addr;
1291
}
1292
1293
#ifdef CONFIG_PREEMPT
1294
# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
1295
#else
1296
/* No preempt: go for improved straight-line efficiency */
1297
# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
1298
#endif
1299
1300
/**
1301
* unmap_vmas - unmap a range of memory covered by a list of vma's
1302
* @tlb: address of the caller's struct mmu_gather
1303
* @vma: the starting vma
1304
* @start_addr: virtual address at which to start unmapping
1305
* @end_addr: virtual address at which to end unmapping
1306
* @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1307
* @details: details of nonlinear truncation or shared cache invalidation
1308
*
1309
* Returns the end address of the unmapping (restart addr if interrupted).
1310
*
1311
* Unmap all pages in the vma list.
1312
*
1313
* We aim to not hold locks for too long (for scheduling latency reasons).
1314
* So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1315
* return the ending mmu_gather to the caller.
1316
*
1317
* Only addresses between `start' and `end' will be unmapped.
1318
*
1319
* The VMA list must be sorted in ascending virtual address order.
1320
*
1321
* unmap_vmas() assumes that the caller will flush the whole unmapped address
1322
* range after unmap_vmas() returns. So the only responsibility here is to
1323
* ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1324
* drops the lock and schedules.
1325
*/
1326
unsigned long unmap_vmas(struct mmu_gather *tlb,
1327
struct vm_area_struct *vma, unsigned long start_addr,
1328
unsigned long end_addr, unsigned long *nr_accounted,
1329
struct zap_details *details)
1330
{
1331
unsigned long start = start_addr;
1332
struct mm_struct *mm = vma->vm_mm;
1333
1334
mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1335
for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1336
unsigned long end;
1337
1338
start = max(vma->vm_start, start_addr);
1339
if (start >= vma->vm_end)
1340
continue;
1341
end = min(vma->vm_end, end_addr);
1342
if (end <= vma->vm_start)
1343
continue;
1344
1345
if (vma->vm_flags & VM_ACCOUNT)
1346
*nr_accounted += (end - start) >> PAGE_SHIFT;
1347
1348
if (unlikely(is_pfn_mapping(vma)))
1349
untrack_pfn_vma(vma, 0, 0);
1350
1351
while (start != end) {
1352
if (unlikely(is_vm_hugetlb_page(vma))) {
1353
/*
1354
* It is undesirable to test vma->vm_file as it
1355
* should be non-null for valid hugetlb area.
1356
* However, vm_file will be NULL in the error
1357
* cleanup path of do_mmap_pgoff. When
1358
* hugetlbfs ->mmap method fails,
1359
* do_mmap_pgoff() nullifies vma->vm_file
1360
* before calling this function to clean up.
1361
* Since no pte has actually been setup, it is
1362
* safe to do nothing in this case.
1363
*/
1364
if (vma->vm_file)
1365
unmap_hugepage_range(vma, start, end, NULL);
1366
1367
start = end;
1368
} else
1369
start = unmap_page_range(tlb, vma, start, end, details);
1370
}
1371
}
1372
1373
mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1374
return start; /* which is now the end (or restart) address */
1375
}
1376
1377
/**
1378
* zap_page_range - remove user pages in a given range
1379
* @vma: vm_area_struct holding the applicable pages
1380
* @address: starting address of pages to zap
1381
* @size: number of bytes to zap
1382
* @details: details of nonlinear truncation or shared cache invalidation
1383
*/
1384
unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1385
unsigned long size, struct zap_details *details)
1386
{
1387
struct mm_struct *mm = vma->vm_mm;
1388
struct mmu_gather tlb;
1389
unsigned long end = address + size;
1390
unsigned long nr_accounted = 0;
1391
1392
lru_add_drain();
1393
tlb_gather_mmu(&tlb, mm, 0);
1394
update_hiwater_rss(mm);
1395
end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1396
tlb_finish_mmu(&tlb, address, end);
1397
return end;
1398
}
1399
1400
/**
1401
* zap_vma_ptes - remove ptes mapping the vma
1402
* @vma: vm_area_struct holding ptes to be zapped
1403
* @address: starting address of pages to zap
1404
* @size: number of bytes to zap
1405
*
1406
* This function only unmaps ptes assigned to VM_PFNMAP vmas.
1407
*
1408
* The entire address range must be fully contained within the vma.
1409
*
1410
* Returns 0 if successful.
1411
*/
1412
int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1413
unsigned long size)
1414
{
1415
if (address < vma->vm_start || address + size > vma->vm_end ||
1416
!(vma->vm_flags & VM_PFNMAP))
1417
return -1;
1418
zap_page_range(vma, address, size, NULL);
1419
return 0;
1420
}
1421
EXPORT_SYMBOL_GPL(zap_vma_ptes);
1422
1423
/**
1424
* follow_page - look up a page descriptor from a user-virtual address
1425
* @vma: vm_area_struct mapping @address
1426
* @address: virtual address to look up
1427
* @flags: flags modifying lookup behaviour
1428
*
1429
* @flags can have FOLL_ flags set, defined in <linux/mm.h>
1430
*
1431
* Returns the mapped (struct page *), %NULL if no mapping exists, or
1432
* an error pointer if there is a mapping to something not represented
1433
* by a page descriptor (see also vm_normal_page()).
1434
*/
1435
struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1436
unsigned int flags)
1437
{
1438
pgd_t *pgd;
1439
pud_t *pud;
1440
pmd_t *pmd;
1441
pte_t *ptep, pte;
1442
spinlock_t *ptl;
1443
struct page *page;
1444
struct mm_struct *mm = vma->vm_mm;
1445
1446
page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1447
if (!IS_ERR(page)) {
1448
BUG_ON(flags & FOLL_GET);
1449
goto out;
1450
}
1451
1452
page = NULL;
1453
pgd = pgd_offset(mm, address);
1454
if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1455
goto no_page_table;
1456
1457
pud = pud_offset(pgd, address);
1458
if (pud_none(*pud))
1459
goto no_page_table;
1460
if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1461
BUG_ON(flags & FOLL_GET);
1462
page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1463
goto out;
1464
}
1465
if (unlikely(pud_bad(*pud)))
1466
goto no_page_table;
1467
1468
pmd = pmd_offset(pud, address);
1469
if (pmd_none(*pmd))
1470
goto no_page_table;
1471
if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1472
BUG_ON(flags & FOLL_GET);
1473
page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1474
goto out;
1475
}
1476
if (pmd_trans_huge(*pmd)) {
1477
if (flags & FOLL_SPLIT) {
1478
split_huge_page_pmd(mm, pmd);
1479
goto split_fallthrough;
1480
}
1481
spin_lock(&mm->page_table_lock);
1482
if (likely(pmd_trans_huge(*pmd))) {
1483
if (unlikely(pmd_trans_splitting(*pmd))) {
1484
spin_unlock(&mm->page_table_lock);
1485
wait_split_huge_page(vma->anon_vma, pmd);
1486
} else {
1487
page = follow_trans_huge_pmd(mm, address,
1488
pmd, flags);
1489
spin_unlock(&mm->page_table_lock);
1490
goto out;
1491
}
1492
} else
1493
spin_unlock(&mm->page_table_lock);
1494
/* fall through */
1495
}
1496
split_fallthrough:
1497
if (unlikely(pmd_bad(*pmd)))
1498
goto no_page_table;
1499
1500
ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1501
1502
pte = *ptep;
1503
if (!pte_present(pte))
1504
goto no_page;
1505
if ((flags & FOLL_WRITE) && !pte_write(pte))
1506
goto unlock;
1507
1508
page = vm_normal_page(vma, address, pte);
1509
if (unlikely(!page)) {
1510
if ((flags & FOLL_DUMP) ||
1511
!is_zero_pfn(pte_pfn(pte)))
1512
goto bad_page;
1513
page = pte_page(pte);
1514
}
1515
1516
if (flags & FOLL_GET)
1517
get_page(page);
1518
if (flags & FOLL_TOUCH) {
1519
if ((flags & FOLL_WRITE) &&
1520
!pte_dirty(pte) && !PageDirty(page))
1521
set_page_dirty(page);
1522
/*
1523
* pte_mkyoung() would be more correct here, but atomic care
1524
* is needed to avoid losing the dirty bit: it is easier to use
1525
* mark_page_accessed().
1526
*/
1527
mark_page_accessed(page);
1528
}
1529
if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1530
/*
1531
* The preliminary mapping check is mainly to avoid the
1532
* pointless overhead of lock_page on the ZERO_PAGE
1533
* which might bounce very badly if there is contention.
1534
*
1535
* If the page is already locked, we don't need to
1536
* handle it now - vmscan will handle it later if and
1537
* when it attempts to reclaim the page.
1538
*/
1539
if (page->mapping && trylock_page(page)) {
1540
lru_add_drain(); /* push cached pages to LRU */
1541
/*
1542
* Because we lock page here and migration is
1543
* blocked by the pte's page reference, we need
1544
* only check for file-cache page truncation.
1545
*/
1546
if (page->mapping)
1547
mlock_vma_page(page);
1548
unlock_page(page);
1549
}
1550
}
1551
unlock:
1552
pte_unmap_unlock(ptep, ptl);
1553
out:
1554
return page;
1555
1556
bad_page:
1557
pte_unmap_unlock(ptep, ptl);
1558
return ERR_PTR(-EFAULT);
1559
1560
no_page:
1561
pte_unmap_unlock(ptep, ptl);
1562
if (!pte_none(pte))
1563
return page;
1564
1565
no_page_table:
1566
/*
1567
* When core dumping an enormous anonymous area that nobody
1568
* has touched so far, we don't want to allocate unnecessary pages or
1569
* page tables. Return error instead of NULL to skip handle_mm_fault,
1570
* then get_dump_page() will return NULL to leave a hole in the dump.
1571
* But we can only make this optimization where a hole would surely
1572
* be zero-filled if handle_mm_fault() actually did handle it.
1573
*/
1574
if ((flags & FOLL_DUMP) &&
1575
(!vma->vm_ops || !vma->vm_ops->fault))
1576
return ERR_PTR(-EFAULT);
1577
return page;
1578
}
1579
1580
static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1581
{
1582
return stack_guard_page_start(vma, addr) ||
1583
stack_guard_page_end(vma, addr+PAGE_SIZE);
1584
}
1585
1586
/**
1587
* __get_user_pages() - pin user pages in memory
1588
* @tsk: task_struct of target task
1589
* @mm: mm_struct of target mm
1590
* @start: starting user address
1591
* @nr_pages: number of pages from start to pin
1592
* @gup_flags: flags modifying pin behaviour
1593
* @pages: array that receives pointers to the pages pinned.
1594
* Should be at least nr_pages long. Or NULL, if caller
1595
* only intends to ensure the pages are faulted in.
1596
* @vmas: array of pointers to vmas corresponding to each page.
1597
* Or NULL if the caller does not require them.
1598
* @nonblocking: whether waiting for disk IO or mmap_sem contention
1599
*
1600
* Returns number of pages pinned. This may be fewer than the number
1601
* requested. If nr_pages is 0 or negative, returns 0. If no pages
1602
* were pinned, returns -errno. Each page returned must be released
1603
* with a put_page() call when it is finished with. vmas will only
1604
* remain valid while mmap_sem is held.
1605
*
1606
* Must be called with mmap_sem held for read or write.
1607
*
1608
* __get_user_pages walks a process's page tables and takes a reference to
1609
* each struct page that each user address corresponds to at a given
1610
* instant. That is, it takes the page that would be accessed if a user
1611
* thread accesses the given user virtual address at that instant.
1612
*
1613
* This does not guarantee that the page exists in the user mappings when
1614
* __get_user_pages returns, and there may even be a completely different
1615
* page there in some cases (eg. if mmapped pagecache has been invalidated
1616
* and subsequently re faulted). However it does guarantee that the page
1617
* won't be freed completely. And mostly callers simply care that the page
1618
* contains data that was valid *at some point in time*. Typically, an IO
1619
* or similar operation cannot guarantee anything stronger anyway because
1620
* locks can't be held over the syscall boundary.
1621
*
1622
* If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1623
* the page is written to, set_page_dirty (or set_page_dirty_lock, as
1624
* appropriate) must be called after the page is finished with, and
1625
* before put_page is called.
1626
*
1627
* If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1628
* or mmap_sem contention, and if waiting is needed to pin all pages,
1629
* *@nonblocking will be set to 0.
1630
*
1631
* In most cases, get_user_pages or get_user_pages_fast should be used
1632
* instead of __get_user_pages. __get_user_pages should be used only if
1633
* you need some special @gup_flags.
1634
*/
1635
int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1636
unsigned long start, int nr_pages, unsigned int gup_flags,
1637
struct page **pages, struct vm_area_struct **vmas,
1638
int *nonblocking)
1639
{
1640
int i;
1641
unsigned long vm_flags;
1642
1643
if (nr_pages <= 0)
1644
return 0;
1645
1646
VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1647
1648
/*
1649
* Require read or write permissions.
1650
* If FOLL_FORCE is set, we only require the "MAY" flags.
1651
*/
1652
vm_flags = (gup_flags & FOLL_WRITE) ?
1653
(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1654
vm_flags &= (gup_flags & FOLL_FORCE) ?
1655
(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1656
i = 0;
1657
1658
do {
1659
struct vm_area_struct *vma;
1660
1661
vma = find_extend_vma(mm, start);
1662
if (!vma && in_gate_area(mm, start)) {
1663
unsigned long pg = start & PAGE_MASK;
1664
pgd_t *pgd;
1665
pud_t *pud;
1666
pmd_t *pmd;
1667
pte_t *pte;
1668
1669
/* user gate pages are read-only */
1670
if (gup_flags & FOLL_WRITE)
1671
return i ? : -EFAULT;
1672
if (pg > TASK_SIZE)
1673
pgd = pgd_offset_k(pg);
1674
else
1675
pgd = pgd_offset_gate(mm, pg);
1676
BUG_ON(pgd_none(*pgd));
1677
pud = pud_offset(pgd, pg);
1678
BUG_ON(pud_none(*pud));
1679
pmd = pmd_offset(pud, pg);
1680
if (pmd_none(*pmd))
1681
return i ? : -EFAULT;
1682
VM_BUG_ON(pmd_trans_huge(*pmd));
1683
pte = pte_offset_map(pmd, pg);
1684
if (pte_none(*pte)) {
1685
pte_unmap(pte);
1686
return i ? : -EFAULT;
1687
}
1688
vma = get_gate_vma(mm);
1689
if (pages) {
1690
struct page *page;
1691
1692
page = vm_normal_page(vma, start, *pte);
1693
if (!page) {
1694
if (!(gup_flags & FOLL_DUMP) &&
1695
is_zero_pfn(pte_pfn(*pte)))
1696
page = pte_page(*pte);
1697
else {
1698
pte_unmap(pte);
1699
return i ? : -EFAULT;
1700
}
1701
}
1702
pages[i] = page;
1703
get_page(page);
1704
}
1705
pte_unmap(pte);
1706
goto next_page;
1707
}
1708
1709
if (!vma ||
1710
(vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1711
!(vm_flags & vma->vm_flags))
1712
return i ? : -EFAULT;
1713
1714
if (is_vm_hugetlb_page(vma)) {
1715
i = follow_hugetlb_page(mm, vma, pages, vmas,
1716
&start, &nr_pages, i, gup_flags);
1717
continue;
1718
}
1719
1720
do {
1721
struct page *page;
1722
unsigned int foll_flags = gup_flags;
1723
1724
/*
1725
* If we have a pending SIGKILL, don't keep faulting
1726
* pages and potentially allocating memory.
1727
*/
1728
if (unlikely(fatal_signal_pending(current)))
1729
return i ? i : -ERESTARTSYS;
1730
1731
cond_resched();
1732
while (!(page = follow_page(vma, start, foll_flags))) {
1733
int ret;
1734
unsigned int fault_flags = 0;
1735
1736
/* For mlock, just skip the stack guard page. */
1737
if (foll_flags & FOLL_MLOCK) {
1738
if (stack_guard_page(vma, start))
1739
goto next_page;
1740
}
1741
if (foll_flags & FOLL_WRITE)
1742
fault_flags |= FAULT_FLAG_WRITE;
1743
if (nonblocking)
1744
fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1745
if (foll_flags & FOLL_NOWAIT)
1746
fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1747
1748
ret = handle_mm_fault(mm, vma, start,
1749
fault_flags);
1750
1751
if (ret & VM_FAULT_ERROR) {
1752
if (ret & VM_FAULT_OOM)
1753
return i ? i : -ENOMEM;
1754
if (ret & (VM_FAULT_HWPOISON |
1755
VM_FAULT_HWPOISON_LARGE)) {
1756
if (i)
1757
return i;
1758
else if (gup_flags & FOLL_HWPOISON)
1759
return -EHWPOISON;
1760
else
1761
return -EFAULT;
1762
}
1763
if (ret & VM_FAULT_SIGBUS)
1764
return i ? i : -EFAULT;
1765
BUG();
1766
}
1767
1768
if (tsk) {
1769
if (ret & VM_FAULT_MAJOR)
1770
tsk->maj_flt++;
1771
else
1772
tsk->min_flt++;
1773
}
1774
1775
if (ret & VM_FAULT_RETRY) {
1776
if (nonblocking)
1777
*nonblocking = 0;
1778
return i;
1779
}
1780
1781
/*
1782
* The VM_FAULT_WRITE bit tells us that
1783
* do_wp_page has broken COW when necessary,
1784
* even if maybe_mkwrite decided not to set
1785
* pte_write. We can thus safely do subsequent
1786
* page lookups as if they were reads. But only
1787
* do so when looping for pte_write is futile:
1788
* in some cases userspace may also be wanting
1789
* to write to the gotten user page, which a
1790
* read fault here might prevent (a readonly
1791
* page might get reCOWed by userspace write).
1792
*/
1793
if ((ret & VM_FAULT_WRITE) &&
1794
!(vma->vm_flags & VM_WRITE))
1795
foll_flags &= ~FOLL_WRITE;
1796
1797
cond_resched();
1798
}
1799
if (IS_ERR(page))
1800
return i ? i : PTR_ERR(page);
1801
if (pages) {
1802
pages[i] = page;
1803
1804
flush_anon_page(vma, page, start);
1805
flush_dcache_page(page);
1806
}
1807
next_page:
1808
if (vmas)
1809
vmas[i] = vma;
1810
i++;
1811
start += PAGE_SIZE;
1812
nr_pages--;
1813
} while (nr_pages && start < vma->vm_end);
1814
} while (nr_pages);
1815
return i;
1816
}
1817
EXPORT_SYMBOL(__get_user_pages);
1818
1819
/**
1820
* get_user_pages() - pin user pages in memory
1821
* @tsk: the task_struct to use for page fault accounting, or
1822
* NULL if faults are not to be recorded.
1823
* @mm: mm_struct of target mm
1824
* @start: starting user address
1825
* @nr_pages: number of pages from start to pin
1826
* @write: whether pages will be written to by the caller
1827
* @force: whether to force write access even if user mapping is
1828
* readonly. This will result in the page being COWed even
1829
* in MAP_SHARED mappings. You do not want this.
1830
* @pages: array that receives pointers to the pages pinned.
1831
* Should be at least nr_pages long. Or NULL, if caller
1832
* only intends to ensure the pages are faulted in.
1833
* @vmas: array of pointers to vmas corresponding to each page.
1834
* Or NULL if the caller does not require them.
1835
*
1836
* Returns number of pages pinned. This may be fewer than the number
1837
* requested. If nr_pages is 0 or negative, returns 0. If no pages
1838
* were pinned, returns -errno. Each page returned must be released
1839
* with a put_page() call when it is finished with. vmas will only
1840
* remain valid while mmap_sem is held.
1841
*
1842
* Must be called with mmap_sem held for read or write.
1843
*
1844
* get_user_pages walks a process's page tables and takes a reference to
1845
* each struct page that each user address corresponds to at a given
1846
* instant. That is, it takes the page that would be accessed if a user
1847
* thread accesses the given user virtual address at that instant.
1848
*
1849
* This does not guarantee that the page exists in the user mappings when
1850
* get_user_pages returns, and there may even be a completely different
1851
* page there in some cases (eg. if mmapped pagecache has been invalidated
1852
* and subsequently re faulted). However it does guarantee that the page
1853
* won't be freed completely. And mostly callers simply care that the page
1854
* contains data that was valid *at some point in time*. Typically, an IO
1855
* or similar operation cannot guarantee anything stronger anyway because
1856
* locks can't be held over the syscall boundary.
1857
*
1858
* If write=0, the page must not be written to. If the page is written to,
1859
* set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1860
* after the page is finished with, and before put_page is called.
1861
*
1862
* get_user_pages is typically used for fewer-copy IO operations, to get a
1863
* handle on the memory by some means other than accesses via the user virtual
1864
* addresses. The pages may be submitted for DMA to devices or accessed via
1865
* their kernel linear mapping (via the kmap APIs). Care should be taken to
1866
* use the correct cache flushing APIs.
1867
*
1868
* See also get_user_pages_fast, for performance critical applications.
1869
*/
1870
int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1871
unsigned long start, int nr_pages, int write, int force,
1872
struct page **pages, struct vm_area_struct **vmas)
1873
{
1874
int flags = FOLL_TOUCH;
1875
1876
if (pages)
1877
flags |= FOLL_GET;
1878
if (write)
1879
flags |= FOLL_WRITE;
1880
if (force)
1881
flags |= FOLL_FORCE;
1882
1883
return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1884
NULL);
1885
}
1886
EXPORT_SYMBOL(get_user_pages);
1887
1888
/**
1889
* get_dump_page() - pin user page in memory while writing it to core dump
1890
* @addr: user address
1891
*
1892
* Returns struct page pointer of user page pinned for dump,
1893
* to be freed afterwards by page_cache_release() or put_page().
1894
*
1895
* Returns NULL on any kind of failure - a hole must then be inserted into
1896
* the corefile, to preserve alignment with its headers; and also returns
1897
* NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1898
* allowing a hole to be left in the corefile to save diskspace.
1899
*
1900
* Called without mmap_sem, but after all other threads have been killed.
1901
*/
1902
#ifdef CONFIG_ELF_CORE
1903
struct page *get_dump_page(unsigned long addr)
1904
{
1905
struct vm_area_struct *vma;
1906
struct page *page;
1907
1908
if (__get_user_pages(current, current->mm, addr, 1,
1909
FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1910
NULL) < 1)
1911
return NULL;
1912
flush_cache_page(vma, addr, page_to_pfn(page));
1913
return page;
1914
}
1915
#endif /* CONFIG_ELF_CORE */
1916
1917
pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1918
spinlock_t **ptl)
1919
{
1920
pgd_t * pgd = pgd_offset(mm, addr);
1921
pud_t * pud = pud_alloc(mm, pgd, addr);
1922
if (pud) {
1923
pmd_t * pmd = pmd_alloc(mm, pud, addr);
1924
if (pmd) {
1925
VM_BUG_ON(pmd_trans_huge(*pmd));
1926
return pte_alloc_map_lock(mm, pmd, addr, ptl);
1927
}
1928
}
1929
return NULL;
1930
}
1931
1932
/*
1933
* This is the old fallback for page remapping.
1934
*
1935
* For historical reasons, it only allows reserved pages. Only
1936
* old drivers should use this, and they needed to mark their
1937
* pages reserved for the old functions anyway.
1938
*/
1939
static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1940
struct page *page, pgprot_t prot)
1941
{
1942
struct mm_struct *mm = vma->vm_mm;
1943
int retval;
1944
pte_t *pte;
1945
spinlock_t *ptl;
1946
1947
retval = -EINVAL;
1948
if (PageAnon(page))
1949
goto out;
1950
retval = -ENOMEM;
1951
flush_dcache_page(page);
1952
pte = get_locked_pte(mm, addr, &ptl);
1953
if (!pte)
1954
goto out;
1955
retval = -EBUSY;
1956
if (!pte_none(*pte))
1957
goto out_unlock;
1958
1959
/* Ok, finally just insert the thing.. */
1960
get_page(page);
1961
inc_mm_counter_fast(mm, MM_FILEPAGES);
1962
page_add_file_rmap(page);
1963
set_pte_at(mm, addr, pte, mk_pte(page, prot));
1964
1965
retval = 0;
1966
pte_unmap_unlock(pte, ptl);
1967
return retval;
1968
out_unlock:
1969
pte_unmap_unlock(pte, ptl);
1970
out:
1971
return retval;
1972
}
1973
1974
/**
1975
* vm_insert_page - insert single page into user vma
1976
* @vma: user vma to map to
1977
* @addr: target user address of this page
1978
* @page: source kernel page
1979
*
1980
* This allows drivers to insert individual pages they've allocated
1981
* into a user vma.
1982
*
1983
* The page has to be a nice clean _individual_ kernel allocation.
1984
* If you allocate a compound page, you need to have marked it as
1985
* such (__GFP_COMP), or manually just split the page up yourself
1986
* (see split_page()).
1987
*
1988
* NOTE! Traditionally this was done with "remap_pfn_range()" which
1989
* took an arbitrary page protection parameter. This doesn't allow
1990
* that. Your vma protection will have to be set up correctly, which
1991
* means that if you want a shared writable mapping, you'd better
1992
* ask for a shared writable mapping!
1993
*
1994
* The page does not need to be reserved.
1995
*/
1996
int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1997
struct page *page)
1998
{
1999
if (addr < vma->vm_start || addr >= vma->vm_end)
2000
return -EFAULT;
2001
if (!page_count(page))
2002
return -EINVAL;
2003
vma->vm_flags |= VM_INSERTPAGE;
2004
return insert_page(vma, addr, page, vma->vm_page_prot);
2005
}
2006
EXPORT_SYMBOL(vm_insert_page);
2007
2008
static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2009
unsigned long pfn, pgprot_t prot)
2010
{
2011
struct mm_struct *mm = vma->vm_mm;
2012
int retval;
2013
pte_t *pte, entry;
2014
spinlock_t *ptl;
2015
2016
retval = -ENOMEM;
2017
pte = get_locked_pte(mm, addr, &ptl);
2018
if (!pte)
2019
goto out;
2020
retval = -EBUSY;
2021
if (!pte_none(*pte))
2022
goto out_unlock;
2023
2024
/* Ok, finally just insert the thing.. */
2025
entry = pte_mkspecial(pfn_pte(pfn, prot));
2026
set_pte_at(mm, addr, pte, entry);
2027
update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2028
2029
retval = 0;
2030
out_unlock:
2031
pte_unmap_unlock(pte, ptl);
2032
out:
2033
return retval;
2034
}
2035
2036
/**
2037
* vm_insert_pfn - insert single pfn into user vma
2038
* @vma: user vma to map to
2039
* @addr: target user address of this page
2040
* @pfn: source kernel pfn
2041
*
2042
* Similar to vm_inert_page, this allows drivers to insert individual pages
2043
* they've allocated into a user vma. Same comments apply.
2044
*
2045
* This function should only be called from a vm_ops->fault handler, and
2046
* in that case the handler should return NULL.
2047
*
2048
* vma cannot be a COW mapping.
2049
*
2050
* As this is called only for pages that do not currently exist, we
2051
* do not need to flush old virtual caches or the TLB.
2052
*/
2053
int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2054
unsigned long pfn)
2055
{
2056
int ret;
2057
pgprot_t pgprot = vma->vm_page_prot;
2058
/*
2059
* Technically, architectures with pte_special can avoid all these
2060
* restrictions (same for remap_pfn_range). However we would like
2061
* consistency in testing and feature parity among all, so we should
2062
* try to keep these invariants in place for everybody.
2063
*/
2064
BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2065
BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2066
(VM_PFNMAP|VM_MIXEDMAP));
2067
BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2068
BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2069
2070
if (addr < vma->vm_start || addr >= vma->vm_end)
2071
return -EFAULT;
2072
if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2073
return -EINVAL;
2074
2075
ret = insert_pfn(vma, addr, pfn, pgprot);
2076
2077
if (ret)
2078
untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2079
2080
return ret;
2081
}
2082
EXPORT_SYMBOL(vm_insert_pfn);
2083
2084
int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2085
unsigned long pfn)
2086
{
2087
BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2088
2089
if (addr < vma->vm_start || addr >= vma->vm_end)
2090
return -EFAULT;
2091
2092
/*
2093
* If we don't have pte special, then we have to use the pfn_valid()
2094
* based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2095
* refcount the page if pfn_valid is true (hence insert_page rather
2096
* than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2097
* without pte special, it would there be refcounted as a normal page.
2098
*/
2099
if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2100
struct page *page;
2101
2102
page = pfn_to_page(pfn);
2103
return insert_page(vma, addr, page, vma->vm_page_prot);
2104
}
2105
return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2106
}
2107
EXPORT_SYMBOL(vm_insert_mixed);
2108
2109
/*
2110
* maps a range of physical memory into the requested pages. the old
2111
* mappings are removed. any references to nonexistent pages results
2112
* in null mappings (currently treated as "copy-on-access")
2113
*/
2114
static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2115
unsigned long addr, unsigned long end,
2116
unsigned long pfn, pgprot_t prot)
2117
{
2118
pte_t *pte;
2119
spinlock_t *ptl;
2120
2121
pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2122
if (!pte)
2123
return -ENOMEM;
2124
arch_enter_lazy_mmu_mode();
2125
do {
2126
BUG_ON(!pte_none(*pte));
2127
set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2128
pfn++;
2129
} while (pte++, addr += PAGE_SIZE, addr != end);
2130
arch_leave_lazy_mmu_mode();
2131
pte_unmap_unlock(pte - 1, ptl);
2132
return 0;
2133
}
2134
2135
static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2136
unsigned long addr, unsigned long end,
2137
unsigned long pfn, pgprot_t prot)
2138
{
2139
pmd_t *pmd;
2140
unsigned long next;
2141
2142
pfn -= addr >> PAGE_SHIFT;
2143
pmd = pmd_alloc(mm, pud, addr);
2144
if (!pmd)
2145
return -ENOMEM;
2146
VM_BUG_ON(pmd_trans_huge(*pmd));
2147
do {
2148
next = pmd_addr_end(addr, end);
2149
if (remap_pte_range(mm, pmd, addr, next,
2150
pfn + (addr >> PAGE_SHIFT), prot))
2151
return -ENOMEM;
2152
} while (pmd++, addr = next, addr != end);
2153
return 0;
2154
}
2155
2156
static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2157
unsigned long addr, unsigned long end,
2158
unsigned long pfn, pgprot_t prot)
2159
{
2160
pud_t *pud;
2161
unsigned long next;
2162
2163
pfn -= addr >> PAGE_SHIFT;
2164
pud = pud_alloc(mm, pgd, addr);
2165
if (!pud)
2166
return -ENOMEM;
2167
do {
2168
next = pud_addr_end(addr, end);
2169
if (remap_pmd_range(mm, pud, addr, next,
2170
pfn + (addr >> PAGE_SHIFT), prot))
2171
return -ENOMEM;
2172
} while (pud++, addr = next, addr != end);
2173
return 0;
2174
}
2175
2176
/**
2177
* remap_pfn_range - remap kernel memory to userspace
2178
* @vma: user vma to map to
2179
* @addr: target user address to start at
2180
* @pfn: physical address of kernel memory
2181
* @size: size of map area
2182
* @prot: page protection flags for this mapping
2183
*
2184
* Note: this is only safe if the mm semaphore is held when called.
2185
*/
2186
int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2187
unsigned long pfn, unsigned long size, pgprot_t prot)
2188
{
2189
pgd_t *pgd;
2190
unsigned long next;
2191
unsigned long end = addr + PAGE_ALIGN(size);
2192
struct mm_struct *mm = vma->vm_mm;
2193
int err;
2194
2195
/*
2196
* Physically remapped pages are special. Tell the
2197
* rest of the world about it:
2198
* VM_IO tells people not to look at these pages
2199
* (accesses can have side effects).
2200
* VM_RESERVED is specified all over the place, because
2201
* in 2.4 it kept swapout's vma scan off this vma; but
2202
* in 2.6 the LRU scan won't even find its pages, so this
2203
* flag means no more than count its pages in reserved_vm,
2204
* and omit it from core dump, even when VM_IO turned off.
2205
* VM_PFNMAP tells the core MM that the base pages are just
2206
* raw PFN mappings, and do not have a "struct page" associated
2207
* with them.
2208
*
2209
* There's a horrible special case to handle copy-on-write
2210
* behaviour that some programs depend on. We mark the "original"
2211
* un-COW'ed pages by matching them up with "vma->vm_pgoff".
2212
*/
2213
if (addr == vma->vm_start && end == vma->vm_end) {
2214
vma->vm_pgoff = pfn;
2215
vma->vm_flags |= VM_PFN_AT_MMAP;
2216
} else if (is_cow_mapping(vma->vm_flags))
2217
return -EINVAL;
2218
2219
vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2220
2221
err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2222
if (err) {
2223
/*
2224
* To indicate that track_pfn related cleanup is not
2225
* needed from higher level routine calling unmap_vmas
2226
*/
2227
vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2228
vma->vm_flags &= ~VM_PFN_AT_MMAP;
2229
return -EINVAL;
2230
}
2231
2232
BUG_ON(addr >= end);
2233
pfn -= addr >> PAGE_SHIFT;
2234
pgd = pgd_offset(mm, addr);
2235
flush_cache_range(vma, addr, end);
2236
do {
2237
next = pgd_addr_end(addr, end);
2238
err = remap_pud_range(mm, pgd, addr, next,
2239
pfn + (addr >> PAGE_SHIFT), prot);
2240
if (err)
2241
break;
2242
} while (pgd++, addr = next, addr != end);
2243
2244
if (err)
2245
untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2246
2247
return err;
2248
}
2249
EXPORT_SYMBOL(remap_pfn_range);
2250
2251
static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2252
unsigned long addr, unsigned long end,
2253
pte_fn_t fn, void *data)
2254
{
2255
pte_t *pte;
2256
int err;
2257
pgtable_t token;
2258
spinlock_t *uninitialized_var(ptl);
2259
2260
pte = (mm == &init_mm) ?
2261
pte_alloc_kernel(pmd, addr) :
2262
pte_alloc_map_lock(mm, pmd, addr, &ptl);
2263
if (!pte)
2264
return -ENOMEM;
2265
2266
BUG_ON(pmd_huge(*pmd));
2267
2268
arch_enter_lazy_mmu_mode();
2269
2270
token = pmd_pgtable(*pmd);
2271
2272
do {
2273
err = fn(pte++, token, addr, data);
2274
if (err)
2275
break;
2276
} while (addr += PAGE_SIZE, addr != end);
2277
2278
arch_leave_lazy_mmu_mode();
2279
2280
if (mm != &init_mm)
2281
pte_unmap_unlock(pte-1, ptl);
2282
return err;
2283
}
2284
2285
static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2286
unsigned long addr, unsigned long end,
2287
pte_fn_t fn, void *data)
2288
{
2289
pmd_t *pmd;
2290
unsigned long next;
2291
int err;
2292
2293
BUG_ON(pud_huge(*pud));
2294
2295
pmd = pmd_alloc(mm, pud, addr);
2296
if (!pmd)
2297
return -ENOMEM;
2298
do {
2299
next = pmd_addr_end(addr, end);
2300
err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2301
if (err)
2302
break;
2303
} while (pmd++, addr = next, addr != end);
2304
return err;
2305
}
2306
2307
static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2308
unsigned long addr, unsigned long end,
2309
pte_fn_t fn, void *data)
2310
{
2311
pud_t *pud;
2312
unsigned long next;
2313
int err;
2314
2315
pud = pud_alloc(mm, pgd, addr);
2316
if (!pud)
2317
return -ENOMEM;
2318
do {
2319
next = pud_addr_end(addr, end);
2320
err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2321
if (err)
2322
break;
2323
} while (pud++, addr = next, addr != end);
2324
return err;
2325
}
2326
2327
/*
2328
* Scan a region of virtual memory, filling in page tables as necessary
2329
* and calling a provided function on each leaf page table.
2330
*/
2331
int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2332
unsigned long size, pte_fn_t fn, void *data)
2333
{
2334
pgd_t *pgd;
2335
unsigned long next;
2336
unsigned long end = addr + size;
2337
int err;
2338
2339
BUG_ON(addr >= end);
2340
pgd = pgd_offset(mm, addr);
2341
do {
2342
next = pgd_addr_end(addr, end);
2343
err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2344
if (err)
2345
break;
2346
} while (pgd++, addr = next, addr != end);
2347
2348
return err;
2349
}
2350
EXPORT_SYMBOL_GPL(apply_to_page_range);
2351
2352
/*
2353
* handle_pte_fault chooses page fault handler according to an entry
2354
* which was read non-atomically. Before making any commitment, on
2355
* those architectures or configurations (e.g. i386 with PAE) which
2356
* might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2357
* must check under lock before unmapping the pte and proceeding
2358
* (but do_wp_page is only called after already making such a check;
2359
* and do_anonymous_page can safely check later on).
2360
*/
2361
static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2362
pte_t *page_table, pte_t orig_pte)
2363
{
2364
int same = 1;
2365
#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2366
if (sizeof(pte_t) > sizeof(unsigned long)) {
2367
spinlock_t *ptl = pte_lockptr(mm, pmd);
2368
spin_lock(ptl);
2369
same = pte_same(*page_table, orig_pte);
2370
spin_unlock(ptl);
2371
}
2372
#endif
2373
pte_unmap(page_table);
2374
return same;
2375
}
2376
2377
static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2378
{
2379
/*
2380
* If the source page was a PFN mapping, we don't have
2381
* a "struct page" for it. We do a best-effort copy by
2382
* just copying from the original user address. If that
2383
* fails, we just zero-fill it. Live with it.
2384
*/
2385
if (unlikely(!src)) {
2386
void *kaddr = kmap_atomic(dst, KM_USER0);
2387
void __user *uaddr = (void __user *)(va & PAGE_MASK);
2388
2389
/*
2390
* This really shouldn't fail, because the page is there
2391
* in the page tables. But it might just be unreadable,
2392
* in which case we just give up and fill the result with
2393
* zeroes.
2394
*/
2395
if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2396
clear_page(kaddr);
2397
kunmap_atomic(kaddr, KM_USER0);
2398
flush_dcache_page(dst);
2399
} else
2400
copy_user_highpage(dst, src, va, vma);
2401
}
2402
2403
/*
2404
* This routine handles present pages, when users try to write
2405
* to a shared page. It is done by copying the page to a new address
2406
* and decrementing the shared-page counter for the old page.
2407
*
2408
* Note that this routine assumes that the protection checks have been
2409
* done by the caller (the low-level page fault routine in most cases).
2410
* Thus we can safely just mark it writable once we've done any necessary
2411
* COW.
2412
*
2413
* We also mark the page dirty at this point even though the page will
2414
* change only once the write actually happens. This avoids a few races,
2415
* and potentially makes it more efficient.
2416
*
2417
* We enter with non-exclusive mmap_sem (to exclude vma changes,
2418
* but allow concurrent faults), with pte both mapped and locked.
2419
* We return with mmap_sem still held, but pte unmapped and unlocked.
2420
*/
2421
static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2422
unsigned long address, pte_t *page_table, pmd_t *pmd,
2423
spinlock_t *ptl, pte_t orig_pte)
2424
__releases(ptl)
2425
{
2426
struct page *old_page, *new_page;
2427
pte_t entry;
2428
int ret = 0;
2429
int page_mkwrite = 0;
2430
struct page *dirty_page = NULL;
2431
2432
old_page = vm_normal_page(vma, address, orig_pte);
2433
if (!old_page) {
2434
/*
2435
* VM_MIXEDMAP !pfn_valid() case
2436
*
2437
* We should not cow pages in a shared writeable mapping.
2438
* Just mark the pages writable as we can't do any dirty
2439
* accounting on raw pfn maps.
2440
*/
2441
if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2442
(VM_WRITE|VM_SHARED))
2443
goto reuse;
2444
goto gotten;
2445
}
2446
2447
/*
2448
* Take out anonymous pages first, anonymous shared vmas are
2449
* not dirty accountable.
2450
*/
2451
if (PageAnon(old_page) && !PageKsm(old_page)) {
2452
if (!trylock_page(old_page)) {
2453
page_cache_get(old_page);
2454
pte_unmap_unlock(page_table, ptl);
2455
lock_page(old_page);
2456
page_table = pte_offset_map_lock(mm, pmd, address,
2457
&ptl);
2458
if (!pte_same(*page_table, orig_pte)) {
2459
unlock_page(old_page);
2460
goto unlock;
2461
}
2462
page_cache_release(old_page);
2463
}
2464
if (reuse_swap_page(old_page)) {
2465
/*
2466
* The page is all ours. Move it to our anon_vma so
2467
* the rmap code will not search our parent or siblings.
2468
* Protected against the rmap code by the page lock.
2469
*/
2470
page_move_anon_rmap(old_page, vma, address);
2471
unlock_page(old_page);
2472
goto reuse;
2473
}
2474
unlock_page(old_page);
2475
} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2476
(VM_WRITE|VM_SHARED))) {
2477
/*
2478
* Only catch write-faults on shared writable pages,
2479
* read-only shared pages can get COWed by
2480
* get_user_pages(.write=1, .force=1).
2481
*/
2482
if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2483
struct vm_fault vmf;
2484
int tmp;
2485
2486
vmf.virtual_address = (void __user *)(address &
2487
PAGE_MASK);
2488
vmf.pgoff = old_page->index;
2489
vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2490
vmf.page = old_page;
2491
2492
/*
2493
* Notify the address space that the page is about to
2494
* become writable so that it can prohibit this or wait
2495
* for the page to get into an appropriate state.
2496
*
2497
* We do this without the lock held, so that it can
2498
* sleep if it needs to.
2499
*/
2500
page_cache_get(old_page);
2501
pte_unmap_unlock(page_table, ptl);
2502
2503
tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2504
if (unlikely(tmp &
2505
(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2506
ret = tmp;
2507
goto unwritable_page;
2508
}
2509
if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2510
lock_page(old_page);
2511
if (!old_page->mapping) {
2512
ret = 0; /* retry the fault */
2513
unlock_page(old_page);
2514
goto unwritable_page;
2515
}
2516
} else
2517
VM_BUG_ON(!PageLocked(old_page));
2518
2519
/*
2520
* Since we dropped the lock we need to revalidate
2521
* the PTE as someone else may have changed it. If
2522
* they did, we just return, as we can count on the
2523
* MMU to tell us if they didn't also make it writable.
2524
*/
2525
page_table = pte_offset_map_lock(mm, pmd, address,
2526
&ptl);
2527
if (!pte_same(*page_table, orig_pte)) {
2528
unlock_page(old_page);
2529
goto unlock;
2530
}
2531
2532
page_mkwrite = 1;
2533
}
2534
dirty_page = old_page;
2535
get_page(dirty_page);
2536
2537
reuse:
2538
flush_cache_page(vma, address, pte_pfn(orig_pte));
2539
entry = pte_mkyoung(orig_pte);
2540
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2541
if (ptep_set_access_flags(vma, address, page_table, entry,1))
2542
update_mmu_cache(vma, address, page_table);
2543
pte_unmap_unlock(page_table, ptl);
2544
ret |= VM_FAULT_WRITE;
2545
2546
if (!dirty_page)
2547
return ret;
2548
2549
/*
2550
* Yes, Virginia, this is actually required to prevent a race
2551
* with clear_page_dirty_for_io() from clearing the page dirty
2552
* bit after it clear all dirty ptes, but before a racing
2553
* do_wp_page installs a dirty pte.
2554
*
2555
* __do_fault is protected similarly.
2556
*/
2557
if (!page_mkwrite) {
2558
wait_on_page_locked(dirty_page);
2559
set_page_dirty_balance(dirty_page, page_mkwrite);
2560
}
2561
put_page(dirty_page);
2562
if (page_mkwrite) {
2563
struct address_space *mapping = dirty_page->mapping;
2564
2565
set_page_dirty(dirty_page);
2566
unlock_page(dirty_page);
2567
page_cache_release(dirty_page);
2568
if (mapping) {
2569
/*
2570
* Some device drivers do not set page.mapping
2571
* but still dirty their pages
2572
*/
2573
balance_dirty_pages_ratelimited(mapping);
2574
}
2575
}
2576
2577
/* file_update_time outside page_lock */
2578
if (vma->vm_file)
2579
file_update_time(vma->vm_file);
2580
2581
return ret;
2582
}
2583
2584
/*
2585
* Ok, we need to copy. Oh, well..
2586
*/
2587
page_cache_get(old_page);
2588
gotten:
2589
pte_unmap_unlock(page_table, ptl);
2590
2591
if (unlikely(anon_vma_prepare(vma)))
2592
goto oom;
2593
2594
if (is_zero_pfn(pte_pfn(orig_pte))) {
2595
new_page = alloc_zeroed_user_highpage_movable(vma, address);
2596
if (!new_page)
2597
goto oom;
2598
} else {
2599
new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2600
if (!new_page)
2601
goto oom;
2602
cow_user_page(new_page, old_page, address, vma);
2603
}
2604
__SetPageUptodate(new_page);
2605
2606
if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2607
goto oom_free_new;
2608
2609
/*
2610
* Re-check the pte - we dropped the lock
2611
*/
2612
page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2613
if (likely(pte_same(*page_table, orig_pte))) {
2614
if (old_page) {
2615
if (!PageAnon(old_page)) {
2616
dec_mm_counter_fast(mm, MM_FILEPAGES);
2617
inc_mm_counter_fast(mm, MM_ANONPAGES);
2618
}
2619
} else
2620
inc_mm_counter_fast(mm, MM_ANONPAGES);
2621
flush_cache_page(vma, address, pte_pfn(orig_pte));
2622
entry = mk_pte(new_page, vma->vm_page_prot);
2623
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2624
/*
2625
* Clear the pte entry and flush it first, before updating the
2626
* pte with the new entry. This will avoid a race condition
2627
* seen in the presence of one thread doing SMC and another
2628
* thread doing COW.
2629
*/
2630
ptep_clear_flush(vma, address, page_table);
2631
page_add_new_anon_rmap(new_page, vma, address);
2632
/*
2633
* We call the notify macro here because, when using secondary
2634
* mmu page tables (such as kvm shadow page tables), we want the
2635
* new page to be mapped directly into the secondary page table.
2636
*/
2637
set_pte_at_notify(mm, address, page_table, entry);
2638
update_mmu_cache(vma, address, page_table);
2639
if (old_page) {
2640
/*
2641
* Only after switching the pte to the new page may
2642
* we remove the mapcount here. Otherwise another
2643
* process may come and find the rmap count decremented
2644
* before the pte is switched to the new page, and
2645
* "reuse" the old page writing into it while our pte
2646
* here still points into it and can be read by other
2647
* threads.
2648
*
2649
* The critical issue is to order this
2650
* page_remove_rmap with the ptp_clear_flush above.
2651
* Those stores are ordered by (if nothing else,)
2652
* the barrier present in the atomic_add_negative
2653
* in page_remove_rmap.
2654
*
2655
* Then the TLB flush in ptep_clear_flush ensures that
2656
* no process can access the old page before the
2657
* decremented mapcount is visible. And the old page
2658
* cannot be reused until after the decremented
2659
* mapcount is visible. So transitively, TLBs to
2660
* old page will be flushed before it can be reused.
2661
*/
2662
page_remove_rmap(old_page);
2663
}
2664
2665
/* Free the old page.. */
2666
new_page = old_page;
2667
ret |= VM_FAULT_WRITE;
2668
} else
2669
mem_cgroup_uncharge_page(new_page);
2670
2671
if (new_page)
2672
page_cache_release(new_page);
2673
unlock:
2674
pte_unmap_unlock(page_table, ptl);
2675
if (old_page) {
2676
/*
2677
* Don't let another task, with possibly unlocked vma,
2678
* keep the mlocked page.
2679
*/
2680
if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2681
lock_page(old_page); /* LRU manipulation */
2682
munlock_vma_page(old_page);
2683
unlock_page(old_page);
2684
}
2685
page_cache_release(old_page);
2686
}
2687
return ret;
2688
oom_free_new:
2689
page_cache_release(new_page);
2690
oom:
2691
if (old_page) {
2692
if (page_mkwrite) {
2693
unlock_page(old_page);
2694
page_cache_release(old_page);
2695
}
2696
page_cache_release(old_page);
2697
}
2698
return VM_FAULT_OOM;
2699
2700
unwritable_page:
2701
page_cache_release(old_page);
2702
return ret;
2703
}
2704
2705
static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2706
unsigned long start_addr, unsigned long end_addr,
2707
struct zap_details *details)
2708
{
2709
zap_page_range(vma, start_addr, end_addr - start_addr, details);
2710
}
2711
2712
static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2713
struct zap_details *details)
2714
{
2715
struct vm_area_struct *vma;
2716
struct prio_tree_iter iter;
2717
pgoff_t vba, vea, zba, zea;
2718
2719
vma_prio_tree_foreach(vma, &iter, root,
2720
details->first_index, details->last_index) {
2721
2722
vba = vma->vm_pgoff;
2723
vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2724
/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2725
zba = details->first_index;
2726
if (zba < vba)
2727
zba = vba;
2728
zea = details->last_index;
2729
if (zea > vea)
2730
zea = vea;
2731
2732
unmap_mapping_range_vma(vma,
2733
((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2734
((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2735
details);
2736
}
2737
}
2738
2739
static inline void unmap_mapping_range_list(struct list_head *head,
2740
struct zap_details *details)
2741
{
2742
struct vm_area_struct *vma;
2743
2744
/*
2745
* In nonlinear VMAs there is no correspondence between virtual address
2746
* offset and file offset. So we must perform an exhaustive search
2747
* across *all* the pages in each nonlinear VMA, not just the pages
2748
* whose virtual address lies outside the file truncation point.
2749
*/
2750
list_for_each_entry(vma, head, shared.vm_set.list) {
2751
details->nonlinear_vma = vma;
2752
unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2753
}
2754
}
2755
2756
/**
2757
* unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2758
* @mapping: the address space containing mmaps to be unmapped.
2759
* @holebegin: byte in first page to unmap, relative to the start of
2760
* the underlying file. This will be rounded down to a PAGE_SIZE
2761
* boundary. Note that this is different from truncate_pagecache(), which
2762
* must keep the partial page. In contrast, we must get rid of
2763
* partial pages.
2764
* @holelen: size of prospective hole in bytes. This will be rounded
2765
* up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2766
* end of the file.
2767
* @even_cows: 1 when truncating a file, unmap even private COWed pages;
2768
* but 0 when invalidating pagecache, don't throw away private data.
2769
*/
2770
void unmap_mapping_range(struct address_space *mapping,
2771
loff_t const holebegin, loff_t const holelen, int even_cows)
2772
{
2773
struct zap_details details;
2774
pgoff_t hba = holebegin >> PAGE_SHIFT;
2775
pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2776
2777
/* Check for overflow. */
2778
if (sizeof(holelen) > sizeof(hlen)) {
2779
long long holeend =
2780
(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2781
if (holeend & ~(long long)ULONG_MAX)
2782
hlen = ULONG_MAX - hba + 1;
2783
}
2784
2785
details.check_mapping = even_cows? NULL: mapping;
2786
details.nonlinear_vma = NULL;
2787
details.first_index = hba;
2788
details.last_index = hba + hlen - 1;
2789
if (details.last_index < details.first_index)
2790
details.last_index = ULONG_MAX;
2791
2792
2793
mutex_lock(&mapping->i_mmap_mutex);
2794
if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2795
unmap_mapping_range_tree(&mapping->i_mmap, &details);
2796
if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2797
unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2798
mutex_unlock(&mapping->i_mmap_mutex);
2799
}
2800
EXPORT_SYMBOL(unmap_mapping_range);
2801
2802
/*
2803
* We enter with non-exclusive mmap_sem (to exclude vma changes,
2804
* but allow concurrent faults), and pte mapped but not yet locked.
2805
* We return with mmap_sem still held, but pte unmapped and unlocked.
2806
*/
2807
static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2808
unsigned long address, pte_t *page_table, pmd_t *pmd,
2809
unsigned int flags, pte_t orig_pte)
2810
{
2811
spinlock_t *ptl;
2812
struct page *page, *swapcache = NULL;
2813
swp_entry_t entry;
2814
pte_t pte;
2815
int locked;
2816
struct mem_cgroup *ptr;
2817
int exclusive = 0;
2818
int ret = 0;
2819
2820
if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2821
goto out;
2822
2823
entry = pte_to_swp_entry(orig_pte);
2824
if (unlikely(non_swap_entry(entry))) {
2825
if (is_migration_entry(entry)) {
2826
migration_entry_wait(mm, pmd, address);
2827
} else if (is_hwpoison_entry(entry)) {
2828
ret = VM_FAULT_HWPOISON;
2829
} else {
2830
print_bad_pte(vma, address, orig_pte, NULL);
2831
ret = VM_FAULT_SIGBUS;
2832
}
2833
goto out;
2834
}
2835
delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2836
page = lookup_swap_cache(entry);
2837
if (!page) {
2838
grab_swap_token(mm); /* Contend for token _before_ read-in */
2839
page = swapin_readahead(entry,
2840
GFP_HIGHUSER_MOVABLE, vma, address);
2841
if (!page) {
2842
/*
2843
* Back out if somebody else faulted in this pte
2844
* while we released the pte lock.
2845
*/
2846
page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2847
if (likely(pte_same(*page_table, orig_pte)))
2848
ret = VM_FAULT_OOM;
2849
delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2850
goto unlock;
2851
}
2852
2853
/* Had to read the page from swap area: Major fault */
2854
ret = VM_FAULT_MAJOR;
2855
count_vm_event(PGMAJFAULT);
2856
mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2857
} else if (PageHWPoison(page)) {
2858
/*
2859
* hwpoisoned dirty swapcache pages are kept for killing
2860
* owner processes (which may be unknown at hwpoison time)
2861
*/
2862
ret = VM_FAULT_HWPOISON;
2863
delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2864
goto out_release;
2865
}
2866
2867
locked = lock_page_or_retry(page, mm, flags);
2868
delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2869
if (!locked) {
2870
ret |= VM_FAULT_RETRY;
2871
goto out_release;
2872
}
2873
2874
/*
2875
* Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2876
* release the swapcache from under us. The page pin, and pte_same
2877
* test below, are not enough to exclude that. Even if it is still
2878
* swapcache, we need to check that the page's swap has not changed.
2879
*/
2880
if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2881
goto out_page;
2882
2883
if (ksm_might_need_to_copy(page, vma, address)) {
2884
swapcache = page;
2885
page = ksm_does_need_to_copy(page, vma, address);
2886
2887
if (unlikely(!page)) {
2888
ret = VM_FAULT_OOM;
2889
page = swapcache;
2890
swapcache = NULL;
2891
goto out_page;
2892
}
2893
}
2894
2895
if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2896
ret = VM_FAULT_OOM;
2897
goto out_page;
2898
}
2899
2900
/*
2901
* Back out if somebody else already faulted in this pte.
2902
*/
2903
page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2904
if (unlikely(!pte_same(*page_table, orig_pte)))
2905
goto out_nomap;
2906
2907
if (unlikely(!PageUptodate(page))) {
2908
ret = VM_FAULT_SIGBUS;
2909
goto out_nomap;
2910
}
2911
2912
/*
2913
* The page isn't present yet, go ahead with the fault.
2914
*
2915
* Be careful about the sequence of operations here.
2916
* To get its accounting right, reuse_swap_page() must be called
2917
* while the page is counted on swap but not yet in mapcount i.e.
2918
* before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2919
* must be called after the swap_free(), or it will never succeed.
2920
* Because delete_from_swap_page() may be called by reuse_swap_page(),
2921
* mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2922
* in page->private. In this case, a record in swap_cgroup is silently
2923
* discarded at swap_free().
2924
*/
2925
2926
inc_mm_counter_fast(mm, MM_ANONPAGES);
2927
dec_mm_counter_fast(mm, MM_SWAPENTS);
2928
pte = mk_pte(page, vma->vm_page_prot);
2929
if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2930
pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2931
flags &= ~FAULT_FLAG_WRITE;
2932
ret |= VM_FAULT_WRITE;
2933
exclusive = 1;
2934
}
2935
flush_icache_page(vma, page);
2936
set_pte_at(mm, address, page_table, pte);
2937
do_page_add_anon_rmap(page, vma, address, exclusive);
2938
/* It's better to call commit-charge after rmap is established */
2939
mem_cgroup_commit_charge_swapin(page, ptr);
2940
2941
swap_free(entry);
2942
if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2943
try_to_free_swap(page);
2944
unlock_page(page);
2945
if (swapcache) {
2946
/*
2947
* Hold the lock to avoid the swap entry to be reused
2948
* until we take the PT lock for the pte_same() check
2949
* (to avoid false positives from pte_same). For
2950
* further safety release the lock after the swap_free
2951
* so that the swap count won't change under a
2952
* parallel locked swapcache.
2953
*/
2954
unlock_page(swapcache);
2955
page_cache_release(swapcache);
2956
}
2957
2958
if (flags & FAULT_FLAG_WRITE) {
2959
ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2960
if (ret & VM_FAULT_ERROR)
2961
ret &= VM_FAULT_ERROR;
2962
goto out;
2963
}
2964
2965
/* No need to invalidate - it was non-present before */
2966
update_mmu_cache(vma, address, page_table);
2967
unlock:
2968
pte_unmap_unlock(page_table, ptl);
2969
out:
2970
return ret;
2971
out_nomap:
2972
mem_cgroup_cancel_charge_swapin(ptr);
2973
pte_unmap_unlock(page_table, ptl);
2974
out_page:
2975
unlock_page(page);
2976
out_release:
2977
page_cache_release(page);
2978
if (swapcache) {
2979
unlock_page(swapcache);
2980
page_cache_release(swapcache);
2981
}
2982
return ret;
2983
}
2984
2985
/*
2986
* This is like a special single-page "expand_{down|up}wards()",
2987
* except we must first make sure that 'address{-|+}PAGE_SIZE'
2988
* doesn't hit another vma.
2989
*/
2990
static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2991
{
2992
address &= PAGE_MASK;
2993
if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2994
struct vm_area_struct *prev = vma->vm_prev;
2995
2996
/*
2997
* Is there a mapping abutting this one below?
2998
*
2999
* That's only ok if it's the same stack mapping
3000
* that has gotten split..
3001
*/
3002
if (prev && prev->vm_end == address)
3003
return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3004
3005
expand_downwards(vma, address - PAGE_SIZE);
3006
}
3007
if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3008
struct vm_area_struct *next = vma->vm_next;
3009
3010
/* As VM_GROWSDOWN but s/below/above/ */
3011
if (next && next->vm_start == address + PAGE_SIZE)
3012
return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3013
3014
expand_upwards(vma, address + PAGE_SIZE);
3015
}
3016
return 0;
3017
}
3018
3019
/*
3020
* We enter with non-exclusive mmap_sem (to exclude vma changes,
3021
* but allow concurrent faults), and pte mapped but not yet locked.
3022
* We return with mmap_sem still held, but pte unmapped and unlocked.
3023
*/
3024
static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3025
unsigned long address, pte_t *page_table, pmd_t *pmd,
3026
unsigned int flags)
3027
{
3028
struct page *page;
3029
spinlock_t *ptl;
3030
pte_t entry;
3031
3032
pte_unmap(page_table);
3033
3034
/* Check if we need to add a guard page to the stack */
3035
if (check_stack_guard_page(vma, address) < 0)
3036
return VM_FAULT_SIGBUS;
3037
3038
/* Use the zero-page for reads */
3039
if (!(flags & FAULT_FLAG_WRITE)) {
3040
entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3041
vma->vm_page_prot));
3042
page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3043
if (!pte_none(*page_table))
3044
goto unlock;
3045
goto setpte;
3046
}
3047
3048
/* Allocate our own private page. */
3049
if (unlikely(anon_vma_prepare(vma)))
3050
goto oom;
3051
page = alloc_zeroed_user_highpage_movable(vma, address);
3052
if (!page)
3053
goto oom;
3054
__SetPageUptodate(page);
3055
3056
if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3057
goto oom_free_page;
3058
3059
entry = mk_pte(page, vma->vm_page_prot);
3060
if (vma->vm_flags & VM_WRITE)
3061
entry = pte_mkwrite(pte_mkdirty(entry));
3062
3063
page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3064
if (!pte_none(*page_table))
3065
goto release;
3066
3067
inc_mm_counter_fast(mm, MM_ANONPAGES);
3068
page_add_new_anon_rmap(page, vma, address);
3069
setpte:
3070
set_pte_at(mm, address, page_table, entry);
3071
3072
/* No need to invalidate - it was non-present before */
3073
update_mmu_cache(vma, address, page_table);
3074
unlock:
3075
pte_unmap_unlock(page_table, ptl);
3076
return 0;
3077
release:
3078
mem_cgroup_uncharge_page(page);
3079
page_cache_release(page);
3080
goto unlock;
3081
oom_free_page:
3082
page_cache_release(page);
3083
oom:
3084
return VM_FAULT_OOM;
3085
}
3086
3087
/*
3088
* __do_fault() tries to create a new page mapping. It aggressively
3089
* tries to share with existing pages, but makes a separate copy if
3090
* the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3091
* the next page fault.
3092
*
3093
* As this is called only for pages that do not currently exist, we
3094
* do not need to flush old virtual caches or the TLB.
3095
*
3096
* We enter with non-exclusive mmap_sem (to exclude vma changes,
3097
* but allow concurrent faults), and pte neither mapped nor locked.
3098
* We return with mmap_sem still held, but pte unmapped and unlocked.
3099
*/
3100
static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3101
unsigned long address, pmd_t *pmd,
3102
pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3103
{
3104
pte_t *page_table;
3105
spinlock_t *ptl;
3106
struct page *page;
3107
pte_t entry;
3108
int anon = 0;
3109
int charged = 0;
3110
struct page *dirty_page = NULL;
3111
struct vm_fault vmf;
3112
int ret;
3113
int page_mkwrite = 0;
3114
3115
vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3116
vmf.pgoff = pgoff;
3117
vmf.flags = flags;
3118
vmf.page = NULL;
3119
3120
ret = vma->vm_ops->fault(vma, &vmf);
3121
if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3122
VM_FAULT_RETRY)))
3123
return ret;
3124
3125
if (unlikely(PageHWPoison(vmf.page))) {
3126
if (ret & VM_FAULT_LOCKED)
3127
unlock_page(vmf.page);
3128
return VM_FAULT_HWPOISON;
3129
}
3130
3131
/*
3132
* For consistency in subsequent calls, make the faulted page always
3133
* locked.
3134
*/
3135
if (unlikely(!(ret & VM_FAULT_LOCKED)))
3136
lock_page(vmf.page);
3137
else
3138
VM_BUG_ON(!PageLocked(vmf.page));
3139
3140
/*
3141
* Should we do an early C-O-W break?
3142
*/
3143
page = vmf.page;
3144
if (flags & FAULT_FLAG_WRITE) {
3145
if (!(vma->vm_flags & VM_SHARED)) {
3146
anon = 1;
3147
if (unlikely(anon_vma_prepare(vma))) {
3148
ret = VM_FAULT_OOM;
3149
goto out;
3150
}
3151
page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
3152
vma, address);
3153
if (!page) {
3154
ret = VM_FAULT_OOM;
3155
goto out;
3156
}
3157
if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
3158
ret = VM_FAULT_OOM;
3159
page_cache_release(page);
3160
goto out;
3161
}
3162
charged = 1;
3163
copy_user_highpage(page, vmf.page, address, vma);
3164
__SetPageUptodate(page);
3165
} else {
3166
/*
3167
* If the page will be shareable, see if the backing
3168
* address space wants to know that the page is about
3169
* to become writable
3170
*/
3171
if (vma->vm_ops->page_mkwrite) {
3172
int tmp;
3173
3174
unlock_page(page);
3175
vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3176
tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3177
if (unlikely(tmp &
3178
(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3179
ret = tmp;
3180
goto unwritable_page;
3181
}
3182
if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3183
lock_page(page);
3184
if (!page->mapping) {
3185
ret = 0; /* retry the fault */
3186
unlock_page(page);
3187
goto unwritable_page;
3188
}
3189
} else
3190
VM_BUG_ON(!PageLocked(page));
3191
page_mkwrite = 1;
3192
}
3193
}
3194
3195
}
3196
3197
page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3198
3199
/*
3200
* This silly early PAGE_DIRTY setting removes a race
3201
* due to the bad i386 page protection. But it's valid
3202
* for other architectures too.
3203
*
3204
* Note that if FAULT_FLAG_WRITE is set, we either now have
3205
* an exclusive copy of the page, or this is a shared mapping,
3206
* so we can make it writable and dirty to avoid having to
3207
* handle that later.
3208
*/
3209
/* Only go through if we didn't race with anybody else... */
3210
if (likely(pte_same(*page_table, orig_pte))) {
3211
flush_icache_page(vma, page);
3212
entry = mk_pte(page, vma->vm_page_prot);
3213
if (flags & FAULT_FLAG_WRITE)
3214
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3215
if (anon) {
3216
inc_mm_counter_fast(mm, MM_ANONPAGES);
3217
page_add_new_anon_rmap(page, vma, address);
3218
} else {
3219
inc_mm_counter_fast(mm, MM_FILEPAGES);
3220
page_add_file_rmap(page);
3221
if (flags & FAULT_FLAG_WRITE) {
3222
dirty_page = page;
3223
get_page(dirty_page);
3224
}
3225
}
3226
set_pte_at(mm, address, page_table, entry);
3227
3228
/* no need to invalidate: a not-present page won't be cached */
3229
update_mmu_cache(vma, address, page_table);
3230
} else {
3231
if (charged)
3232
mem_cgroup_uncharge_page(page);
3233
if (anon)
3234
page_cache_release(page);
3235
else
3236
anon = 1; /* no anon but release faulted_page */
3237
}
3238
3239
pte_unmap_unlock(page_table, ptl);
3240
3241
out:
3242
if (dirty_page) {
3243
struct address_space *mapping = page->mapping;
3244
3245
if (set_page_dirty(dirty_page))
3246
page_mkwrite = 1;
3247
unlock_page(dirty_page);
3248
put_page(dirty_page);
3249
if (page_mkwrite && mapping) {
3250
/*
3251
* Some device drivers do not set page.mapping but still
3252
* dirty their pages
3253
*/
3254
balance_dirty_pages_ratelimited(mapping);
3255
}
3256
3257
/* file_update_time outside page_lock */
3258
if (vma->vm_file)
3259
file_update_time(vma->vm_file);
3260
} else {
3261
unlock_page(vmf.page);
3262
if (anon)
3263
page_cache_release(vmf.page);
3264
}
3265
3266
return ret;
3267
3268
unwritable_page:
3269
page_cache_release(page);
3270
return ret;
3271
}
3272
3273
static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3274
unsigned long address, pte_t *page_table, pmd_t *pmd,
3275
unsigned int flags, pte_t orig_pte)
3276
{
3277
pgoff_t pgoff = (((address & PAGE_MASK)
3278
- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3279
3280
pte_unmap(page_table);
3281
return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3282
}
3283
3284
/*
3285
* Fault of a previously existing named mapping. Repopulate the pte
3286
* from the encoded file_pte if possible. This enables swappable
3287
* nonlinear vmas.
3288
*
3289
* We enter with non-exclusive mmap_sem (to exclude vma changes,
3290
* but allow concurrent faults), and pte mapped but not yet locked.
3291
* We return with mmap_sem still held, but pte unmapped and unlocked.
3292
*/
3293
static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3294
unsigned long address, pte_t *page_table, pmd_t *pmd,
3295
unsigned int flags, pte_t orig_pte)
3296
{
3297
pgoff_t pgoff;
3298
3299
flags |= FAULT_FLAG_NONLINEAR;
3300
3301
if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3302
return 0;
3303
3304
if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3305
/*
3306
* Page table corrupted: show pte and kill process.
3307
*/
3308
print_bad_pte(vma, address, orig_pte, NULL);
3309
return VM_FAULT_SIGBUS;
3310
}
3311
3312
pgoff = pte_to_pgoff(orig_pte);
3313
return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3314
}
3315
3316
/*
3317
* These routines also need to handle stuff like marking pages dirty
3318
* and/or accessed for architectures that don't do it in hardware (most
3319
* RISC architectures). The early dirtying is also good on the i386.
3320
*
3321
* There is also a hook called "update_mmu_cache()" that architectures
3322
* with external mmu caches can use to update those (ie the Sparc or
3323
* PowerPC hashed page tables that act as extended TLBs).
3324
*
3325
* We enter with non-exclusive mmap_sem (to exclude vma changes,
3326
* but allow concurrent faults), and pte mapped but not yet locked.
3327
* We return with mmap_sem still held, but pte unmapped and unlocked.
3328
*/
3329
int handle_pte_fault(struct mm_struct *mm,
3330
struct vm_area_struct *vma, unsigned long address,
3331
pte_t *pte, pmd_t *pmd, unsigned int flags)
3332
{
3333
pte_t entry;
3334
spinlock_t *ptl;
3335
3336
entry = *pte;
3337
if (!pte_present(entry)) {
3338
if (pte_none(entry)) {
3339
if (vma->vm_ops) {
3340
if (likely(vma->vm_ops->fault))
3341
return do_linear_fault(mm, vma, address,
3342
pte, pmd, flags, entry);
3343
}
3344
return do_anonymous_page(mm, vma, address,
3345
pte, pmd, flags);
3346
}
3347
if (pte_file(entry))
3348
return do_nonlinear_fault(mm, vma, address,
3349
pte, pmd, flags, entry);
3350
return do_swap_page(mm, vma, address,
3351
pte, pmd, flags, entry);
3352
}
3353
3354
ptl = pte_lockptr(mm, pmd);
3355
spin_lock(ptl);
3356
if (unlikely(!pte_same(*pte, entry)))
3357
goto unlock;
3358
if (flags & FAULT_FLAG_WRITE) {
3359
if (!pte_write(entry))
3360
return do_wp_page(mm, vma, address,
3361
pte, pmd, ptl, entry);
3362
entry = pte_mkdirty(entry);
3363
}
3364
entry = pte_mkyoung(entry);
3365
if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3366
update_mmu_cache(vma, address, pte);
3367
} else {
3368
/*
3369
* This is needed only for protection faults but the arch code
3370
* is not yet telling us if this is a protection fault or not.
3371
* This still avoids useless tlb flushes for .text page faults
3372
* with threads.
3373
*/
3374
if (flags & FAULT_FLAG_WRITE)
3375
flush_tlb_fix_spurious_fault(vma, address);
3376
}
3377
unlock:
3378
pte_unmap_unlock(pte, ptl);
3379
return 0;
3380
}
3381
3382
/*
3383
* By the time we get here, we already hold the mm semaphore
3384
*/
3385
int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3386
unsigned long address, unsigned int flags)
3387
{
3388
pgd_t *pgd;
3389
pud_t *pud;
3390
pmd_t *pmd;
3391
pte_t *pte;
3392
3393
__set_current_state(TASK_RUNNING);
3394
3395
count_vm_event(PGFAULT);
3396
mem_cgroup_count_vm_event(mm, PGFAULT);
3397
3398
/* do counter updates before entering really critical section. */
3399
check_sync_rss_stat(current);
3400
3401
if (unlikely(is_vm_hugetlb_page(vma)))
3402
return hugetlb_fault(mm, vma, address, flags);
3403
3404
pgd = pgd_offset(mm, address);
3405
pud = pud_alloc(mm, pgd, address);
3406
if (!pud)
3407
return VM_FAULT_OOM;
3408
pmd = pmd_alloc(mm, pud, address);
3409
if (!pmd)
3410
return VM_FAULT_OOM;
3411
if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3412
if (!vma->vm_ops)
3413
return do_huge_pmd_anonymous_page(mm, vma, address,
3414
pmd, flags);
3415
} else {
3416
pmd_t orig_pmd = *pmd;
3417
barrier();
3418
if (pmd_trans_huge(orig_pmd)) {
3419
if (flags & FAULT_FLAG_WRITE &&
3420
!pmd_write(orig_pmd) &&
3421
!pmd_trans_splitting(orig_pmd))
3422
return do_huge_pmd_wp_page(mm, vma, address,
3423
pmd, orig_pmd);
3424
return 0;
3425
}
3426
}
3427
3428
/*
3429
* Use __pte_alloc instead of pte_alloc_map, because we can't
3430
* run pte_offset_map on the pmd, if an huge pmd could
3431
* materialize from under us from a different thread.
3432
*/
3433
if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3434
return VM_FAULT_OOM;
3435
/* if an huge pmd materialized from under us just retry later */
3436
if (unlikely(pmd_trans_huge(*pmd)))
3437
return 0;
3438
/*
3439
* A regular pmd is established and it can't morph into a huge pmd
3440
* from under us anymore at this point because we hold the mmap_sem
3441
* read mode and khugepaged takes it in write mode. So now it's
3442
* safe to run pte_offset_map().
3443
*/
3444
pte = pte_offset_map(pmd, address);
3445
3446
return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3447
}
3448
3449
#ifndef __PAGETABLE_PUD_FOLDED
3450
/*
3451
* Allocate page upper directory.
3452
* We've already handled the fast-path in-line.
3453
*/
3454
int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3455
{
3456
pud_t *new = pud_alloc_one(mm, address);
3457
if (!new)
3458
return -ENOMEM;
3459
3460
smp_wmb(); /* See comment in __pte_alloc */
3461
3462
spin_lock(&mm->page_table_lock);
3463
if (pgd_present(*pgd)) /* Another has populated it */
3464
pud_free(mm, new);
3465
else
3466
pgd_populate(mm, pgd, new);
3467
spin_unlock(&mm->page_table_lock);
3468
return 0;
3469
}
3470
#endif /* __PAGETABLE_PUD_FOLDED */
3471
3472
#ifndef __PAGETABLE_PMD_FOLDED
3473
/*
3474
* Allocate page middle directory.
3475
* We've already handled the fast-path in-line.
3476
*/
3477
int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3478
{
3479
pmd_t *new = pmd_alloc_one(mm, address);
3480
if (!new)
3481
return -ENOMEM;
3482
3483
smp_wmb(); /* See comment in __pte_alloc */
3484
3485
spin_lock(&mm->page_table_lock);
3486
#ifndef __ARCH_HAS_4LEVEL_HACK
3487
if (pud_present(*pud)) /* Another has populated it */
3488
pmd_free(mm, new);
3489
else
3490
pud_populate(mm, pud, new);
3491
#else
3492
if (pgd_present(*pud)) /* Another has populated it */
3493
pmd_free(mm, new);
3494
else
3495
pgd_populate(mm, pud, new);
3496
#endif /* __ARCH_HAS_4LEVEL_HACK */
3497
spin_unlock(&mm->page_table_lock);
3498
return 0;
3499
}
3500
#endif /* __PAGETABLE_PMD_FOLDED */
3501
3502
int make_pages_present(unsigned long addr, unsigned long end)
3503
{
3504
int ret, len, write;
3505
struct vm_area_struct * vma;
3506
3507
vma = find_vma(current->mm, addr);
3508
if (!vma)
3509
return -ENOMEM;
3510
/*
3511
* We want to touch writable mappings with a write fault in order
3512
* to break COW, except for shared mappings because these don't COW
3513
* and we would not want to dirty them for nothing.
3514
*/
3515
write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3516
BUG_ON(addr >= end);
3517
BUG_ON(end > vma->vm_end);
3518
len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3519
ret = get_user_pages(current, current->mm, addr,
3520
len, write, 0, NULL, NULL);
3521
if (ret < 0)
3522
return ret;
3523
return ret == len ? 0 : -EFAULT;
3524
}
3525
3526
#if !defined(__HAVE_ARCH_GATE_AREA)
3527
3528
#if defined(AT_SYSINFO_EHDR)
3529
static struct vm_area_struct gate_vma;
3530
3531
static int __init gate_vma_init(void)
3532
{
3533
gate_vma.vm_mm = NULL;
3534
gate_vma.vm_start = FIXADDR_USER_START;
3535
gate_vma.vm_end = FIXADDR_USER_END;
3536
gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3537
gate_vma.vm_page_prot = __P101;
3538
/*
3539
* Make sure the vDSO gets into every core dump.
3540
* Dumping its contents makes post-mortem fully interpretable later
3541
* without matching up the same kernel and hardware config to see
3542
* what PC values meant.
3543
*/
3544
gate_vma.vm_flags |= VM_ALWAYSDUMP;
3545
return 0;
3546
}
3547
__initcall(gate_vma_init);
3548
#endif
3549
3550
struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3551
{
3552
#ifdef AT_SYSINFO_EHDR
3553
return &gate_vma;
3554
#else
3555
return NULL;
3556
#endif
3557
}
3558
3559
int in_gate_area_no_mm(unsigned long addr)
3560
{
3561
#ifdef AT_SYSINFO_EHDR
3562
if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3563
return 1;
3564
#endif
3565
return 0;
3566
}
3567
3568
#endif /* __HAVE_ARCH_GATE_AREA */
3569
3570
static int __follow_pte(struct mm_struct *mm, unsigned long address,
3571
pte_t **ptepp, spinlock_t **ptlp)
3572
{
3573
pgd_t *pgd;
3574
pud_t *pud;
3575
pmd_t *pmd;
3576
pte_t *ptep;
3577
3578
pgd = pgd_offset(mm, address);
3579
if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3580
goto out;
3581
3582
pud = pud_offset(pgd, address);
3583
if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3584
goto out;
3585
3586
pmd = pmd_offset(pud, address);
3587
VM_BUG_ON(pmd_trans_huge(*pmd));
3588
if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3589
goto out;
3590
3591
/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3592
if (pmd_huge(*pmd))
3593
goto out;
3594
3595
ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3596
if (!ptep)
3597
goto out;
3598
if (!pte_present(*ptep))
3599
goto unlock;
3600
*ptepp = ptep;
3601
return 0;
3602
unlock:
3603
pte_unmap_unlock(ptep, *ptlp);
3604
out:
3605
return -EINVAL;
3606
}
3607
3608
static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3609
pte_t **ptepp, spinlock_t **ptlp)
3610
{
3611
int res;
3612
3613
/* (void) is needed to make gcc happy */
3614
(void) __cond_lock(*ptlp,
3615
!(res = __follow_pte(mm, address, ptepp, ptlp)));
3616
return res;
3617
}
3618
3619
/**
3620
* follow_pfn - look up PFN at a user virtual address
3621
* @vma: memory mapping
3622
* @address: user virtual address
3623
* @pfn: location to store found PFN
3624
*
3625
* Only IO mappings and raw PFN mappings are allowed.
3626
*
3627
* Returns zero and the pfn at @pfn on success, -ve otherwise.
3628
*/
3629
int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3630
unsigned long *pfn)
3631
{
3632
int ret = -EINVAL;
3633
spinlock_t *ptl;
3634
pte_t *ptep;
3635
3636
if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3637
return ret;
3638
3639
ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3640
if (ret)
3641
return ret;
3642
*pfn = pte_pfn(*ptep);
3643
pte_unmap_unlock(ptep, ptl);
3644
return 0;
3645
}
3646
EXPORT_SYMBOL(follow_pfn);
3647
3648
#ifdef CONFIG_HAVE_IOREMAP_PROT
3649
int follow_phys(struct vm_area_struct *vma,
3650
unsigned long address, unsigned int flags,
3651
unsigned long *prot, resource_size_t *phys)
3652
{
3653
int ret = -EINVAL;
3654
pte_t *ptep, pte;
3655
spinlock_t *ptl;
3656
3657
if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3658
goto out;
3659
3660
if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3661
goto out;
3662
pte = *ptep;
3663
3664
if ((flags & FOLL_WRITE) && !pte_write(pte))
3665
goto unlock;
3666
3667
*prot = pgprot_val(pte_pgprot(pte));
3668
*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3669
3670
ret = 0;
3671
unlock:
3672
pte_unmap_unlock(ptep, ptl);
3673
out:
3674
return ret;
3675
}
3676
3677
int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3678
void *buf, int len, int write)
3679
{
3680
resource_size_t phys_addr;
3681
unsigned long prot = 0;
3682
void __iomem *maddr;
3683
int offset = addr & (PAGE_SIZE-1);
3684
3685
if (follow_phys(vma, addr, write, &prot, &phys_addr))
3686
return -EINVAL;
3687
3688
maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3689
if (write)
3690
memcpy_toio(maddr + offset, buf, len);
3691
else
3692
memcpy_fromio(buf, maddr + offset, len);
3693
iounmap(maddr);
3694
3695
return len;
3696
}
3697
#endif
3698
3699
/*
3700
* Access another process' address space as given in mm. If non-NULL, use the
3701
* given task for page fault accounting.
3702
*/
3703
static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3704
unsigned long addr, void *buf, int len, int write)
3705
{
3706
struct vm_area_struct *vma;
3707
void *old_buf = buf;
3708
3709
down_read(&mm->mmap_sem);
3710
/* ignore errors, just check how much was successfully transferred */
3711
while (len) {
3712
int bytes, ret, offset;
3713
void *maddr;
3714
struct page *page = NULL;
3715
3716
ret = get_user_pages(tsk, mm, addr, 1,
3717
write, 1, &page, &vma);
3718
if (ret <= 0) {
3719
/*
3720
* Check if this is a VM_IO | VM_PFNMAP VMA, which
3721
* we can access using slightly different code.
3722
*/
3723
#ifdef CONFIG_HAVE_IOREMAP_PROT
3724
vma = find_vma(mm, addr);
3725
if (!vma || vma->vm_start > addr)
3726
break;
3727
if (vma->vm_ops && vma->vm_ops->access)
3728
ret = vma->vm_ops->access(vma, addr, buf,
3729
len, write);
3730
if (ret <= 0)
3731
#endif
3732
break;
3733
bytes = ret;
3734
} else {
3735
bytes = len;
3736
offset = addr & (PAGE_SIZE-1);
3737
if (bytes > PAGE_SIZE-offset)
3738
bytes = PAGE_SIZE-offset;
3739
3740
maddr = kmap(page);
3741
if (write) {
3742
copy_to_user_page(vma, page, addr,
3743
maddr + offset, buf, bytes);
3744
set_page_dirty_lock(page);
3745
} else {
3746
copy_from_user_page(vma, page, addr,
3747
buf, maddr + offset, bytes);
3748
}
3749
kunmap(page);
3750
page_cache_release(page);
3751
}
3752
len -= bytes;
3753
buf += bytes;
3754
addr += bytes;
3755
}
3756
up_read(&mm->mmap_sem);
3757
3758
return buf - old_buf;
3759
}
3760
3761
/**
3762
* access_remote_vm - access another process' address space
3763
* @mm: the mm_struct of the target address space
3764
* @addr: start address to access
3765
* @buf: source or destination buffer
3766
* @len: number of bytes to transfer
3767
* @write: whether the access is a write
3768
*
3769
* The caller must hold a reference on @mm.
3770
*/
3771
int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3772
void *buf, int len, int write)
3773
{
3774
return __access_remote_vm(NULL, mm, addr, buf, len, write);
3775
}
3776
3777
/*
3778
* Access another process' address space.
3779
* Source/target buffer must be kernel space,
3780
* Do not walk the page table directly, use get_user_pages
3781
*/
3782
int access_process_vm(struct task_struct *tsk, unsigned long addr,
3783
void *buf, int len, int write)
3784
{
3785
struct mm_struct *mm;
3786
int ret;
3787
3788
mm = get_task_mm(tsk);
3789
if (!mm)
3790
return 0;
3791
3792
ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3793
mmput(mm);
3794
3795
return ret;
3796
}
3797
3798
/*
3799
* Print the name of a VMA.
3800
*/
3801
void print_vma_addr(char *prefix, unsigned long ip)
3802
{
3803
struct mm_struct *mm = current->mm;
3804
struct vm_area_struct *vma;
3805
3806
/*
3807
* Do not print if we are in atomic
3808
* contexts (in exception stacks, etc.):
3809
*/
3810
if (preempt_count())
3811
return;
3812
3813
down_read(&mm->mmap_sem);
3814
vma = find_vma(mm, ip);
3815
if (vma && vma->vm_file) {
3816
struct file *f = vma->vm_file;
3817
char *buf = (char *)__get_free_page(GFP_KERNEL);
3818
if (buf) {
3819
char *p, *s;
3820
3821
p = d_path(&f->f_path, buf, PAGE_SIZE);
3822
if (IS_ERR(p))
3823
p = "?";
3824
s = strrchr(p, '/');
3825
if (s)
3826
p = s+1;
3827
printk("%s%s[%lx+%lx]", prefix, p,
3828
vma->vm_start,
3829
vma->vm_end - vma->vm_start);
3830
free_page((unsigned long)buf);
3831
}
3832
}
3833
up_read(&current->mm->mmap_sem);
3834
}
3835
3836
#ifdef CONFIG_PROVE_LOCKING
3837
void might_fault(void)
3838
{
3839
/*
3840
* Some code (nfs/sunrpc) uses socket ops on kernel memory while
3841
* holding the mmap_sem, this is safe because kernel memory doesn't
3842
* get paged out, therefore we'll never actually fault, and the
3843
* below annotations will generate false positives.
3844
*/
3845
if (segment_eq(get_fs(), KERNEL_DS))
3846
return;
3847
3848
might_sleep();
3849
/*
3850
* it would be nicer only to annotate paths which are not under
3851
* pagefault_disable, however that requires a larger audit and
3852
* providing helpers like get_user_atomic.
3853
*/
3854
if (!in_atomic() && current->mm)
3855
might_lock_read(&current->mm->mmap_sem);
3856
}
3857
EXPORT_SYMBOL(might_fault);
3858
#endif
3859
3860
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3861
static void clear_gigantic_page(struct page *page,
3862
unsigned long addr,
3863
unsigned int pages_per_huge_page)
3864
{
3865
int i;
3866
struct page *p = page;
3867
3868
might_sleep();
3869
for (i = 0; i < pages_per_huge_page;
3870
i++, p = mem_map_next(p, page, i)) {
3871
cond_resched();
3872
clear_user_highpage(p, addr + i * PAGE_SIZE);
3873
}
3874
}
3875
void clear_huge_page(struct page *page,
3876
unsigned long addr, unsigned int pages_per_huge_page)
3877
{
3878
int i;
3879
3880
if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3881
clear_gigantic_page(page, addr, pages_per_huge_page);
3882
return;
3883
}
3884
3885
might_sleep();
3886
for (i = 0; i < pages_per_huge_page; i++) {
3887
cond_resched();
3888
clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3889
}
3890
}
3891
3892
static void copy_user_gigantic_page(struct page *dst, struct page *src,
3893
unsigned long addr,
3894
struct vm_area_struct *vma,
3895
unsigned int pages_per_huge_page)
3896
{
3897
int i;
3898
struct page *dst_base = dst;
3899
struct page *src_base = src;
3900
3901
for (i = 0; i < pages_per_huge_page; ) {
3902
cond_resched();
3903
copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3904
3905
i++;
3906
dst = mem_map_next(dst, dst_base, i);
3907
src = mem_map_next(src, src_base, i);
3908
}
3909
}
3910
3911
void copy_user_huge_page(struct page *dst, struct page *src,
3912
unsigned long addr, struct vm_area_struct *vma,
3913
unsigned int pages_per_huge_page)
3914
{
3915
int i;
3916
3917
if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3918
copy_user_gigantic_page(dst, src, addr, vma,
3919
pages_per_huge_page);
3920
return;
3921
}
3922
3923
might_sleep();
3924
for (i = 0; i < pages_per_huge_page; i++) {
3925
cond_resched();
3926
copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3927
}
3928
}
3929
#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3930
3931