Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/mm/mmap.c
10814 views
1
/*
2
* mm/mmap.c
3
*
4
* Written by obz.
5
*
6
* Address space accounting code <[email protected]>
7
*/
8
9
#include <linux/slab.h>
10
#include <linux/backing-dev.h>
11
#include <linux/mm.h>
12
#include <linux/shm.h>
13
#include <linux/mman.h>
14
#include <linux/pagemap.h>
15
#include <linux/swap.h>
16
#include <linux/syscalls.h>
17
#include <linux/capability.h>
18
#include <linux/init.h>
19
#include <linux/file.h>
20
#include <linux/fs.h>
21
#include <linux/personality.h>
22
#include <linux/security.h>
23
#include <linux/hugetlb.h>
24
#include <linux/profile.h>
25
#include <linux/module.h>
26
#include <linux/mount.h>
27
#include <linux/mempolicy.h>
28
#include <linux/rmap.h>
29
#include <linux/mmu_notifier.h>
30
#include <linux/perf_event.h>
31
#include <linux/audit.h>
32
#include <linux/khugepaged.h>
33
34
#include <asm/uaccess.h>
35
#include <asm/cacheflush.h>
36
#include <asm/tlb.h>
37
#include <asm/mmu_context.h>
38
39
#include "internal.h"
40
41
#ifndef arch_mmap_check
42
#define arch_mmap_check(addr, len, flags) (0)
43
#endif
44
45
#ifndef arch_rebalance_pgtables
46
#define arch_rebalance_pgtables(addr, len) (addr)
47
#endif
48
49
static void unmap_region(struct mm_struct *mm,
50
struct vm_area_struct *vma, struct vm_area_struct *prev,
51
unsigned long start, unsigned long end);
52
53
/*
54
* WARNING: the debugging will use recursive algorithms so never enable this
55
* unless you know what you are doing.
56
*/
57
#undef DEBUG_MM_RB
58
59
/* description of effects of mapping type and prot in current implementation.
60
* this is due to the limited x86 page protection hardware. The expected
61
* behavior is in parens:
62
*
63
* map_type prot
64
* PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
65
* MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
66
* w: (no) no w: (no) no w: (yes) yes w: (no) no
67
* x: (no) no x: (no) yes x: (no) yes x: (yes) yes
68
*
69
* MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
70
* w: (no) no w: (no) no w: (copy) copy w: (no) no
71
* x: (no) no x: (no) yes x: (no) yes x: (yes) yes
72
*
73
*/
74
pgprot_t protection_map[16] = {
75
__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76
__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77
};
78
79
pgprot_t vm_get_page_prot(unsigned long vm_flags)
80
{
81
return __pgprot(pgprot_val(protection_map[vm_flags &
82
(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83
pgprot_val(arch_vm_get_page_prot(vm_flags)));
84
}
85
EXPORT_SYMBOL(vm_get_page_prot);
86
87
int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
88
int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
89
int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
90
/*
91
* Make sure vm_committed_as in one cacheline and not cacheline shared with
92
* other variables. It can be updated by several CPUs frequently.
93
*/
94
struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
95
96
/*
97
* Check that a process has enough memory to allocate a new virtual
98
* mapping. 0 means there is enough memory for the allocation to
99
* succeed and -ENOMEM implies there is not.
100
*
101
* We currently support three overcommit policies, which are set via the
102
* vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
103
*
104
* Strict overcommit modes added 2002 Feb 26 by Alan Cox.
105
* Additional code 2002 Jul 20 by Robert Love.
106
*
107
* cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
108
*
109
* Note this is a helper function intended to be used by LSMs which
110
* wish to use this logic.
111
*/
112
int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
113
{
114
unsigned long free, allowed;
115
116
vm_acct_memory(pages);
117
118
/*
119
* Sometimes we want to use more memory than we have
120
*/
121
if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
122
return 0;
123
124
if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
125
unsigned long n;
126
127
free = global_page_state(NR_FILE_PAGES);
128
free += nr_swap_pages;
129
130
/*
131
* Any slabs which are created with the
132
* SLAB_RECLAIM_ACCOUNT flag claim to have contents
133
* which are reclaimable, under pressure. The dentry
134
* cache and most inode caches should fall into this
135
*/
136
free += global_page_state(NR_SLAB_RECLAIMABLE);
137
138
/*
139
* Leave the last 3% for root
140
*/
141
if (!cap_sys_admin)
142
free -= free / 32;
143
144
if (free > pages)
145
return 0;
146
147
/*
148
* nr_free_pages() is very expensive on large systems,
149
* only call if we're about to fail.
150
*/
151
n = nr_free_pages();
152
153
/*
154
* Leave reserved pages. The pages are not for anonymous pages.
155
*/
156
if (n <= totalreserve_pages)
157
goto error;
158
else
159
n -= totalreserve_pages;
160
161
/*
162
* Leave the last 3% for root
163
*/
164
if (!cap_sys_admin)
165
n -= n / 32;
166
free += n;
167
168
if (free > pages)
169
return 0;
170
171
goto error;
172
}
173
174
allowed = (totalram_pages - hugetlb_total_pages())
175
* sysctl_overcommit_ratio / 100;
176
/*
177
* Leave the last 3% for root
178
*/
179
if (!cap_sys_admin)
180
allowed -= allowed / 32;
181
allowed += total_swap_pages;
182
183
/* Don't let a single process grow too big:
184
leave 3% of the size of this process for other processes */
185
if (mm)
186
allowed -= mm->total_vm / 32;
187
188
if (percpu_counter_read_positive(&vm_committed_as) < allowed)
189
return 0;
190
error:
191
vm_unacct_memory(pages);
192
193
return -ENOMEM;
194
}
195
196
/*
197
* Requires inode->i_mapping->i_mmap_mutex
198
*/
199
static void __remove_shared_vm_struct(struct vm_area_struct *vma,
200
struct file *file, struct address_space *mapping)
201
{
202
if (vma->vm_flags & VM_DENYWRITE)
203
atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
204
if (vma->vm_flags & VM_SHARED)
205
mapping->i_mmap_writable--;
206
207
flush_dcache_mmap_lock(mapping);
208
if (unlikely(vma->vm_flags & VM_NONLINEAR))
209
list_del_init(&vma->shared.vm_set.list);
210
else
211
vma_prio_tree_remove(vma, &mapping->i_mmap);
212
flush_dcache_mmap_unlock(mapping);
213
}
214
215
/*
216
* Unlink a file-based vm structure from its prio_tree, to hide
217
* vma from rmap and vmtruncate before freeing its page tables.
218
*/
219
void unlink_file_vma(struct vm_area_struct *vma)
220
{
221
struct file *file = vma->vm_file;
222
223
if (file) {
224
struct address_space *mapping = file->f_mapping;
225
mutex_lock(&mapping->i_mmap_mutex);
226
__remove_shared_vm_struct(vma, file, mapping);
227
mutex_unlock(&mapping->i_mmap_mutex);
228
}
229
}
230
231
/*
232
* Close a vm structure and free it, returning the next.
233
*/
234
static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
235
{
236
struct vm_area_struct *next = vma->vm_next;
237
238
might_sleep();
239
if (vma->vm_ops && vma->vm_ops->close)
240
vma->vm_ops->close(vma);
241
if (vma->vm_file) {
242
fput(vma->vm_file);
243
if (vma->vm_flags & VM_EXECUTABLE)
244
removed_exe_file_vma(vma->vm_mm);
245
}
246
mpol_put(vma_policy(vma));
247
kmem_cache_free(vm_area_cachep, vma);
248
return next;
249
}
250
251
SYSCALL_DEFINE1(brk, unsigned long, brk)
252
{
253
unsigned long rlim, retval;
254
unsigned long newbrk, oldbrk;
255
struct mm_struct *mm = current->mm;
256
unsigned long min_brk;
257
258
down_write(&mm->mmap_sem);
259
260
#ifdef CONFIG_COMPAT_BRK
261
/*
262
* CONFIG_COMPAT_BRK can still be overridden by setting
263
* randomize_va_space to 2, which will still cause mm->start_brk
264
* to be arbitrarily shifted
265
*/
266
if (current->brk_randomized)
267
min_brk = mm->start_brk;
268
else
269
min_brk = mm->end_data;
270
#else
271
min_brk = mm->start_brk;
272
#endif
273
if (brk < min_brk)
274
goto out;
275
276
/*
277
* Check against rlimit here. If this check is done later after the test
278
* of oldbrk with newbrk then it can escape the test and let the data
279
* segment grow beyond its set limit the in case where the limit is
280
* not page aligned -Ram Gupta
281
*/
282
rlim = rlimit(RLIMIT_DATA);
283
if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
284
(mm->end_data - mm->start_data) > rlim)
285
goto out;
286
287
newbrk = PAGE_ALIGN(brk);
288
oldbrk = PAGE_ALIGN(mm->brk);
289
if (oldbrk == newbrk)
290
goto set_brk;
291
292
/* Always allow shrinking brk. */
293
if (brk <= mm->brk) {
294
if (!do_munmap(mm, newbrk, oldbrk-newbrk))
295
goto set_brk;
296
goto out;
297
}
298
299
/* Check against existing mmap mappings. */
300
if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
301
goto out;
302
303
/* Ok, looks good - let it rip. */
304
if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
305
goto out;
306
set_brk:
307
mm->brk = brk;
308
out:
309
retval = mm->brk;
310
up_write(&mm->mmap_sem);
311
return retval;
312
}
313
314
#ifdef DEBUG_MM_RB
315
static int browse_rb(struct rb_root *root)
316
{
317
int i = 0, j;
318
struct rb_node *nd, *pn = NULL;
319
unsigned long prev = 0, pend = 0;
320
321
for (nd = rb_first(root); nd; nd = rb_next(nd)) {
322
struct vm_area_struct *vma;
323
vma = rb_entry(nd, struct vm_area_struct, vm_rb);
324
if (vma->vm_start < prev)
325
printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
326
if (vma->vm_start < pend)
327
printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
328
if (vma->vm_start > vma->vm_end)
329
printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
330
i++;
331
pn = nd;
332
prev = vma->vm_start;
333
pend = vma->vm_end;
334
}
335
j = 0;
336
for (nd = pn; nd; nd = rb_prev(nd)) {
337
j++;
338
}
339
if (i != j)
340
printk("backwards %d, forwards %d\n", j, i), i = 0;
341
return i;
342
}
343
344
void validate_mm(struct mm_struct *mm)
345
{
346
int bug = 0;
347
int i = 0;
348
struct vm_area_struct *tmp = mm->mmap;
349
while (tmp) {
350
tmp = tmp->vm_next;
351
i++;
352
}
353
if (i != mm->map_count)
354
printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
355
i = browse_rb(&mm->mm_rb);
356
if (i != mm->map_count)
357
printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
358
BUG_ON(bug);
359
}
360
#else
361
#define validate_mm(mm) do { } while (0)
362
#endif
363
364
static struct vm_area_struct *
365
find_vma_prepare(struct mm_struct *mm, unsigned long addr,
366
struct vm_area_struct **pprev, struct rb_node ***rb_link,
367
struct rb_node ** rb_parent)
368
{
369
struct vm_area_struct * vma;
370
struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
371
372
__rb_link = &mm->mm_rb.rb_node;
373
rb_prev = __rb_parent = NULL;
374
vma = NULL;
375
376
while (*__rb_link) {
377
struct vm_area_struct *vma_tmp;
378
379
__rb_parent = *__rb_link;
380
vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
381
382
if (vma_tmp->vm_end > addr) {
383
vma = vma_tmp;
384
if (vma_tmp->vm_start <= addr)
385
break;
386
__rb_link = &__rb_parent->rb_left;
387
} else {
388
rb_prev = __rb_parent;
389
__rb_link = &__rb_parent->rb_right;
390
}
391
}
392
393
*pprev = NULL;
394
if (rb_prev)
395
*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
396
*rb_link = __rb_link;
397
*rb_parent = __rb_parent;
398
return vma;
399
}
400
401
void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
402
struct rb_node **rb_link, struct rb_node *rb_parent)
403
{
404
rb_link_node(&vma->vm_rb, rb_parent, rb_link);
405
rb_insert_color(&vma->vm_rb, &mm->mm_rb);
406
}
407
408
static void __vma_link_file(struct vm_area_struct *vma)
409
{
410
struct file *file;
411
412
file = vma->vm_file;
413
if (file) {
414
struct address_space *mapping = file->f_mapping;
415
416
if (vma->vm_flags & VM_DENYWRITE)
417
atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
418
if (vma->vm_flags & VM_SHARED)
419
mapping->i_mmap_writable++;
420
421
flush_dcache_mmap_lock(mapping);
422
if (unlikely(vma->vm_flags & VM_NONLINEAR))
423
vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
424
else
425
vma_prio_tree_insert(vma, &mapping->i_mmap);
426
flush_dcache_mmap_unlock(mapping);
427
}
428
}
429
430
static void
431
__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
432
struct vm_area_struct *prev, struct rb_node **rb_link,
433
struct rb_node *rb_parent)
434
{
435
__vma_link_list(mm, vma, prev, rb_parent);
436
__vma_link_rb(mm, vma, rb_link, rb_parent);
437
}
438
439
static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
440
struct vm_area_struct *prev, struct rb_node **rb_link,
441
struct rb_node *rb_parent)
442
{
443
struct address_space *mapping = NULL;
444
445
if (vma->vm_file)
446
mapping = vma->vm_file->f_mapping;
447
448
if (mapping)
449
mutex_lock(&mapping->i_mmap_mutex);
450
451
__vma_link(mm, vma, prev, rb_link, rb_parent);
452
__vma_link_file(vma);
453
454
if (mapping)
455
mutex_unlock(&mapping->i_mmap_mutex);
456
457
mm->map_count++;
458
validate_mm(mm);
459
}
460
461
/*
462
* Helper for vma_adjust in the split_vma insert case:
463
* insert vm structure into list and rbtree and anon_vma,
464
* but it has already been inserted into prio_tree earlier.
465
*/
466
static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
467
{
468
struct vm_area_struct *__vma, *prev;
469
struct rb_node **rb_link, *rb_parent;
470
471
__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
472
BUG_ON(__vma && __vma->vm_start < vma->vm_end);
473
__vma_link(mm, vma, prev, rb_link, rb_parent);
474
mm->map_count++;
475
}
476
477
static inline void
478
__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
479
struct vm_area_struct *prev)
480
{
481
struct vm_area_struct *next = vma->vm_next;
482
483
prev->vm_next = next;
484
if (next)
485
next->vm_prev = prev;
486
rb_erase(&vma->vm_rb, &mm->mm_rb);
487
if (mm->mmap_cache == vma)
488
mm->mmap_cache = prev;
489
}
490
491
/*
492
* We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
493
* is already present in an i_mmap tree without adjusting the tree.
494
* The following helper function should be used when such adjustments
495
* are necessary. The "insert" vma (if any) is to be inserted
496
* before we drop the necessary locks.
497
*/
498
int vma_adjust(struct vm_area_struct *vma, unsigned long start,
499
unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
500
{
501
struct mm_struct *mm = vma->vm_mm;
502
struct vm_area_struct *next = vma->vm_next;
503
struct vm_area_struct *importer = NULL;
504
struct address_space *mapping = NULL;
505
struct prio_tree_root *root = NULL;
506
struct anon_vma *anon_vma = NULL;
507
struct file *file = vma->vm_file;
508
long adjust_next = 0;
509
int remove_next = 0;
510
511
if (next && !insert) {
512
struct vm_area_struct *exporter = NULL;
513
514
if (end >= next->vm_end) {
515
/*
516
* vma expands, overlapping all the next, and
517
* perhaps the one after too (mprotect case 6).
518
*/
519
again: remove_next = 1 + (end > next->vm_end);
520
end = next->vm_end;
521
exporter = next;
522
importer = vma;
523
} else if (end > next->vm_start) {
524
/*
525
* vma expands, overlapping part of the next:
526
* mprotect case 5 shifting the boundary up.
527
*/
528
adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
529
exporter = next;
530
importer = vma;
531
} else if (end < vma->vm_end) {
532
/*
533
* vma shrinks, and !insert tells it's not
534
* split_vma inserting another: so it must be
535
* mprotect case 4 shifting the boundary down.
536
*/
537
adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
538
exporter = vma;
539
importer = next;
540
}
541
542
/*
543
* Easily overlooked: when mprotect shifts the boundary,
544
* make sure the expanding vma has anon_vma set if the
545
* shrinking vma had, to cover any anon pages imported.
546
*/
547
if (exporter && exporter->anon_vma && !importer->anon_vma) {
548
if (anon_vma_clone(importer, exporter))
549
return -ENOMEM;
550
importer->anon_vma = exporter->anon_vma;
551
}
552
}
553
554
if (file) {
555
mapping = file->f_mapping;
556
if (!(vma->vm_flags & VM_NONLINEAR))
557
root = &mapping->i_mmap;
558
mutex_lock(&mapping->i_mmap_mutex);
559
if (insert) {
560
/*
561
* Put into prio_tree now, so instantiated pages
562
* are visible to arm/parisc __flush_dcache_page
563
* throughout; but we cannot insert into address
564
* space until vma start or end is updated.
565
*/
566
__vma_link_file(insert);
567
}
568
}
569
570
vma_adjust_trans_huge(vma, start, end, adjust_next);
571
572
/*
573
* When changing only vma->vm_end, we don't really need anon_vma
574
* lock. This is a fairly rare case by itself, but the anon_vma
575
* lock may be shared between many sibling processes. Skipping
576
* the lock for brk adjustments makes a difference sometimes.
577
*/
578
if (vma->anon_vma && (importer || start != vma->vm_start)) {
579
anon_vma = vma->anon_vma;
580
anon_vma_lock(anon_vma);
581
}
582
583
if (root) {
584
flush_dcache_mmap_lock(mapping);
585
vma_prio_tree_remove(vma, root);
586
if (adjust_next)
587
vma_prio_tree_remove(next, root);
588
}
589
590
vma->vm_start = start;
591
vma->vm_end = end;
592
vma->vm_pgoff = pgoff;
593
if (adjust_next) {
594
next->vm_start += adjust_next << PAGE_SHIFT;
595
next->vm_pgoff += adjust_next;
596
}
597
598
if (root) {
599
if (adjust_next)
600
vma_prio_tree_insert(next, root);
601
vma_prio_tree_insert(vma, root);
602
flush_dcache_mmap_unlock(mapping);
603
}
604
605
if (remove_next) {
606
/*
607
* vma_merge has merged next into vma, and needs
608
* us to remove next before dropping the locks.
609
*/
610
__vma_unlink(mm, next, vma);
611
if (file)
612
__remove_shared_vm_struct(next, file, mapping);
613
} else if (insert) {
614
/*
615
* split_vma has split insert from vma, and needs
616
* us to insert it before dropping the locks
617
* (it may either follow vma or precede it).
618
*/
619
__insert_vm_struct(mm, insert);
620
}
621
622
if (anon_vma)
623
anon_vma_unlock(anon_vma);
624
if (mapping)
625
mutex_unlock(&mapping->i_mmap_mutex);
626
627
if (remove_next) {
628
if (file) {
629
fput(file);
630
if (next->vm_flags & VM_EXECUTABLE)
631
removed_exe_file_vma(mm);
632
}
633
if (next->anon_vma)
634
anon_vma_merge(vma, next);
635
mm->map_count--;
636
mpol_put(vma_policy(next));
637
kmem_cache_free(vm_area_cachep, next);
638
/*
639
* In mprotect's case 6 (see comments on vma_merge),
640
* we must remove another next too. It would clutter
641
* up the code too much to do both in one go.
642
*/
643
if (remove_next == 2) {
644
next = vma->vm_next;
645
goto again;
646
}
647
}
648
649
validate_mm(mm);
650
651
return 0;
652
}
653
654
/*
655
* If the vma has a ->close operation then the driver probably needs to release
656
* per-vma resources, so we don't attempt to merge those.
657
*/
658
static inline int is_mergeable_vma(struct vm_area_struct *vma,
659
struct file *file, unsigned long vm_flags)
660
{
661
/* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
662
if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
663
return 0;
664
if (vma->vm_file != file)
665
return 0;
666
if (vma->vm_ops && vma->vm_ops->close)
667
return 0;
668
return 1;
669
}
670
671
static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
672
struct anon_vma *anon_vma2,
673
struct vm_area_struct *vma)
674
{
675
/*
676
* The list_is_singular() test is to avoid merging VMA cloned from
677
* parents. This can improve scalability caused by anon_vma lock.
678
*/
679
if ((!anon_vma1 || !anon_vma2) && (!vma ||
680
list_is_singular(&vma->anon_vma_chain)))
681
return 1;
682
return anon_vma1 == anon_vma2;
683
}
684
685
/*
686
* Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
687
* in front of (at a lower virtual address and file offset than) the vma.
688
*
689
* We cannot merge two vmas if they have differently assigned (non-NULL)
690
* anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
691
*
692
* We don't check here for the merged mmap wrapping around the end of pagecache
693
* indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
694
* wrap, nor mmaps which cover the final page at index -1UL.
695
*/
696
static int
697
can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
698
struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
699
{
700
if (is_mergeable_vma(vma, file, vm_flags) &&
701
is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
702
if (vma->vm_pgoff == vm_pgoff)
703
return 1;
704
}
705
return 0;
706
}
707
708
/*
709
* Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
710
* beyond (at a higher virtual address and file offset than) the vma.
711
*
712
* We cannot merge two vmas if they have differently assigned (non-NULL)
713
* anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
714
*/
715
static int
716
can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
717
struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
718
{
719
if (is_mergeable_vma(vma, file, vm_flags) &&
720
is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
721
pgoff_t vm_pglen;
722
vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
723
if (vma->vm_pgoff + vm_pglen == vm_pgoff)
724
return 1;
725
}
726
return 0;
727
}
728
729
/*
730
* Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
731
* whether that can be merged with its predecessor or its successor.
732
* Or both (it neatly fills a hole).
733
*
734
* In most cases - when called for mmap, brk or mremap - [addr,end) is
735
* certain not to be mapped by the time vma_merge is called; but when
736
* called for mprotect, it is certain to be already mapped (either at
737
* an offset within prev, or at the start of next), and the flags of
738
* this area are about to be changed to vm_flags - and the no-change
739
* case has already been eliminated.
740
*
741
* The following mprotect cases have to be considered, where AAAA is
742
* the area passed down from mprotect_fixup, never extending beyond one
743
* vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
744
*
745
* AAAA AAAA AAAA AAAA
746
* PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
747
* cannot merge might become might become might become
748
* PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
749
* mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
750
* mremap move: PPPPNNNNNNNN 8
751
* AAAA
752
* PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
753
* might become case 1 below case 2 below case 3 below
754
*
755
* Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
756
* mprotect_fixup updates vm_flags & vm_page_prot on successful return.
757
*/
758
struct vm_area_struct *vma_merge(struct mm_struct *mm,
759
struct vm_area_struct *prev, unsigned long addr,
760
unsigned long end, unsigned long vm_flags,
761
struct anon_vma *anon_vma, struct file *file,
762
pgoff_t pgoff, struct mempolicy *policy)
763
{
764
pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
765
struct vm_area_struct *area, *next;
766
int err;
767
768
/*
769
* We later require that vma->vm_flags == vm_flags,
770
* so this tests vma->vm_flags & VM_SPECIAL, too.
771
*/
772
if (vm_flags & VM_SPECIAL)
773
return NULL;
774
775
if (prev)
776
next = prev->vm_next;
777
else
778
next = mm->mmap;
779
area = next;
780
if (next && next->vm_end == end) /* cases 6, 7, 8 */
781
next = next->vm_next;
782
783
/*
784
* Can it merge with the predecessor?
785
*/
786
if (prev && prev->vm_end == addr &&
787
mpol_equal(vma_policy(prev), policy) &&
788
can_vma_merge_after(prev, vm_flags,
789
anon_vma, file, pgoff)) {
790
/*
791
* OK, it can. Can we now merge in the successor as well?
792
*/
793
if (next && end == next->vm_start &&
794
mpol_equal(policy, vma_policy(next)) &&
795
can_vma_merge_before(next, vm_flags,
796
anon_vma, file, pgoff+pglen) &&
797
is_mergeable_anon_vma(prev->anon_vma,
798
next->anon_vma, NULL)) {
799
/* cases 1, 6 */
800
err = vma_adjust(prev, prev->vm_start,
801
next->vm_end, prev->vm_pgoff, NULL);
802
} else /* cases 2, 5, 7 */
803
err = vma_adjust(prev, prev->vm_start,
804
end, prev->vm_pgoff, NULL);
805
if (err)
806
return NULL;
807
khugepaged_enter_vma_merge(prev);
808
return prev;
809
}
810
811
/*
812
* Can this new request be merged in front of next?
813
*/
814
if (next && end == next->vm_start &&
815
mpol_equal(policy, vma_policy(next)) &&
816
can_vma_merge_before(next, vm_flags,
817
anon_vma, file, pgoff+pglen)) {
818
if (prev && addr < prev->vm_end) /* case 4 */
819
err = vma_adjust(prev, prev->vm_start,
820
addr, prev->vm_pgoff, NULL);
821
else /* cases 3, 8 */
822
err = vma_adjust(area, addr, next->vm_end,
823
next->vm_pgoff - pglen, NULL);
824
if (err)
825
return NULL;
826
khugepaged_enter_vma_merge(area);
827
return area;
828
}
829
830
return NULL;
831
}
832
833
/*
834
* Rough compatbility check to quickly see if it's even worth looking
835
* at sharing an anon_vma.
836
*
837
* They need to have the same vm_file, and the flags can only differ
838
* in things that mprotect may change.
839
*
840
* NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
841
* we can merge the two vma's. For example, we refuse to merge a vma if
842
* there is a vm_ops->close() function, because that indicates that the
843
* driver is doing some kind of reference counting. But that doesn't
844
* really matter for the anon_vma sharing case.
845
*/
846
static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
847
{
848
return a->vm_end == b->vm_start &&
849
mpol_equal(vma_policy(a), vma_policy(b)) &&
850
a->vm_file == b->vm_file &&
851
!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
852
b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
853
}
854
855
/*
856
* Do some basic sanity checking to see if we can re-use the anon_vma
857
* from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
858
* the same as 'old', the other will be the new one that is trying
859
* to share the anon_vma.
860
*
861
* NOTE! This runs with mm_sem held for reading, so it is possible that
862
* the anon_vma of 'old' is concurrently in the process of being set up
863
* by another page fault trying to merge _that_. But that's ok: if it
864
* is being set up, that automatically means that it will be a singleton
865
* acceptable for merging, so we can do all of this optimistically. But
866
* we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
867
*
868
* IOW: that the "list_is_singular()" test on the anon_vma_chain only
869
* matters for the 'stable anon_vma' case (ie the thing we want to avoid
870
* is to return an anon_vma that is "complex" due to having gone through
871
* a fork).
872
*
873
* We also make sure that the two vma's are compatible (adjacent,
874
* and with the same memory policies). That's all stable, even with just
875
* a read lock on the mm_sem.
876
*/
877
static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
878
{
879
if (anon_vma_compatible(a, b)) {
880
struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
881
882
if (anon_vma && list_is_singular(&old->anon_vma_chain))
883
return anon_vma;
884
}
885
return NULL;
886
}
887
888
/*
889
* find_mergeable_anon_vma is used by anon_vma_prepare, to check
890
* neighbouring vmas for a suitable anon_vma, before it goes off
891
* to allocate a new anon_vma. It checks because a repetitive
892
* sequence of mprotects and faults may otherwise lead to distinct
893
* anon_vmas being allocated, preventing vma merge in subsequent
894
* mprotect.
895
*/
896
struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
897
{
898
struct anon_vma *anon_vma;
899
struct vm_area_struct *near;
900
901
near = vma->vm_next;
902
if (!near)
903
goto try_prev;
904
905
anon_vma = reusable_anon_vma(near, vma, near);
906
if (anon_vma)
907
return anon_vma;
908
try_prev:
909
near = vma->vm_prev;
910
if (!near)
911
goto none;
912
913
anon_vma = reusable_anon_vma(near, near, vma);
914
if (anon_vma)
915
return anon_vma;
916
none:
917
/*
918
* There's no absolute need to look only at touching neighbours:
919
* we could search further afield for "compatible" anon_vmas.
920
* But it would probably just be a waste of time searching,
921
* or lead to too many vmas hanging off the same anon_vma.
922
* We're trying to allow mprotect remerging later on,
923
* not trying to minimize memory used for anon_vmas.
924
*/
925
return NULL;
926
}
927
928
#ifdef CONFIG_PROC_FS
929
void vm_stat_account(struct mm_struct *mm, unsigned long flags,
930
struct file *file, long pages)
931
{
932
const unsigned long stack_flags
933
= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
934
935
if (file) {
936
mm->shared_vm += pages;
937
if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
938
mm->exec_vm += pages;
939
} else if (flags & stack_flags)
940
mm->stack_vm += pages;
941
if (flags & (VM_RESERVED|VM_IO))
942
mm->reserved_vm += pages;
943
}
944
#endif /* CONFIG_PROC_FS */
945
946
/*
947
* The caller must hold down_write(&current->mm->mmap_sem).
948
*/
949
950
unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
951
unsigned long len, unsigned long prot,
952
unsigned long flags, unsigned long pgoff)
953
{
954
struct mm_struct * mm = current->mm;
955
struct inode *inode;
956
vm_flags_t vm_flags;
957
int error;
958
unsigned long reqprot = prot;
959
960
/*
961
* Does the application expect PROT_READ to imply PROT_EXEC?
962
*
963
* (the exception is when the underlying filesystem is noexec
964
* mounted, in which case we dont add PROT_EXEC.)
965
*/
966
if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
967
if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
968
prot |= PROT_EXEC;
969
970
if (!len)
971
return -EINVAL;
972
973
if (!(flags & MAP_FIXED))
974
addr = round_hint_to_min(addr);
975
976
/* Careful about overflows.. */
977
len = PAGE_ALIGN(len);
978
if (!len)
979
return -ENOMEM;
980
981
/* offset overflow? */
982
if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
983
return -EOVERFLOW;
984
985
/* Too many mappings? */
986
if (mm->map_count > sysctl_max_map_count)
987
return -ENOMEM;
988
989
/* Obtain the address to map to. we verify (or select) it and ensure
990
* that it represents a valid section of the address space.
991
*/
992
addr = get_unmapped_area(file, addr, len, pgoff, flags);
993
if (addr & ~PAGE_MASK)
994
return addr;
995
996
/* Do simple checking here so the lower-level routines won't have
997
* to. we assume access permissions have been handled by the open
998
* of the memory object, so we don't do any here.
999
*/
1000
vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1001
mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1002
1003
if (flags & MAP_LOCKED)
1004
if (!can_do_mlock())
1005
return -EPERM;
1006
1007
/* mlock MCL_FUTURE? */
1008
if (vm_flags & VM_LOCKED) {
1009
unsigned long locked, lock_limit;
1010
locked = len >> PAGE_SHIFT;
1011
locked += mm->locked_vm;
1012
lock_limit = rlimit(RLIMIT_MEMLOCK);
1013
lock_limit >>= PAGE_SHIFT;
1014
if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1015
return -EAGAIN;
1016
}
1017
1018
inode = file ? file->f_path.dentry->d_inode : NULL;
1019
1020
if (file) {
1021
switch (flags & MAP_TYPE) {
1022
case MAP_SHARED:
1023
if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1024
return -EACCES;
1025
1026
/*
1027
* Make sure we don't allow writing to an append-only
1028
* file..
1029
*/
1030
if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1031
return -EACCES;
1032
1033
/*
1034
* Make sure there are no mandatory locks on the file.
1035
*/
1036
if (locks_verify_locked(inode))
1037
return -EAGAIN;
1038
1039
vm_flags |= VM_SHARED | VM_MAYSHARE;
1040
if (!(file->f_mode & FMODE_WRITE))
1041
vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1042
1043
/* fall through */
1044
case MAP_PRIVATE:
1045
if (!(file->f_mode & FMODE_READ))
1046
return -EACCES;
1047
if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1048
if (vm_flags & VM_EXEC)
1049
return -EPERM;
1050
vm_flags &= ~VM_MAYEXEC;
1051
}
1052
1053
if (!file->f_op || !file->f_op->mmap)
1054
return -ENODEV;
1055
break;
1056
1057
default:
1058
return -EINVAL;
1059
}
1060
} else {
1061
switch (flags & MAP_TYPE) {
1062
case MAP_SHARED:
1063
/*
1064
* Ignore pgoff.
1065
*/
1066
pgoff = 0;
1067
vm_flags |= VM_SHARED | VM_MAYSHARE;
1068
break;
1069
case MAP_PRIVATE:
1070
/*
1071
* Set pgoff according to addr for anon_vma.
1072
*/
1073
pgoff = addr >> PAGE_SHIFT;
1074
break;
1075
default:
1076
return -EINVAL;
1077
}
1078
}
1079
1080
error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1081
if (error)
1082
return error;
1083
1084
return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1085
}
1086
EXPORT_SYMBOL(do_mmap_pgoff);
1087
1088
SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1089
unsigned long, prot, unsigned long, flags,
1090
unsigned long, fd, unsigned long, pgoff)
1091
{
1092
struct file *file = NULL;
1093
unsigned long retval = -EBADF;
1094
1095
if (!(flags & MAP_ANONYMOUS)) {
1096
audit_mmap_fd(fd, flags);
1097
if (unlikely(flags & MAP_HUGETLB))
1098
return -EINVAL;
1099
file = fget(fd);
1100
if (!file)
1101
goto out;
1102
} else if (flags & MAP_HUGETLB) {
1103
struct user_struct *user = NULL;
1104
/*
1105
* VM_NORESERVE is used because the reservations will be
1106
* taken when vm_ops->mmap() is called
1107
* A dummy user value is used because we are not locking
1108
* memory so no accounting is necessary
1109
*/
1110
len = ALIGN(len, huge_page_size(&default_hstate));
1111
file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE,
1112
&user, HUGETLB_ANONHUGE_INODE);
1113
if (IS_ERR(file))
1114
return PTR_ERR(file);
1115
}
1116
1117
flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1118
1119
down_write(&current->mm->mmap_sem);
1120
retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1121
up_write(&current->mm->mmap_sem);
1122
1123
if (file)
1124
fput(file);
1125
out:
1126
return retval;
1127
}
1128
1129
#ifdef __ARCH_WANT_SYS_OLD_MMAP
1130
struct mmap_arg_struct {
1131
unsigned long addr;
1132
unsigned long len;
1133
unsigned long prot;
1134
unsigned long flags;
1135
unsigned long fd;
1136
unsigned long offset;
1137
};
1138
1139
SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1140
{
1141
struct mmap_arg_struct a;
1142
1143
if (copy_from_user(&a, arg, sizeof(a)))
1144
return -EFAULT;
1145
if (a.offset & ~PAGE_MASK)
1146
return -EINVAL;
1147
1148
return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1149
a.offset >> PAGE_SHIFT);
1150
}
1151
#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1152
1153
/*
1154
* Some shared mappigns will want the pages marked read-only
1155
* to track write events. If so, we'll downgrade vm_page_prot
1156
* to the private version (using protection_map[] without the
1157
* VM_SHARED bit).
1158
*/
1159
int vma_wants_writenotify(struct vm_area_struct *vma)
1160
{
1161
vm_flags_t vm_flags = vma->vm_flags;
1162
1163
/* If it was private or non-writable, the write bit is already clear */
1164
if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1165
return 0;
1166
1167
/* The backer wishes to know when pages are first written to? */
1168
if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1169
return 1;
1170
1171
/* The open routine did something to the protections already? */
1172
if (pgprot_val(vma->vm_page_prot) !=
1173
pgprot_val(vm_get_page_prot(vm_flags)))
1174
return 0;
1175
1176
/* Specialty mapping? */
1177
if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1178
return 0;
1179
1180
/* Can the mapping track the dirty pages? */
1181
return vma->vm_file && vma->vm_file->f_mapping &&
1182
mapping_cap_account_dirty(vma->vm_file->f_mapping);
1183
}
1184
1185
/*
1186
* We account for memory if it's a private writeable mapping,
1187
* not hugepages and VM_NORESERVE wasn't set.
1188
*/
1189
static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1190
{
1191
/*
1192
* hugetlb has its own accounting separate from the core VM
1193
* VM_HUGETLB may not be set yet so we cannot check for that flag.
1194
*/
1195
if (file && is_file_hugepages(file))
1196
return 0;
1197
1198
return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1199
}
1200
1201
unsigned long mmap_region(struct file *file, unsigned long addr,
1202
unsigned long len, unsigned long flags,
1203
vm_flags_t vm_flags, unsigned long pgoff)
1204
{
1205
struct mm_struct *mm = current->mm;
1206
struct vm_area_struct *vma, *prev;
1207
int correct_wcount = 0;
1208
int error;
1209
struct rb_node **rb_link, *rb_parent;
1210
unsigned long charged = 0;
1211
struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
1212
1213
/* Clear old maps */
1214
error = -ENOMEM;
1215
munmap_back:
1216
vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1217
if (vma && vma->vm_start < addr + len) {
1218
if (do_munmap(mm, addr, len))
1219
return -ENOMEM;
1220
goto munmap_back;
1221
}
1222
1223
/* Check against address space limit. */
1224
if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1225
return -ENOMEM;
1226
1227
/*
1228
* Set 'VM_NORESERVE' if we should not account for the
1229
* memory use of this mapping.
1230
*/
1231
if ((flags & MAP_NORESERVE)) {
1232
/* We honor MAP_NORESERVE if allowed to overcommit */
1233
if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1234
vm_flags |= VM_NORESERVE;
1235
1236
/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1237
if (file && is_file_hugepages(file))
1238
vm_flags |= VM_NORESERVE;
1239
}
1240
1241
/*
1242
* Private writable mapping: check memory availability
1243
*/
1244
if (accountable_mapping(file, vm_flags)) {
1245
charged = len >> PAGE_SHIFT;
1246
if (security_vm_enough_memory(charged))
1247
return -ENOMEM;
1248
vm_flags |= VM_ACCOUNT;
1249
}
1250
1251
/*
1252
* Can we just expand an old mapping?
1253
*/
1254
vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1255
if (vma)
1256
goto out;
1257
1258
/*
1259
* Determine the object being mapped and call the appropriate
1260
* specific mapper. the address has already been validated, but
1261
* not unmapped, but the maps are removed from the list.
1262
*/
1263
vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1264
if (!vma) {
1265
error = -ENOMEM;
1266
goto unacct_error;
1267
}
1268
1269
vma->vm_mm = mm;
1270
vma->vm_start = addr;
1271
vma->vm_end = addr + len;
1272
vma->vm_flags = vm_flags;
1273
vma->vm_page_prot = vm_get_page_prot(vm_flags);
1274
vma->vm_pgoff = pgoff;
1275
INIT_LIST_HEAD(&vma->anon_vma_chain);
1276
1277
if (file) {
1278
error = -EINVAL;
1279
if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1280
goto free_vma;
1281
if (vm_flags & VM_DENYWRITE) {
1282
error = deny_write_access(file);
1283
if (error)
1284
goto free_vma;
1285
correct_wcount = 1;
1286
}
1287
vma->vm_file = file;
1288
get_file(file);
1289
error = file->f_op->mmap(file, vma);
1290
if (error)
1291
goto unmap_and_free_vma;
1292
if (vm_flags & VM_EXECUTABLE)
1293
added_exe_file_vma(mm);
1294
1295
/* Can addr have changed??
1296
*
1297
* Answer: Yes, several device drivers can do it in their
1298
* f_op->mmap method. -DaveM
1299
*/
1300
addr = vma->vm_start;
1301
pgoff = vma->vm_pgoff;
1302
vm_flags = vma->vm_flags;
1303
} else if (vm_flags & VM_SHARED) {
1304
error = shmem_zero_setup(vma);
1305
if (error)
1306
goto free_vma;
1307
}
1308
1309
if (vma_wants_writenotify(vma)) {
1310
pgprot_t pprot = vma->vm_page_prot;
1311
1312
/* Can vma->vm_page_prot have changed??
1313
*
1314
* Answer: Yes, drivers may have changed it in their
1315
* f_op->mmap method.
1316
*
1317
* Ensures that vmas marked as uncached stay that way.
1318
*/
1319
vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1320
if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1321
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1322
}
1323
1324
vma_link(mm, vma, prev, rb_link, rb_parent);
1325
file = vma->vm_file;
1326
1327
/* Once vma denies write, undo our temporary denial count */
1328
if (correct_wcount)
1329
atomic_inc(&inode->i_writecount);
1330
out:
1331
perf_event_mmap(vma);
1332
1333
mm->total_vm += len >> PAGE_SHIFT;
1334
vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1335
if (vm_flags & VM_LOCKED) {
1336
if (!mlock_vma_pages_range(vma, addr, addr + len))
1337
mm->locked_vm += (len >> PAGE_SHIFT);
1338
} else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1339
make_pages_present(addr, addr + len);
1340
return addr;
1341
1342
unmap_and_free_vma:
1343
if (correct_wcount)
1344
atomic_inc(&inode->i_writecount);
1345
vma->vm_file = NULL;
1346
fput(file);
1347
1348
/* Undo any partial mapping done by a device driver. */
1349
unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1350
charged = 0;
1351
free_vma:
1352
kmem_cache_free(vm_area_cachep, vma);
1353
unacct_error:
1354
if (charged)
1355
vm_unacct_memory(charged);
1356
return error;
1357
}
1358
1359
/* Get an address range which is currently unmapped.
1360
* For shmat() with addr=0.
1361
*
1362
* Ugly calling convention alert:
1363
* Return value with the low bits set means error value,
1364
* ie
1365
* if (ret & ~PAGE_MASK)
1366
* error = ret;
1367
*
1368
* This function "knows" that -ENOMEM has the bits set.
1369
*/
1370
#ifndef HAVE_ARCH_UNMAPPED_AREA
1371
unsigned long
1372
arch_get_unmapped_area(struct file *filp, unsigned long addr,
1373
unsigned long len, unsigned long pgoff, unsigned long flags)
1374
{
1375
struct mm_struct *mm = current->mm;
1376
struct vm_area_struct *vma;
1377
unsigned long start_addr;
1378
1379
if (len > TASK_SIZE)
1380
return -ENOMEM;
1381
1382
if (flags & MAP_FIXED)
1383
return addr;
1384
1385
if (addr) {
1386
addr = PAGE_ALIGN(addr);
1387
vma = find_vma(mm, addr);
1388
if (TASK_SIZE - len >= addr &&
1389
(!vma || addr + len <= vma->vm_start))
1390
return addr;
1391
}
1392
if (len > mm->cached_hole_size) {
1393
start_addr = addr = mm->free_area_cache;
1394
} else {
1395
start_addr = addr = TASK_UNMAPPED_BASE;
1396
mm->cached_hole_size = 0;
1397
}
1398
1399
full_search:
1400
for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1401
/* At this point: (!vma || addr < vma->vm_end). */
1402
if (TASK_SIZE - len < addr) {
1403
/*
1404
* Start a new search - just in case we missed
1405
* some holes.
1406
*/
1407
if (start_addr != TASK_UNMAPPED_BASE) {
1408
addr = TASK_UNMAPPED_BASE;
1409
start_addr = addr;
1410
mm->cached_hole_size = 0;
1411
goto full_search;
1412
}
1413
return -ENOMEM;
1414
}
1415
if (!vma || addr + len <= vma->vm_start) {
1416
/*
1417
* Remember the place where we stopped the search:
1418
*/
1419
mm->free_area_cache = addr + len;
1420
return addr;
1421
}
1422
if (addr + mm->cached_hole_size < vma->vm_start)
1423
mm->cached_hole_size = vma->vm_start - addr;
1424
addr = vma->vm_end;
1425
}
1426
}
1427
#endif
1428
1429
void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1430
{
1431
/*
1432
* Is this a new hole at the lowest possible address?
1433
*/
1434
if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1435
mm->free_area_cache = addr;
1436
mm->cached_hole_size = ~0UL;
1437
}
1438
}
1439
1440
/*
1441
* This mmap-allocator allocates new areas top-down from below the
1442
* stack's low limit (the base):
1443
*/
1444
#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1445
unsigned long
1446
arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1447
const unsigned long len, const unsigned long pgoff,
1448
const unsigned long flags)
1449
{
1450
struct vm_area_struct *vma;
1451
struct mm_struct *mm = current->mm;
1452
unsigned long addr = addr0;
1453
1454
/* requested length too big for entire address space */
1455
if (len > TASK_SIZE)
1456
return -ENOMEM;
1457
1458
if (flags & MAP_FIXED)
1459
return addr;
1460
1461
/* requesting a specific address */
1462
if (addr) {
1463
addr = PAGE_ALIGN(addr);
1464
vma = find_vma(mm, addr);
1465
if (TASK_SIZE - len >= addr &&
1466
(!vma || addr + len <= vma->vm_start))
1467
return addr;
1468
}
1469
1470
/* check if free_area_cache is useful for us */
1471
if (len <= mm->cached_hole_size) {
1472
mm->cached_hole_size = 0;
1473
mm->free_area_cache = mm->mmap_base;
1474
}
1475
1476
/* either no address requested or can't fit in requested address hole */
1477
addr = mm->free_area_cache;
1478
1479
/* make sure it can fit in the remaining address space */
1480
if (addr > len) {
1481
vma = find_vma(mm, addr-len);
1482
if (!vma || addr <= vma->vm_start)
1483
/* remember the address as a hint for next time */
1484
return (mm->free_area_cache = addr-len);
1485
}
1486
1487
if (mm->mmap_base < len)
1488
goto bottomup;
1489
1490
addr = mm->mmap_base-len;
1491
1492
do {
1493
/*
1494
* Lookup failure means no vma is above this address,
1495
* else if new region fits below vma->vm_start,
1496
* return with success:
1497
*/
1498
vma = find_vma(mm, addr);
1499
if (!vma || addr+len <= vma->vm_start)
1500
/* remember the address as a hint for next time */
1501
return (mm->free_area_cache = addr);
1502
1503
/* remember the largest hole we saw so far */
1504
if (addr + mm->cached_hole_size < vma->vm_start)
1505
mm->cached_hole_size = vma->vm_start - addr;
1506
1507
/* try just below the current vma->vm_start */
1508
addr = vma->vm_start-len;
1509
} while (len < vma->vm_start);
1510
1511
bottomup:
1512
/*
1513
* A failed mmap() very likely causes application failure,
1514
* so fall back to the bottom-up function here. This scenario
1515
* can happen with large stack limits and large mmap()
1516
* allocations.
1517
*/
1518
mm->cached_hole_size = ~0UL;
1519
mm->free_area_cache = TASK_UNMAPPED_BASE;
1520
addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1521
/*
1522
* Restore the topdown base:
1523
*/
1524
mm->free_area_cache = mm->mmap_base;
1525
mm->cached_hole_size = ~0UL;
1526
1527
return addr;
1528
}
1529
#endif
1530
1531
void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1532
{
1533
/*
1534
* Is this a new hole at the highest possible address?
1535
*/
1536
if (addr > mm->free_area_cache)
1537
mm->free_area_cache = addr;
1538
1539
/* dont allow allocations above current base */
1540
if (mm->free_area_cache > mm->mmap_base)
1541
mm->free_area_cache = mm->mmap_base;
1542
}
1543
1544
unsigned long
1545
get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1546
unsigned long pgoff, unsigned long flags)
1547
{
1548
unsigned long (*get_area)(struct file *, unsigned long,
1549
unsigned long, unsigned long, unsigned long);
1550
1551
unsigned long error = arch_mmap_check(addr, len, flags);
1552
if (error)
1553
return error;
1554
1555
/* Careful about overflows.. */
1556
if (len > TASK_SIZE)
1557
return -ENOMEM;
1558
1559
get_area = current->mm->get_unmapped_area;
1560
if (file && file->f_op && file->f_op->get_unmapped_area)
1561
get_area = file->f_op->get_unmapped_area;
1562
addr = get_area(file, addr, len, pgoff, flags);
1563
if (IS_ERR_VALUE(addr))
1564
return addr;
1565
1566
if (addr > TASK_SIZE - len)
1567
return -ENOMEM;
1568
if (addr & ~PAGE_MASK)
1569
return -EINVAL;
1570
1571
return arch_rebalance_pgtables(addr, len);
1572
}
1573
1574
EXPORT_SYMBOL(get_unmapped_area);
1575
1576
/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1577
struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1578
{
1579
struct vm_area_struct *vma = NULL;
1580
1581
if (mm) {
1582
/* Check the cache first. */
1583
/* (Cache hit rate is typically around 35%.) */
1584
vma = mm->mmap_cache;
1585
if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1586
struct rb_node * rb_node;
1587
1588
rb_node = mm->mm_rb.rb_node;
1589
vma = NULL;
1590
1591
while (rb_node) {
1592
struct vm_area_struct * vma_tmp;
1593
1594
vma_tmp = rb_entry(rb_node,
1595
struct vm_area_struct, vm_rb);
1596
1597
if (vma_tmp->vm_end > addr) {
1598
vma = vma_tmp;
1599
if (vma_tmp->vm_start <= addr)
1600
break;
1601
rb_node = rb_node->rb_left;
1602
} else
1603
rb_node = rb_node->rb_right;
1604
}
1605
if (vma)
1606
mm->mmap_cache = vma;
1607
}
1608
}
1609
return vma;
1610
}
1611
1612
EXPORT_SYMBOL(find_vma);
1613
1614
/* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1615
struct vm_area_struct *
1616
find_vma_prev(struct mm_struct *mm, unsigned long addr,
1617
struct vm_area_struct **pprev)
1618
{
1619
struct vm_area_struct *vma = NULL, *prev = NULL;
1620
struct rb_node *rb_node;
1621
if (!mm)
1622
goto out;
1623
1624
/* Guard against addr being lower than the first VMA */
1625
vma = mm->mmap;
1626
1627
/* Go through the RB tree quickly. */
1628
rb_node = mm->mm_rb.rb_node;
1629
1630
while (rb_node) {
1631
struct vm_area_struct *vma_tmp;
1632
vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1633
1634
if (addr < vma_tmp->vm_end) {
1635
rb_node = rb_node->rb_left;
1636
} else {
1637
prev = vma_tmp;
1638
if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1639
break;
1640
rb_node = rb_node->rb_right;
1641
}
1642
}
1643
1644
out:
1645
*pprev = prev;
1646
return prev ? prev->vm_next : vma;
1647
}
1648
1649
/*
1650
* Verify that the stack growth is acceptable and
1651
* update accounting. This is shared with both the
1652
* grow-up and grow-down cases.
1653
*/
1654
static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1655
{
1656
struct mm_struct *mm = vma->vm_mm;
1657
struct rlimit *rlim = current->signal->rlim;
1658
unsigned long new_start;
1659
1660
/* address space limit tests */
1661
if (!may_expand_vm(mm, grow))
1662
return -ENOMEM;
1663
1664
/* Stack limit test */
1665
if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1666
return -ENOMEM;
1667
1668
/* mlock limit tests */
1669
if (vma->vm_flags & VM_LOCKED) {
1670
unsigned long locked;
1671
unsigned long limit;
1672
locked = mm->locked_vm + grow;
1673
limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1674
limit >>= PAGE_SHIFT;
1675
if (locked > limit && !capable(CAP_IPC_LOCK))
1676
return -ENOMEM;
1677
}
1678
1679
/* Check to ensure the stack will not grow into a hugetlb-only region */
1680
new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1681
vma->vm_end - size;
1682
if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1683
return -EFAULT;
1684
1685
/*
1686
* Overcommit.. This must be the final test, as it will
1687
* update security statistics.
1688
*/
1689
if (security_vm_enough_memory_mm(mm, grow))
1690
return -ENOMEM;
1691
1692
/* Ok, everything looks good - let it rip */
1693
mm->total_vm += grow;
1694
if (vma->vm_flags & VM_LOCKED)
1695
mm->locked_vm += grow;
1696
vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1697
return 0;
1698
}
1699
1700
#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1701
/*
1702
* PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1703
* vma is the last one with address > vma->vm_end. Have to extend vma.
1704
*/
1705
int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1706
{
1707
int error;
1708
1709
if (!(vma->vm_flags & VM_GROWSUP))
1710
return -EFAULT;
1711
1712
/*
1713
* We must make sure the anon_vma is allocated
1714
* so that the anon_vma locking is not a noop.
1715
*/
1716
if (unlikely(anon_vma_prepare(vma)))
1717
return -ENOMEM;
1718
vma_lock_anon_vma(vma);
1719
1720
/*
1721
* vma->vm_start/vm_end cannot change under us because the caller
1722
* is required to hold the mmap_sem in read mode. We need the
1723
* anon_vma lock to serialize against concurrent expand_stacks.
1724
* Also guard against wrapping around to address 0.
1725
*/
1726
if (address < PAGE_ALIGN(address+4))
1727
address = PAGE_ALIGN(address+4);
1728
else {
1729
vma_unlock_anon_vma(vma);
1730
return -ENOMEM;
1731
}
1732
error = 0;
1733
1734
/* Somebody else might have raced and expanded it already */
1735
if (address > vma->vm_end) {
1736
unsigned long size, grow;
1737
1738
size = address - vma->vm_start;
1739
grow = (address - vma->vm_end) >> PAGE_SHIFT;
1740
1741
error = -ENOMEM;
1742
if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1743
error = acct_stack_growth(vma, size, grow);
1744
if (!error) {
1745
vma->vm_end = address;
1746
perf_event_mmap(vma);
1747
}
1748
}
1749
}
1750
vma_unlock_anon_vma(vma);
1751
khugepaged_enter_vma_merge(vma);
1752
return error;
1753
}
1754
#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1755
1756
/*
1757
* vma is the first one with address < vma->vm_start. Have to extend vma.
1758
*/
1759
int expand_downwards(struct vm_area_struct *vma,
1760
unsigned long address)
1761
{
1762
int error;
1763
1764
/*
1765
* We must make sure the anon_vma is allocated
1766
* so that the anon_vma locking is not a noop.
1767
*/
1768
if (unlikely(anon_vma_prepare(vma)))
1769
return -ENOMEM;
1770
1771
address &= PAGE_MASK;
1772
error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1773
if (error)
1774
return error;
1775
1776
vma_lock_anon_vma(vma);
1777
1778
/*
1779
* vma->vm_start/vm_end cannot change under us because the caller
1780
* is required to hold the mmap_sem in read mode. We need the
1781
* anon_vma lock to serialize against concurrent expand_stacks.
1782
*/
1783
1784
/* Somebody else might have raced and expanded it already */
1785
if (address < vma->vm_start) {
1786
unsigned long size, grow;
1787
1788
size = vma->vm_end - address;
1789
grow = (vma->vm_start - address) >> PAGE_SHIFT;
1790
1791
error = -ENOMEM;
1792
if (grow <= vma->vm_pgoff) {
1793
error = acct_stack_growth(vma, size, grow);
1794
if (!error) {
1795
vma->vm_start = address;
1796
vma->vm_pgoff -= grow;
1797
perf_event_mmap(vma);
1798
}
1799
}
1800
}
1801
vma_unlock_anon_vma(vma);
1802
khugepaged_enter_vma_merge(vma);
1803
return error;
1804
}
1805
1806
#ifdef CONFIG_STACK_GROWSUP
1807
int expand_stack(struct vm_area_struct *vma, unsigned long address)
1808
{
1809
return expand_upwards(vma, address);
1810
}
1811
1812
struct vm_area_struct *
1813
find_extend_vma(struct mm_struct *mm, unsigned long addr)
1814
{
1815
struct vm_area_struct *vma, *prev;
1816
1817
addr &= PAGE_MASK;
1818
vma = find_vma_prev(mm, addr, &prev);
1819
if (vma && (vma->vm_start <= addr))
1820
return vma;
1821
if (!prev || expand_stack(prev, addr))
1822
return NULL;
1823
if (prev->vm_flags & VM_LOCKED) {
1824
mlock_vma_pages_range(prev, addr, prev->vm_end);
1825
}
1826
return prev;
1827
}
1828
#else
1829
int expand_stack(struct vm_area_struct *vma, unsigned long address)
1830
{
1831
return expand_downwards(vma, address);
1832
}
1833
1834
struct vm_area_struct *
1835
find_extend_vma(struct mm_struct * mm, unsigned long addr)
1836
{
1837
struct vm_area_struct * vma;
1838
unsigned long start;
1839
1840
addr &= PAGE_MASK;
1841
vma = find_vma(mm,addr);
1842
if (!vma)
1843
return NULL;
1844
if (vma->vm_start <= addr)
1845
return vma;
1846
if (!(vma->vm_flags & VM_GROWSDOWN))
1847
return NULL;
1848
start = vma->vm_start;
1849
if (expand_stack(vma, addr))
1850
return NULL;
1851
if (vma->vm_flags & VM_LOCKED) {
1852
mlock_vma_pages_range(vma, addr, start);
1853
}
1854
return vma;
1855
}
1856
#endif
1857
1858
/*
1859
* Ok - we have the memory areas we should free on the vma list,
1860
* so release them, and do the vma updates.
1861
*
1862
* Called with the mm semaphore held.
1863
*/
1864
static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1865
{
1866
/* Update high watermark before we lower total_vm */
1867
update_hiwater_vm(mm);
1868
do {
1869
long nrpages = vma_pages(vma);
1870
1871
mm->total_vm -= nrpages;
1872
vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1873
vma = remove_vma(vma);
1874
} while (vma);
1875
validate_mm(mm);
1876
}
1877
1878
/*
1879
* Get rid of page table information in the indicated region.
1880
*
1881
* Called with the mm semaphore held.
1882
*/
1883
static void unmap_region(struct mm_struct *mm,
1884
struct vm_area_struct *vma, struct vm_area_struct *prev,
1885
unsigned long start, unsigned long end)
1886
{
1887
struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1888
struct mmu_gather tlb;
1889
unsigned long nr_accounted = 0;
1890
1891
lru_add_drain();
1892
tlb_gather_mmu(&tlb, mm, 0);
1893
update_hiwater_rss(mm);
1894
unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1895
vm_unacct_memory(nr_accounted);
1896
free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1897
next ? next->vm_start : 0);
1898
tlb_finish_mmu(&tlb, start, end);
1899
}
1900
1901
/*
1902
* Create a list of vma's touched by the unmap, removing them from the mm's
1903
* vma list as we go..
1904
*/
1905
static void
1906
detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1907
struct vm_area_struct *prev, unsigned long end)
1908
{
1909
struct vm_area_struct **insertion_point;
1910
struct vm_area_struct *tail_vma = NULL;
1911
unsigned long addr;
1912
1913
insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1914
vma->vm_prev = NULL;
1915
do {
1916
rb_erase(&vma->vm_rb, &mm->mm_rb);
1917
mm->map_count--;
1918
tail_vma = vma;
1919
vma = vma->vm_next;
1920
} while (vma && vma->vm_start < end);
1921
*insertion_point = vma;
1922
if (vma)
1923
vma->vm_prev = prev;
1924
tail_vma->vm_next = NULL;
1925
if (mm->unmap_area == arch_unmap_area)
1926
addr = prev ? prev->vm_end : mm->mmap_base;
1927
else
1928
addr = vma ? vma->vm_start : mm->mmap_base;
1929
mm->unmap_area(mm, addr);
1930
mm->mmap_cache = NULL; /* Kill the cache. */
1931
}
1932
1933
/*
1934
* __split_vma() bypasses sysctl_max_map_count checking. We use this on the
1935
* munmap path where it doesn't make sense to fail.
1936
*/
1937
static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1938
unsigned long addr, int new_below)
1939
{
1940
struct mempolicy *pol;
1941
struct vm_area_struct *new;
1942
int err = -ENOMEM;
1943
1944
if (is_vm_hugetlb_page(vma) && (addr &
1945
~(huge_page_mask(hstate_vma(vma)))))
1946
return -EINVAL;
1947
1948
new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1949
if (!new)
1950
goto out_err;
1951
1952
/* most fields are the same, copy all, and then fixup */
1953
*new = *vma;
1954
1955
INIT_LIST_HEAD(&new->anon_vma_chain);
1956
1957
if (new_below)
1958
new->vm_end = addr;
1959
else {
1960
new->vm_start = addr;
1961
new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1962
}
1963
1964
pol = mpol_dup(vma_policy(vma));
1965
if (IS_ERR(pol)) {
1966
err = PTR_ERR(pol);
1967
goto out_free_vma;
1968
}
1969
vma_set_policy(new, pol);
1970
1971
if (anon_vma_clone(new, vma))
1972
goto out_free_mpol;
1973
1974
if (new->vm_file) {
1975
get_file(new->vm_file);
1976
if (vma->vm_flags & VM_EXECUTABLE)
1977
added_exe_file_vma(mm);
1978
}
1979
1980
if (new->vm_ops && new->vm_ops->open)
1981
new->vm_ops->open(new);
1982
1983
if (new_below)
1984
err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1985
((addr - new->vm_start) >> PAGE_SHIFT), new);
1986
else
1987
err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1988
1989
/* Success. */
1990
if (!err)
1991
return 0;
1992
1993
/* Clean everything up if vma_adjust failed. */
1994
if (new->vm_ops && new->vm_ops->close)
1995
new->vm_ops->close(new);
1996
if (new->vm_file) {
1997
if (vma->vm_flags & VM_EXECUTABLE)
1998
removed_exe_file_vma(mm);
1999
fput(new->vm_file);
2000
}
2001
unlink_anon_vmas(new);
2002
out_free_mpol:
2003
mpol_put(pol);
2004
out_free_vma:
2005
kmem_cache_free(vm_area_cachep, new);
2006
out_err:
2007
return err;
2008
}
2009
2010
/*
2011
* Split a vma into two pieces at address 'addr', a new vma is allocated
2012
* either for the first part or the tail.
2013
*/
2014
int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2015
unsigned long addr, int new_below)
2016
{
2017
if (mm->map_count >= sysctl_max_map_count)
2018
return -ENOMEM;
2019
2020
return __split_vma(mm, vma, addr, new_below);
2021
}
2022
2023
/* Munmap is split into 2 main parts -- this part which finds
2024
* what needs doing, and the areas themselves, which do the
2025
* work. This now handles partial unmappings.
2026
* Jeremy Fitzhardinge <[email protected]>
2027
*/
2028
int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2029
{
2030
unsigned long end;
2031
struct vm_area_struct *vma, *prev, *last;
2032
2033
if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2034
return -EINVAL;
2035
2036
if ((len = PAGE_ALIGN(len)) == 0)
2037
return -EINVAL;
2038
2039
/* Find the first overlapping VMA */
2040
vma = find_vma(mm, start);
2041
if (!vma)
2042
return 0;
2043
prev = vma->vm_prev;
2044
/* we have start < vma->vm_end */
2045
2046
/* if it doesn't overlap, we have nothing.. */
2047
end = start + len;
2048
if (vma->vm_start >= end)
2049
return 0;
2050
2051
/*
2052
* If we need to split any vma, do it now to save pain later.
2053
*
2054
* Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2055
* unmapped vm_area_struct will remain in use: so lower split_vma
2056
* places tmp vma above, and higher split_vma places tmp vma below.
2057
*/
2058
if (start > vma->vm_start) {
2059
int error;
2060
2061
/*
2062
* Make sure that map_count on return from munmap() will
2063
* not exceed its limit; but let map_count go just above
2064
* its limit temporarily, to help free resources as expected.
2065
*/
2066
if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2067
return -ENOMEM;
2068
2069
error = __split_vma(mm, vma, start, 0);
2070
if (error)
2071
return error;
2072
prev = vma;
2073
}
2074
2075
/* Does it split the last one? */
2076
last = find_vma(mm, end);
2077
if (last && end > last->vm_start) {
2078
int error = __split_vma(mm, last, end, 1);
2079
if (error)
2080
return error;
2081
}
2082
vma = prev? prev->vm_next: mm->mmap;
2083
2084
/*
2085
* unlock any mlock()ed ranges before detaching vmas
2086
*/
2087
if (mm->locked_vm) {
2088
struct vm_area_struct *tmp = vma;
2089
while (tmp && tmp->vm_start < end) {
2090
if (tmp->vm_flags & VM_LOCKED) {
2091
mm->locked_vm -= vma_pages(tmp);
2092
munlock_vma_pages_all(tmp);
2093
}
2094
tmp = tmp->vm_next;
2095
}
2096
}
2097
2098
/*
2099
* Remove the vma's, and unmap the actual pages
2100
*/
2101
detach_vmas_to_be_unmapped(mm, vma, prev, end);
2102
unmap_region(mm, vma, prev, start, end);
2103
2104
/* Fix up all other VM information */
2105
remove_vma_list(mm, vma);
2106
2107
return 0;
2108
}
2109
2110
EXPORT_SYMBOL(do_munmap);
2111
2112
SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2113
{
2114
int ret;
2115
struct mm_struct *mm = current->mm;
2116
2117
profile_munmap(addr);
2118
2119
down_write(&mm->mmap_sem);
2120
ret = do_munmap(mm, addr, len);
2121
up_write(&mm->mmap_sem);
2122
return ret;
2123
}
2124
2125
static inline void verify_mm_writelocked(struct mm_struct *mm)
2126
{
2127
#ifdef CONFIG_DEBUG_VM
2128
if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2129
WARN_ON(1);
2130
up_read(&mm->mmap_sem);
2131
}
2132
#endif
2133
}
2134
2135
/*
2136
* this is really a simplified "do_mmap". it only handles
2137
* anonymous maps. eventually we may be able to do some
2138
* brk-specific accounting here.
2139
*/
2140
unsigned long do_brk(unsigned long addr, unsigned long len)
2141
{
2142
struct mm_struct * mm = current->mm;
2143
struct vm_area_struct * vma, * prev;
2144
unsigned long flags;
2145
struct rb_node ** rb_link, * rb_parent;
2146
pgoff_t pgoff = addr >> PAGE_SHIFT;
2147
int error;
2148
2149
len = PAGE_ALIGN(len);
2150
if (!len)
2151
return addr;
2152
2153
error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2154
if (error)
2155
return error;
2156
2157
flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2158
2159
error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2160
if (error & ~PAGE_MASK)
2161
return error;
2162
2163
/*
2164
* mlock MCL_FUTURE?
2165
*/
2166
if (mm->def_flags & VM_LOCKED) {
2167
unsigned long locked, lock_limit;
2168
locked = len >> PAGE_SHIFT;
2169
locked += mm->locked_vm;
2170
lock_limit = rlimit(RLIMIT_MEMLOCK);
2171
lock_limit >>= PAGE_SHIFT;
2172
if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2173
return -EAGAIN;
2174
}
2175
2176
/*
2177
* mm->mmap_sem is required to protect against another thread
2178
* changing the mappings in case we sleep.
2179
*/
2180
verify_mm_writelocked(mm);
2181
2182
/*
2183
* Clear old maps. this also does some error checking for us
2184
*/
2185
munmap_back:
2186
vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2187
if (vma && vma->vm_start < addr + len) {
2188
if (do_munmap(mm, addr, len))
2189
return -ENOMEM;
2190
goto munmap_back;
2191
}
2192
2193
/* Check against address space limits *after* clearing old maps... */
2194
if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2195
return -ENOMEM;
2196
2197
if (mm->map_count > sysctl_max_map_count)
2198
return -ENOMEM;
2199
2200
if (security_vm_enough_memory(len >> PAGE_SHIFT))
2201
return -ENOMEM;
2202
2203
/* Can we just expand an old private anonymous mapping? */
2204
vma = vma_merge(mm, prev, addr, addr + len, flags,
2205
NULL, NULL, pgoff, NULL);
2206
if (vma)
2207
goto out;
2208
2209
/*
2210
* create a vma struct for an anonymous mapping
2211
*/
2212
vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2213
if (!vma) {
2214
vm_unacct_memory(len >> PAGE_SHIFT);
2215
return -ENOMEM;
2216
}
2217
2218
INIT_LIST_HEAD(&vma->anon_vma_chain);
2219
vma->vm_mm = mm;
2220
vma->vm_start = addr;
2221
vma->vm_end = addr + len;
2222
vma->vm_pgoff = pgoff;
2223
vma->vm_flags = flags;
2224
vma->vm_page_prot = vm_get_page_prot(flags);
2225
vma_link(mm, vma, prev, rb_link, rb_parent);
2226
out:
2227
perf_event_mmap(vma);
2228
mm->total_vm += len >> PAGE_SHIFT;
2229
if (flags & VM_LOCKED) {
2230
if (!mlock_vma_pages_range(vma, addr, addr + len))
2231
mm->locked_vm += (len >> PAGE_SHIFT);
2232
}
2233
return addr;
2234
}
2235
2236
EXPORT_SYMBOL(do_brk);
2237
2238
/* Release all mmaps. */
2239
void exit_mmap(struct mm_struct *mm)
2240
{
2241
struct mmu_gather tlb;
2242
struct vm_area_struct *vma;
2243
unsigned long nr_accounted = 0;
2244
unsigned long end;
2245
2246
/* mm's last user has gone, and its about to be pulled down */
2247
mmu_notifier_release(mm);
2248
2249
if (mm->locked_vm) {
2250
vma = mm->mmap;
2251
while (vma) {
2252
if (vma->vm_flags & VM_LOCKED)
2253
munlock_vma_pages_all(vma);
2254
vma = vma->vm_next;
2255
}
2256
}
2257
2258
arch_exit_mmap(mm);
2259
2260
vma = mm->mmap;
2261
if (!vma) /* Can happen if dup_mmap() received an OOM */
2262
return;
2263
2264
lru_add_drain();
2265
flush_cache_mm(mm);
2266
tlb_gather_mmu(&tlb, mm, 1);
2267
/* update_hiwater_rss(mm) here? but nobody should be looking */
2268
/* Use -1 here to ensure all VMAs in the mm are unmapped */
2269
end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2270
vm_unacct_memory(nr_accounted);
2271
2272
free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2273
tlb_finish_mmu(&tlb, 0, end);
2274
2275
/*
2276
* Walk the list again, actually closing and freeing it,
2277
* with preemption enabled, without holding any MM locks.
2278
*/
2279
while (vma)
2280
vma = remove_vma(vma);
2281
2282
BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2283
}
2284
2285
/* Insert vm structure into process list sorted by address
2286
* and into the inode's i_mmap tree. If vm_file is non-NULL
2287
* then i_mmap_mutex is taken here.
2288
*/
2289
int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2290
{
2291
struct vm_area_struct * __vma, * prev;
2292
struct rb_node ** rb_link, * rb_parent;
2293
2294
/*
2295
* The vm_pgoff of a purely anonymous vma should be irrelevant
2296
* until its first write fault, when page's anon_vma and index
2297
* are set. But now set the vm_pgoff it will almost certainly
2298
* end up with (unless mremap moves it elsewhere before that
2299
* first wfault), so /proc/pid/maps tells a consistent story.
2300
*
2301
* By setting it to reflect the virtual start address of the
2302
* vma, merges and splits can happen in a seamless way, just
2303
* using the existing file pgoff checks and manipulations.
2304
* Similarly in do_mmap_pgoff and in do_brk.
2305
*/
2306
if (!vma->vm_file) {
2307
BUG_ON(vma->anon_vma);
2308
vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2309
}
2310
__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2311
if (__vma && __vma->vm_start < vma->vm_end)
2312
return -ENOMEM;
2313
if ((vma->vm_flags & VM_ACCOUNT) &&
2314
security_vm_enough_memory_mm(mm, vma_pages(vma)))
2315
return -ENOMEM;
2316
vma_link(mm, vma, prev, rb_link, rb_parent);
2317
return 0;
2318
}
2319
2320
/*
2321
* Copy the vma structure to a new location in the same mm,
2322
* prior to moving page table entries, to effect an mremap move.
2323
*/
2324
struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2325
unsigned long addr, unsigned long len, pgoff_t pgoff)
2326
{
2327
struct vm_area_struct *vma = *vmap;
2328
unsigned long vma_start = vma->vm_start;
2329
struct mm_struct *mm = vma->vm_mm;
2330
struct vm_area_struct *new_vma, *prev;
2331
struct rb_node **rb_link, *rb_parent;
2332
struct mempolicy *pol;
2333
2334
/*
2335
* If anonymous vma has not yet been faulted, update new pgoff
2336
* to match new location, to increase its chance of merging.
2337
*/
2338
if (!vma->vm_file && !vma->anon_vma)
2339
pgoff = addr >> PAGE_SHIFT;
2340
2341
find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2342
new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2343
vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2344
if (new_vma) {
2345
/*
2346
* Source vma may have been merged into new_vma
2347
*/
2348
if (vma_start >= new_vma->vm_start &&
2349
vma_start < new_vma->vm_end)
2350
*vmap = new_vma;
2351
} else {
2352
new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2353
if (new_vma) {
2354
*new_vma = *vma;
2355
pol = mpol_dup(vma_policy(vma));
2356
if (IS_ERR(pol))
2357
goto out_free_vma;
2358
INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2359
if (anon_vma_clone(new_vma, vma))
2360
goto out_free_mempol;
2361
vma_set_policy(new_vma, pol);
2362
new_vma->vm_start = addr;
2363
new_vma->vm_end = addr + len;
2364
new_vma->vm_pgoff = pgoff;
2365
if (new_vma->vm_file) {
2366
get_file(new_vma->vm_file);
2367
if (vma->vm_flags & VM_EXECUTABLE)
2368
added_exe_file_vma(mm);
2369
}
2370
if (new_vma->vm_ops && new_vma->vm_ops->open)
2371
new_vma->vm_ops->open(new_vma);
2372
vma_link(mm, new_vma, prev, rb_link, rb_parent);
2373
}
2374
}
2375
return new_vma;
2376
2377
out_free_mempol:
2378
mpol_put(pol);
2379
out_free_vma:
2380
kmem_cache_free(vm_area_cachep, new_vma);
2381
return NULL;
2382
}
2383
2384
/*
2385
* Return true if the calling process may expand its vm space by the passed
2386
* number of pages
2387
*/
2388
int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2389
{
2390
unsigned long cur = mm->total_vm; /* pages */
2391
unsigned long lim;
2392
2393
lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2394
2395
if (cur + npages > lim)
2396
return 0;
2397
return 1;
2398
}
2399
2400
2401
static int special_mapping_fault(struct vm_area_struct *vma,
2402
struct vm_fault *vmf)
2403
{
2404
pgoff_t pgoff;
2405
struct page **pages;
2406
2407
/*
2408
* special mappings have no vm_file, and in that case, the mm
2409
* uses vm_pgoff internally. So we have to subtract it from here.
2410
* We are allowed to do this because we are the mm; do not copy
2411
* this code into drivers!
2412
*/
2413
pgoff = vmf->pgoff - vma->vm_pgoff;
2414
2415
for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2416
pgoff--;
2417
2418
if (*pages) {
2419
struct page *page = *pages;
2420
get_page(page);
2421
vmf->page = page;
2422
return 0;
2423
}
2424
2425
return VM_FAULT_SIGBUS;
2426
}
2427
2428
/*
2429
* Having a close hook prevents vma merging regardless of flags.
2430
*/
2431
static void special_mapping_close(struct vm_area_struct *vma)
2432
{
2433
}
2434
2435
static const struct vm_operations_struct special_mapping_vmops = {
2436
.close = special_mapping_close,
2437
.fault = special_mapping_fault,
2438
};
2439
2440
/*
2441
* Called with mm->mmap_sem held for writing.
2442
* Insert a new vma covering the given region, with the given flags.
2443
* Its pages are supplied by the given array of struct page *.
2444
* The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2445
* The region past the last page supplied will always produce SIGBUS.
2446
* The array pointer and the pages it points to are assumed to stay alive
2447
* for as long as this mapping might exist.
2448
*/
2449
int install_special_mapping(struct mm_struct *mm,
2450
unsigned long addr, unsigned long len,
2451
unsigned long vm_flags, struct page **pages)
2452
{
2453
int ret;
2454
struct vm_area_struct *vma;
2455
2456
vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2457
if (unlikely(vma == NULL))
2458
return -ENOMEM;
2459
2460
INIT_LIST_HEAD(&vma->anon_vma_chain);
2461
vma->vm_mm = mm;
2462
vma->vm_start = addr;
2463
vma->vm_end = addr + len;
2464
2465
vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2466
vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2467
2468
vma->vm_ops = &special_mapping_vmops;
2469
vma->vm_private_data = pages;
2470
2471
ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
2472
if (ret)
2473
goto out;
2474
2475
ret = insert_vm_struct(mm, vma);
2476
if (ret)
2477
goto out;
2478
2479
mm->total_vm += len >> PAGE_SHIFT;
2480
2481
perf_event_mmap(vma);
2482
2483
return 0;
2484
2485
out:
2486
kmem_cache_free(vm_area_cachep, vma);
2487
return ret;
2488
}
2489
2490
static DEFINE_MUTEX(mm_all_locks_mutex);
2491
2492
static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2493
{
2494
if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2495
/*
2496
* The LSB of head.next can't change from under us
2497
* because we hold the mm_all_locks_mutex.
2498
*/
2499
mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2500
/*
2501
* We can safely modify head.next after taking the
2502
* anon_vma->root->mutex. If some other vma in this mm shares
2503
* the same anon_vma we won't take it again.
2504
*
2505
* No need of atomic instructions here, head.next
2506
* can't change from under us thanks to the
2507
* anon_vma->root->mutex.
2508
*/
2509
if (__test_and_set_bit(0, (unsigned long *)
2510
&anon_vma->root->head.next))
2511
BUG();
2512
}
2513
}
2514
2515
static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2516
{
2517
if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2518
/*
2519
* AS_MM_ALL_LOCKS can't change from under us because
2520
* we hold the mm_all_locks_mutex.
2521
*
2522
* Operations on ->flags have to be atomic because
2523
* even if AS_MM_ALL_LOCKS is stable thanks to the
2524
* mm_all_locks_mutex, there may be other cpus
2525
* changing other bitflags in parallel to us.
2526
*/
2527
if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2528
BUG();
2529
mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2530
}
2531
}
2532
2533
/*
2534
* This operation locks against the VM for all pte/vma/mm related
2535
* operations that could ever happen on a certain mm. This includes
2536
* vmtruncate, try_to_unmap, and all page faults.
2537
*
2538
* The caller must take the mmap_sem in write mode before calling
2539
* mm_take_all_locks(). The caller isn't allowed to release the
2540
* mmap_sem until mm_drop_all_locks() returns.
2541
*
2542
* mmap_sem in write mode is required in order to block all operations
2543
* that could modify pagetables and free pages without need of
2544
* altering the vma layout (for example populate_range() with
2545
* nonlinear vmas). It's also needed in write mode to avoid new
2546
* anon_vmas to be associated with existing vmas.
2547
*
2548
* A single task can't take more than one mm_take_all_locks() in a row
2549
* or it would deadlock.
2550
*
2551
* The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2552
* mapping->flags avoid to take the same lock twice, if more than one
2553
* vma in this mm is backed by the same anon_vma or address_space.
2554
*
2555
* We can take all the locks in random order because the VM code
2556
* taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2557
* takes more than one of them in a row. Secondly we're protected
2558
* against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2559
*
2560
* mm_take_all_locks() and mm_drop_all_locks are expensive operations
2561
* that may have to take thousand of locks.
2562
*
2563
* mm_take_all_locks() can fail if it's interrupted by signals.
2564
*/
2565
int mm_take_all_locks(struct mm_struct *mm)
2566
{
2567
struct vm_area_struct *vma;
2568
struct anon_vma_chain *avc;
2569
int ret = -EINTR;
2570
2571
BUG_ON(down_read_trylock(&mm->mmap_sem));
2572
2573
mutex_lock(&mm_all_locks_mutex);
2574
2575
for (vma = mm->mmap; vma; vma = vma->vm_next) {
2576
if (signal_pending(current))
2577
goto out_unlock;
2578
if (vma->vm_file && vma->vm_file->f_mapping)
2579
vm_lock_mapping(mm, vma->vm_file->f_mapping);
2580
}
2581
2582
for (vma = mm->mmap; vma; vma = vma->vm_next) {
2583
if (signal_pending(current))
2584
goto out_unlock;
2585
if (vma->anon_vma)
2586
list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2587
vm_lock_anon_vma(mm, avc->anon_vma);
2588
}
2589
2590
ret = 0;
2591
2592
out_unlock:
2593
if (ret)
2594
mm_drop_all_locks(mm);
2595
2596
return ret;
2597
}
2598
2599
static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2600
{
2601
if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2602
/*
2603
* The LSB of head.next can't change to 0 from under
2604
* us because we hold the mm_all_locks_mutex.
2605
*
2606
* We must however clear the bitflag before unlocking
2607
* the vma so the users using the anon_vma->head will
2608
* never see our bitflag.
2609
*
2610
* No need of atomic instructions here, head.next
2611
* can't change from under us until we release the
2612
* anon_vma->root->mutex.
2613
*/
2614
if (!__test_and_clear_bit(0, (unsigned long *)
2615
&anon_vma->root->head.next))
2616
BUG();
2617
anon_vma_unlock(anon_vma);
2618
}
2619
}
2620
2621
static void vm_unlock_mapping(struct address_space *mapping)
2622
{
2623
if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2624
/*
2625
* AS_MM_ALL_LOCKS can't change to 0 from under us
2626
* because we hold the mm_all_locks_mutex.
2627
*/
2628
mutex_unlock(&mapping->i_mmap_mutex);
2629
if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2630
&mapping->flags))
2631
BUG();
2632
}
2633
}
2634
2635
/*
2636
* The mmap_sem cannot be released by the caller until
2637
* mm_drop_all_locks() returns.
2638
*/
2639
void mm_drop_all_locks(struct mm_struct *mm)
2640
{
2641
struct vm_area_struct *vma;
2642
struct anon_vma_chain *avc;
2643
2644
BUG_ON(down_read_trylock(&mm->mmap_sem));
2645
BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2646
2647
for (vma = mm->mmap; vma; vma = vma->vm_next) {
2648
if (vma->anon_vma)
2649
list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2650
vm_unlock_anon_vma(avc->anon_vma);
2651
if (vma->vm_file && vma->vm_file->f_mapping)
2652
vm_unlock_mapping(vma->vm_file->f_mapping);
2653
}
2654
2655
mutex_unlock(&mm_all_locks_mutex);
2656
}
2657
2658
/*
2659
* initialise the VMA slab
2660
*/
2661
void __init mmap_init(void)
2662
{
2663
int ret;
2664
2665
ret = percpu_counter_init(&vm_committed_as, 0);
2666
VM_BUG_ON(ret);
2667
}
2668
2669