Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/mm/mlock.c
10814 views
1
/*
2
* linux/mm/mlock.c
3
*
4
* (C) Copyright 1995 Linus Torvalds
5
* (C) Copyright 2002 Christoph Hellwig
6
*/
7
8
#include <linux/capability.h>
9
#include <linux/mman.h>
10
#include <linux/mm.h>
11
#include <linux/swap.h>
12
#include <linux/swapops.h>
13
#include <linux/pagemap.h>
14
#include <linux/mempolicy.h>
15
#include <linux/syscalls.h>
16
#include <linux/sched.h>
17
#include <linux/module.h>
18
#include <linux/rmap.h>
19
#include <linux/mmzone.h>
20
#include <linux/hugetlb.h>
21
22
#include "internal.h"
23
24
int can_do_mlock(void)
25
{
26
if (capable(CAP_IPC_LOCK))
27
return 1;
28
if (rlimit(RLIMIT_MEMLOCK) != 0)
29
return 1;
30
return 0;
31
}
32
EXPORT_SYMBOL(can_do_mlock);
33
34
/*
35
* Mlocked pages are marked with PageMlocked() flag for efficient testing
36
* in vmscan and, possibly, the fault path; and to support semi-accurate
37
* statistics.
38
*
39
* An mlocked page [PageMlocked(page)] is unevictable. As such, it will
40
* be placed on the LRU "unevictable" list, rather than the [in]active lists.
41
* The unevictable list is an LRU sibling list to the [in]active lists.
42
* PageUnevictable is set to indicate the unevictable state.
43
*
44
* When lazy mlocking via vmscan, it is important to ensure that the
45
* vma's VM_LOCKED status is not concurrently being modified, otherwise we
46
* may have mlocked a page that is being munlocked. So lazy mlock must take
47
* the mmap_sem for read, and verify that the vma really is locked
48
* (see mm/rmap.c).
49
*/
50
51
/*
52
* LRU accounting for clear_page_mlock()
53
*/
54
void __clear_page_mlock(struct page *page)
55
{
56
VM_BUG_ON(!PageLocked(page));
57
58
if (!page->mapping) { /* truncated ? */
59
return;
60
}
61
62
dec_zone_page_state(page, NR_MLOCK);
63
count_vm_event(UNEVICTABLE_PGCLEARED);
64
if (!isolate_lru_page(page)) {
65
putback_lru_page(page);
66
} else {
67
/*
68
* We lost the race. the page already moved to evictable list.
69
*/
70
if (PageUnevictable(page))
71
count_vm_event(UNEVICTABLE_PGSTRANDED);
72
}
73
}
74
75
/*
76
* Mark page as mlocked if not already.
77
* If page on LRU, isolate and putback to move to unevictable list.
78
*/
79
void mlock_vma_page(struct page *page)
80
{
81
BUG_ON(!PageLocked(page));
82
83
if (!TestSetPageMlocked(page)) {
84
inc_zone_page_state(page, NR_MLOCK);
85
count_vm_event(UNEVICTABLE_PGMLOCKED);
86
if (!isolate_lru_page(page))
87
putback_lru_page(page);
88
}
89
}
90
91
/**
92
* munlock_vma_page - munlock a vma page
93
* @page - page to be unlocked
94
*
95
* called from munlock()/munmap() path with page supposedly on the LRU.
96
* When we munlock a page, because the vma where we found the page is being
97
* munlock()ed or munmap()ed, we want to check whether other vmas hold the
98
* page locked so that we can leave it on the unevictable lru list and not
99
* bother vmscan with it. However, to walk the page's rmap list in
100
* try_to_munlock() we must isolate the page from the LRU. If some other
101
* task has removed the page from the LRU, we won't be able to do that.
102
* So we clear the PageMlocked as we might not get another chance. If we
103
* can't isolate the page, we leave it for putback_lru_page() and vmscan
104
* [page_referenced()/try_to_unmap()] to deal with.
105
*/
106
void munlock_vma_page(struct page *page)
107
{
108
BUG_ON(!PageLocked(page));
109
110
if (TestClearPageMlocked(page)) {
111
dec_zone_page_state(page, NR_MLOCK);
112
if (!isolate_lru_page(page)) {
113
int ret = try_to_munlock(page);
114
/*
115
* did try_to_unlock() succeed or punt?
116
*/
117
if (ret != SWAP_MLOCK)
118
count_vm_event(UNEVICTABLE_PGMUNLOCKED);
119
120
putback_lru_page(page);
121
} else {
122
/*
123
* Some other task has removed the page from the LRU.
124
* putback_lru_page() will take care of removing the
125
* page from the unevictable list, if necessary.
126
* vmscan [page_referenced()] will move the page back
127
* to the unevictable list if some other vma has it
128
* mlocked.
129
*/
130
if (PageUnevictable(page))
131
count_vm_event(UNEVICTABLE_PGSTRANDED);
132
else
133
count_vm_event(UNEVICTABLE_PGMUNLOCKED);
134
}
135
}
136
}
137
138
/**
139
* __mlock_vma_pages_range() - mlock a range of pages in the vma.
140
* @vma: target vma
141
* @start: start address
142
* @end: end address
143
*
144
* This takes care of making the pages present too.
145
*
146
* return 0 on success, negative error code on error.
147
*
148
* vma->vm_mm->mmap_sem must be held for at least read.
149
*/
150
static long __mlock_vma_pages_range(struct vm_area_struct *vma,
151
unsigned long start, unsigned long end,
152
int *nonblocking)
153
{
154
struct mm_struct *mm = vma->vm_mm;
155
unsigned long addr = start;
156
int nr_pages = (end - start) / PAGE_SIZE;
157
int gup_flags;
158
159
VM_BUG_ON(start & ~PAGE_MASK);
160
VM_BUG_ON(end & ~PAGE_MASK);
161
VM_BUG_ON(start < vma->vm_start);
162
VM_BUG_ON(end > vma->vm_end);
163
VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
164
165
gup_flags = FOLL_TOUCH | FOLL_MLOCK;
166
/*
167
* We want to touch writable mappings with a write fault in order
168
* to break COW, except for shared mappings because these don't COW
169
* and we would not want to dirty them for nothing.
170
*/
171
if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
172
gup_flags |= FOLL_WRITE;
173
174
/*
175
* We want mlock to succeed for regions that have any permissions
176
* other than PROT_NONE.
177
*/
178
if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
179
gup_flags |= FOLL_FORCE;
180
181
return __get_user_pages(current, mm, addr, nr_pages, gup_flags,
182
NULL, NULL, nonblocking);
183
}
184
185
/*
186
* convert get_user_pages() return value to posix mlock() error
187
*/
188
static int __mlock_posix_error_return(long retval)
189
{
190
if (retval == -EFAULT)
191
retval = -ENOMEM;
192
else if (retval == -ENOMEM)
193
retval = -EAGAIN;
194
return retval;
195
}
196
197
/**
198
* mlock_vma_pages_range() - mlock pages in specified vma range.
199
* @vma - the vma containing the specfied address range
200
* @start - starting address in @vma to mlock
201
* @end - end address [+1] in @vma to mlock
202
*
203
* For mmap()/mremap()/expansion of mlocked vma.
204
*
205
* return 0 on success for "normal" vmas.
206
*
207
* return number of pages [> 0] to be removed from locked_vm on success
208
* of "special" vmas.
209
*/
210
long mlock_vma_pages_range(struct vm_area_struct *vma,
211
unsigned long start, unsigned long end)
212
{
213
int nr_pages = (end - start) / PAGE_SIZE;
214
BUG_ON(!(vma->vm_flags & VM_LOCKED));
215
216
/*
217
* filter unlockable vmas
218
*/
219
if (vma->vm_flags & (VM_IO | VM_PFNMAP))
220
goto no_mlock;
221
222
if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
223
is_vm_hugetlb_page(vma) ||
224
vma == get_gate_vma(current->mm))) {
225
226
__mlock_vma_pages_range(vma, start, end, NULL);
227
228
/* Hide errors from mmap() and other callers */
229
return 0;
230
}
231
232
/*
233
* User mapped kernel pages or huge pages:
234
* make these pages present to populate the ptes, but
235
* fall thru' to reset VM_LOCKED--no need to unlock, and
236
* return nr_pages so these don't get counted against task's
237
* locked limit. huge pages are already counted against
238
* locked vm limit.
239
*/
240
make_pages_present(start, end);
241
242
no_mlock:
243
vma->vm_flags &= ~VM_LOCKED; /* and don't come back! */
244
return nr_pages; /* error or pages NOT mlocked */
245
}
246
247
/*
248
* munlock_vma_pages_range() - munlock all pages in the vma range.'
249
* @vma - vma containing range to be munlock()ed.
250
* @start - start address in @vma of the range
251
* @end - end of range in @vma.
252
*
253
* For mremap(), munmap() and exit().
254
*
255
* Called with @vma VM_LOCKED.
256
*
257
* Returns with VM_LOCKED cleared. Callers must be prepared to
258
* deal with this.
259
*
260
* We don't save and restore VM_LOCKED here because pages are
261
* still on lru. In unmap path, pages might be scanned by reclaim
262
* and re-mlocked by try_to_{munlock|unmap} before we unmap and
263
* free them. This will result in freeing mlocked pages.
264
*/
265
void munlock_vma_pages_range(struct vm_area_struct *vma,
266
unsigned long start, unsigned long end)
267
{
268
unsigned long addr;
269
270
lru_add_drain();
271
vma->vm_flags &= ~VM_LOCKED;
272
273
for (addr = start; addr < end; addr += PAGE_SIZE) {
274
struct page *page;
275
/*
276
* Although FOLL_DUMP is intended for get_dump_page(),
277
* it just so happens that its special treatment of the
278
* ZERO_PAGE (returning an error instead of doing get_page)
279
* suits munlock very well (and if somehow an abnormal page
280
* has sneaked into the range, we won't oops here: great).
281
*/
282
page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
283
if (page && !IS_ERR(page)) {
284
lock_page(page);
285
/*
286
* Like in __mlock_vma_pages_range(),
287
* because we lock page here and migration is
288
* blocked by the elevated reference, we need
289
* only check for file-cache page truncation.
290
*/
291
if (page->mapping)
292
munlock_vma_page(page);
293
unlock_page(page);
294
put_page(page);
295
}
296
cond_resched();
297
}
298
}
299
300
/*
301
* mlock_fixup - handle mlock[all]/munlock[all] requests.
302
*
303
* Filters out "special" vmas -- VM_LOCKED never gets set for these, and
304
* munlock is a no-op. However, for some special vmas, we go ahead and
305
* populate the ptes via make_pages_present().
306
*
307
* For vmas that pass the filters, merge/split as appropriate.
308
*/
309
static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
310
unsigned long start, unsigned long end, vm_flags_t newflags)
311
{
312
struct mm_struct *mm = vma->vm_mm;
313
pgoff_t pgoff;
314
int nr_pages;
315
int ret = 0;
316
int lock = !!(newflags & VM_LOCKED);
317
318
if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
319
is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
320
goto out; /* don't set VM_LOCKED, don't count */
321
322
pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
323
*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
324
vma->vm_file, pgoff, vma_policy(vma));
325
if (*prev) {
326
vma = *prev;
327
goto success;
328
}
329
330
if (start != vma->vm_start) {
331
ret = split_vma(mm, vma, start, 1);
332
if (ret)
333
goto out;
334
}
335
336
if (end != vma->vm_end) {
337
ret = split_vma(mm, vma, end, 0);
338
if (ret)
339
goto out;
340
}
341
342
success:
343
/*
344
* Keep track of amount of locked VM.
345
*/
346
nr_pages = (end - start) >> PAGE_SHIFT;
347
if (!lock)
348
nr_pages = -nr_pages;
349
mm->locked_vm += nr_pages;
350
351
/*
352
* vm_flags is protected by the mmap_sem held in write mode.
353
* It's okay if try_to_unmap_one unmaps a page just after we
354
* set VM_LOCKED, __mlock_vma_pages_range will bring it back.
355
*/
356
357
if (lock)
358
vma->vm_flags = newflags;
359
else
360
munlock_vma_pages_range(vma, start, end);
361
362
out:
363
*prev = vma;
364
return ret;
365
}
366
367
static int do_mlock(unsigned long start, size_t len, int on)
368
{
369
unsigned long nstart, end, tmp;
370
struct vm_area_struct * vma, * prev;
371
int error;
372
373
VM_BUG_ON(start & ~PAGE_MASK);
374
VM_BUG_ON(len != PAGE_ALIGN(len));
375
end = start + len;
376
if (end < start)
377
return -EINVAL;
378
if (end == start)
379
return 0;
380
vma = find_vma_prev(current->mm, start, &prev);
381
if (!vma || vma->vm_start > start)
382
return -ENOMEM;
383
384
if (start > vma->vm_start)
385
prev = vma;
386
387
for (nstart = start ; ; ) {
388
vm_flags_t newflags;
389
390
/* Here we know that vma->vm_start <= nstart < vma->vm_end. */
391
392
newflags = vma->vm_flags | VM_LOCKED;
393
if (!on)
394
newflags &= ~VM_LOCKED;
395
396
tmp = vma->vm_end;
397
if (tmp > end)
398
tmp = end;
399
error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
400
if (error)
401
break;
402
nstart = tmp;
403
if (nstart < prev->vm_end)
404
nstart = prev->vm_end;
405
if (nstart >= end)
406
break;
407
408
vma = prev->vm_next;
409
if (!vma || vma->vm_start != nstart) {
410
error = -ENOMEM;
411
break;
412
}
413
}
414
return error;
415
}
416
417
static int do_mlock_pages(unsigned long start, size_t len, int ignore_errors)
418
{
419
struct mm_struct *mm = current->mm;
420
unsigned long end, nstart, nend;
421
struct vm_area_struct *vma = NULL;
422
int locked = 0;
423
int ret = 0;
424
425
VM_BUG_ON(start & ~PAGE_MASK);
426
VM_BUG_ON(len != PAGE_ALIGN(len));
427
end = start + len;
428
429
for (nstart = start; nstart < end; nstart = nend) {
430
/*
431
* We want to fault in pages for [nstart; end) address range.
432
* Find first corresponding VMA.
433
*/
434
if (!locked) {
435
locked = 1;
436
down_read(&mm->mmap_sem);
437
vma = find_vma(mm, nstart);
438
} else if (nstart >= vma->vm_end)
439
vma = vma->vm_next;
440
if (!vma || vma->vm_start >= end)
441
break;
442
/*
443
* Set [nstart; nend) to intersection of desired address
444
* range with the first VMA. Also, skip undesirable VMA types.
445
*/
446
nend = min(end, vma->vm_end);
447
if (vma->vm_flags & (VM_IO | VM_PFNMAP))
448
continue;
449
if (nstart < vma->vm_start)
450
nstart = vma->vm_start;
451
/*
452
* Now fault in a range of pages. __mlock_vma_pages_range()
453
* double checks the vma flags, so that it won't mlock pages
454
* if the vma was already munlocked.
455
*/
456
ret = __mlock_vma_pages_range(vma, nstart, nend, &locked);
457
if (ret < 0) {
458
if (ignore_errors) {
459
ret = 0;
460
continue; /* continue at next VMA */
461
}
462
ret = __mlock_posix_error_return(ret);
463
break;
464
}
465
nend = nstart + ret * PAGE_SIZE;
466
ret = 0;
467
}
468
if (locked)
469
up_read(&mm->mmap_sem);
470
return ret; /* 0 or negative error code */
471
}
472
473
SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
474
{
475
unsigned long locked;
476
unsigned long lock_limit;
477
int error = -ENOMEM;
478
479
if (!can_do_mlock())
480
return -EPERM;
481
482
lru_add_drain_all(); /* flush pagevec */
483
484
down_write(&current->mm->mmap_sem);
485
len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
486
start &= PAGE_MASK;
487
488
locked = len >> PAGE_SHIFT;
489
locked += current->mm->locked_vm;
490
491
lock_limit = rlimit(RLIMIT_MEMLOCK);
492
lock_limit >>= PAGE_SHIFT;
493
494
/* check against resource limits */
495
if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
496
error = do_mlock(start, len, 1);
497
up_write(&current->mm->mmap_sem);
498
if (!error)
499
error = do_mlock_pages(start, len, 0);
500
return error;
501
}
502
503
SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
504
{
505
int ret;
506
507
down_write(&current->mm->mmap_sem);
508
len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
509
start &= PAGE_MASK;
510
ret = do_mlock(start, len, 0);
511
up_write(&current->mm->mmap_sem);
512
return ret;
513
}
514
515
static int do_mlockall(int flags)
516
{
517
struct vm_area_struct * vma, * prev = NULL;
518
unsigned int def_flags = 0;
519
520
if (flags & MCL_FUTURE)
521
def_flags = VM_LOCKED;
522
current->mm->def_flags = def_flags;
523
if (flags == MCL_FUTURE)
524
goto out;
525
526
for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
527
vm_flags_t newflags;
528
529
newflags = vma->vm_flags | VM_LOCKED;
530
if (!(flags & MCL_CURRENT))
531
newflags &= ~VM_LOCKED;
532
533
/* Ignore errors */
534
mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
535
}
536
out:
537
return 0;
538
}
539
540
SYSCALL_DEFINE1(mlockall, int, flags)
541
{
542
unsigned long lock_limit;
543
int ret = -EINVAL;
544
545
if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
546
goto out;
547
548
ret = -EPERM;
549
if (!can_do_mlock())
550
goto out;
551
552
lru_add_drain_all(); /* flush pagevec */
553
554
down_write(&current->mm->mmap_sem);
555
556
lock_limit = rlimit(RLIMIT_MEMLOCK);
557
lock_limit >>= PAGE_SHIFT;
558
559
ret = -ENOMEM;
560
if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
561
capable(CAP_IPC_LOCK))
562
ret = do_mlockall(flags);
563
up_write(&current->mm->mmap_sem);
564
if (!ret && (flags & MCL_CURRENT)) {
565
/* Ignore errors */
566
do_mlock_pages(0, TASK_SIZE, 1);
567
}
568
out:
569
return ret;
570
}
571
572
SYSCALL_DEFINE0(munlockall)
573
{
574
int ret;
575
576
down_write(&current->mm->mmap_sem);
577
ret = do_mlockall(0);
578
up_write(&current->mm->mmap_sem);
579
return ret;
580
}
581
582
/*
583
* Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
584
* shm segments) get accounted against the user_struct instead.
585
*/
586
static DEFINE_SPINLOCK(shmlock_user_lock);
587
588
int user_shm_lock(size_t size, struct user_struct *user)
589
{
590
unsigned long lock_limit, locked;
591
int allowed = 0;
592
593
locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
594
lock_limit = rlimit(RLIMIT_MEMLOCK);
595
if (lock_limit == RLIM_INFINITY)
596
allowed = 1;
597
lock_limit >>= PAGE_SHIFT;
598
spin_lock(&shmlock_user_lock);
599
if (!allowed &&
600
locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
601
goto out;
602
get_uid(user);
603
user->locked_shm += locked;
604
allowed = 1;
605
out:
606
spin_unlock(&shmlock_user_lock);
607
return allowed;
608
}
609
610
void user_shm_unlock(size_t size, struct user_struct *user)
611
{
612
spin_lock(&shmlock_user_lock);
613
user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
614
spin_unlock(&shmlock_user_lock);
615
free_uid(user);
616
}
617
618