Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/mm/nobootmem.c
10814 views
1
/*
2
* bootmem - A boot-time physical memory allocator and configurator
3
*
4
* Copyright (C) 1999 Ingo Molnar
5
* 1999 Kanoj Sarcar, SGI
6
* 2008 Johannes Weiner
7
*
8
* Access to this subsystem has to be serialized externally (which is true
9
* for the boot process anyway).
10
*/
11
#include <linux/init.h>
12
#include <linux/pfn.h>
13
#include <linux/slab.h>
14
#include <linux/bootmem.h>
15
#include <linux/module.h>
16
#include <linux/kmemleak.h>
17
#include <linux/range.h>
18
#include <linux/memblock.h>
19
20
#include <asm/bug.h>
21
#include <asm/io.h>
22
#include <asm/processor.h>
23
24
#include "internal.h"
25
26
#ifndef CONFIG_NEED_MULTIPLE_NODES
27
struct pglist_data __refdata contig_page_data;
28
EXPORT_SYMBOL(contig_page_data);
29
#endif
30
31
unsigned long max_low_pfn;
32
unsigned long min_low_pfn;
33
unsigned long max_pfn;
34
35
static void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
36
u64 goal, u64 limit)
37
{
38
void *ptr;
39
u64 addr;
40
41
if (limit > memblock.current_limit)
42
limit = memblock.current_limit;
43
44
addr = find_memory_core_early(nid, size, align, goal, limit);
45
46
if (addr == MEMBLOCK_ERROR)
47
return NULL;
48
49
ptr = phys_to_virt(addr);
50
memset(ptr, 0, size);
51
memblock_x86_reserve_range(addr, addr + size, "BOOTMEM");
52
/*
53
* The min_count is set to 0 so that bootmem allocated blocks
54
* are never reported as leaks.
55
*/
56
kmemleak_alloc(ptr, size, 0, 0);
57
return ptr;
58
}
59
60
/*
61
* free_bootmem_late - free bootmem pages directly to page allocator
62
* @addr: starting address of the range
63
* @size: size of the range in bytes
64
*
65
* This is only useful when the bootmem allocator has already been torn
66
* down, but we are still initializing the system. Pages are given directly
67
* to the page allocator, no bootmem metadata is updated because it is gone.
68
*/
69
void __init free_bootmem_late(unsigned long addr, unsigned long size)
70
{
71
unsigned long cursor, end;
72
73
kmemleak_free_part(__va(addr), size);
74
75
cursor = PFN_UP(addr);
76
end = PFN_DOWN(addr + size);
77
78
for (; cursor < end; cursor++) {
79
__free_pages_bootmem(pfn_to_page(cursor), 0);
80
totalram_pages++;
81
}
82
}
83
84
static void __init __free_pages_memory(unsigned long start, unsigned long end)
85
{
86
int i;
87
unsigned long start_aligned, end_aligned;
88
int order = ilog2(BITS_PER_LONG);
89
90
start_aligned = (start + (BITS_PER_LONG - 1)) & ~(BITS_PER_LONG - 1);
91
end_aligned = end & ~(BITS_PER_LONG - 1);
92
93
if (end_aligned <= start_aligned) {
94
for (i = start; i < end; i++)
95
__free_pages_bootmem(pfn_to_page(i), 0);
96
97
return;
98
}
99
100
for (i = start; i < start_aligned; i++)
101
__free_pages_bootmem(pfn_to_page(i), 0);
102
103
for (i = start_aligned; i < end_aligned; i += BITS_PER_LONG)
104
__free_pages_bootmem(pfn_to_page(i), order);
105
106
for (i = end_aligned; i < end; i++)
107
__free_pages_bootmem(pfn_to_page(i), 0);
108
}
109
110
unsigned long __init free_all_memory_core_early(int nodeid)
111
{
112
int i;
113
u64 start, end;
114
unsigned long count = 0;
115
struct range *range = NULL;
116
int nr_range;
117
118
nr_range = get_free_all_memory_range(&range, nodeid);
119
120
for (i = 0; i < nr_range; i++) {
121
start = range[i].start;
122
end = range[i].end;
123
count += end - start;
124
__free_pages_memory(start, end);
125
}
126
127
return count;
128
}
129
130
/**
131
* free_all_bootmem_node - release a node's free pages to the buddy allocator
132
* @pgdat: node to be released
133
*
134
* Returns the number of pages actually released.
135
*/
136
unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
137
{
138
register_page_bootmem_info_node(pgdat);
139
140
/* free_all_memory_core_early(MAX_NUMNODES) will be called later */
141
return 0;
142
}
143
144
/**
145
* free_all_bootmem - release free pages to the buddy allocator
146
*
147
* Returns the number of pages actually released.
148
*/
149
unsigned long __init free_all_bootmem(void)
150
{
151
/*
152
* We need to use MAX_NUMNODES instead of NODE_DATA(0)->node_id
153
* because in some case like Node0 doesn't have RAM installed
154
* low ram will be on Node1
155
* Use MAX_NUMNODES will make sure all ranges in early_node_map[]
156
* will be used instead of only Node0 related
157
*/
158
return free_all_memory_core_early(MAX_NUMNODES);
159
}
160
161
/**
162
* free_bootmem_node - mark a page range as usable
163
* @pgdat: node the range resides on
164
* @physaddr: starting address of the range
165
* @size: size of the range in bytes
166
*
167
* Partial pages will be considered reserved and left as they are.
168
*
169
* The range must reside completely on the specified node.
170
*/
171
void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
172
unsigned long size)
173
{
174
kmemleak_free_part(__va(physaddr), size);
175
memblock_x86_free_range(physaddr, physaddr + size);
176
}
177
178
/**
179
* free_bootmem - mark a page range as usable
180
* @addr: starting address of the range
181
* @size: size of the range in bytes
182
*
183
* Partial pages will be considered reserved and left as they are.
184
*
185
* The range must be contiguous but may span node boundaries.
186
*/
187
void __init free_bootmem(unsigned long addr, unsigned long size)
188
{
189
kmemleak_free_part(__va(addr), size);
190
memblock_x86_free_range(addr, addr + size);
191
}
192
193
static void * __init ___alloc_bootmem_nopanic(unsigned long size,
194
unsigned long align,
195
unsigned long goal,
196
unsigned long limit)
197
{
198
void *ptr;
199
200
if (WARN_ON_ONCE(slab_is_available()))
201
return kzalloc(size, GFP_NOWAIT);
202
203
restart:
204
205
ptr = __alloc_memory_core_early(MAX_NUMNODES, size, align, goal, limit);
206
207
if (ptr)
208
return ptr;
209
210
if (goal != 0) {
211
goal = 0;
212
goto restart;
213
}
214
215
return NULL;
216
}
217
218
/**
219
* __alloc_bootmem_nopanic - allocate boot memory without panicking
220
* @size: size of the request in bytes
221
* @align: alignment of the region
222
* @goal: preferred starting address of the region
223
*
224
* The goal is dropped if it can not be satisfied and the allocation will
225
* fall back to memory below @goal.
226
*
227
* Allocation may happen on any node in the system.
228
*
229
* Returns NULL on failure.
230
*/
231
void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
232
unsigned long goal)
233
{
234
unsigned long limit = -1UL;
235
236
return ___alloc_bootmem_nopanic(size, align, goal, limit);
237
}
238
239
static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
240
unsigned long goal, unsigned long limit)
241
{
242
void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
243
244
if (mem)
245
return mem;
246
/*
247
* Whoops, we cannot satisfy the allocation request.
248
*/
249
printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
250
panic("Out of memory");
251
return NULL;
252
}
253
254
/**
255
* __alloc_bootmem - allocate boot memory
256
* @size: size of the request in bytes
257
* @align: alignment of the region
258
* @goal: preferred starting address of the region
259
*
260
* The goal is dropped if it can not be satisfied and the allocation will
261
* fall back to memory below @goal.
262
*
263
* Allocation may happen on any node in the system.
264
*
265
* The function panics if the request can not be satisfied.
266
*/
267
void * __init __alloc_bootmem(unsigned long size, unsigned long align,
268
unsigned long goal)
269
{
270
unsigned long limit = -1UL;
271
272
return ___alloc_bootmem(size, align, goal, limit);
273
}
274
275
/**
276
* __alloc_bootmem_node - allocate boot memory from a specific node
277
* @pgdat: node to allocate from
278
* @size: size of the request in bytes
279
* @align: alignment of the region
280
* @goal: preferred starting address of the region
281
*
282
* The goal is dropped if it can not be satisfied and the allocation will
283
* fall back to memory below @goal.
284
*
285
* Allocation may fall back to any node in the system if the specified node
286
* can not hold the requested memory.
287
*
288
* The function panics if the request can not be satisfied.
289
*/
290
void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
291
unsigned long align, unsigned long goal)
292
{
293
void *ptr;
294
295
if (WARN_ON_ONCE(slab_is_available()))
296
return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
297
298
ptr = __alloc_memory_core_early(pgdat->node_id, size, align,
299
goal, -1ULL);
300
if (ptr)
301
return ptr;
302
303
return __alloc_memory_core_early(MAX_NUMNODES, size, align,
304
goal, -1ULL);
305
}
306
307
void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
308
unsigned long align, unsigned long goal)
309
{
310
return __alloc_bootmem_node(pgdat, size, align, goal);
311
}
312
313
#ifdef CONFIG_SPARSEMEM
314
/**
315
* alloc_bootmem_section - allocate boot memory from a specific section
316
* @size: size of the request in bytes
317
* @section_nr: sparse map section to allocate from
318
*
319
* Return NULL on failure.
320
*/
321
void * __init alloc_bootmem_section(unsigned long size,
322
unsigned long section_nr)
323
{
324
unsigned long pfn, goal, limit;
325
326
pfn = section_nr_to_pfn(section_nr);
327
goal = pfn << PAGE_SHIFT;
328
limit = section_nr_to_pfn(section_nr + 1) << PAGE_SHIFT;
329
330
return __alloc_memory_core_early(early_pfn_to_nid(pfn), size,
331
SMP_CACHE_BYTES, goal, limit);
332
}
333
#endif
334
335
void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
336
unsigned long align, unsigned long goal)
337
{
338
void *ptr;
339
340
if (WARN_ON_ONCE(slab_is_available()))
341
return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
342
343
ptr = __alloc_memory_core_early(pgdat->node_id, size, align,
344
goal, -1ULL);
345
if (ptr)
346
return ptr;
347
348
return __alloc_bootmem_nopanic(size, align, goal);
349
}
350
351
#ifndef ARCH_LOW_ADDRESS_LIMIT
352
#define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL
353
#endif
354
355
/**
356
* __alloc_bootmem_low - allocate low boot memory
357
* @size: size of the request in bytes
358
* @align: alignment of the region
359
* @goal: preferred starting address of the region
360
*
361
* The goal is dropped if it can not be satisfied and the allocation will
362
* fall back to memory below @goal.
363
*
364
* Allocation may happen on any node in the system.
365
*
366
* The function panics if the request can not be satisfied.
367
*/
368
void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
369
unsigned long goal)
370
{
371
return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
372
}
373
374
/**
375
* __alloc_bootmem_low_node - allocate low boot memory from a specific node
376
* @pgdat: node to allocate from
377
* @size: size of the request in bytes
378
* @align: alignment of the region
379
* @goal: preferred starting address of the region
380
*
381
* The goal is dropped if it can not be satisfied and the allocation will
382
* fall back to memory below @goal.
383
*
384
* Allocation may fall back to any node in the system if the specified node
385
* can not hold the requested memory.
386
*
387
* The function panics if the request can not be satisfied.
388
*/
389
void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
390
unsigned long align, unsigned long goal)
391
{
392
void *ptr;
393
394
if (WARN_ON_ONCE(slab_is_available()))
395
return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
396
397
ptr = __alloc_memory_core_early(pgdat->node_id, size, align,
398
goal, ARCH_LOW_ADDRESS_LIMIT);
399
if (ptr)
400
return ptr;
401
402
return __alloc_memory_core_early(MAX_NUMNODES, size, align,
403
goal, ARCH_LOW_ADDRESS_LIMIT);
404
}
405
406