Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/mm/migrate.c
10814 views
1
/*
2
* Memory Migration functionality - linux/mm/migration.c
3
*
4
* Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5
*
6
* Page migration was first developed in the context of the memory hotplug
7
* project. The main authors of the migration code are:
8
*
9
* IWAMOTO Toshihiro <[email protected]>
10
* Hirokazu Takahashi <[email protected]>
11
* Dave Hansen <[email protected]>
12
* Christoph Lameter
13
*/
14
15
#include <linux/migrate.h>
16
#include <linux/module.h>
17
#include <linux/swap.h>
18
#include <linux/swapops.h>
19
#include <linux/pagemap.h>
20
#include <linux/buffer_head.h>
21
#include <linux/mm_inline.h>
22
#include <linux/nsproxy.h>
23
#include <linux/pagevec.h>
24
#include <linux/ksm.h>
25
#include <linux/rmap.h>
26
#include <linux/topology.h>
27
#include <linux/cpu.h>
28
#include <linux/cpuset.h>
29
#include <linux/writeback.h>
30
#include <linux/mempolicy.h>
31
#include <linux/vmalloc.h>
32
#include <linux/security.h>
33
#include <linux/memcontrol.h>
34
#include <linux/syscalls.h>
35
#include <linux/hugetlb.h>
36
#include <linux/gfp.h>
37
38
#include <asm/tlbflush.h>
39
40
#include "internal.h"
41
42
#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
43
44
/*
45
* migrate_prep() needs to be called before we start compiling a list of pages
46
* to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
47
* undesirable, use migrate_prep_local()
48
*/
49
int migrate_prep(void)
50
{
51
/*
52
* Clear the LRU lists so pages can be isolated.
53
* Note that pages may be moved off the LRU after we have
54
* drained them. Those pages will fail to migrate like other
55
* pages that may be busy.
56
*/
57
lru_add_drain_all();
58
59
return 0;
60
}
61
62
/* Do the necessary work of migrate_prep but not if it involves other CPUs */
63
int migrate_prep_local(void)
64
{
65
lru_add_drain();
66
67
return 0;
68
}
69
70
/*
71
* Add isolated pages on the list back to the LRU under page lock
72
* to avoid leaking evictable pages back onto unevictable list.
73
*/
74
void putback_lru_pages(struct list_head *l)
75
{
76
struct page *page;
77
struct page *page2;
78
79
list_for_each_entry_safe(page, page2, l, lru) {
80
list_del(&page->lru);
81
dec_zone_page_state(page, NR_ISOLATED_ANON +
82
page_is_file_cache(page));
83
putback_lru_page(page);
84
}
85
}
86
87
/*
88
* Restore a potential migration pte to a working pte entry
89
*/
90
static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
91
unsigned long addr, void *old)
92
{
93
struct mm_struct *mm = vma->vm_mm;
94
swp_entry_t entry;
95
pgd_t *pgd;
96
pud_t *pud;
97
pmd_t *pmd;
98
pte_t *ptep, pte;
99
spinlock_t *ptl;
100
101
if (unlikely(PageHuge(new))) {
102
ptep = huge_pte_offset(mm, addr);
103
if (!ptep)
104
goto out;
105
ptl = &mm->page_table_lock;
106
} else {
107
pgd = pgd_offset(mm, addr);
108
if (!pgd_present(*pgd))
109
goto out;
110
111
pud = pud_offset(pgd, addr);
112
if (!pud_present(*pud))
113
goto out;
114
115
pmd = pmd_offset(pud, addr);
116
if (pmd_trans_huge(*pmd))
117
goto out;
118
if (!pmd_present(*pmd))
119
goto out;
120
121
ptep = pte_offset_map(pmd, addr);
122
123
if (!is_swap_pte(*ptep)) {
124
pte_unmap(ptep);
125
goto out;
126
}
127
128
ptl = pte_lockptr(mm, pmd);
129
}
130
131
spin_lock(ptl);
132
pte = *ptep;
133
if (!is_swap_pte(pte))
134
goto unlock;
135
136
entry = pte_to_swp_entry(pte);
137
138
if (!is_migration_entry(entry) ||
139
migration_entry_to_page(entry) != old)
140
goto unlock;
141
142
get_page(new);
143
pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
144
if (is_write_migration_entry(entry))
145
pte = pte_mkwrite(pte);
146
#ifdef CONFIG_HUGETLB_PAGE
147
if (PageHuge(new))
148
pte = pte_mkhuge(pte);
149
#endif
150
flush_cache_page(vma, addr, pte_pfn(pte));
151
set_pte_at(mm, addr, ptep, pte);
152
153
if (PageHuge(new)) {
154
if (PageAnon(new))
155
hugepage_add_anon_rmap(new, vma, addr);
156
else
157
page_dup_rmap(new);
158
} else if (PageAnon(new))
159
page_add_anon_rmap(new, vma, addr);
160
else
161
page_add_file_rmap(new);
162
163
/* No need to invalidate - it was non-present before */
164
update_mmu_cache(vma, addr, ptep);
165
unlock:
166
pte_unmap_unlock(ptep, ptl);
167
out:
168
return SWAP_AGAIN;
169
}
170
171
/*
172
* Get rid of all migration entries and replace them by
173
* references to the indicated page.
174
*/
175
static void remove_migration_ptes(struct page *old, struct page *new)
176
{
177
rmap_walk(new, remove_migration_pte, old);
178
}
179
180
/*
181
* Something used the pte of a page under migration. We need to
182
* get to the page and wait until migration is finished.
183
* When we return from this function the fault will be retried.
184
*
185
* This function is called from do_swap_page().
186
*/
187
void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
188
unsigned long address)
189
{
190
pte_t *ptep, pte;
191
spinlock_t *ptl;
192
swp_entry_t entry;
193
struct page *page;
194
195
ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
196
pte = *ptep;
197
if (!is_swap_pte(pte))
198
goto out;
199
200
entry = pte_to_swp_entry(pte);
201
if (!is_migration_entry(entry))
202
goto out;
203
204
page = migration_entry_to_page(entry);
205
206
/*
207
* Once radix-tree replacement of page migration started, page_count
208
* *must* be zero. And, we don't want to call wait_on_page_locked()
209
* against a page without get_page().
210
* So, we use get_page_unless_zero(), here. Even failed, page fault
211
* will occur again.
212
*/
213
if (!get_page_unless_zero(page))
214
goto out;
215
pte_unmap_unlock(ptep, ptl);
216
wait_on_page_locked(page);
217
put_page(page);
218
return;
219
out:
220
pte_unmap_unlock(ptep, ptl);
221
}
222
223
/*
224
* Replace the page in the mapping.
225
*
226
* The number of remaining references must be:
227
* 1 for anonymous pages without a mapping
228
* 2 for pages with a mapping
229
* 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
230
*/
231
static int migrate_page_move_mapping(struct address_space *mapping,
232
struct page *newpage, struct page *page)
233
{
234
int expected_count;
235
void **pslot;
236
237
if (!mapping) {
238
/* Anonymous page without mapping */
239
if (page_count(page) != 1)
240
return -EAGAIN;
241
return 0;
242
}
243
244
spin_lock_irq(&mapping->tree_lock);
245
246
pslot = radix_tree_lookup_slot(&mapping->page_tree,
247
page_index(page));
248
249
expected_count = 2 + page_has_private(page);
250
if (page_count(page) != expected_count ||
251
radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
252
spin_unlock_irq(&mapping->tree_lock);
253
return -EAGAIN;
254
}
255
256
if (!page_freeze_refs(page, expected_count)) {
257
spin_unlock_irq(&mapping->tree_lock);
258
return -EAGAIN;
259
}
260
261
/*
262
* Now we know that no one else is looking at the page.
263
*/
264
get_page(newpage); /* add cache reference */
265
if (PageSwapCache(page)) {
266
SetPageSwapCache(newpage);
267
set_page_private(newpage, page_private(page));
268
}
269
270
radix_tree_replace_slot(pslot, newpage);
271
272
page_unfreeze_refs(page, expected_count);
273
/*
274
* Drop cache reference from old page.
275
* We know this isn't the last reference.
276
*/
277
__put_page(page);
278
279
/*
280
* If moved to a different zone then also account
281
* the page for that zone. Other VM counters will be
282
* taken care of when we establish references to the
283
* new page and drop references to the old page.
284
*
285
* Note that anonymous pages are accounted for
286
* via NR_FILE_PAGES and NR_ANON_PAGES if they
287
* are mapped to swap space.
288
*/
289
__dec_zone_page_state(page, NR_FILE_PAGES);
290
__inc_zone_page_state(newpage, NR_FILE_PAGES);
291
if (!PageSwapCache(page) && PageSwapBacked(page)) {
292
__dec_zone_page_state(page, NR_SHMEM);
293
__inc_zone_page_state(newpage, NR_SHMEM);
294
}
295
spin_unlock_irq(&mapping->tree_lock);
296
297
return 0;
298
}
299
300
/*
301
* The expected number of remaining references is the same as that
302
* of migrate_page_move_mapping().
303
*/
304
int migrate_huge_page_move_mapping(struct address_space *mapping,
305
struct page *newpage, struct page *page)
306
{
307
int expected_count;
308
void **pslot;
309
310
if (!mapping) {
311
if (page_count(page) != 1)
312
return -EAGAIN;
313
return 0;
314
}
315
316
spin_lock_irq(&mapping->tree_lock);
317
318
pslot = radix_tree_lookup_slot(&mapping->page_tree,
319
page_index(page));
320
321
expected_count = 2 + page_has_private(page);
322
if (page_count(page) != expected_count ||
323
radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
324
spin_unlock_irq(&mapping->tree_lock);
325
return -EAGAIN;
326
}
327
328
if (!page_freeze_refs(page, expected_count)) {
329
spin_unlock_irq(&mapping->tree_lock);
330
return -EAGAIN;
331
}
332
333
get_page(newpage);
334
335
radix_tree_replace_slot(pslot, newpage);
336
337
page_unfreeze_refs(page, expected_count);
338
339
__put_page(page);
340
341
spin_unlock_irq(&mapping->tree_lock);
342
return 0;
343
}
344
345
/*
346
* Copy the page to its new location
347
*/
348
void migrate_page_copy(struct page *newpage, struct page *page)
349
{
350
if (PageHuge(page))
351
copy_huge_page(newpage, page);
352
else
353
copy_highpage(newpage, page);
354
355
if (PageError(page))
356
SetPageError(newpage);
357
if (PageReferenced(page))
358
SetPageReferenced(newpage);
359
if (PageUptodate(page))
360
SetPageUptodate(newpage);
361
if (TestClearPageActive(page)) {
362
VM_BUG_ON(PageUnevictable(page));
363
SetPageActive(newpage);
364
} else if (TestClearPageUnevictable(page))
365
SetPageUnevictable(newpage);
366
if (PageChecked(page))
367
SetPageChecked(newpage);
368
if (PageMappedToDisk(page))
369
SetPageMappedToDisk(newpage);
370
371
if (PageDirty(page)) {
372
clear_page_dirty_for_io(page);
373
/*
374
* Want to mark the page and the radix tree as dirty, and
375
* redo the accounting that clear_page_dirty_for_io undid,
376
* but we can't use set_page_dirty because that function
377
* is actually a signal that all of the page has become dirty.
378
* Whereas only part of our page may be dirty.
379
*/
380
__set_page_dirty_nobuffers(newpage);
381
}
382
383
mlock_migrate_page(newpage, page);
384
ksm_migrate_page(newpage, page);
385
386
ClearPageSwapCache(page);
387
ClearPagePrivate(page);
388
set_page_private(page, 0);
389
page->mapping = NULL;
390
391
/*
392
* If any waiters have accumulated on the new page then
393
* wake them up.
394
*/
395
if (PageWriteback(newpage))
396
end_page_writeback(newpage);
397
}
398
399
/************************************************************
400
* Migration functions
401
***********************************************************/
402
403
/* Always fail migration. Used for mappings that are not movable */
404
int fail_migrate_page(struct address_space *mapping,
405
struct page *newpage, struct page *page)
406
{
407
return -EIO;
408
}
409
EXPORT_SYMBOL(fail_migrate_page);
410
411
/*
412
* Common logic to directly migrate a single page suitable for
413
* pages that do not use PagePrivate/PagePrivate2.
414
*
415
* Pages are locked upon entry and exit.
416
*/
417
int migrate_page(struct address_space *mapping,
418
struct page *newpage, struct page *page)
419
{
420
int rc;
421
422
BUG_ON(PageWriteback(page)); /* Writeback must be complete */
423
424
rc = migrate_page_move_mapping(mapping, newpage, page);
425
426
if (rc)
427
return rc;
428
429
migrate_page_copy(newpage, page);
430
return 0;
431
}
432
EXPORT_SYMBOL(migrate_page);
433
434
#ifdef CONFIG_BLOCK
435
/*
436
* Migration function for pages with buffers. This function can only be used
437
* if the underlying filesystem guarantees that no other references to "page"
438
* exist.
439
*/
440
int buffer_migrate_page(struct address_space *mapping,
441
struct page *newpage, struct page *page)
442
{
443
struct buffer_head *bh, *head;
444
int rc;
445
446
if (!page_has_buffers(page))
447
return migrate_page(mapping, newpage, page);
448
449
head = page_buffers(page);
450
451
rc = migrate_page_move_mapping(mapping, newpage, page);
452
453
if (rc)
454
return rc;
455
456
bh = head;
457
do {
458
get_bh(bh);
459
lock_buffer(bh);
460
bh = bh->b_this_page;
461
462
} while (bh != head);
463
464
ClearPagePrivate(page);
465
set_page_private(newpage, page_private(page));
466
set_page_private(page, 0);
467
put_page(page);
468
get_page(newpage);
469
470
bh = head;
471
do {
472
set_bh_page(bh, newpage, bh_offset(bh));
473
bh = bh->b_this_page;
474
475
} while (bh != head);
476
477
SetPagePrivate(newpage);
478
479
migrate_page_copy(newpage, page);
480
481
bh = head;
482
do {
483
unlock_buffer(bh);
484
put_bh(bh);
485
bh = bh->b_this_page;
486
487
} while (bh != head);
488
489
return 0;
490
}
491
EXPORT_SYMBOL(buffer_migrate_page);
492
#endif
493
494
/*
495
* Writeback a page to clean the dirty state
496
*/
497
static int writeout(struct address_space *mapping, struct page *page)
498
{
499
struct writeback_control wbc = {
500
.sync_mode = WB_SYNC_NONE,
501
.nr_to_write = 1,
502
.range_start = 0,
503
.range_end = LLONG_MAX,
504
.for_reclaim = 1
505
};
506
int rc;
507
508
if (!mapping->a_ops->writepage)
509
/* No write method for the address space */
510
return -EINVAL;
511
512
if (!clear_page_dirty_for_io(page))
513
/* Someone else already triggered a write */
514
return -EAGAIN;
515
516
/*
517
* A dirty page may imply that the underlying filesystem has
518
* the page on some queue. So the page must be clean for
519
* migration. Writeout may mean we loose the lock and the
520
* page state is no longer what we checked for earlier.
521
* At this point we know that the migration attempt cannot
522
* be successful.
523
*/
524
remove_migration_ptes(page, page);
525
526
rc = mapping->a_ops->writepage(page, &wbc);
527
528
if (rc != AOP_WRITEPAGE_ACTIVATE)
529
/* unlocked. Relock */
530
lock_page(page);
531
532
return (rc < 0) ? -EIO : -EAGAIN;
533
}
534
535
/*
536
* Default handling if a filesystem does not provide a migration function.
537
*/
538
static int fallback_migrate_page(struct address_space *mapping,
539
struct page *newpage, struct page *page)
540
{
541
if (PageDirty(page))
542
return writeout(mapping, page);
543
544
/*
545
* Buffers may be managed in a filesystem specific way.
546
* We must have no buffers or drop them.
547
*/
548
if (page_has_private(page) &&
549
!try_to_release_page(page, GFP_KERNEL))
550
return -EAGAIN;
551
552
return migrate_page(mapping, newpage, page);
553
}
554
555
/*
556
* Move a page to a newly allocated page
557
* The page is locked and all ptes have been successfully removed.
558
*
559
* The new page will have replaced the old page if this function
560
* is successful.
561
*
562
* Return value:
563
* < 0 - error code
564
* == 0 - success
565
*/
566
static int move_to_new_page(struct page *newpage, struct page *page,
567
int remap_swapcache, bool sync)
568
{
569
struct address_space *mapping;
570
int rc;
571
572
/*
573
* Block others from accessing the page when we get around to
574
* establishing additional references. We are the only one
575
* holding a reference to the new page at this point.
576
*/
577
if (!trylock_page(newpage))
578
BUG();
579
580
/* Prepare mapping for the new page.*/
581
newpage->index = page->index;
582
newpage->mapping = page->mapping;
583
if (PageSwapBacked(page))
584
SetPageSwapBacked(newpage);
585
586
mapping = page_mapping(page);
587
if (!mapping)
588
rc = migrate_page(mapping, newpage, page);
589
else {
590
/*
591
* Do not writeback pages if !sync and migratepage is
592
* not pointing to migrate_page() which is nonblocking
593
* (swapcache/tmpfs uses migratepage = migrate_page).
594
*/
595
if (PageDirty(page) && !sync &&
596
mapping->a_ops->migratepage != migrate_page)
597
rc = -EBUSY;
598
else if (mapping->a_ops->migratepage)
599
/*
600
* Most pages have a mapping and most filesystems
601
* should provide a migration function. Anonymous
602
* pages are part of swap space which also has its
603
* own migration function. This is the most common
604
* path for page migration.
605
*/
606
rc = mapping->a_ops->migratepage(mapping,
607
newpage, page);
608
else
609
rc = fallback_migrate_page(mapping, newpage, page);
610
}
611
612
if (rc) {
613
newpage->mapping = NULL;
614
} else {
615
if (remap_swapcache)
616
remove_migration_ptes(page, newpage);
617
}
618
619
unlock_page(newpage);
620
621
return rc;
622
}
623
624
/*
625
* Obtain the lock on page, remove all ptes and migrate the page
626
* to the newly allocated page in newpage.
627
*/
628
static int unmap_and_move(new_page_t get_new_page, unsigned long private,
629
struct page *page, int force, bool offlining, bool sync)
630
{
631
int rc = 0;
632
int *result = NULL;
633
struct page *newpage = get_new_page(page, private, &result);
634
int remap_swapcache = 1;
635
int charge = 0;
636
struct mem_cgroup *mem;
637
struct anon_vma *anon_vma = NULL;
638
639
if (!newpage)
640
return -ENOMEM;
641
642
if (page_count(page) == 1) {
643
/* page was freed from under us. So we are done. */
644
goto move_newpage;
645
}
646
if (unlikely(PageTransHuge(page)))
647
if (unlikely(split_huge_page(page)))
648
goto move_newpage;
649
650
/* prepare cgroup just returns 0 or -ENOMEM */
651
rc = -EAGAIN;
652
653
if (!trylock_page(page)) {
654
if (!force || !sync)
655
goto move_newpage;
656
657
/*
658
* It's not safe for direct compaction to call lock_page.
659
* For example, during page readahead pages are added locked
660
* to the LRU. Later, when the IO completes the pages are
661
* marked uptodate and unlocked. However, the queueing
662
* could be merging multiple pages for one bio (e.g.
663
* mpage_readpages). If an allocation happens for the
664
* second or third page, the process can end up locking
665
* the same page twice and deadlocking. Rather than
666
* trying to be clever about what pages can be locked,
667
* avoid the use of lock_page for direct compaction
668
* altogether.
669
*/
670
if (current->flags & PF_MEMALLOC)
671
goto move_newpage;
672
673
lock_page(page);
674
}
675
676
/*
677
* Only memory hotplug's offline_pages() caller has locked out KSM,
678
* and can safely migrate a KSM page. The other cases have skipped
679
* PageKsm along with PageReserved - but it is only now when we have
680
* the page lock that we can be certain it will not go KSM beneath us
681
* (KSM will not upgrade a page from PageAnon to PageKsm when it sees
682
* its pagecount raised, but only here do we take the page lock which
683
* serializes that).
684
*/
685
if (PageKsm(page) && !offlining) {
686
rc = -EBUSY;
687
goto unlock;
688
}
689
690
/* charge against new page */
691
charge = mem_cgroup_prepare_migration(page, newpage, &mem, GFP_KERNEL);
692
if (charge == -ENOMEM) {
693
rc = -ENOMEM;
694
goto unlock;
695
}
696
BUG_ON(charge);
697
698
if (PageWriteback(page)) {
699
/*
700
* For !sync, there is no point retrying as the retry loop
701
* is expected to be too short for PageWriteback to be cleared
702
*/
703
if (!sync) {
704
rc = -EBUSY;
705
goto uncharge;
706
}
707
if (!force)
708
goto uncharge;
709
wait_on_page_writeback(page);
710
}
711
/*
712
* By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
713
* we cannot notice that anon_vma is freed while we migrates a page.
714
* This get_anon_vma() delays freeing anon_vma pointer until the end
715
* of migration. File cache pages are no problem because of page_lock()
716
* File Caches may use write_page() or lock_page() in migration, then,
717
* just care Anon page here.
718
*/
719
if (PageAnon(page)) {
720
/*
721
* Only page_lock_anon_vma() understands the subtleties of
722
* getting a hold on an anon_vma from outside one of its mms.
723
*/
724
anon_vma = page_get_anon_vma(page);
725
if (anon_vma) {
726
/*
727
* Anon page
728
*/
729
} else if (PageSwapCache(page)) {
730
/*
731
* We cannot be sure that the anon_vma of an unmapped
732
* swapcache page is safe to use because we don't
733
* know in advance if the VMA that this page belonged
734
* to still exists. If the VMA and others sharing the
735
* data have been freed, then the anon_vma could
736
* already be invalid.
737
*
738
* To avoid this possibility, swapcache pages get
739
* migrated but are not remapped when migration
740
* completes
741
*/
742
remap_swapcache = 0;
743
} else {
744
goto uncharge;
745
}
746
}
747
748
/*
749
* Corner case handling:
750
* 1. When a new swap-cache page is read into, it is added to the LRU
751
* and treated as swapcache but it has no rmap yet.
752
* Calling try_to_unmap() against a page->mapping==NULL page will
753
* trigger a BUG. So handle it here.
754
* 2. An orphaned page (see truncate_complete_page) might have
755
* fs-private metadata. The page can be picked up due to memory
756
* offlining. Everywhere else except page reclaim, the page is
757
* invisible to the vm, so the page can not be migrated. So try to
758
* free the metadata, so the page can be freed.
759
*/
760
if (!page->mapping) {
761
VM_BUG_ON(PageAnon(page));
762
if (page_has_private(page)) {
763
try_to_free_buffers(page);
764
goto uncharge;
765
}
766
goto skip_unmap;
767
}
768
769
/* Establish migration ptes or remove ptes */
770
try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
771
772
skip_unmap:
773
if (!page_mapped(page))
774
rc = move_to_new_page(newpage, page, remap_swapcache, sync);
775
776
if (rc && remap_swapcache)
777
remove_migration_ptes(page, page);
778
779
/* Drop an anon_vma reference if we took one */
780
if (anon_vma)
781
put_anon_vma(anon_vma);
782
783
uncharge:
784
if (!charge)
785
mem_cgroup_end_migration(mem, page, newpage, rc == 0);
786
unlock:
787
unlock_page(page);
788
789
move_newpage:
790
if (rc != -EAGAIN) {
791
/*
792
* A page that has been migrated has all references
793
* removed and will be freed. A page that has not been
794
* migrated will have kepts its references and be
795
* restored.
796
*/
797
list_del(&page->lru);
798
dec_zone_page_state(page, NR_ISOLATED_ANON +
799
page_is_file_cache(page));
800
putback_lru_page(page);
801
}
802
803
/*
804
* Move the new page to the LRU. If migration was not successful
805
* then this will free the page.
806
*/
807
putback_lru_page(newpage);
808
809
if (result) {
810
if (rc)
811
*result = rc;
812
else
813
*result = page_to_nid(newpage);
814
}
815
return rc;
816
}
817
818
/*
819
* Counterpart of unmap_and_move_page() for hugepage migration.
820
*
821
* This function doesn't wait the completion of hugepage I/O
822
* because there is no race between I/O and migration for hugepage.
823
* Note that currently hugepage I/O occurs only in direct I/O
824
* where no lock is held and PG_writeback is irrelevant,
825
* and writeback status of all subpages are counted in the reference
826
* count of the head page (i.e. if all subpages of a 2MB hugepage are
827
* under direct I/O, the reference of the head page is 512 and a bit more.)
828
* This means that when we try to migrate hugepage whose subpages are
829
* doing direct I/O, some references remain after try_to_unmap() and
830
* hugepage migration fails without data corruption.
831
*
832
* There is also no race when direct I/O is issued on the page under migration,
833
* because then pte is replaced with migration swap entry and direct I/O code
834
* will wait in the page fault for migration to complete.
835
*/
836
static int unmap_and_move_huge_page(new_page_t get_new_page,
837
unsigned long private, struct page *hpage,
838
int force, bool offlining, bool sync)
839
{
840
int rc = 0;
841
int *result = NULL;
842
struct page *new_hpage = get_new_page(hpage, private, &result);
843
struct anon_vma *anon_vma = NULL;
844
845
if (!new_hpage)
846
return -ENOMEM;
847
848
rc = -EAGAIN;
849
850
if (!trylock_page(hpage)) {
851
if (!force || !sync)
852
goto out;
853
lock_page(hpage);
854
}
855
856
if (PageAnon(hpage))
857
anon_vma = page_get_anon_vma(hpage);
858
859
try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
860
861
if (!page_mapped(hpage))
862
rc = move_to_new_page(new_hpage, hpage, 1, sync);
863
864
if (rc)
865
remove_migration_ptes(hpage, hpage);
866
867
if (anon_vma)
868
put_anon_vma(anon_vma);
869
out:
870
unlock_page(hpage);
871
872
if (rc != -EAGAIN) {
873
list_del(&hpage->lru);
874
put_page(hpage);
875
}
876
877
put_page(new_hpage);
878
879
if (result) {
880
if (rc)
881
*result = rc;
882
else
883
*result = page_to_nid(new_hpage);
884
}
885
return rc;
886
}
887
888
/*
889
* migrate_pages
890
*
891
* The function takes one list of pages to migrate and a function
892
* that determines from the page to be migrated and the private data
893
* the target of the move and allocates the page.
894
*
895
* The function returns after 10 attempts or if no pages
896
* are movable anymore because to has become empty
897
* or no retryable pages exist anymore.
898
* Caller should call putback_lru_pages to return pages to the LRU
899
* or free list only if ret != 0.
900
*
901
* Return: Number of pages not migrated or error code.
902
*/
903
int migrate_pages(struct list_head *from,
904
new_page_t get_new_page, unsigned long private, bool offlining,
905
bool sync)
906
{
907
int retry = 1;
908
int nr_failed = 0;
909
int pass = 0;
910
struct page *page;
911
struct page *page2;
912
int swapwrite = current->flags & PF_SWAPWRITE;
913
int rc;
914
915
if (!swapwrite)
916
current->flags |= PF_SWAPWRITE;
917
918
for(pass = 0; pass < 10 && retry; pass++) {
919
retry = 0;
920
921
list_for_each_entry_safe(page, page2, from, lru) {
922
cond_resched();
923
924
rc = unmap_and_move(get_new_page, private,
925
page, pass > 2, offlining,
926
sync);
927
928
switch(rc) {
929
case -ENOMEM:
930
goto out;
931
case -EAGAIN:
932
retry++;
933
break;
934
case 0:
935
break;
936
default:
937
/* Permanent failure */
938
nr_failed++;
939
break;
940
}
941
}
942
}
943
rc = 0;
944
out:
945
if (!swapwrite)
946
current->flags &= ~PF_SWAPWRITE;
947
948
if (rc)
949
return rc;
950
951
return nr_failed + retry;
952
}
953
954
int migrate_huge_pages(struct list_head *from,
955
new_page_t get_new_page, unsigned long private, bool offlining,
956
bool sync)
957
{
958
int retry = 1;
959
int nr_failed = 0;
960
int pass = 0;
961
struct page *page;
962
struct page *page2;
963
int rc;
964
965
for (pass = 0; pass < 10 && retry; pass++) {
966
retry = 0;
967
968
list_for_each_entry_safe(page, page2, from, lru) {
969
cond_resched();
970
971
rc = unmap_and_move_huge_page(get_new_page,
972
private, page, pass > 2, offlining,
973
sync);
974
975
switch(rc) {
976
case -ENOMEM:
977
goto out;
978
case -EAGAIN:
979
retry++;
980
break;
981
case 0:
982
break;
983
default:
984
/* Permanent failure */
985
nr_failed++;
986
break;
987
}
988
}
989
}
990
rc = 0;
991
out:
992
if (rc)
993
return rc;
994
995
return nr_failed + retry;
996
}
997
998
#ifdef CONFIG_NUMA
999
/*
1000
* Move a list of individual pages
1001
*/
1002
struct page_to_node {
1003
unsigned long addr;
1004
struct page *page;
1005
int node;
1006
int status;
1007
};
1008
1009
static struct page *new_page_node(struct page *p, unsigned long private,
1010
int **result)
1011
{
1012
struct page_to_node *pm = (struct page_to_node *)private;
1013
1014
while (pm->node != MAX_NUMNODES && pm->page != p)
1015
pm++;
1016
1017
if (pm->node == MAX_NUMNODES)
1018
return NULL;
1019
1020
*result = &pm->status;
1021
1022
return alloc_pages_exact_node(pm->node,
1023
GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1024
}
1025
1026
/*
1027
* Move a set of pages as indicated in the pm array. The addr
1028
* field must be set to the virtual address of the page to be moved
1029
* and the node number must contain a valid target node.
1030
* The pm array ends with node = MAX_NUMNODES.
1031
*/
1032
static int do_move_page_to_node_array(struct mm_struct *mm,
1033
struct page_to_node *pm,
1034
int migrate_all)
1035
{
1036
int err;
1037
struct page_to_node *pp;
1038
LIST_HEAD(pagelist);
1039
1040
down_read(&mm->mmap_sem);
1041
1042
/*
1043
* Build a list of pages to migrate
1044
*/
1045
for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1046
struct vm_area_struct *vma;
1047
struct page *page;
1048
1049
err = -EFAULT;
1050
vma = find_vma(mm, pp->addr);
1051
if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1052
goto set_status;
1053
1054
page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1055
1056
err = PTR_ERR(page);
1057
if (IS_ERR(page))
1058
goto set_status;
1059
1060
err = -ENOENT;
1061
if (!page)
1062
goto set_status;
1063
1064
/* Use PageReserved to check for zero page */
1065
if (PageReserved(page) || PageKsm(page))
1066
goto put_and_set;
1067
1068
pp->page = page;
1069
err = page_to_nid(page);
1070
1071
if (err == pp->node)
1072
/*
1073
* Node already in the right place
1074
*/
1075
goto put_and_set;
1076
1077
err = -EACCES;
1078
if (page_mapcount(page) > 1 &&
1079
!migrate_all)
1080
goto put_and_set;
1081
1082
err = isolate_lru_page(page);
1083
if (!err) {
1084
list_add_tail(&page->lru, &pagelist);
1085
inc_zone_page_state(page, NR_ISOLATED_ANON +
1086
page_is_file_cache(page));
1087
}
1088
put_and_set:
1089
/*
1090
* Either remove the duplicate refcount from
1091
* isolate_lru_page() or drop the page ref if it was
1092
* not isolated.
1093
*/
1094
put_page(page);
1095
set_status:
1096
pp->status = err;
1097
}
1098
1099
err = 0;
1100
if (!list_empty(&pagelist)) {
1101
err = migrate_pages(&pagelist, new_page_node,
1102
(unsigned long)pm, 0, true);
1103
if (err)
1104
putback_lru_pages(&pagelist);
1105
}
1106
1107
up_read(&mm->mmap_sem);
1108
return err;
1109
}
1110
1111
/*
1112
* Migrate an array of page address onto an array of nodes and fill
1113
* the corresponding array of status.
1114
*/
1115
static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
1116
unsigned long nr_pages,
1117
const void __user * __user *pages,
1118
const int __user *nodes,
1119
int __user *status, int flags)
1120
{
1121
struct page_to_node *pm;
1122
nodemask_t task_nodes;
1123
unsigned long chunk_nr_pages;
1124
unsigned long chunk_start;
1125
int err;
1126
1127
task_nodes = cpuset_mems_allowed(task);
1128
1129
err = -ENOMEM;
1130
pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1131
if (!pm)
1132
goto out;
1133
1134
migrate_prep();
1135
1136
/*
1137
* Store a chunk of page_to_node array in a page,
1138
* but keep the last one as a marker
1139
*/
1140
chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1141
1142
for (chunk_start = 0;
1143
chunk_start < nr_pages;
1144
chunk_start += chunk_nr_pages) {
1145
int j;
1146
1147
if (chunk_start + chunk_nr_pages > nr_pages)
1148
chunk_nr_pages = nr_pages - chunk_start;
1149
1150
/* fill the chunk pm with addrs and nodes from user-space */
1151
for (j = 0; j < chunk_nr_pages; j++) {
1152
const void __user *p;
1153
int node;
1154
1155
err = -EFAULT;
1156
if (get_user(p, pages + j + chunk_start))
1157
goto out_pm;
1158
pm[j].addr = (unsigned long) p;
1159
1160
if (get_user(node, nodes + j + chunk_start))
1161
goto out_pm;
1162
1163
err = -ENODEV;
1164
if (node < 0 || node >= MAX_NUMNODES)
1165
goto out_pm;
1166
1167
if (!node_state(node, N_HIGH_MEMORY))
1168
goto out_pm;
1169
1170
err = -EACCES;
1171
if (!node_isset(node, task_nodes))
1172
goto out_pm;
1173
1174
pm[j].node = node;
1175
}
1176
1177
/* End marker for this chunk */
1178
pm[chunk_nr_pages].node = MAX_NUMNODES;
1179
1180
/* Migrate this chunk */
1181
err = do_move_page_to_node_array(mm, pm,
1182
flags & MPOL_MF_MOVE_ALL);
1183
if (err < 0)
1184
goto out_pm;
1185
1186
/* Return status information */
1187
for (j = 0; j < chunk_nr_pages; j++)
1188
if (put_user(pm[j].status, status + j + chunk_start)) {
1189
err = -EFAULT;
1190
goto out_pm;
1191
}
1192
}
1193
err = 0;
1194
1195
out_pm:
1196
free_page((unsigned long)pm);
1197
out:
1198
return err;
1199
}
1200
1201
/*
1202
* Determine the nodes of an array of pages and store it in an array of status.
1203
*/
1204
static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1205
const void __user **pages, int *status)
1206
{
1207
unsigned long i;
1208
1209
down_read(&mm->mmap_sem);
1210
1211
for (i = 0; i < nr_pages; i++) {
1212
unsigned long addr = (unsigned long)(*pages);
1213
struct vm_area_struct *vma;
1214
struct page *page;
1215
int err = -EFAULT;
1216
1217
vma = find_vma(mm, addr);
1218
if (!vma || addr < vma->vm_start)
1219
goto set_status;
1220
1221
page = follow_page(vma, addr, 0);
1222
1223
err = PTR_ERR(page);
1224
if (IS_ERR(page))
1225
goto set_status;
1226
1227
err = -ENOENT;
1228
/* Use PageReserved to check for zero page */
1229
if (!page || PageReserved(page) || PageKsm(page))
1230
goto set_status;
1231
1232
err = page_to_nid(page);
1233
set_status:
1234
*status = err;
1235
1236
pages++;
1237
status++;
1238
}
1239
1240
up_read(&mm->mmap_sem);
1241
}
1242
1243
/*
1244
* Determine the nodes of a user array of pages and store it in
1245
* a user array of status.
1246
*/
1247
static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1248
const void __user * __user *pages,
1249
int __user *status)
1250
{
1251
#define DO_PAGES_STAT_CHUNK_NR 16
1252
const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1253
int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1254
1255
while (nr_pages) {
1256
unsigned long chunk_nr;
1257
1258
chunk_nr = nr_pages;
1259
if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1260
chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1261
1262
if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1263
break;
1264
1265
do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1266
1267
if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1268
break;
1269
1270
pages += chunk_nr;
1271
status += chunk_nr;
1272
nr_pages -= chunk_nr;
1273
}
1274
return nr_pages ? -EFAULT : 0;
1275
}
1276
1277
/*
1278
* Move a list of pages in the address space of the currently executing
1279
* process.
1280
*/
1281
SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1282
const void __user * __user *, pages,
1283
const int __user *, nodes,
1284
int __user *, status, int, flags)
1285
{
1286
const struct cred *cred = current_cred(), *tcred;
1287
struct task_struct *task;
1288
struct mm_struct *mm;
1289
int err;
1290
1291
/* Check flags */
1292
if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1293
return -EINVAL;
1294
1295
if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1296
return -EPERM;
1297
1298
/* Find the mm_struct */
1299
rcu_read_lock();
1300
task = pid ? find_task_by_vpid(pid) : current;
1301
if (!task) {
1302
rcu_read_unlock();
1303
return -ESRCH;
1304
}
1305
mm = get_task_mm(task);
1306
rcu_read_unlock();
1307
1308
if (!mm)
1309
return -EINVAL;
1310
1311
/*
1312
* Check if this process has the right to modify the specified
1313
* process. The right exists if the process has administrative
1314
* capabilities, superuser privileges or the same
1315
* userid as the target process.
1316
*/
1317
rcu_read_lock();
1318
tcred = __task_cred(task);
1319
if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1320
cred->uid != tcred->suid && cred->uid != tcred->uid &&
1321
!capable(CAP_SYS_NICE)) {
1322
rcu_read_unlock();
1323
err = -EPERM;
1324
goto out;
1325
}
1326
rcu_read_unlock();
1327
1328
err = security_task_movememory(task);
1329
if (err)
1330
goto out;
1331
1332
if (nodes) {
1333
err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1334
flags);
1335
} else {
1336
err = do_pages_stat(mm, nr_pages, pages, status);
1337
}
1338
1339
out:
1340
mmput(mm);
1341
return err;
1342
}
1343
1344
/*
1345
* Call migration functions in the vma_ops that may prepare
1346
* memory in a vm for migration. migration functions may perform
1347
* the migration for vmas that do not have an underlying page struct.
1348
*/
1349
int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1350
const nodemask_t *from, unsigned long flags)
1351
{
1352
struct vm_area_struct *vma;
1353
int err = 0;
1354
1355
for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1356
if (vma->vm_ops && vma->vm_ops->migrate) {
1357
err = vma->vm_ops->migrate(vma, to, from, flags);
1358
if (err)
1359
break;
1360
}
1361
}
1362
return err;
1363
}
1364
#endif
1365
1366