Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/mm/page-writeback.c
10814 views
1
/*
2
* mm/page-writeback.c
3
*
4
* Copyright (C) 2002, Linus Torvalds.
5
* Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <[email protected]>
6
*
7
* Contains functions related to writing back dirty pages at the
8
* address_space level.
9
*
10
* 10Apr2002 Andrew Morton
11
* Initial version
12
*/
13
14
#include <linux/kernel.h>
15
#include <linux/module.h>
16
#include <linux/spinlock.h>
17
#include <linux/fs.h>
18
#include <linux/mm.h>
19
#include <linux/swap.h>
20
#include <linux/slab.h>
21
#include <linux/pagemap.h>
22
#include <linux/writeback.h>
23
#include <linux/init.h>
24
#include <linux/backing-dev.h>
25
#include <linux/task_io_accounting_ops.h>
26
#include <linux/blkdev.h>
27
#include <linux/mpage.h>
28
#include <linux/rmap.h>
29
#include <linux/percpu.h>
30
#include <linux/notifier.h>
31
#include <linux/smp.h>
32
#include <linux/sysctl.h>
33
#include <linux/cpu.h>
34
#include <linux/syscalls.h>
35
#include <linux/buffer_head.h>
36
#include <linux/pagevec.h>
37
#include <trace/events/writeback.h>
38
39
/*
40
* After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
41
* will look to see if it needs to force writeback or throttling.
42
*/
43
static long ratelimit_pages = 32;
44
45
/*
46
* When balance_dirty_pages decides that the caller needs to perform some
47
* non-background writeback, this is how many pages it will attempt to write.
48
* It should be somewhat larger than dirtied pages to ensure that reasonably
49
* large amounts of I/O are submitted.
50
*/
51
static inline long sync_writeback_pages(unsigned long dirtied)
52
{
53
if (dirtied < ratelimit_pages)
54
dirtied = ratelimit_pages;
55
56
return dirtied + dirtied / 2;
57
}
58
59
/* The following parameters are exported via /proc/sys/vm */
60
61
/*
62
* Start background writeback (via writeback threads) at this percentage
63
*/
64
int dirty_background_ratio = 10;
65
66
/*
67
* dirty_background_bytes starts at 0 (disabled) so that it is a function of
68
* dirty_background_ratio * the amount of dirtyable memory
69
*/
70
unsigned long dirty_background_bytes;
71
72
/*
73
* free highmem will not be subtracted from the total free memory
74
* for calculating free ratios if vm_highmem_is_dirtyable is true
75
*/
76
int vm_highmem_is_dirtyable;
77
78
/*
79
* The generator of dirty data starts writeback at this percentage
80
*/
81
int vm_dirty_ratio = 20;
82
83
/*
84
* vm_dirty_bytes starts at 0 (disabled) so that it is a function of
85
* vm_dirty_ratio * the amount of dirtyable memory
86
*/
87
unsigned long vm_dirty_bytes;
88
89
/*
90
* The interval between `kupdate'-style writebacks
91
*/
92
unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
93
94
/*
95
* The longest time for which data is allowed to remain dirty
96
*/
97
unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
98
99
/*
100
* Flag that makes the machine dump writes/reads and block dirtyings.
101
*/
102
int block_dump;
103
104
/*
105
* Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
106
* a full sync is triggered after this time elapses without any disk activity.
107
*/
108
int laptop_mode;
109
110
EXPORT_SYMBOL(laptop_mode);
111
112
/* End of sysctl-exported parameters */
113
114
115
/*
116
* Scale the writeback cache size proportional to the relative writeout speeds.
117
*
118
* We do this by keeping a floating proportion between BDIs, based on page
119
* writeback completions [end_page_writeback()]. Those devices that write out
120
* pages fastest will get the larger share, while the slower will get a smaller
121
* share.
122
*
123
* We use page writeout completions because we are interested in getting rid of
124
* dirty pages. Having them written out is the primary goal.
125
*
126
* We introduce a concept of time, a period over which we measure these events,
127
* because demand can/will vary over time. The length of this period itself is
128
* measured in page writeback completions.
129
*
130
*/
131
static struct prop_descriptor vm_completions;
132
static struct prop_descriptor vm_dirties;
133
134
/*
135
* couple the period to the dirty_ratio:
136
*
137
* period/2 ~ roundup_pow_of_two(dirty limit)
138
*/
139
static int calc_period_shift(void)
140
{
141
unsigned long dirty_total;
142
143
if (vm_dirty_bytes)
144
dirty_total = vm_dirty_bytes / PAGE_SIZE;
145
else
146
dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
147
100;
148
return 2 + ilog2(dirty_total - 1);
149
}
150
151
/*
152
* update the period when the dirty threshold changes.
153
*/
154
static void update_completion_period(void)
155
{
156
int shift = calc_period_shift();
157
prop_change_shift(&vm_completions, shift);
158
prop_change_shift(&vm_dirties, shift);
159
}
160
161
int dirty_background_ratio_handler(struct ctl_table *table, int write,
162
void __user *buffer, size_t *lenp,
163
loff_t *ppos)
164
{
165
int ret;
166
167
ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
168
if (ret == 0 && write)
169
dirty_background_bytes = 0;
170
return ret;
171
}
172
173
int dirty_background_bytes_handler(struct ctl_table *table, int write,
174
void __user *buffer, size_t *lenp,
175
loff_t *ppos)
176
{
177
int ret;
178
179
ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
180
if (ret == 0 && write)
181
dirty_background_ratio = 0;
182
return ret;
183
}
184
185
int dirty_ratio_handler(struct ctl_table *table, int write,
186
void __user *buffer, size_t *lenp,
187
loff_t *ppos)
188
{
189
int old_ratio = vm_dirty_ratio;
190
int ret;
191
192
ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
193
if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
194
update_completion_period();
195
vm_dirty_bytes = 0;
196
}
197
return ret;
198
}
199
200
201
int dirty_bytes_handler(struct ctl_table *table, int write,
202
void __user *buffer, size_t *lenp,
203
loff_t *ppos)
204
{
205
unsigned long old_bytes = vm_dirty_bytes;
206
int ret;
207
208
ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
209
if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
210
update_completion_period();
211
vm_dirty_ratio = 0;
212
}
213
return ret;
214
}
215
216
/*
217
* Increment the BDI's writeout completion count and the global writeout
218
* completion count. Called from test_clear_page_writeback().
219
*/
220
static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
221
{
222
__prop_inc_percpu_max(&vm_completions, &bdi->completions,
223
bdi->max_prop_frac);
224
}
225
226
void bdi_writeout_inc(struct backing_dev_info *bdi)
227
{
228
unsigned long flags;
229
230
local_irq_save(flags);
231
__bdi_writeout_inc(bdi);
232
local_irq_restore(flags);
233
}
234
EXPORT_SYMBOL_GPL(bdi_writeout_inc);
235
236
void task_dirty_inc(struct task_struct *tsk)
237
{
238
prop_inc_single(&vm_dirties, &tsk->dirties);
239
}
240
241
/*
242
* Obtain an accurate fraction of the BDI's portion.
243
*/
244
static void bdi_writeout_fraction(struct backing_dev_info *bdi,
245
long *numerator, long *denominator)
246
{
247
if (bdi_cap_writeback_dirty(bdi)) {
248
prop_fraction_percpu(&vm_completions, &bdi->completions,
249
numerator, denominator);
250
} else {
251
*numerator = 0;
252
*denominator = 1;
253
}
254
}
255
256
static inline void task_dirties_fraction(struct task_struct *tsk,
257
long *numerator, long *denominator)
258
{
259
prop_fraction_single(&vm_dirties, &tsk->dirties,
260
numerator, denominator);
261
}
262
263
/*
264
* task_dirty_limit - scale down dirty throttling threshold for one task
265
*
266
* task specific dirty limit:
267
*
268
* dirty -= (dirty/8) * p_{t}
269
*
270
* To protect light/slow dirtying tasks from heavier/fast ones, we start
271
* throttling individual tasks before reaching the bdi dirty limit.
272
* Relatively low thresholds will be allocated to heavy dirtiers. So when
273
* dirty pages grow large, heavy dirtiers will be throttled first, which will
274
* effectively curb the growth of dirty pages. Light dirtiers with high enough
275
* dirty threshold may never get throttled.
276
*/
277
static unsigned long task_dirty_limit(struct task_struct *tsk,
278
unsigned long bdi_dirty)
279
{
280
long numerator, denominator;
281
unsigned long dirty = bdi_dirty;
282
u64 inv = dirty >> 3;
283
284
task_dirties_fraction(tsk, &numerator, &denominator);
285
inv *= numerator;
286
do_div(inv, denominator);
287
288
dirty -= inv;
289
290
return max(dirty, bdi_dirty/2);
291
}
292
293
/*
294
*
295
*/
296
static unsigned int bdi_min_ratio;
297
298
int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
299
{
300
int ret = 0;
301
302
spin_lock_bh(&bdi_lock);
303
if (min_ratio > bdi->max_ratio) {
304
ret = -EINVAL;
305
} else {
306
min_ratio -= bdi->min_ratio;
307
if (bdi_min_ratio + min_ratio < 100) {
308
bdi_min_ratio += min_ratio;
309
bdi->min_ratio += min_ratio;
310
} else {
311
ret = -EINVAL;
312
}
313
}
314
spin_unlock_bh(&bdi_lock);
315
316
return ret;
317
}
318
319
int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
320
{
321
int ret = 0;
322
323
if (max_ratio > 100)
324
return -EINVAL;
325
326
spin_lock_bh(&bdi_lock);
327
if (bdi->min_ratio > max_ratio) {
328
ret = -EINVAL;
329
} else {
330
bdi->max_ratio = max_ratio;
331
bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
332
}
333
spin_unlock_bh(&bdi_lock);
334
335
return ret;
336
}
337
EXPORT_SYMBOL(bdi_set_max_ratio);
338
339
/*
340
* Work out the current dirty-memory clamping and background writeout
341
* thresholds.
342
*
343
* The main aim here is to lower them aggressively if there is a lot of mapped
344
* memory around. To avoid stressing page reclaim with lots of unreclaimable
345
* pages. It is better to clamp down on writers than to start swapping, and
346
* performing lots of scanning.
347
*
348
* We only allow 1/2 of the currently-unmapped memory to be dirtied.
349
*
350
* We don't permit the clamping level to fall below 5% - that is getting rather
351
* excessive.
352
*
353
* We make sure that the background writeout level is below the adjusted
354
* clamping level.
355
*/
356
357
static unsigned long highmem_dirtyable_memory(unsigned long total)
358
{
359
#ifdef CONFIG_HIGHMEM
360
int node;
361
unsigned long x = 0;
362
363
for_each_node_state(node, N_HIGH_MEMORY) {
364
struct zone *z =
365
&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
366
367
x += zone_page_state(z, NR_FREE_PAGES) +
368
zone_reclaimable_pages(z);
369
}
370
/*
371
* Make sure that the number of highmem pages is never larger
372
* than the number of the total dirtyable memory. This can only
373
* occur in very strange VM situations but we want to make sure
374
* that this does not occur.
375
*/
376
return min(x, total);
377
#else
378
return 0;
379
#endif
380
}
381
382
/**
383
* determine_dirtyable_memory - amount of memory that may be used
384
*
385
* Returns the numebr of pages that can currently be freed and used
386
* by the kernel for direct mappings.
387
*/
388
unsigned long determine_dirtyable_memory(void)
389
{
390
unsigned long x;
391
392
x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
393
394
if (!vm_highmem_is_dirtyable)
395
x -= highmem_dirtyable_memory(x);
396
397
return x + 1; /* Ensure that we never return 0 */
398
}
399
400
/*
401
* global_dirty_limits - background-writeback and dirty-throttling thresholds
402
*
403
* Calculate the dirty thresholds based on sysctl parameters
404
* - vm.dirty_background_ratio or vm.dirty_background_bytes
405
* - vm.dirty_ratio or vm.dirty_bytes
406
* The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
407
* real-time tasks.
408
*/
409
void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
410
{
411
unsigned long background;
412
unsigned long dirty;
413
unsigned long uninitialized_var(available_memory);
414
struct task_struct *tsk;
415
416
if (!vm_dirty_bytes || !dirty_background_bytes)
417
available_memory = determine_dirtyable_memory();
418
419
if (vm_dirty_bytes)
420
dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
421
else
422
dirty = (vm_dirty_ratio * available_memory) / 100;
423
424
if (dirty_background_bytes)
425
background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
426
else
427
background = (dirty_background_ratio * available_memory) / 100;
428
429
if (background >= dirty)
430
background = dirty / 2;
431
tsk = current;
432
if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
433
background += background / 4;
434
dirty += dirty / 4;
435
}
436
*pbackground = background;
437
*pdirty = dirty;
438
}
439
440
/*
441
* bdi_dirty_limit - @bdi's share of dirty throttling threshold
442
*
443
* Allocate high/low dirty limits to fast/slow devices, in order to prevent
444
* - starving fast devices
445
* - piling up dirty pages (that will take long time to sync) on slow devices
446
*
447
* The bdi's share of dirty limit will be adapting to its throughput and
448
* bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
449
*/
450
unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
451
{
452
u64 bdi_dirty;
453
long numerator, denominator;
454
455
/*
456
* Calculate this BDI's share of the dirty ratio.
457
*/
458
bdi_writeout_fraction(bdi, &numerator, &denominator);
459
460
bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
461
bdi_dirty *= numerator;
462
do_div(bdi_dirty, denominator);
463
464
bdi_dirty += (dirty * bdi->min_ratio) / 100;
465
if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
466
bdi_dirty = dirty * bdi->max_ratio / 100;
467
468
return bdi_dirty;
469
}
470
471
/*
472
* balance_dirty_pages() must be called by processes which are generating dirty
473
* data. It looks at the number of dirty pages in the machine and will force
474
* the caller to perform writeback if the system is over `vm_dirty_ratio'.
475
* If we're over `background_thresh' then the writeback threads are woken to
476
* perform some writeout.
477
*/
478
static void balance_dirty_pages(struct address_space *mapping,
479
unsigned long write_chunk)
480
{
481
long nr_reclaimable, bdi_nr_reclaimable;
482
long nr_writeback, bdi_nr_writeback;
483
unsigned long background_thresh;
484
unsigned long dirty_thresh;
485
unsigned long bdi_thresh;
486
unsigned long pages_written = 0;
487
unsigned long pause = 1;
488
bool dirty_exceeded = false;
489
struct backing_dev_info *bdi = mapping->backing_dev_info;
490
491
for (;;) {
492
struct writeback_control wbc = {
493
.sync_mode = WB_SYNC_NONE,
494
.older_than_this = NULL,
495
.nr_to_write = write_chunk,
496
.range_cyclic = 1,
497
};
498
499
nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
500
global_page_state(NR_UNSTABLE_NFS);
501
nr_writeback = global_page_state(NR_WRITEBACK);
502
503
global_dirty_limits(&background_thresh, &dirty_thresh);
504
505
/*
506
* Throttle it only when the background writeback cannot
507
* catch-up. This avoids (excessively) small writeouts
508
* when the bdi limits are ramping up.
509
*/
510
if (nr_reclaimable + nr_writeback <=
511
(background_thresh + dirty_thresh) / 2)
512
break;
513
514
bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
515
bdi_thresh = task_dirty_limit(current, bdi_thresh);
516
517
/*
518
* In order to avoid the stacked BDI deadlock we need
519
* to ensure we accurately count the 'dirty' pages when
520
* the threshold is low.
521
*
522
* Otherwise it would be possible to get thresh+n pages
523
* reported dirty, even though there are thresh-m pages
524
* actually dirty; with m+n sitting in the percpu
525
* deltas.
526
*/
527
if (bdi_thresh < 2*bdi_stat_error(bdi)) {
528
bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
529
bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
530
} else {
531
bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
532
bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
533
}
534
535
/*
536
* The bdi thresh is somehow "soft" limit derived from the
537
* global "hard" limit. The former helps to prevent heavy IO
538
* bdi or process from holding back light ones; The latter is
539
* the last resort safeguard.
540
*/
541
dirty_exceeded =
542
(bdi_nr_reclaimable + bdi_nr_writeback > bdi_thresh)
543
|| (nr_reclaimable + nr_writeback > dirty_thresh);
544
545
if (!dirty_exceeded)
546
break;
547
548
if (!bdi->dirty_exceeded)
549
bdi->dirty_exceeded = 1;
550
551
/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
552
* Unstable writes are a feature of certain networked
553
* filesystems (i.e. NFS) in which data may have been
554
* written to the server's write cache, but has not yet
555
* been flushed to permanent storage.
556
* Only move pages to writeback if this bdi is over its
557
* threshold otherwise wait until the disk writes catch
558
* up.
559
*/
560
trace_wbc_balance_dirty_start(&wbc, bdi);
561
if (bdi_nr_reclaimable > bdi_thresh) {
562
writeback_inodes_wb(&bdi->wb, &wbc);
563
pages_written += write_chunk - wbc.nr_to_write;
564
trace_wbc_balance_dirty_written(&wbc, bdi);
565
if (pages_written >= write_chunk)
566
break; /* We've done our duty */
567
}
568
trace_wbc_balance_dirty_wait(&wbc, bdi);
569
__set_current_state(TASK_UNINTERRUPTIBLE);
570
io_schedule_timeout(pause);
571
572
/*
573
* Increase the delay for each loop, up to our previous
574
* default of taking a 100ms nap.
575
*/
576
pause <<= 1;
577
if (pause > HZ / 10)
578
pause = HZ / 10;
579
}
580
581
if (!dirty_exceeded && bdi->dirty_exceeded)
582
bdi->dirty_exceeded = 0;
583
584
if (writeback_in_progress(bdi))
585
return;
586
587
/*
588
* In laptop mode, we wait until hitting the higher threshold before
589
* starting background writeout, and then write out all the way down
590
* to the lower threshold. So slow writers cause minimal disk activity.
591
*
592
* In normal mode, we start background writeout at the lower
593
* background_thresh, to keep the amount of dirty memory low.
594
*/
595
if ((laptop_mode && pages_written) ||
596
(!laptop_mode && (nr_reclaimable > background_thresh)))
597
bdi_start_background_writeback(bdi);
598
}
599
600
void set_page_dirty_balance(struct page *page, int page_mkwrite)
601
{
602
if (set_page_dirty(page) || page_mkwrite) {
603
struct address_space *mapping = page_mapping(page);
604
605
if (mapping)
606
balance_dirty_pages_ratelimited(mapping);
607
}
608
}
609
610
static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
611
612
/**
613
* balance_dirty_pages_ratelimited_nr - balance dirty memory state
614
* @mapping: address_space which was dirtied
615
* @nr_pages_dirtied: number of pages which the caller has just dirtied
616
*
617
* Processes which are dirtying memory should call in here once for each page
618
* which was newly dirtied. The function will periodically check the system's
619
* dirty state and will initiate writeback if needed.
620
*
621
* On really big machines, get_writeback_state is expensive, so try to avoid
622
* calling it too often (ratelimiting). But once we're over the dirty memory
623
* limit we decrease the ratelimiting by a lot, to prevent individual processes
624
* from overshooting the limit by (ratelimit_pages) each.
625
*/
626
void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
627
unsigned long nr_pages_dirtied)
628
{
629
unsigned long ratelimit;
630
unsigned long *p;
631
632
ratelimit = ratelimit_pages;
633
if (mapping->backing_dev_info->dirty_exceeded)
634
ratelimit = 8;
635
636
/*
637
* Check the rate limiting. Also, we do not want to throttle real-time
638
* tasks in balance_dirty_pages(). Period.
639
*/
640
preempt_disable();
641
p = &__get_cpu_var(bdp_ratelimits);
642
*p += nr_pages_dirtied;
643
if (unlikely(*p >= ratelimit)) {
644
ratelimit = sync_writeback_pages(*p);
645
*p = 0;
646
preempt_enable();
647
balance_dirty_pages(mapping, ratelimit);
648
return;
649
}
650
preempt_enable();
651
}
652
EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
653
654
void throttle_vm_writeout(gfp_t gfp_mask)
655
{
656
unsigned long background_thresh;
657
unsigned long dirty_thresh;
658
659
for ( ; ; ) {
660
global_dirty_limits(&background_thresh, &dirty_thresh);
661
662
/*
663
* Boost the allowable dirty threshold a bit for page
664
* allocators so they don't get DoS'ed by heavy writers
665
*/
666
dirty_thresh += dirty_thresh / 10; /* wheeee... */
667
668
if (global_page_state(NR_UNSTABLE_NFS) +
669
global_page_state(NR_WRITEBACK) <= dirty_thresh)
670
break;
671
congestion_wait(BLK_RW_ASYNC, HZ/10);
672
673
/*
674
* The caller might hold locks which can prevent IO completion
675
* or progress in the filesystem. So we cannot just sit here
676
* waiting for IO to complete.
677
*/
678
if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
679
break;
680
}
681
}
682
683
/*
684
* sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
685
*/
686
int dirty_writeback_centisecs_handler(ctl_table *table, int write,
687
void __user *buffer, size_t *length, loff_t *ppos)
688
{
689
proc_dointvec(table, write, buffer, length, ppos);
690
bdi_arm_supers_timer();
691
return 0;
692
}
693
694
#ifdef CONFIG_BLOCK
695
void laptop_mode_timer_fn(unsigned long data)
696
{
697
struct request_queue *q = (struct request_queue *)data;
698
int nr_pages = global_page_state(NR_FILE_DIRTY) +
699
global_page_state(NR_UNSTABLE_NFS);
700
701
/*
702
* We want to write everything out, not just down to the dirty
703
* threshold
704
*/
705
if (bdi_has_dirty_io(&q->backing_dev_info))
706
bdi_start_writeback(&q->backing_dev_info, nr_pages);
707
}
708
709
/*
710
* We've spun up the disk and we're in laptop mode: schedule writeback
711
* of all dirty data a few seconds from now. If the flush is already scheduled
712
* then push it back - the user is still using the disk.
713
*/
714
void laptop_io_completion(struct backing_dev_info *info)
715
{
716
mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
717
}
718
719
/*
720
* We're in laptop mode and we've just synced. The sync's writes will have
721
* caused another writeback to be scheduled by laptop_io_completion.
722
* Nothing needs to be written back anymore, so we unschedule the writeback.
723
*/
724
void laptop_sync_completion(void)
725
{
726
struct backing_dev_info *bdi;
727
728
rcu_read_lock();
729
730
list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
731
del_timer(&bdi->laptop_mode_wb_timer);
732
733
rcu_read_unlock();
734
}
735
#endif
736
737
/*
738
* If ratelimit_pages is too high then we can get into dirty-data overload
739
* if a large number of processes all perform writes at the same time.
740
* If it is too low then SMP machines will call the (expensive)
741
* get_writeback_state too often.
742
*
743
* Here we set ratelimit_pages to a level which ensures that when all CPUs are
744
* dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
745
* thresholds before writeback cuts in.
746
*
747
* But the limit should not be set too high. Because it also controls the
748
* amount of memory which the balance_dirty_pages() caller has to write back.
749
* If this is too large then the caller will block on the IO queue all the
750
* time. So limit it to four megabytes - the balance_dirty_pages() caller
751
* will write six megabyte chunks, max.
752
*/
753
754
void writeback_set_ratelimit(void)
755
{
756
ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
757
if (ratelimit_pages < 16)
758
ratelimit_pages = 16;
759
if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
760
ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
761
}
762
763
static int __cpuinit
764
ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
765
{
766
writeback_set_ratelimit();
767
return NOTIFY_DONE;
768
}
769
770
static struct notifier_block __cpuinitdata ratelimit_nb = {
771
.notifier_call = ratelimit_handler,
772
.next = NULL,
773
};
774
775
/*
776
* Called early on to tune the page writeback dirty limits.
777
*
778
* We used to scale dirty pages according to how total memory
779
* related to pages that could be allocated for buffers (by
780
* comparing nr_free_buffer_pages() to vm_total_pages.
781
*
782
* However, that was when we used "dirty_ratio" to scale with
783
* all memory, and we don't do that any more. "dirty_ratio"
784
* is now applied to total non-HIGHPAGE memory (by subtracting
785
* totalhigh_pages from vm_total_pages), and as such we can't
786
* get into the old insane situation any more where we had
787
* large amounts of dirty pages compared to a small amount of
788
* non-HIGHMEM memory.
789
*
790
* But we might still want to scale the dirty_ratio by how
791
* much memory the box has..
792
*/
793
void __init page_writeback_init(void)
794
{
795
int shift;
796
797
writeback_set_ratelimit();
798
register_cpu_notifier(&ratelimit_nb);
799
800
shift = calc_period_shift();
801
prop_descriptor_init(&vm_completions, shift);
802
prop_descriptor_init(&vm_dirties, shift);
803
}
804
805
/**
806
* tag_pages_for_writeback - tag pages to be written by write_cache_pages
807
* @mapping: address space structure to write
808
* @start: starting page index
809
* @end: ending page index (inclusive)
810
*
811
* This function scans the page range from @start to @end (inclusive) and tags
812
* all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
813
* that write_cache_pages (or whoever calls this function) will then use
814
* TOWRITE tag to identify pages eligible for writeback. This mechanism is
815
* used to avoid livelocking of writeback by a process steadily creating new
816
* dirty pages in the file (thus it is important for this function to be quick
817
* so that it can tag pages faster than a dirtying process can create them).
818
*/
819
/*
820
* We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
821
*/
822
void tag_pages_for_writeback(struct address_space *mapping,
823
pgoff_t start, pgoff_t end)
824
{
825
#define WRITEBACK_TAG_BATCH 4096
826
unsigned long tagged;
827
828
do {
829
spin_lock_irq(&mapping->tree_lock);
830
tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
831
&start, end, WRITEBACK_TAG_BATCH,
832
PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
833
spin_unlock_irq(&mapping->tree_lock);
834
WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
835
cond_resched();
836
/* We check 'start' to handle wrapping when end == ~0UL */
837
} while (tagged >= WRITEBACK_TAG_BATCH && start);
838
}
839
EXPORT_SYMBOL(tag_pages_for_writeback);
840
841
/**
842
* write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
843
* @mapping: address space structure to write
844
* @wbc: subtract the number of written pages from *@wbc->nr_to_write
845
* @writepage: function called for each page
846
* @data: data passed to writepage function
847
*
848
* If a page is already under I/O, write_cache_pages() skips it, even
849
* if it's dirty. This is desirable behaviour for memory-cleaning writeback,
850
* but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
851
* and msync() need to guarantee that all the data which was dirty at the time
852
* the call was made get new I/O started against them. If wbc->sync_mode is
853
* WB_SYNC_ALL then we were called for data integrity and we must wait for
854
* existing IO to complete.
855
*
856
* To avoid livelocks (when other process dirties new pages), we first tag
857
* pages which should be written back with TOWRITE tag and only then start
858
* writing them. For data-integrity sync we have to be careful so that we do
859
* not miss some pages (e.g., because some other process has cleared TOWRITE
860
* tag we set). The rule we follow is that TOWRITE tag can be cleared only
861
* by the process clearing the DIRTY tag (and submitting the page for IO).
862
*/
863
int write_cache_pages(struct address_space *mapping,
864
struct writeback_control *wbc, writepage_t writepage,
865
void *data)
866
{
867
int ret = 0;
868
int done = 0;
869
struct pagevec pvec;
870
int nr_pages;
871
pgoff_t uninitialized_var(writeback_index);
872
pgoff_t index;
873
pgoff_t end; /* Inclusive */
874
pgoff_t done_index;
875
int cycled;
876
int range_whole = 0;
877
int tag;
878
879
pagevec_init(&pvec, 0);
880
if (wbc->range_cyclic) {
881
writeback_index = mapping->writeback_index; /* prev offset */
882
index = writeback_index;
883
if (index == 0)
884
cycled = 1;
885
else
886
cycled = 0;
887
end = -1;
888
} else {
889
index = wbc->range_start >> PAGE_CACHE_SHIFT;
890
end = wbc->range_end >> PAGE_CACHE_SHIFT;
891
if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
892
range_whole = 1;
893
cycled = 1; /* ignore range_cyclic tests */
894
}
895
if (wbc->sync_mode == WB_SYNC_ALL)
896
tag = PAGECACHE_TAG_TOWRITE;
897
else
898
tag = PAGECACHE_TAG_DIRTY;
899
retry:
900
if (wbc->sync_mode == WB_SYNC_ALL)
901
tag_pages_for_writeback(mapping, index, end);
902
done_index = index;
903
while (!done && (index <= end)) {
904
int i;
905
906
nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
907
min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
908
if (nr_pages == 0)
909
break;
910
911
for (i = 0; i < nr_pages; i++) {
912
struct page *page = pvec.pages[i];
913
914
/*
915
* At this point, the page may be truncated or
916
* invalidated (changing page->mapping to NULL), or
917
* even swizzled back from swapper_space to tmpfs file
918
* mapping. However, page->index will not change
919
* because we have a reference on the page.
920
*/
921
if (page->index > end) {
922
/*
923
* can't be range_cyclic (1st pass) because
924
* end == -1 in that case.
925
*/
926
done = 1;
927
break;
928
}
929
930
done_index = page->index;
931
932
lock_page(page);
933
934
/*
935
* Page truncated or invalidated. We can freely skip it
936
* then, even for data integrity operations: the page
937
* has disappeared concurrently, so there could be no
938
* real expectation of this data interity operation
939
* even if there is now a new, dirty page at the same
940
* pagecache address.
941
*/
942
if (unlikely(page->mapping != mapping)) {
943
continue_unlock:
944
unlock_page(page);
945
continue;
946
}
947
948
if (!PageDirty(page)) {
949
/* someone wrote it for us */
950
goto continue_unlock;
951
}
952
953
if (PageWriteback(page)) {
954
if (wbc->sync_mode != WB_SYNC_NONE)
955
wait_on_page_writeback(page);
956
else
957
goto continue_unlock;
958
}
959
960
BUG_ON(PageWriteback(page));
961
if (!clear_page_dirty_for_io(page))
962
goto continue_unlock;
963
964
trace_wbc_writepage(wbc, mapping->backing_dev_info);
965
ret = (*writepage)(page, wbc, data);
966
if (unlikely(ret)) {
967
if (ret == AOP_WRITEPAGE_ACTIVATE) {
968
unlock_page(page);
969
ret = 0;
970
} else {
971
/*
972
* done_index is set past this page,
973
* so media errors will not choke
974
* background writeout for the entire
975
* file. This has consequences for
976
* range_cyclic semantics (ie. it may
977
* not be suitable for data integrity
978
* writeout).
979
*/
980
done_index = page->index + 1;
981
done = 1;
982
break;
983
}
984
}
985
986
/*
987
* We stop writing back only if we are not doing
988
* integrity sync. In case of integrity sync we have to
989
* keep going until we have written all the pages
990
* we tagged for writeback prior to entering this loop.
991
*/
992
if (--wbc->nr_to_write <= 0 &&
993
wbc->sync_mode == WB_SYNC_NONE) {
994
done = 1;
995
break;
996
}
997
}
998
pagevec_release(&pvec);
999
cond_resched();
1000
}
1001
if (!cycled && !done) {
1002
/*
1003
* range_cyclic:
1004
* We hit the last page and there is more work to be done: wrap
1005
* back to the start of the file
1006
*/
1007
cycled = 1;
1008
index = 0;
1009
end = writeback_index - 1;
1010
goto retry;
1011
}
1012
if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1013
mapping->writeback_index = done_index;
1014
1015
return ret;
1016
}
1017
EXPORT_SYMBOL(write_cache_pages);
1018
1019
/*
1020
* Function used by generic_writepages to call the real writepage
1021
* function and set the mapping flags on error
1022
*/
1023
static int __writepage(struct page *page, struct writeback_control *wbc,
1024
void *data)
1025
{
1026
struct address_space *mapping = data;
1027
int ret = mapping->a_ops->writepage(page, wbc);
1028
mapping_set_error(mapping, ret);
1029
return ret;
1030
}
1031
1032
/**
1033
* generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1034
* @mapping: address space structure to write
1035
* @wbc: subtract the number of written pages from *@wbc->nr_to_write
1036
*
1037
* This is a library function, which implements the writepages()
1038
* address_space_operation.
1039
*/
1040
int generic_writepages(struct address_space *mapping,
1041
struct writeback_control *wbc)
1042
{
1043
struct blk_plug plug;
1044
int ret;
1045
1046
/* deal with chardevs and other special file */
1047
if (!mapping->a_ops->writepage)
1048
return 0;
1049
1050
blk_start_plug(&plug);
1051
ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1052
blk_finish_plug(&plug);
1053
return ret;
1054
}
1055
1056
EXPORT_SYMBOL(generic_writepages);
1057
1058
int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1059
{
1060
int ret;
1061
1062
if (wbc->nr_to_write <= 0)
1063
return 0;
1064
if (mapping->a_ops->writepages)
1065
ret = mapping->a_ops->writepages(mapping, wbc);
1066
else
1067
ret = generic_writepages(mapping, wbc);
1068
return ret;
1069
}
1070
1071
/**
1072
* write_one_page - write out a single page and optionally wait on I/O
1073
* @page: the page to write
1074
* @wait: if true, wait on writeout
1075
*
1076
* The page must be locked by the caller and will be unlocked upon return.
1077
*
1078
* write_one_page() returns a negative error code if I/O failed.
1079
*/
1080
int write_one_page(struct page *page, int wait)
1081
{
1082
struct address_space *mapping = page->mapping;
1083
int ret = 0;
1084
struct writeback_control wbc = {
1085
.sync_mode = WB_SYNC_ALL,
1086
.nr_to_write = 1,
1087
};
1088
1089
BUG_ON(!PageLocked(page));
1090
1091
if (wait)
1092
wait_on_page_writeback(page);
1093
1094
if (clear_page_dirty_for_io(page)) {
1095
page_cache_get(page);
1096
ret = mapping->a_ops->writepage(page, &wbc);
1097
if (ret == 0 && wait) {
1098
wait_on_page_writeback(page);
1099
if (PageError(page))
1100
ret = -EIO;
1101
}
1102
page_cache_release(page);
1103
} else {
1104
unlock_page(page);
1105
}
1106
return ret;
1107
}
1108
EXPORT_SYMBOL(write_one_page);
1109
1110
/*
1111
* For address_spaces which do not use buffers nor write back.
1112
*/
1113
int __set_page_dirty_no_writeback(struct page *page)
1114
{
1115
if (!PageDirty(page))
1116
return !TestSetPageDirty(page);
1117
return 0;
1118
}
1119
1120
/*
1121
* Helper function for set_page_dirty family.
1122
* NOTE: This relies on being atomic wrt interrupts.
1123
*/
1124
void account_page_dirtied(struct page *page, struct address_space *mapping)
1125
{
1126
if (mapping_cap_account_dirty(mapping)) {
1127
__inc_zone_page_state(page, NR_FILE_DIRTY);
1128
__inc_zone_page_state(page, NR_DIRTIED);
1129
__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1130
task_dirty_inc(current);
1131
task_io_account_write(PAGE_CACHE_SIZE);
1132
}
1133
}
1134
EXPORT_SYMBOL(account_page_dirtied);
1135
1136
/*
1137
* Helper function for set_page_writeback family.
1138
* NOTE: Unlike account_page_dirtied this does not rely on being atomic
1139
* wrt interrupts.
1140
*/
1141
void account_page_writeback(struct page *page)
1142
{
1143
inc_zone_page_state(page, NR_WRITEBACK);
1144
inc_zone_page_state(page, NR_WRITTEN);
1145
}
1146
EXPORT_SYMBOL(account_page_writeback);
1147
1148
/*
1149
* For address_spaces which do not use buffers. Just tag the page as dirty in
1150
* its radix tree.
1151
*
1152
* This is also used when a single buffer is being dirtied: we want to set the
1153
* page dirty in that case, but not all the buffers. This is a "bottom-up"
1154
* dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1155
*
1156
* Most callers have locked the page, which pins the address_space in memory.
1157
* But zap_pte_range() does not lock the page, however in that case the
1158
* mapping is pinned by the vma's ->vm_file reference.
1159
*
1160
* We take care to handle the case where the page was truncated from the
1161
* mapping by re-checking page_mapping() inside tree_lock.
1162
*/
1163
int __set_page_dirty_nobuffers(struct page *page)
1164
{
1165
if (!TestSetPageDirty(page)) {
1166
struct address_space *mapping = page_mapping(page);
1167
struct address_space *mapping2;
1168
1169
if (!mapping)
1170
return 1;
1171
1172
spin_lock_irq(&mapping->tree_lock);
1173
mapping2 = page_mapping(page);
1174
if (mapping2) { /* Race with truncate? */
1175
BUG_ON(mapping2 != mapping);
1176
WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1177
account_page_dirtied(page, mapping);
1178
radix_tree_tag_set(&mapping->page_tree,
1179
page_index(page), PAGECACHE_TAG_DIRTY);
1180
}
1181
spin_unlock_irq(&mapping->tree_lock);
1182
if (mapping->host) {
1183
/* !PageAnon && !swapper_space */
1184
__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1185
}
1186
return 1;
1187
}
1188
return 0;
1189
}
1190
EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1191
1192
/*
1193
* When a writepage implementation decides that it doesn't want to write this
1194
* page for some reason, it should redirty the locked page via
1195
* redirty_page_for_writepage() and it should then unlock the page and return 0
1196
*/
1197
int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1198
{
1199
wbc->pages_skipped++;
1200
return __set_page_dirty_nobuffers(page);
1201
}
1202
EXPORT_SYMBOL(redirty_page_for_writepage);
1203
1204
/*
1205
* Dirty a page.
1206
*
1207
* For pages with a mapping this should be done under the page lock
1208
* for the benefit of asynchronous memory errors who prefer a consistent
1209
* dirty state. This rule can be broken in some special cases,
1210
* but should be better not to.
1211
*
1212
* If the mapping doesn't provide a set_page_dirty a_op, then
1213
* just fall through and assume that it wants buffer_heads.
1214
*/
1215
int set_page_dirty(struct page *page)
1216
{
1217
struct address_space *mapping = page_mapping(page);
1218
1219
if (likely(mapping)) {
1220
int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1221
/*
1222
* readahead/lru_deactivate_page could remain
1223
* PG_readahead/PG_reclaim due to race with end_page_writeback
1224
* About readahead, if the page is written, the flags would be
1225
* reset. So no problem.
1226
* About lru_deactivate_page, if the page is redirty, the flag
1227
* will be reset. So no problem. but if the page is used by readahead
1228
* it will confuse readahead and make it restart the size rampup
1229
* process. But it's a trivial problem.
1230
*/
1231
ClearPageReclaim(page);
1232
#ifdef CONFIG_BLOCK
1233
if (!spd)
1234
spd = __set_page_dirty_buffers;
1235
#endif
1236
return (*spd)(page);
1237
}
1238
if (!PageDirty(page)) {
1239
if (!TestSetPageDirty(page))
1240
return 1;
1241
}
1242
return 0;
1243
}
1244
EXPORT_SYMBOL(set_page_dirty);
1245
1246
/*
1247
* set_page_dirty() is racy if the caller has no reference against
1248
* page->mapping->host, and if the page is unlocked. This is because another
1249
* CPU could truncate the page off the mapping and then free the mapping.
1250
*
1251
* Usually, the page _is_ locked, or the caller is a user-space process which
1252
* holds a reference on the inode by having an open file.
1253
*
1254
* In other cases, the page should be locked before running set_page_dirty().
1255
*/
1256
int set_page_dirty_lock(struct page *page)
1257
{
1258
int ret;
1259
1260
lock_page(page);
1261
ret = set_page_dirty(page);
1262
unlock_page(page);
1263
return ret;
1264
}
1265
EXPORT_SYMBOL(set_page_dirty_lock);
1266
1267
/*
1268
* Clear a page's dirty flag, while caring for dirty memory accounting.
1269
* Returns true if the page was previously dirty.
1270
*
1271
* This is for preparing to put the page under writeout. We leave the page
1272
* tagged as dirty in the radix tree so that a concurrent write-for-sync
1273
* can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1274
* implementation will run either set_page_writeback() or set_page_dirty(),
1275
* at which stage we bring the page's dirty flag and radix-tree dirty tag
1276
* back into sync.
1277
*
1278
* This incoherency between the page's dirty flag and radix-tree tag is
1279
* unfortunate, but it only exists while the page is locked.
1280
*/
1281
int clear_page_dirty_for_io(struct page *page)
1282
{
1283
struct address_space *mapping = page_mapping(page);
1284
1285
BUG_ON(!PageLocked(page));
1286
1287
if (mapping && mapping_cap_account_dirty(mapping)) {
1288
/*
1289
* Yes, Virginia, this is indeed insane.
1290
*
1291
* We use this sequence to make sure that
1292
* (a) we account for dirty stats properly
1293
* (b) we tell the low-level filesystem to
1294
* mark the whole page dirty if it was
1295
* dirty in a pagetable. Only to then
1296
* (c) clean the page again and return 1 to
1297
* cause the writeback.
1298
*
1299
* This way we avoid all nasty races with the
1300
* dirty bit in multiple places and clearing
1301
* them concurrently from different threads.
1302
*
1303
* Note! Normally the "set_page_dirty(page)"
1304
* has no effect on the actual dirty bit - since
1305
* that will already usually be set. But we
1306
* need the side effects, and it can help us
1307
* avoid races.
1308
*
1309
* We basically use the page "master dirty bit"
1310
* as a serialization point for all the different
1311
* threads doing their things.
1312
*/
1313
if (page_mkclean(page))
1314
set_page_dirty(page);
1315
/*
1316
* We carefully synchronise fault handlers against
1317
* installing a dirty pte and marking the page dirty
1318
* at this point. We do this by having them hold the
1319
* page lock at some point after installing their
1320
* pte, but before marking the page dirty.
1321
* Pages are always locked coming in here, so we get
1322
* the desired exclusion. See mm/memory.c:do_wp_page()
1323
* for more comments.
1324
*/
1325
if (TestClearPageDirty(page)) {
1326
dec_zone_page_state(page, NR_FILE_DIRTY);
1327
dec_bdi_stat(mapping->backing_dev_info,
1328
BDI_RECLAIMABLE);
1329
return 1;
1330
}
1331
return 0;
1332
}
1333
return TestClearPageDirty(page);
1334
}
1335
EXPORT_SYMBOL(clear_page_dirty_for_io);
1336
1337
int test_clear_page_writeback(struct page *page)
1338
{
1339
struct address_space *mapping = page_mapping(page);
1340
int ret;
1341
1342
if (mapping) {
1343
struct backing_dev_info *bdi = mapping->backing_dev_info;
1344
unsigned long flags;
1345
1346
spin_lock_irqsave(&mapping->tree_lock, flags);
1347
ret = TestClearPageWriteback(page);
1348
if (ret) {
1349
radix_tree_tag_clear(&mapping->page_tree,
1350
page_index(page),
1351
PAGECACHE_TAG_WRITEBACK);
1352
if (bdi_cap_account_writeback(bdi)) {
1353
__dec_bdi_stat(bdi, BDI_WRITEBACK);
1354
__bdi_writeout_inc(bdi);
1355
}
1356
}
1357
spin_unlock_irqrestore(&mapping->tree_lock, flags);
1358
} else {
1359
ret = TestClearPageWriteback(page);
1360
}
1361
if (ret)
1362
dec_zone_page_state(page, NR_WRITEBACK);
1363
return ret;
1364
}
1365
1366
int test_set_page_writeback(struct page *page)
1367
{
1368
struct address_space *mapping = page_mapping(page);
1369
int ret;
1370
1371
if (mapping) {
1372
struct backing_dev_info *bdi = mapping->backing_dev_info;
1373
unsigned long flags;
1374
1375
spin_lock_irqsave(&mapping->tree_lock, flags);
1376
ret = TestSetPageWriteback(page);
1377
if (!ret) {
1378
radix_tree_tag_set(&mapping->page_tree,
1379
page_index(page),
1380
PAGECACHE_TAG_WRITEBACK);
1381
if (bdi_cap_account_writeback(bdi))
1382
__inc_bdi_stat(bdi, BDI_WRITEBACK);
1383
}
1384
if (!PageDirty(page))
1385
radix_tree_tag_clear(&mapping->page_tree,
1386
page_index(page),
1387
PAGECACHE_TAG_DIRTY);
1388
radix_tree_tag_clear(&mapping->page_tree,
1389
page_index(page),
1390
PAGECACHE_TAG_TOWRITE);
1391
spin_unlock_irqrestore(&mapping->tree_lock, flags);
1392
} else {
1393
ret = TestSetPageWriteback(page);
1394
}
1395
if (!ret)
1396
account_page_writeback(page);
1397
return ret;
1398
1399
}
1400
EXPORT_SYMBOL(test_set_page_writeback);
1401
1402
/*
1403
* Return true if any of the pages in the mapping are marked with the
1404
* passed tag.
1405
*/
1406
int mapping_tagged(struct address_space *mapping, int tag)
1407
{
1408
int ret;
1409
rcu_read_lock();
1410
ret = radix_tree_tagged(&mapping->page_tree, tag);
1411
rcu_read_unlock();
1412
return ret;
1413
}
1414
EXPORT_SYMBOL(mapping_tagged);
1415
1416