Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/mm/page_alloc.c
10814 views
1
/*
2
* linux/mm/page_alloc.c
3
*
4
* Manages the free list, the system allocates free pages here.
5
* Note that kmalloc() lives in slab.c
6
*
7
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8
* Swap reorganised 29.12.95, Stephen Tweedie
9
* Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10
* Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11
* Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12
* Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13
* Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14
* (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15
*/
16
17
#include <linux/stddef.h>
18
#include <linux/mm.h>
19
#include <linux/swap.h>
20
#include <linux/interrupt.h>
21
#include <linux/pagemap.h>
22
#include <linux/jiffies.h>
23
#include <linux/bootmem.h>
24
#include <linux/memblock.h>
25
#include <linux/compiler.h>
26
#include <linux/kernel.h>
27
#include <linux/kmemcheck.h>
28
#include <linux/module.h>
29
#include <linux/suspend.h>
30
#include <linux/pagevec.h>
31
#include <linux/blkdev.h>
32
#include <linux/slab.h>
33
#include <linux/ratelimit.h>
34
#include <linux/oom.h>
35
#include <linux/notifier.h>
36
#include <linux/topology.h>
37
#include <linux/sysctl.h>
38
#include <linux/cpu.h>
39
#include <linux/cpuset.h>
40
#include <linux/memory_hotplug.h>
41
#include <linux/nodemask.h>
42
#include <linux/vmalloc.h>
43
#include <linux/vmstat.h>
44
#include <linux/mempolicy.h>
45
#include <linux/stop_machine.h>
46
#include <linux/sort.h>
47
#include <linux/pfn.h>
48
#include <linux/backing-dev.h>
49
#include <linux/fault-inject.h>
50
#include <linux/page-isolation.h>
51
#include <linux/page_cgroup.h>
52
#include <linux/debugobjects.h>
53
#include <linux/kmemleak.h>
54
#include <linux/memory.h>
55
#include <linux/compaction.h>
56
#include <trace/events/kmem.h>
57
#include <linux/ftrace_event.h>
58
#include <linux/memcontrol.h>
59
#include <linux/prefetch.h>
60
61
#include <asm/tlbflush.h>
62
#include <asm/div64.h>
63
#include "internal.h"
64
65
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
66
DEFINE_PER_CPU(int, numa_node);
67
EXPORT_PER_CPU_SYMBOL(numa_node);
68
#endif
69
70
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
71
/*
72
* N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
73
* It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
74
* Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
75
* defined in <linux/topology.h>.
76
*/
77
DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
78
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
79
#endif
80
81
/*
82
* Array of node states.
83
*/
84
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
85
[N_POSSIBLE] = NODE_MASK_ALL,
86
[N_ONLINE] = { { [0] = 1UL } },
87
#ifndef CONFIG_NUMA
88
[N_NORMAL_MEMORY] = { { [0] = 1UL } },
89
#ifdef CONFIG_HIGHMEM
90
[N_HIGH_MEMORY] = { { [0] = 1UL } },
91
#endif
92
[N_CPU] = { { [0] = 1UL } },
93
#endif /* NUMA */
94
};
95
EXPORT_SYMBOL(node_states);
96
97
unsigned long totalram_pages __read_mostly;
98
unsigned long totalreserve_pages __read_mostly;
99
int percpu_pagelist_fraction;
100
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
101
102
#ifdef CONFIG_PM_SLEEP
103
/*
104
* The following functions are used by the suspend/hibernate code to temporarily
105
* change gfp_allowed_mask in order to avoid using I/O during memory allocations
106
* while devices are suspended. To avoid races with the suspend/hibernate code,
107
* they should always be called with pm_mutex held (gfp_allowed_mask also should
108
* only be modified with pm_mutex held, unless the suspend/hibernate code is
109
* guaranteed not to run in parallel with that modification).
110
*/
111
112
static gfp_t saved_gfp_mask;
113
114
void pm_restore_gfp_mask(void)
115
{
116
WARN_ON(!mutex_is_locked(&pm_mutex));
117
if (saved_gfp_mask) {
118
gfp_allowed_mask = saved_gfp_mask;
119
saved_gfp_mask = 0;
120
}
121
}
122
123
void pm_restrict_gfp_mask(void)
124
{
125
WARN_ON(!mutex_is_locked(&pm_mutex));
126
WARN_ON(saved_gfp_mask);
127
saved_gfp_mask = gfp_allowed_mask;
128
gfp_allowed_mask &= ~GFP_IOFS;
129
}
130
#endif /* CONFIG_PM_SLEEP */
131
132
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
133
int pageblock_order __read_mostly;
134
#endif
135
136
static void __free_pages_ok(struct page *page, unsigned int order);
137
138
/*
139
* results with 256, 32 in the lowmem_reserve sysctl:
140
* 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
141
* 1G machine -> (16M dma, 784M normal, 224M high)
142
* NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
143
* HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
144
* HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
145
*
146
* TBD: should special case ZONE_DMA32 machines here - in those we normally
147
* don't need any ZONE_NORMAL reservation
148
*/
149
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
150
#ifdef CONFIG_ZONE_DMA
151
256,
152
#endif
153
#ifdef CONFIG_ZONE_DMA32
154
256,
155
#endif
156
#ifdef CONFIG_HIGHMEM
157
32,
158
#endif
159
32,
160
};
161
162
EXPORT_SYMBOL(totalram_pages);
163
164
static char * const zone_names[MAX_NR_ZONES] = {
165
#ifdef CONFIG_ZONE_DMA
166
"DMA",
167
#endif
168
#ifdef CONFIG_ZONE_DMA32
169
"DMA32",
170
#endif
171
"Normal",
172
#ifdef CONFIG_HIGHMEM
173
"HighMem",
174
#endif
175
"Movable",
176
};
177
178
int min_free_kbytes = 1024;
179
180
static unsigned long __meminitdata nr_kernel_pages;
181
static unsigned long __meminitdata nr_all_pages;
182
static unsigned long __meminitdata dma_reserve;
183
184
#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
185
/*
186
* MAX_ACTIVE_REGIONS determines the maximum number of distinct
187
* ranges of memory (RAM) that may be registered with add_active_range().
188
* Ranges passed to add_active_range() will be merged if possible
189
* so the number of times add_active_range() can be called is
190
* related to the number of nodes and the number of holes
191
*/
192
#ifdef CONFIG_MAX_ACTIVE_REGIONS
193
/* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
194
#define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
195
#else
196
#if MAX_NUMNODES >= 32
197
/* If there can be many nodes, allow up to 50 holes per node */
198
#define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
199
#else
200
/* By default, allow up to 256 distinct regions */
201
#define MAX_ACTIVE_REGIONS 256
202
#endif
203
#endif
204
205
static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
206
static int __meminitdata nr_nodemap_entries;
207
static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
208
static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
209
static unsigned long __initdata required_kernelcore;
210
static unsigned long __initdata required_movablecore;
211
static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
212
213
/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
214
int movable_zone;
215
EXPORT_SYMBOL(movable_zone);
216
#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
217
218
#if MAX_NUMNODES > 1
219
int nr_node_ids __read_mostly = MAX_NUMNODES;
220
int nr_online_nodes __read_mostly = 1;
221
EXPORT_SYMBOL(nr_node_ids);
222
EXPORT_SYMBOL(nr_online_nodes);
223
#endif
224
225
int page_group_by_mobility_disabled __read_mostly;
226
227
static void set_pageblock_migratetype(struct page *page, int migratetype)
228
{
229
230
if (unlikely(page_group_by_mobility_disabled))
231
migratetype = MIGRATE_UNMOVABLE;
232
233
set_pageblock_flags_group(page, (unsigned long)migratetype,
234
PB_migrate, PB_migrate_end);
235
}
236
237
bool oom_killer_disabled __read_mostly;
238
239
#ifdef CONFIG_DEBUG_VM
240
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
241
{
242
int ret = 0;
243
unsigned seq;
244
unsigned long pfn = page_to_pfn(page);
245
246
do {
247
seq = zone_span_seqbegin(zone);
248
if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
249
ret = 1;
250
else if (pfn < zone->zone_start_pfn)
251
ret = 1;
252
} while (zone_span_seqretry(zone, seq));
253
254
return ret;
255
}
256
257
static int page_is_consistent(struct zone *zone, struct page *page)
258
{
259
if (!pfn_valid_within(page_to_pfn(page)))
260
return 0;
261
if (zone != page_zone(page))
262
return 0;
263
264
return 1;
265
}
266
/*
267
* Temporary debugging check for pages not lying within a given zone.
268
*/
269
static int bad_range(struct zone *zone, struct page *page)
270
{
271
if (page_outside_zone_boundaries(zone, page))
272
return 1;
273
if (!page_is_consistent(zone, page))
274
return 1;
275
276
return 0;
277
}
278
#else
279
static inline int bad_range(struct zone *zone, struct page *page)
280
{
281
return 0;
282
}
283
#endif
284
285
static void bad_page(struct page *page)
286
{
287
static unsigned long resume;
288
static unsigned long nr_shown;
289
static unsigned long nr_unshown;
290
291
/* Don't complain about poisoned pages */
292
if (PageHWPoison(page)) {
293
reset_page_mapcount(page); /* remove PageBuddy */
294
return;
295
}
296
297
/*
298
* Allow a burst of 60 reports, then keep quiet for that minute;
299
* or allow a steady drip of one report per second.
300
*/
301
if (nr_shown == 60) {
302
if (time_before(jiffies, resume)) {
303
nr_unshown++;
304
goto out;
305
}
306
if (nr_unshown) {
307
printk(KERN_ALERT
308
"BUG: Bad page state: %lu messages suppressed\n",
309
nr_unshown);
310
nr_unshown = 0;
311
}
312
nr_shown = 0;
313
}
314
if (nr_shown++ == 0)
315
resume = jiffies + 60 * HZ;
316
317
printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
318
current->comm, page_to_pfn(page));
319
dump_page(page);
320
321
dump_stack();
322
out:
323
/* Leave bad fields for debug, except PageBuddy could make trouble */
324
reset_page_mapcount(page); /* remove PageBuddy */
325
add_taint(TAINT_BAD_PAGE);
326
}
327
328
/*
329
* Higher-order pages are called "compound pages". They are structured thusly:
330
*
331
* The first PAGE_SIZE page is called the "head page".
332
*
333
* The remaining PAGE_SIZE pages are called "tail pages".
334
*
335
* All pages have PG_compound set. All pages have their ->private pointing at
336
* the head page (even the head page has this).
337
*
338
* The first tail page's ->lru.next holds the address of the compound page's
339
* put_page() function. Its ->lru.prev holds the order of allocation.
340
* This usage means that zero-order pages may not be compound.
341
*/
342
343
static void free_compound_page(struct page *page)
344
{
345
__free_pages_ok(page, compound_order(page));
346
}
347
348
void prep_compound_page(struct page *page, unsigned long order)
349
{
350
int i;
351
int nr_pages = 1 << order;
352
353
set_compound_page_dtor(page, free_compound_page);
354
set_compound_order(page, order);
355
__SetPageHead(page);
356
for (i = 1; i < nr_pages; i++) {
357
struct page *p = page + i;
358
359
__SetPageTail(p);
360
p->first_page = page;
361
}
362
}
363
364
/* update __split_huge_page_refcount if you change this function */
365
static int destroy_compound_page(struct page *page, unsigned long order)
366
{
367
int i;
368
int nr_pages = 1 << order;
369
int bad = 0;
370
371
if (unlikely(compound_order(page) != order) ||
372
unlikely(!PageHead(page))) {
373
bad_page(page);
374
bad++;
375
}
376
377
__ClearPageHead(page);
378
379
for (i = 1; i < nr_pages; i++) {
380
struct page *p = page + i;
381
382
if (unlikely(!PageTail(p) || (p->first_page != page))) {
383
bad_page(page);
384
bad++;
385
}
386
__ClearPageTail(p);
387
}
388
389
return bad;
390
}
391
392
static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
393
{
394
int i;
395
396
/*
397
* clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398
* and __GFP_HIGHMEM from hard or soft interrupt context.
399
*/
400
VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
401
for (i = 0; i < (1 << order); i++)
402
clear_highpage(page + i);
403
}
404
405
static inline void set_page_order(struct page *page, int order)
406
{
407
set_page_private(page, order);
408
__SetPageBuddy(page);
409
}
410
411
static inline void rmv_page_order(struct page *page)
412
{
413
__ClearPageBuddy(page);
414
set_page_private(page, 0);
415
}
416
417
/*
418
* Locate the struct page for both the matching buddy in our
419
* pair (buddy1) and the combined O(n+1) page they form (page).
420
*
421
* 1) Any buddy B1 will have an order O twin B2 which satisfies
422
* the following equation:
423
* B2 = B1 ^ (1 << O)
424
* For example, if the starting buddy (buddy2) is #8 its order
425
* 1 buddy is #10:
426
* B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
427
*
428
* 2) Any buddy B will have an order O+1 parent P which
429
* satisfies the following equation:
430
* P = B & ~(1 << O)
431
*
432
* Assumption: *_mem_map is contiguous at least up to MAX_ORDER
433
*/
434
static inline unsigned long
435
__find_buddy_index(unsigned long page_idx, unsigned int order)
436
{
437
return page_idx ^ (1 << order);
438
}
439
440
/*
441
* This function checks whether a page is free && is the buddy
442
* we can do coalesce a page and its buddy if
443
* (a) the buddy is not in a hole &&
444
* (b) the buddy is in the buddy system &&
445
* (c) a page and its buddy have the same order &&
446
* (d) a page and its buddy are in the same zone.
447
*
448
* For recording whether a page is in the buddy system, we set ->_mapcount -2.
449
* Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
450
*
451
* For recording page's order, we use page_private(page).
452
*/
453
static inline int page_is_buddy(struct page *page, struct page *buddy,
454
int order)
455
{
456
if (!pfn_valid_within(page_to_pfn(buddy)))
457
return 0;
458
459
if (page_zone_id(page) != page_zone_id(buddy))
460
return 0;
461
462
if (PageBuddy(buddy) && page_order(buddy) == order) {
463
VM_BUG_ON(page_count(buddy) != 0);
464
return 1;
465
}
466
return 0;
467
}
468
469
/*
470
* Freeing function for a buddy system allocator.
471
*
472
* The concept of a buddy system is to maintain direct-mapped table
473
* (containing bit values) for memory blocks of various "orders".
474
* The bottom level table contains the map for the smallest allocatable
475
* units of memory (here, pages), and each level above it describes
476
* pairs of units from the levels below, hence, "buddies".
477
* At a high level, all that happens here is marking the table entry
478
* at the bottom level available, and propagating the changes upward
479
* as necessary, plus some accounting needed to play nicely with other
480
* parts of the VM system.
481
* At each level, we keep a list of pages, which are heads of continuous
482
* free pages of length of (1 << order) and marked with _mapcount -2. Page's
483
* order is recorded in page_private(page) field.
484
* So when we are allocating or freeing one, we can derive the state of the
485
* other. That is, if we allocate a small block, and both were
486
* free, the remainder of the region must be split into blocks.
487
* If a block is freed, and its buddy is also free, then this
488
* triggers coalescing into a block of larger size.
489
*
490
* -- wli
491
*/
492
493
static inline void __free_one_page(struct page *page,
494
struct zone *zone, unsigned int order,
495
int migratetype)
496
{
497
unsigned long page_idx;
498
unsigned long combined_idx;
499
unsigned long uninitialized_var(buddy_idx);
500
struct page *buddy;
501
502
if (unlikely(PageCompound(page)))
503
if (unlikely(destroy_compound_page(page, order)))
504
return;
505
506
VM_BUG_ON(migratetype == -1);
507
508
page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
509
510
VM_BUG_ON(page_idx & ((1 << order) - 1));
511
VM_BUG_ON(bad_range(zone, page));
512
513
while (order < MAX_ORDER-1) {
514
buddy_idx = __find_buddy_index(page_idx, order);
515
buddy = page + (buddy_idx - page_idx);
516
if (!page_is_buddy(page, buddy, order))
517
break;
518
519
/* Our buddy is free, merge with it and move up one order. */
520
list_del(&buddy->lru);
521
zone->free_area[order].nr_free--;
522
rmv_page_order(buddy);
523
combined_idx = buddy_idx & page_idx;
524
page = page + (combined_idx - page_idx);
525
page_idx = combined_idx;
526
order++;
527
}
528
set_page_order(page, order);
529
530
/*
531
* If this is not the largest possible page, check if the buddy
532
* of the next-highest order is free. If it is, it's possible
533
* that pages are being freed that will coalesce soon. In case,
534
* that is happening, add the free page to the tail of the list
535
* so it's less likely to be used soon and more likely to be merged
536
* as a higher order page
537
*/
538
if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
539
struct page *higher_page, *higher_buddy;
540
combined_idx = buddy_idx & page_idx;
541
higher_page = page + (combined_idx - page_idx);
542
buddy_idx = __find_buddy_index(combined_idx, order + 1);
543
higher_buddy = page + (buddy_idx - combined_idx);
544
if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
545
list_add_tail(&page->lru,
546
&zone->free_area[order].free_list[migratetype]);
547
goto out;
548
}
549
}
550
551
list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
552
out:
553
zone->free_area[order].nr_free++;
554
}
555
556
/*
557
* free_page_mlock() -- clean up attempts to free and mlocked() page.
558
* Page should not be on lru, so no need to fix that up.
559
* free_pages_check() will verify...
560
*/
561
static inline void free_page_mlock(struct page *page)
562
{
563
__dec_zone_page_state(page, NR_MLOCK);
564
__count_vm_event(UNEVICTABLE_MLOCKFREED);
565
}
566
567
static inline int free_pages_check(struct page *page)
568
{
569
if (unlikely(page_mapcount(page) |
570
(page->mapping != NULL) |
571
(atomic_read(&page->_count) != 0) |
572
(page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
573
(mem_cgroup_bad_page_check(page)))) {
574
bad_page(page);
575
return 1;
576
}
577
if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
578
page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
579
return 0;
580
}
581
582
/*
583
* Frees a number of pages from the PCP lists
584
* Assumes all pages on list are in same zone, and of same order.
585
* count is the number of pages to free.
586
*
587
* If the zone was previously in an "all pages pinned" state then look to
588
* see if this freeing clears that state.
589
*
590
* And clear the zone's pages_scanned counter, to hold off the "all pages are
591
* pinned" detection logic.
592
*/
593
static void free_pcppages_bulk(struct zone *zone, int count,
594
struct per_cpu_pages *pcp)
595
{
596
int migratetype = 0;
597
int batch_free = 0;
598
int to_free = count;
599
600
spin_lock(&zone->lock);
601
zone->all_unreclaimable = 0;
602
zone->pages_scanned = 0;
603
604
while (to_free) {
605
struct page *page;
606
struct list_head *list;
607
608
/*
609
* Remove pages from lists in a round-robin fashion. A
610
* batch_free count is maintained that is incremented when an
611
* empty list is encountered. This is so more pages are freed
612
* off fuller lists instead of spinning excessively around empty
613
* lists
614
*/
615
do {
616
batch_free++;
617
if (++migratetype == MIGRATE_PCPTYPES)
618
migratetype = 0;
619
list = &pcp->lists[migratetype];
620
} while (list_empty(list));
621
622
/* This is the only non-empty list. Free them all. */
623
if (batch_free == MIGRATE_PCPTYPES)
624
batch_free = to_free;
625
626
do {
627
page = list_entry(list->prev, struct page, lru);
628
/* must delete as __free_one_page list manipulates */
629
list_del(&page->lru);
630
/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
631
__free_one_page(page, zone, 0, page_private(page));
632
trace_mm_page_pcpu_drain(page, 0, page_private(page));
633
} while (--to_free && --batch_free && !list_empty(list));
634
}
635
__mod_zone_page_state(zone, NR_FREE_PAGES, count);
636
spin_unlock(&zone->lock);
637
}
638
639
static void free_one_page(struct zone *zone, struct page *page, int order,
640
int migratetype)
641
{
642
spin_lock(&zone->lock);
643
zone->all_unreclaimable = 0;
644
zone->pages_scanned = 0;
645
646
__free_one_page(page, zone, order, migratetype);
647
__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
648
spin_unlock(&zone->lock);
649
}
650
651
static bool free_pages_prepare(struct page *page, unsigned int order)
652
{
653
int i;
654
int bad = 0;
655
656
trace_mm_page_free_direct(page, order);
657
kmemcheck_free_shadow(page, order);
658
659
if (PageAnon(page))
660
page->mapping = NULL;
661
for (i = 0; i < (1 << order); i++)
662
bad += free_pages_check(page + i);
663
if (bad)
664
return false;
665
666
if (!PageHighMem(page)) {
667
debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
668
debug_check_no_obj_freed(page_address(page),
669
PAGE_SIZE << order);
670
}
671
arch_free_page(page, order);
672
kernel_map_pages(page, 1 << order, 0);
673
674
return true;
675
}
676
677
static void __free_pages_ok(struct page *page, unsigned int order)
678
{
679
unsigned long flags;
680
int wasMlocked = __TestClearPageMlocked(page);
681
682
if (!free_pages_prepare(page, order))
683
return;
684
685
local_irq_save(flags);
686
if (unlikely(wasMlocked))
687
free_page_mlock(page);
688
__count_vm_events(PGFREE, 1 << order);
689
free_one_page(page_zone(page), page, order,
690
get_pageblock_migratetype(page));
691
local_irq_restore(flags);
692
}
693
694
/*
695
* permit the bootmem allocator to evade page validation on high-order frees
696
*/
697
void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
698
{
699
if (order == 0) {
700
__ClearPageReserved(page);
701
set_page_count(page, 0);
702
set_page_refcounted(page);
703
__free_page(page);
704
} else {
705
int loop;
706
707
prefetchw(page);
708
for (loop = 0; loop < BITS_PER_LONG; loop++) {
709
struct page *p = &page[loop];
710
711
if (loop + 1 < BITS_PER_LONG)
712
prefetchw(p + 1);
713
__ClearPageReserved(p);
714
set_page_count(p, 0);
715
}
716
717
set_page_refcounted(page);
718
__free_pages(page, order);
719
}
720
}
721
722
723
/*
724
* The order of subdivision here is critical for the IO subsystem.
725
* Please do not alter this order without good reasons and regression
726
* testing. Specifically, as large blocks of memory are subdivided,
727
* the order in which smaller blocks are delivered depends on the order
728
* they're subdivided in this function. This is the primary factor
729
* influencing the order in which pages are delivered to the IO
730
* subsystem according to empirical testing, and this is also justified
731
* by considering the behavior of a buddy system containing a single
732
* large block of memory acted on by a series of small allocations.
733
* This behavior is a critical factor in sglist merging's success.
734
*
735
* -- wli
736
*/
737
static inline void expand(struct zone *zone, struct page *page,
738
int low, int high, struct free_area *area,
739
int migratetype)
740
{
741
unsigned long size = 1 << high;
742
743
while (high > low) {
744
area--;
745
high--;
746
size >>= 1;
747
VM_BUG_ON(bad_range(zone, &page[size]));
748
list_add(&page[size].lru, &area->free_list[migratetype]);
749
area->nr_free++;
750
set_page_order(&page[size], high);
751
}
752
}
753
754
/*
755
* This page is about to be returned from the page allocator
756
*/
757
static inline int check_new_page(struct page *page)
758
{
759
if (unlikely(page_mapcount(page) |
760
(page->mapping != NULL) |
761
(atomic_read(&page->_count) != 0) |
762
(page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
763
(mem_cgroup_bad_page_check(page)))) {
764
bad_page(page);
765
return 1;
766
}
767
return 0;
768
}
769
770
static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
771
{
772
int i;
773
774
for (i = 0; i < (1 << order); i++) {
775
struct page *p = page + i;
776
if (unlikely(check_new_page(p)))
777
return 1;
778
}
779
780
set_page_private(page, 0);
781
set_page_refcounted(page);
782
783
arch_alloc_page(page, order);
784
kernel_map_pages(page, 1 << order, 1);
785
786
if (gfp_flags & __GFP_ZERO)
787
prep_zero_page(page, order, gfp_flags);
788
789
if (order && (gfp_flags & __GFP_COMP))
790
prep_compound_page(page, order);
791
792
return 0;
793
}
794
795
/*
796
* Go through the free lists for the given migratetype and remove
797
* the smallest available page from the freelists
798
*/
799
static inline
800
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
801
int migratetype)
802
{
803
unsigned int current_order;
804
struct free_area * area;
805
struct page *page;
806
807
/* Find a page of the appropriate size in the preferred list */
808
for (current_order = order; current_order < MAX_ORDER; ++current_order) {
809
area = &(zone->free_area[current_order]);
810
if (list_empty(&area->free_list[migratetype]))
811
continue;
812
813
page = list_entry(area->free_list[migratetype].next,
814
struct page, lru);
815
list_del(&page->lru);
816
rmv_page_order(page);
817
area->nr_free--;
818
expand(zone, page, order, current_order, area, migratetype);
819
return page;
820
}
821
822
return NULL;
823
}
824
825
826
/*
827
* This array describes the order lists are fallen back to when
828
* the free lists for the desirable migrate type are depleted
829
*/
830
static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
831
[MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
832
[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
833
[MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
834
[MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
835
};
836
837
/*
838
* Move the free pages in a range to the free lists of the requested type.
839
* Note that start_page and end_pages are not aligned on a pageblock
840
* boundary. If alignment is required, use move_freepages_block()
841
*/
842
static int move_freepages(struct zone *zone,
843
struct page *start_page, struct page *end_page,
844
int migratetype)
845
{
846
struct page *page;
847
unsigned long order;
848
int pages_moved = 0;
849
850
#ifndef CONFIG_HOLES_IN_ZONE
851
/*
852
* page_zone is not safe to call in this context when
853
* CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
854
* anyway as we check zone boundaries in move_freepages_block().
855
* Remove at a later date when no bug reports exist related to
856
* grouping pages by mobility
857
*/
858
BUG_ON(page_zone(start_page) != page_zone(end_page));
859
#endif
860
861
for (page = start_page; page <= end_page;) {
862
/* Make sure we are not inadvertently changing nodes */
863
VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
864
865
if (!pfn_valid_within(page_to_pfn(page))) {
866
page++;
867
continue;
868
}
869
870
if (!PageBuddy(page)) {
871
page++;
872
continue;
873
}
874
875
order = page_order(page);
876
list_move(&page->lru,
877
&zone->free_area[order].free_list[migratetype]);
878
page += 1 << order;
879
pages_moved += 1 << order;
880
}
881
882
return pages_moved;
883
}
884
885
static int move_freepages_block(struct zone *zone, struct page *page,
886
int migratetype)
887
{
888
unsigned long start_pfn, end_pfn;
889
struct page *start_page, *end_page;
890
891
start_pfn = page_to_pfn(page);
892
start_pfn = start_pfn & ~(pageblock_nr_pages-1);
893
start_page = pfn_to_page(start_pfn);
894
end_page = start_page + pageblock_nr_pages - 1;
895
end_pfn = start_pfn + pageblock_nr_pages - 1;
896
897
/* Do not cross zone boundaries */
898
if (start_pfn < zone->zone_start_pfn)
899
start_page = page;
900
if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
901
return 0;
902
903
return move_freepages(zone, start_page, end_page, migratetype);
904
}
905
906
static void change_pageblock_range(struct page *pageblock_page,
907
int start_order, int migratetype)
908
{
909
int nr_pageblocks = 1 << (start_order - pageblock_order);
910
911
while (nr_pageblocks--) {
912
set_pageblock_migratetype(pageblock_page, migratetype);
913
pageblock_page += pageblock_nr_pages;
914
}
915
}
916
917
/* Remove an element from the buddy allocator from the fallback list */
918
static inline struct page *
919
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
920
{
921
struct free_area * area;
922
int current_order;
923
struct page *page;
924
int migratetype, i;
925
926
/* Find the largest possible block of pages in the other list */
927
for (current_order = MAX_ORDER-1; current_order >= order;
928
--current_order) {
929
for (i = 0; i < MIGRATE_TYPES - 1; i++) {
930
migratetype = fallbacks[start_migratetype][i];
931
932
/* MIGRATE_RESERVE handled later if necessary */
933
if (migratetype == MIGRATE_RESERVE)
934
continue;
935
936
area = &(zone->free_area[current_order]);
937
if (list_empty(&area->free_list[migratetype]))
938
continue;
939
940
page = list_entry(area->free_list[migratetype].next,
941
struct page, lru);
942
area->nr_free--;
943
944
/*
945
* If breaking a large block of pages, move all free
946
* pages to the preferred allocation list. If falling
947
* back for a reclaimable kernel allocation, be more
948
* aggressive about taking ownership of free pages
949
*/
950
if (unlikely(current_order >= (pageblock_order >> 1)) ||
951
start_migratetype == MIGRATE_RECLAIMABLE ||
952
page_group_by_mobility_disabled) {
953
unsigned long pages;
954
pages = move_freepages_block(zone, page,
955
start_migratetype);
956
957
/* Claim the whole block if over half of it is free */
958
if (pages >= (1 << (pageblock_order-1)) ||
959
page_group_by_mobility_disabled)
960
set_pageblock_migratetype(page,
961
start_migratetype);
962
963
migratetype = start_migratetype;
964
}
965
966
/* Remove the page from the freelists */
967
list_del(&page->lru);
968
rmv_page_order(page);
969
970
/* Take ownership for orders >= pageblock_order */
971
if (current_order >= pageblock_order)
972
change_pageblock_range(page, current_order,
973
start_migratetype);
974
975
expand(zone, page, order, current_order, area, migratetype);
976
977
trace_mm_page_alloc_extfrag(page, order, current_order,
978
start_migratetype, migratetype);
979
980
return page;
981
}
982
}
983
984
return NULL;
985
}
986
987
/*
988
* Do the hard work of removing an element from the buddy allocator.
989
* Call me with the zone->lock already held.
990
*/
991
static struct page *__rmqueue(struct zone *zone, unsigned int order,
992
int migratetype)
993
{
994
struct page *page;
995
996
retry_reserve:
997
page = __rmqueue_smallest(zone, order, migratetype);
998
999
if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1000
page = __rmqueue_fallback(zone, order, migratetype);
1001
1002
/*
1003
* Use MIGRATE_RESERVE rather than fail an allocation. goto
1004
* is used because __rmqueue_smallest is an inline function
1005
* and we want just one call site
1006
*/
1007
if (!page) {
1008
migratetype = MIGRATE_RESERVE;
1009
goto retry_reserve;
1010
}
1011
}
1012
1013
trace_mm_page_alloc_zone_locked(page, order, migratetype);
1014
return page;
1015
}
1016
1017
/*
1018
* Obtain a specified number of elements from the buddy allocator, all under
1019
* a single hold of the lock, for efficiency. Add them to the supplied list.
1020
* Returns the number of new pages which were placed at *list.
1021
*/
1022
static int rmqueue_bulk(struct zone *zone, unsigned int order,
1023
unsigned long count, struct list_head *list,
1024
int migratetype, int cold)
1025
{
1026
int i;
1027
1028
spin_lock(&zone->lock);
1029
for (i = 0; i < count; ++i) {
1030
struct page *page = __rmqueue(zone, order, migratetype);
1031
if (unlikely(page == NULL))
1032
break;
1033
1034
/*
1035
* Split buddy pages returned by expand() are received here
1036
* in physical page order. The page is added to the callers and
1037
* list and the list head then moves forward. From the callers
1038
* perspective, the linked list is ordered by page number in
1039
* some conditions. This is useful for IO devices that can
1040
* merge IO requests if the physical pages are ordered
1041
* properly.
1042
*/
1043
if (likely(cold == 0))
1044
list_add(&page->lru, list);
1045
else
1046
list_add_tail(&page->lru, list);
1047
set_page_private(page, migratetype);
1048
list = &page->lru;
1049
}
1050
__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1051
spin_unlock(&zone->lock);
1052
return i;
1053
}
1054
1055
#ifdef CONFIG_NUMA
1056
/*
1057
* Called from the vmstat counter updater to drain pagesets of this
1058
* currently executing processor on remote nodes after they have
1059
* expired.
1060
*
1061
* Note that this function must be called with the thread pinned to
1062
* a single processor.
1063
*/
1064
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1065
{
1066
unsigned long flags;
1067
int to_drain;
1068
1069
local_irq_save(flags);
1070
if (pcp->count >= pcp->batch)
1071
to_drain = pcp->batch;
1072
else
1073
to_drain = pcp->count;
1074
free_pcppages_bulk(zone, to_drain, pcp);
1075
pcp->count -= to_drain;
1076
local_irq_restore(flags);
1077
}
1078
#endif
1079
1080
/*
1081
* Drain pages of the indicated processor.
1082
*
1083
* The processor must either be the current processor and the
1084
* thread pinned to the current processor or a processor that
1085
* is not online.
1086
*/
1087
static void drain_pages(unsigned int cpu)
1088
{
1089
unsigned long flags;
1090
struct zone *zone;
1091
1092
for_each_populated_zone(zone) {
1093
struct per_cpu_pageset *pset;
1094
struct per_cpu_pages *pcp;
1095
1096
local_irq_save(flags);
1097
pset = per_cpu_ptr(zone->pageset, cpu);
1098
1099
pcp = &pset->pcp;
1100
if (pcp->count) {
1101
free_pcppages_bulk(zone, pcp->count, pcp);
1102
pcp->count = 0;
1103
}
1104
local_irq_restore(flags);
1105
}
1106
}
1107
1108
/*
1109
* Spill all of this CPU's per-cpu pages back into the buddy allocator.
1110
*/
1111
void drain_local_pages(void *arg)
1112
{
1113
drain_pages(smp_processor_id());
1114
}
1115
1116
/*
1117
* Spill all the per-cpu pages from all CPUs back into the buddy allocator
1118
*/
1119
void drain_all_pages(void)
1120
{
1121
on_each_cpu(drain_local_pages, NULL, 1);
1122
}
1123
1124
#ifdef CONFIG_HIBERNATION
1125
1126
void mark_free_pages(struct zone *zone)
1127
{
1128
unsigned long pfn, max_zone_pfn;
1129
unsigned long flags;
1130
int order, t;
1131
struct list_head *curr;
1132
1133
if (!zone->spanned_pages)
1134
return;
1135
1136
spin_lock_irqsave(&zone->lock, flags);
1137
1138
max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1139
for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1140
if (pfn_valid(pfn)) {
1141
struct page *page = pfn_to_page(pfn);
1142
1143
if (!swsusp_page_is_forbidden(page))
1144
swsusp_unset_page_free(page);
1145
}
1146
1147
for_each_migratetype_order(order, t) {
1148
list_for_each(curr, &zone->free_area[order].free_list[t]) {
1149
unsigned long i;
1150
1151
pfn = page_to_pfn(list_entry(curr, struct page, lru));
1152
for (i = 0; i < (1UL << order); i++)
1153
swsusp_set_page_free(pfn_to_page(pfn + i));
1154
}
1155
}
1156
spin_unlock_irqrestore(&zone->lock, flags);
1157
}
1158
#endif /* CONFIG_PM */
1159
1160
/*
1161
* Free a 0-order page
1162
* cold == 1 ? free a cold page : free a hot page
1163
*/
1164
void free_hot_cold_page(struct page *page, int cold)
1165
{
1166
struct zone *zone = page_zone(page);
1167
struct per_cpu_pages *pcp;
1168
unsigned long flags;
1169
int migratetype;
1170
int wasMlocked = __TestClearPageMlocked(page);
1171
1172
if (!free_pages_prepare(page, 0))
1173
return;
1174
1175
migratetype = get_pageblock_migratetype(page);
1176
set_page_private(page, migratetype);
1177
local_irq_save(flags);
1178
if (unlikely(wasMlocked))
1179
free_page_mlock(page);
1180
__count_vm_event(PGFREE);
1181
1182
/*
1183
* We only track unmovable, reclaimable and movable on pcp lists.
1184
* Free ISOLATE pages back to the allocator because they are being
1185
* offlined but treat RESERVE as movable pages so we can get those
1186
* areas back if necessary. Otherwise, we may have to free
1187
* excessively into the page allocator
1188
*/
1189
if (migratetype >= MIGRATE_PCPTYPES) {
1190
if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1191
free_one_page(zone, page, 0, migratetype);
1192
goto out;
1193
}
1194
migratetype = MIGRATE_MOVABLE;
1195
}
1196
1197
pcp = &this_cpu_ptr(zone->pageset)->pcp;
1198
if (cold)
1199
list_add_tail(&page->lru, &pcp->lists[migratetype]);
1200
else
1201
list_add(&page->lru, &pcp->lists[migratetype]);
1202
pcp->count++;
1203
if (pcp->count >= pcp->high) {
1204
free_pcppages_bulk(zone, pcp->batch, pcp);
1205
pcp->count -= pcp->batch;
1206
}
1207
1208
out:
1209
local_irq_restore(flags);
1210
}
1211
1212
/*
1213
* split_page takes a non-compound higher-order page, and splits it into
1214
* n (1<<order) sub-pages: page[0..n]
1215
* Each sub-page must be freed individually.
1216
*
1217
* Note: this is probably too low level an operation for use in drivers.
1218
* Please consult with lkml before using this in your driver.
1219
*/
1220
void split_page(struct page *page, unsigned int order)
1221
{
1222
int i;
1223
1224
VM_BUG_ON(PageCompound(page));
1225
VM_BUG_ON(!page_count(page));
1226
1227
#ifdef CONFIG_KMEMCHECK
1228
/*
1229
* Split shadow pages too, because free(page[0]) would
1230
* otherwise free the whole shadow.
1231
*/
1232
if (kmemcheck_page_is_tracked(page))
1233
split_page(virt_to_page(page[0].shadow), order);
1234
#endif
1235
1236
for (i = 1; i < (1 << order); i++)
1237
set_page_refcounted(page + i);
1238
}
1239
1240
/*
1241
* Similar to split_page except the page is already free. As this is only
1242
* being used for migration, the migratetype of the block also changes.
1243
* As this is called with interrupts disabled, the caller is responsible
1244
* for calling arch_alloc_page() and kernel_map_page() after interrupts
1245
* are enabled.
1246
*
1247
* Note: this is probably too low level an operation for use in drivers.
1248
* Please consult with lkml before using this in your driver.
1249
*/
1250
int split_free_page(struct page *page)
1251
{
1252
unsigned int order;
1253
unsigned long watermark;
1254
struct zone *zone;
1255
1256
BUG_ON(!PageBuddy(page));
1257
1258
zone = page_zone(page);
1259
order = page_order(page);
1260
1261
/* Obey watermarks as if the page was being allocated */
1262
watermark = low_wmark_pages(zone) + (1 << order);
1263
if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1264
return 0;
1265
1266
/* Remove page from free list */
1267
list_del(&page->lru);
1268
zone->free_area[order].nr_free--;
1269
rmv_page_order(page);
1270
__mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1271
1272
/* Split into individual pages */
1273
set_page_refcounted(page);
1274
split_page(page, order);
1275
1276
if (order >= pageblock_order - 1) {
1277
struct page *endpage = page + (1 << order) - 1;
1278
for (; page < endpage; page += pageblock_nr_pages)
1279
set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1280
}
1281
1282
return 1 << order;
1283
}
1284
1285
/*
1286
* Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1287
* we cheat by calling it from here, in the order > 0 path. Saves a branch
1288
* or two.
1289
*/
1290
static inline
1291
struct page *buffered_rmqueue(struct zone *preferred_zone,
1292
struct zone *zone, int order, gfp_t gfp_flags,
1293
int migratetype)
1294
{
1295
unsigned long flags;
1296
struct page *page;
1297
int cold = !!(gfp_flags & __GFP_COLD);
1298
1299
again:
1300
if (likely(order == 0)) {
1301
struct per_cpu_pages *pcp;
1302
struct list_head *list;
1303
1304
local_irq_save(flags);
1305
pcp = &this_cpu_ptr(zone->pageset)->pcp;
1306
list = &pcp->lists[migratetype];
1307
if (list_empty(list)) {
1308
pcp->count += rmqueue_bulk(zone, 0,
1309
pcp->batch, list,
1310
migratetype, cold);
1311
if (unlikely(list_empty(list)))
1312
goto failed;
1313
}
1314
1315
if (cold)
1316
page = list_entry(list->prev, struct page, lru);
1317
else
1318
page = list_entry(list->next, struct page, lru);
1319
1320
list_del(&page->lru);
1321
pcp->count--;
1322
} else {
1323
if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1324
/*
1325
* __GFP_NOFAIL is not to be used in new code.
1326
*
1327
* All __GFP_NOFAIL callers should be fixed so that they
1328
* properly detect and handle allocation failures.
1329
*
1330
* We most definitely don't want callers attempting to
1331
* allocate greater than order-1 page units with
1332
* __GFP_NOFAIL.
1333
*/
1334
WARN_ON_ONCE(order > 1);
1335
}
1336
spin_lock_irqsave(&zone->lock, flags);
1337
page = __rmqueue(zone, order, migratetype);
1338
spin_unlock(&zone->lock);
1339
if (!page)
1340
goto failed;
1341
__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1342
}
1343
1344
__count_zone_vm_events(PGALLOC, zone, 1 << order);
1345
zone_statistics(preferred_zone, zone, gfp_flags);
1346
local_irq_restore(flags);
1347
1348
VM_BUG_ON(bad_range(zone, page));
1349
if (prep_new_page(page, order, gfp_flags))
1350
goto again;
1351
return page;
1352
1353
failed:
1354
local_irq_restore(flags);
1355
return NULL;
1356
}
1357
1358
/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1359
#define ALLOC_WMARK_MIN WMARK_MIN
1360
#define ALLOC_WMARK_LOW WMARK_LOW
1361
#define ALLOC_WMARK_HIGH WMARK_HIGH
1362
#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1363
1364
/* Mask to get the watermark bits */
1365
#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1366
1367
#define ALLOC_HARDER 0x10 /* try to alloc harder */
1368
#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1369
#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1370
1371
#ifdef CONFIG_FAIL_PAGE_ALLOC
1372
1373
static struct fail_page_alloc_attr {
1374
struct fault_attr attr;
1375
1376
u32 ignore_gfp_highmem;
1377
u32 ignore_gfp_wait;
1378
u32 min_order;
1379
1380
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1381
1382
struct dentry *ignore_gfp_highmem_file;
1383
struct dentry *ignore_gfp_wait_file;
1384
struct dentry *min_order_file;
1385
1386
#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1387
1388
} fail_page_alloc = {
1389
.attr = FAULT_ATTR_INITIALIZER,
1390
.ignore_gfp_wait = 1,
1391
.ignore_gfp_highmem = 1,
1392
.min_order = 1,
1393
};
1394
1395
static int __init setup_fail_page_alloc(char *str)
1396
{
1397
return setup_fault_attr(&fail_page_alloc.attr, str);
1398
}
1399
__setup("fail_page_alloc=", setup_fail_page_alloc);
1400
1401
static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1402
{
1403
if (order < fail_page_alloc.min_order)
1404
return 0;
1405
if (gfp_mask & __GFP_NOFAIL)
1406
return 0;
1407
if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1408
return 0;
1409
if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1410
return 0;
1411
1412
return should_fail(&fail_page_alloc.attr, 1 << order);
1413
}
1414
1415
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1416
1417
static int __init fail_page_alloc_debugfs(void)
1418
{
1419
mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1420
struct dentry *dir;
1421
int err;
1422
1423
err = init_fault_attr_dentries(&fail_page_alloc.attr,
1424
"fail_page_alloc");
1425
if (err)
1426
return err;
1427
dir = fail_page_alloc.attr.dentries.dir;
1428
1429
fail_page_alloc.ignore_gfp_wait_file =
1430
debugfs_create_bool("ignore-gfp-wait", mode, dir,
1431
&fail_page_alloc.ignore_gfp_wait);
1432
1433
fail_page_alloc.ignore_gfp_highmem_file =
1434
debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1435
&fail_page_alloc.ignore_gfp_highmem);
1436
fail_page_alloc.min_order_file =
1437
debugfs_create_u32("min-order", mode, dir,
1438
&fail_page_alloc.min_order);
1439
1440
if (!fail_page_alloc.ignore_gfp_wait_file ||
1441
!fail_page_alloc.ignore_gfp_highmem_file ||
1442
!fail_page_alloc.min_order_file) {
1443
err = -ENOMEM;
1444
debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1445
debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1446
debugfs_remove(fail_page_alloc.min_order_file);
1447
cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1448
}
1449
1450
return err;
1451
}
1452
1453
late_initcall(fail_page_alloc_debugfs);
1454
1455
#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1456
1457
#else /* CONFIG_FAIL_PAGE_ALLOC */
1458
1459
static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1460
{
1461
return 0;
1462
}
1463
1464
#endif /* CONFIG_FAIL_PAGE_ALLOC */
1465
1466
/*
1467
* Return true if free pages are above 'mark'. This takes into account the order
1468
* of the allocation.
1469
*/
1470
static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1471
int classzone_idx, int alloc_flags, long free_pages)
1472
{
1473
/* free_pages my go negative - that's OK */
1474
long min = mark;
1475
int o;
1476
1477
free_pages -= (1 << order) + 1;
1478
if (alloc_flags & ALLOC_HIGH)
1479
min -= min / 2;
1480
if (alloc_flags & ALLOC_HARDER)
1481
min -= min / 4;
1482
1483
if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1484
return false;
1485
for (o = 0; o < order; o++) {
1486
/* At the next order, this order's pages become unavailable */
1487
free_pages -= z->free_area[o].nr_free << o;
1488
1489
/* Require fewer higher order pages to be free */
1490
min >>= 1;
1491
1492
if (free_pages <= min)
1493
return false;
1494
}
1495
return true;
1496
}
1497
1498
bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1499
int classzone_idx, int alloc_flags)
1500
{
1501
return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1502
zone_page_state(z, NR_FREE_PAGES));
1503
}
1504
1505
bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1506
int classzone_idx, int alloc_flags)
1507
{
1508
long free_pages = zone_page_state(z, NR_FREE_PAGES);
1509
1510
if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1511
free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1512
1513
return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1514
free_pages);
1515
}
1516
1517
#ifdef CONFIG_NUMA
1518
/*
1519
* zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1520
* skip over zones that are not allowed by the cpuset, or that have
1521
* been recently (in last second) found to be nearly full. See further
1522
* comments in mmzone.h. Reduces cache footprint of zonelist scans
1523
* that have to skip over a lot of full or unallowed zones.
1524
*
1525
* If the zonelist cache is present in the passed in zonelist, then
1526
* returns a pointer to the allowed node mask (either the current
1527
* tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1528
*
1529
* If the zonelist cache is not available for this zonelist, does
1530
* nothing and returns NULL.
1531
*
1532
* If the fullzones BITMAP in the zonelist cache is stale (more than
1533
* a second since last zap'd) then we zap it out (clear its bits.)
1534
*
1535
* We hold off even calling zlc_setup, until after we've checked the
1536
* first zone in the zonelist, on the theory that most allocations will
1537
* be satisfied from that first zone, so best to examine that zone as
1538
* quickly as we can.
1539
*/
1540
static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1541
{
1542
struct zonelist_cache *zlc; /* cached zonelist speedup info */
1543
nodemask_t *allowednodes; /* zonelist_cache approximation */
1544
1545
zlc = zonelist->zlcache_ptr;
1546
if (!zlc)
1547
return NULL;
1548
1549
if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1550
bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1551
zlc->last_full_zap = jiffies;
1552
}
1553
1554
allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1555
&cpuset_current_mems_allowed :
1556
&node_states[N_HIGH_MEMORY];
1557
return allowednodes;
1558
}
1559
1560
/*
1561
* Given 'z' scanning a zonelist, run a couple of quick checks to see
1562
* if it is worth looking at further for free memory:
1563
* 1) Check that the zone isn't thought to be full (doesn't have its
1564
* bit set in the zonelist_cache fullzones BITMAP).
1565
* 2) Check that the zones node (obtained from the zonelist_cache
1566
* z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1567
* Return true (non-zero) if zone is worth looking at further, or
1568
* else return false (zero) if it is not.
1569
*
1570
* This check -ignores- the distinction between various watermarks,
1571
* such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1572
* found to be full for any variation of these watermarks, it will
1573
* be considered full for up to one second by all requests, unless
1574
* we are so low on memory on all allowed nodes that we are forced
1575
* into the second scan of the zonelist.
1576
*
1577
* In the second scan we ignore this zonelist cache and exactly
1578
* apply the watermarks to all zones, even it is slower to do so.
1579
* We are low on memory in the second scan, and should leave no stone
1580
* unturned looking for a free page.
1581
*/
1582
static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1583
nodemask_t *allowednodes)
1584
{
1585
struct zonelist_cache *zlc; /* cached zonelist speedup info */
1586
int i; /* index of *z in zonelist zones */
1587
int n; /* node that zone *z is on */
1588
1589
zlc = zonelist->zlcache_ptr;
1590
if (!zlc)
1591
return 1;
1592
1593
i = z - zonelist->_zonerefs;
1594
n = zlc->z_to_n[i];
1595
1596
/* This zone is worth trying if it is allowed but not full */
1597
return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1598
}
1599
1600
/*
1601
* Given 'z' scanning a zonelist, set the corresponding bit in
1602
* zlc->fullzones, so that subsequent attempts to allocate a page
1603
* from that zone don't waste time re-examining it.
1604
*/
1605
static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1606
{
1607
struct zonelist_cache *zlc; /* cached zonelist speedup info */
1608
int i; /* index of *z in zonelist zones */
1609
1610
zlc = zonelist->zlcache_ptr;
1611
if (!zlc)
1612
return;
1613
1614
i = z - zonelist->_zonerefs;
1615
1616
set_bit(i, zlc->fullzones);
1617
}
1618
1619
#else /* CONFIG_NUMA */
1620
1621
static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1622
{
1623
return NULL;
1624
}
1625
1626
static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1627
nodemask_t *allowednodes)
1628
{
1629
return 1;
1630
}
1631
1632
static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1633
{
1634
}
1635
#endif /* CONFIG_NUMA */
1636
1637
/*
1638
* get_page_from_freelist goes through the zonelist trying to allocate
1639
* a page.
1640
*/
1641
static struct page *
1642
get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1643
struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1644
struct zone *preferred_zone, int migratetype)
1645
{
1646
struct zoneref *z;
1647
struct page *page = NULL;
1648
int classzone_idx;
1649
struct zone *zone;
1650
nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1651
int zlc_active = 0; /* set if using zonelist_cache */
1652
int did_zlc_setup = 0; /* just call zlc_setup() one time */
1653
1654
classzone_idx = zone_idx(preferred_zone);
1655
zonelist_scan:
1656
/*
1657
* Scan zonelist, looking for a zone with enough free.
1658
* See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1659
*/
1660
for_each_zone_zonelist_nodemask(zone, z, zonelist,
1661
high_zoneidx, nodemask) {
1662
if (NUMA_BUILD && zlc_active &&
1663
!zlc_zone_worth_trying(zonelist, z, allowednodes))
1664
continue;
1665
if ((alloc_flags & ALLOC_CPUSET) &&
1666
!cpuset_zone_allowed_softwall(zone, gfp_mask))
1667
goto try_next_zone;
1668
1669
BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1670
if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1671
unsigned long mark;
1672
int ret;
1673
1674
mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1675
if (zone_watermark_ok(zone, order, mark,
1676
classzone_idx, alloc_flags))
1677
goto try_this_zone;
1678
1679
if (zone_reclaim_mode == 0)
1680
goto this_zone_full;
1681
1682
ret = zone_reclaim(zone, gfp_mask, order);
1683
switch (ret) {
1684
case ZONE_RECLAIM_NOSCAN:
1685
/* did not scan */
1686
goto try_next_zone;
1687
case ZONE_RECLAIM_FULL:
1688
/* scanned but unreclaimable */
1689
goto this_zone_full;
1690
default:
1691
/* did we reclaim enough */
1692
if (!zone_watermark_ok(zone, order, mark,
1693
classzone_idx, alloc_flags))
1694
goto this_zone_full;
1695
}
1696
}
1697
1698
try_this_zone:
1699
page = buffered_rmqueue(preferred_zone, zone, order,
1700
gfp_mask, migratetype);
1701
if (page)
1702
break;
1703
this_zone_full:
1704
if (NUMA_BUILD)
1705
zlc_mark_zone_full(zonelist, z);
1706
try_next_zone:
1707
if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1708
/*
1709
* we do zlc_setup after the first zone is tried but only
1710
* if there are multiple nodes make it worthwhile
1711
*/
1712
allowednodes = zlc_setup(zonelist, alloc_flags);
1713
zlc_active = 1;
1714
did_zlc_setup = 1;
1715
}
1716
}
1717
1718
if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1719
/* Disable zlc cache for second zonelist scan */
1720
zlc_active = 0;
1721
goto zonelist_scan;
1722
}
1723
return page;
1724
}
1725
1726
/*
1727
* Large machines with many possible nodes should not always dump per-node
1728
* meminfo in irq context.
1729
*/
1730
static inline bool should_suppress_show_mem(void)
1731
{
1732
bool ret = false;
1733
1734
#if NODES_SHIFT > 8
1735
ret = in_interrupt();
1736
#endif
1737
return ret;
1738
}
1739
1740
static DEFINE_RATELIMIT_STATE(nopage_rs,
1741
DEFAULT_RATELIMIT_INTERVAL,
1742
DEFAULT_RATELIMIT_BURST);
1743
1744
void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1745
{
1746
va_list args;
1747
unsigned int filter = SHOW_MEM_FILTER_NODES;
1748
1749
if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
1750
return;
1751
1752
/*
1753
* This documents exceptions given to allocations in certain
1754
* contexts that are allowed to allocate outside current's set
1755
* of allowed nodes.
1756
*/
1757
if (!(gfp_mask & __GFP_NOMEMALLOC))
1758
if (test_thread_flag(TIF_MEMDIE) ||
1759
(current->flags & (PF_MEMALLOC | PF_EXITING)))
1760
filter &= ~SHOW_MEM_FILTER_NODES;
1761
if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1762
filter &= ~SHOW_MEM_FILTER_NODES;
1763
1764
if (fmt) {
1765
printk(KERN_WARNING);
1766
va_start(args, fmt);
1767
vprintk(fmt, args);
1768
va_end(args);
1769
}
1770
1771
pr_warning("%s: page allocation failure: order:%d, mode:0x%x\n",
1772
current->comm, order, gfp_mask);
1773
1774
dump_stack();
1775
if (!should_suppress_show_mem())
1776
show_mem(filter);
1777
}
1778
1779
static inline int
1780
should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1781
unsigned long pages_reclaimed)
1782
{
1783
/* Do not loop if specifically requested */
1784
if (gfp_mask & __GFP_NORETRY)
1785
return 0;
1786
1787
/*
1788
* In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1789
* means __GFP_NOFAIL, but that may not be true in other
1790
* implementations.
1791
*/
1792
if (order <= PAGE_ALLOC_COSTLY_ORDER)
1793
return 1;
1794
1795
/*
1796
* For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1797
* specified, then we retry until we no longer reclaim any pages
1798
* (above), or we've reclaimed an order of pages at least as
1799
* large as the allocation's order. In both cases, if the
1800
* allocation still fails, we stop retrying.
1801
*/
1802
if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1803
return 1;
1804
1805
/*
1806
* Don't let big-order allocations loop unless the caller
1807
* explicitly requests that.
1808
*/
1809
if (gfp_mask & __GFP_NOFAIL)
1810
return 1;
1811
1812
return 0;
1813
}
1814
1815
static inline struct page *
1816
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1817
struct zonelist *zonelist, enum zone_type high_zoneidx,
1818
nodemask_t *nodemask, struct zone *preferred_zone,
1819
int migratetype)
1820
{
1821
struct page *page;
1822
1823
/* Acquire the OOM killer lock for the zones in zonelist */
1824
if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1825
schedule_timeout_uninterruptible(1);
1826
return NULL;
1827
}
1828
1829
/*
1830
* Go through the zonelist yet one more time, keep very high watermark
1831
* here, this is only to catch a parallel oom killing, we must fail if
1832
* we're still under heavy pressure.
1833
*/
1834
page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1835
order, zonelist, high_zoneidx,
1836
ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1837
preferred_zone, migratetype);
1838
if (page)
1839
goto out;
1840
1841
if (!(gfp_mask & __GFP_NOFAIL)) {
1842
/* The OOM killer will not help higher order allocs */
1843
if (order > PAGE_ALLOC_COSTLY_ORDER)
1844
goto out;
1845
/* The OOM killer does not needlessly kill tasks for lowmem */
1846
if (high_zoneidx < ZONE_NORMAL)
1847
goto out;
1848
/*
1849
* GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1850
* Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1851
* The caller should handle page allocation failure by itself if
1852
* it specifies __GFP_THISNODE.
1853
* Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1854
*/
1855
if (gfp_mask & __GFP_THISNODE)
1856
goto out;
1857
}
1858
/* Exhausted what can be done so it's blamo time */
1859
out_of_memory(zonelist, gfp_mask, order, nodemask);
1860
1861
out:
1862
clear_zonelist_oom(zonelist, gfp_mask);
1863
return page;
1864
}
1865
1866
#ifdef CONFIG_COMPACTION
1867
/* Try memory compaction for high-order allocations before reclaim */
1868
static struct page *
1869
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1870
struct zonelist *zonelist, enum zone_type high_zoneidx,
1871
nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1872
int migratetype, unsigned long *did_some_progress,
1873
bool sync_migration)
1874
{
1875
struct page *page;
1876
1877
if (!order || compaction_deferred(preferred_zone))
1878
return NULL;
1879
1880
current->flags |= PF_MEMALLOC;
1881
*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1882
nodemask, sync_migration);
1883
current->flags &= ~PF_MEMALLOC;
1884
if (*did_some_progress != COMPACT_SKIPPED) {
1885
1886
/* Page migration frees to the PCP lists but we want merging */
1887
drain_pages(get_cpu());
1888
put_cpu();
1889
1890
page = get_page_from_freelist(gfp_mask, nodemask,
1891
order, zonelist, high_zoneidx,
1892
alloc_flags, preferred_zone,
1893
migratetype);
1894
if (page) {
1895
preferred_zone->compact_considered = 0;
1896
preferred_zone->compact_defer_shift = 0;
1897
count_vm_event(COMPACTSUCCESS);
1898
return page;
1899
}
1900
1901
/*
1902
* It's bad if compaction run occurs and fails.
1903
* The most likely reason is that pages exist,
1904
* but not enough to satisfy watermarks.
1905
*/
1906
count_vm_event(COMPACTFAIL);
1907
defer_compaction(preferred_zone);
1908
1909
cond_resched();
1910
}
1911
1912
return NULL;
1913
}
1914
#else
1915
static inline struct page *
1916
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1917
struct zonelist *zonelist, enum zone_type high_zoneidx,
1918
nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1919
int migratetype, unsigned long *did_some_progress,
1920
bool sync_migration)
1921
{
1922
return NULL;
1923
}
1924
#endif /* CONFIG_COMPACTION */
1925
1926
/* The really slow allocator path where we enter direct reclaim */
1927
static inline struct page *
1928
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1929
struct zonelist *zonelist, enum zone_type high_zoneidx,
1930
nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1931
int migratetype, unsigned long *did_some_progress)
1932
{
1933
struct page *page = NULL;
1934
struct reclaim_state reclaim_state;
1935
bool drained = false;
1936
1937
cond_resched();
1938
1939
/* We now go into synchronous reclaim */
1940
cpuset_memory_pressure_bump();
1941
current->flags |= PF_MEMALLOC;
1942
lockdep_set_current_reclaim_state(gfp_mask);
1943
reclaim_state.reclaimed_slab = 0;
1944
current->reclaim_state = &reclaim_state;
1945
1946
*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1947
1948
current->reclaim_state = NULL;
1949
lockdep_clear_current_reclaim_state();
1950
current->flags &= ~PF_MEMALLOC;
1951
1952
cond_resched();
1953
1954
if (unlikely(!(*did_some_progress)))
1955
return NULL;
1956
1957
retry:
1958
page = get_page_from_freelist(gfp_mask, nodemask, order,
1959
zonelist, high_zoneidx,
1960
alloc_flags, preferred_zone,
1961
migratetype);
1962
1963
/*
1964
* If an allocation failed after direct reclaim, it could be because
1965
* pages are pinned on the per-cpu lists. Drain them and try again
1966
*/
1967
if (!page && !drained) {
1968
drain_all_pages();
1969
drained = true;
1970
goto retry;
1971
}
1972
1973
return page;
1974
}
1975
1976
/*
1977
* This is called in the allocator slow-path if the allocation request is of
1978
* sufficient urgency to ignore watermarks and take other desperate measures
1979
*/
1980
static inline struct page *
1981
__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1982
struct zonelist *zonelist, enum zone_type high_zoneidx,
1983
nodemask_t *nodemask, struct zone *preferred_zone,
1984
int migratetype)
1985
{
1986
struct page *page;
1987
1988
do {
1989
page = get_page_from_freelist(gfp_mask, nodemask, order,
1990
zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1991
preferred_zone, migratetype);
1992
1993
if (!page && gfp_mask & __GFP_NOFAIL)
1994
wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1995
} while (!page && (gfp_mask & __GFP_NOFAIL));
1996
1997
return page;
1998
}
1999
2000
static inline
2001
void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2002
enum zone_type high_zoneidx,
2003
enum zone_type classzone_idx)
2004
{
2005
struct zoneref *z;
2006
struct zone *zone;
2007
2008
for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2009
wakeup_kswapd(zone, order, classzone_idx);
2010
}
2011
2012
static inline int
2013
gfp_to_alloc_flags(gfp_t gfp_mask)
2014
{
2015
int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2016
const gfp_t wait = gfp_mask & __GFP_WAIT;
2017
2018
/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2019
BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2020
2021
/*
2022
* The caller may dip into page reserves a bit more if the caller
2023
* cannot run direct reclaim, or if the caller has realtime scheduling
2024
* policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2025
* set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2026
*/
2027
alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2028
2029
if (!wait) {
2030
/*
2031
* Not worth trying to allocate harder for
2032
* __GFP_NOMEMALLOC even if it can't schedule.
2033
*/
2034
if (!(gfp_mask & __GFP_NOMEMALLOC))
2035
alloc_flags |= ALLOC_HARDER;
2036
/*
2037
* Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2038
* See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2039
*/
2040
alloc_flags &= ~ALLOC_CPUSET;
2041
} else if (unlikely(rt_task(current)) && !in_interrupt())
2042
alloc_flags |= ALLOC_HARDER;
2043
2044
if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2045
if (!in_interrupt() &&
2046
((current->flags & PF_MEMALLOC) ||
2047
unlikely(test_thread_flag(TIF_MEMDIE))))
2048
alloc_flags |= ALLOC_NO_WATERMARKS;
2049
}
2050
2051
return alloc_flags;
2052
}
2053
2054
static inline struct page *
2055
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2056
struct zonelist *zonelist, enum zone_type high_zoneidx,
2057
nodemask_t *nodemask, struct zone *preferred_zone,
2058
int migratetype)
2059
{
2060
const gfp_t wait = gfp_mask & __GFP_WAIT;
2061
struct page *page = NULL;
2062
int alloc_flags;
2063
unsigned long pages_reclaimed = 0;
2064
unsigned long did_some_progress;
2065
bool sync_migration = false;
2066
2067
/*
2068
* In the slowpath, we sanity check order to avoid ever trying to
2069
* reclaim >= MAX_ORDER areas which will never succeed. Callers may
2070
* be using allocators in order of preference for an area that is
2071
* too large.
2072
*/
2073
if (order >= MAX_ORDER) {
2074
WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2075
return NULL;
2076
}
2077
2078
/*
2079
* GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2080
* __GFP_NOWARN set) should not cause reclaim since the subsystem
2081
* (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2082
* using a larger set of nodes after it has established that the
2083
* allowed per node queues are empty and that nodes are
2084
* over allocated.
2085
*/
2086
if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2087
goto nopage;
2088
2089
restart:
2090
if (!(gfp_mask & __GFP_NO_KSWAPD))
2091
wake_all_kswapd(order, zonelist, high_zoneidx,
2092
zone_idx(preferred_zone));
2093
2094
/*
2095
* OK, we're below the kswapd watermark and have kicked background
2096
* reclaim. Now things get more complex, so set up alloc_flags according
2097
* to how we want to proceed.
2098
*/
2099
alloc_flags = gfp_to_alloc_flags(gfp_mask);
2100
2101
/*
2102
* Find the true preferred zone if the allocation is unconstrained by
2103
* cpusets.
2104
*/
2105
if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2106
first_zones_zonelist(zonelist, high_zoneidx, NULL,
2107
&preferred_zone);
2108
2109
rebalance:
2110
/* This is the last chance, in general, before the goto nopage. */
2111
page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2112
high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2113
preferred_zone, migratetype);
2114
if (page)
2115
goto got_pg;
2116
2117
/* Allocate without watermarks if the context allows */
2118
if (alloc_flags & ALLOC_NO_WATERMARKS) {
2119
page = __alloc_pages_high_priority(gfp_mask, order,
2120
zonelist, high_zoneidx, nodemask,
2121
preferred_zone, migratetype);
2122
if (page)
2123
goto got_pg;
2124
}
2125
2126
/* Atomic allocations - we can't balance anything */
2127
if (!wait)
2128
goto nopage;
2129
2130
/* Avoid recursion of direct reclaim */
2131
if (current->flags & PF_MEMALLOC)
2132
goto nopage;
2133
2134
/* Avoid allocations with no watermarks from looping endlessly */
2135
if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2136
goto nopage;
2137
2138
/*
2139
* Try direct compaction. The first pass is asynchronous. Subsequent
2140
* attempts after direct reclaim are synchronous
2141
*/
2142
page = __alloc_pages_direct_compact(gfp_mask, order,
2143
zonelist, high_zoneidx,
2144
nodemask,
2145
alloc_flags, preferred_zone,
2146
migratetype, &did_some_progress,
2147
sync_migration);
2148
if (page)
2149
goto got_pg;
2150
sync_migration = true;
2151
2152
/* Try direct reclaim and then allocating */
2153
page = __alloc_pages_direct_reclaim(gfp_mask, order,
2154
zonelist, high_zoneidx,
2155
nodemask,
2156
alloc_flags, preferred_zone,
2157
migratetype, &did_some_progress);
2158
if (page)
2159
goto got_pg;
2160
2161
/*
2162
* If we failed to make any progress reclaiming, then we are
2163
* running out of options and have to consider going OOM
2164
*/
2165
if (!did_some_progress) {
2166
if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2167
if (oom_killer_disabled)
2168
goto nopage;
2169
page = __alloc_pages_may_oom(gfp_mask, order,
2170
zonelist, high_zoneidx,
2171
nodemask, preferred_zone,
2172
migratetype);
2173
if (page)
2174
goto got_pg;
2175
2176
if (!(gfp_mask & __GFP_NOFAIL)) {
2177
/*
2178
* The oom killer is not called for high-order
2179
* allocations that may fail, so if no progress
2180
* is being made, there are no other options and
2181
* retrying is unlikely to help.
2182
*/
2183
if (order > PAGE_ALLOC_COSTLY_ORDER)
2184
goto nopage;
2185
/*
2186
* The oom killer is not called for lowmem
2187
* allocations to prevent needlessly killing
2188
* innocent tasks.
2189
*/
2190
if (high_zoneidx < ZONE_NORMAL)
2191
goto nopage;
2192
}
2193
2194
goto restart;
2195
}
2196
}
2197
2198
/* Check if we should retry the allocation */
2199
pages_reclaimed += did_some_progress;
2200
if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2201
/* Wait for some write requests to complete then retry */
2202
wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2203
goto rebalance;
2204
} else {
2205
/*
2206
* High-order allocations do not necessarily loop after
2207
* direct reclaim and reclaim/compaction depends on compaction
2208
* being called after reclaim so call directly if necessary
2209
*/
2210
page = __alloc_pages_direct_compact(gfp_mask, order,
2211
zonelist, high_zoneidx,
2212
nodemask,
2213
alloc_flags, preferred_zone,
2214
migratetype, &did_some_progress,
2215
sync_migration);
2216
if (page)
2217
goto got_pg;
2218
}
2219
2220
nopage:
2221
warn_alloc_failed(gfp_mask, order, NULL);
2222
return page;
2223
got_pg:
2224
if (kmemcheck_enabled)
2225
kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2226
return page;
2227
2228
}
2229
2230
/*
2231
* This is the 'heart' of the zoned buddy allocator.
2232
*/
2233
struct page *
2234
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2235
struct zonelist *zonelist, nodemask_t *nodemask)
2236
{
2237
enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2238
struct zone *preferred_zone;
2239
struct page *page;
2240
int migratetype = allocflags_to_migratetype(gfp_mask);
2241
2242
gfp_mask &= gfp_allowed_mask;
2243
2244
lockdep_trace_alloc(gfp_mask);
2245
2246
might_sleep_if(gfp_mask & __GFP_WAIT);
2247
2248
if (should_fail_alloc_page(gfp_mask, order))
2249
return NULL;
2250
2251
/*
2252
* Check the zones suitable for the gfp_mask contain at least one
2253
* valid zone. It's possible to have an empty zonelist as a result
2254
* of GFP_THISNODE and a memoryless node
2255
*/
2256
if (unlikely(!zonelist->_zonerefs->zone))
2257
return NULL;
2258
2259
get_mems_allowed();
2260
/* The preferred zone is used for statistics later */
2261
first_zones_zonelist(zonelist, high_zoneidx,
2262
nodemask ? : &cpuset_current_mems_allowed,
2263
&preferred_zone);
2264
if (!preferred_zone) {
2265
put_mems_allowed();
2266
return NULL;
2267
}
2268
2269
/* First allocation attempt */
2270
page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2271
zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2272
preferred_zone, migratetype);
2273
if (unlikely(!page))
2274
page = __alloc_pages_slowpath(gfp_mask, order,
2275
zonelist, high_zoneidx, nodemask,
2276
preferred_zone, migratetype);
2277
put_mems_allowed();
2278
2279
trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2280
return page;
2281
}
2282
EXPORT_SYMBOL(__alloc_pages_nodemask);
2283
2284
/*
2285
* Common helper functions.
2286
*/
2287
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2288
{
2289
struct page *page;
2290
2291
/*
2292
* __get_free_pages() returns a 32-bit address, which cannot represent
2293
* a highmem page
2294
*/
2295
VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2296
2297
page = alloc_pages(gfp_mask, order);
2298
if (!page)
2299
return 0;
2300
return (unsigned long) page_address(page);
2301
}
2302
EXPORT_SYMBOL(__get_free_pages);
2303
2304
unsigned long get_zeroed_page(gfp_t gfp_mask)
2305
{
2306
return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2307
}
2308
EXPORT_SYMBOL(get_zeroed_page);
2309
2310
void __pagevec_free(struct pagevec *pvec)
2311
{
2312
int i = pagevec_count(pvec);
2313
2314
while (--i >= 0) {
2315
trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2316
free_hot_cold_page(pvec->pages[i], pvec->cold);
2317
}
2318
}
2319
2320
void __free_pages(struct page *page, unsigned int order)
2321
{
2322
if (put_page_testzero(page)) {
2323
if (order == 0)
2324
free_hot_cold_page(page, 0);
2325
else
2326
__free_pages_ok(page, order);
2327
}
2328
}
2329
2330
EXPORT_SYMBOL(__free_pages);
2331
2332
void free_pages(unsigned long addr, unsigned int order)
2333
{
2334
if (addr != 0) {
2335
VM_BUG_ON(!virt_addr_valid((void *)addr));
2336
__free_pages(virt_to_page((void *)addr), order);
2337
}
2338
}
2339
2340
EXPORT_SYMBOL(free_pages);
2341
2342
static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2343
{
2344
if (addr) {
2345
unsigned long alloc_end = addr + (PAGE_SIZE << order);
2346
unsigned long used = addr + PAGE_ALIGN(size);
2347
2348
split_page(virt_to_page((void *)addr), order);
2349
while (used < alloc_end) {
2350
free_page(used);
2351
used += PAGE_SIZE;
2352
}
2353
}
2354
return (void *)addr;
2355
}
2356
2357
/**
2358
* alloc_pages_exact - allocate an exact number physically-contiguous pages.
2359
* @size: the number of bytes to allocate
2360
* @gfp_mask: GFP flags for the allocation
2361
*
2362
* This function is similar to alloc_pages(), except that it allocates the
2363
* minimum number of pages to satisfy the request. alloc_pages() can only
2364
* allocate memory in power-of-two pages.
2365
*
2366
* This function is also limited by MAX_ORDER.
2367
*
2368
* Memory allocated by this function must be released by free_pages_exact().
2369
*/
2370
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2371
{
2372
unsigned int order = get_order(size);
2373
unsigned long addr;
2374
2375
addr = __get_free_pages(gfp_mask, order);
2376
return make_alloc_exact(addr, order, size);
2377
}
2378
EXPORT_SYMBOL(alloc_pages_exact);
2379
2380
/**
2381
* alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2382
* pages on a node.
2383
* @nid: the preferred node ID where memory should be allocated
2384
* @size: the number of bytes to allocate
2385
* @gfp_mask: GFP flags for the allocation
2386
*
2387
* Like alloc_pages_exact(), but try to allocate on node nid first before falling
2388
* back.
2389
* Note this is not alloc_pages_exact_node() which allocates on a specific node,
2390
* but is not exact.
2391
*/
2392
void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2393
{
2394
unsigned order = get_order(size);
2395
struct page *p = alloc_pages_node(nid, gfp_mask, order);
2396
if (!p)
2397
return NULL;
2398
return make_alloc_exact((unsigned long)page_address(p), order, size);
2399
}
2400
EXPORT_SYMBOL(alloc_pages_exact_nid);
2401
2402
/**
2403
* free_pages_exact - release memory allocated via alloc_pages_exact()
2404
* @virt: the value returned by alloc_pages_exact.
2405
* @size: size of allocation, same value as passed to alloc_pages_exact().
2406
*
2407
* Release the memory allocated by a previous call to alloc_pages_exact.
2408
*/
2409
void free_pages_exact(void *virt, size_t size)
2410
{
2411
unsigned long addr = (unsigned long)virt;
2412
unsigned long end = addr + PAGE_ALIGN(size);
2413
2414
while (addr < end) {
2415
free_page(addr);
2416
addr += PAGE_SIZE;
2417
}
2418
}
2419
EXPORT_SYMBOL(free_pages_exact);
2420
2421
static unsigned int nr_free_zone_pages(int offset)
2422
{
2423
struct zoneref *z;
2424
struct zone *zone;
2425
2426
/* Just pick one node, since fallback list is circular */
2427
unsigned int sum = 0;
2428
2429
struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2430
2431
for_each_zone_zonelist(zone, z, zonelist, offset) {
2432
unsigned long size = zone->present_pages;
2433
unsigned long high = high_wmark_pages(zone);
2434
if (size > high)
2435
sum += size - high;
2436
}
2437
2438
return sum;
2439
}
2440
2441
/*
2442
* Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2443
*/
2444
unsigned int nr_free_buffer_pages(void)
2445
{
2446
return nr_free_zone_pages(gfp_zone(GFP_USER));
2447
}
2448
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2449
2450
/*
2451
* Amount of free RAM allocatable within all zones
2452
*/
2453
unsigned int nr_free_pagecache_pages(void)
2454
{
2455
return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2456
}
2457
2458
static inline void show_node(struct zone *zone)
2459
{
2460
if (NUMA_BUILD)
2461
printk("Node %d ", zone_to_nid(zone));
2462
}
2463
2464
void si_meminfo(struct sysinfo *val)
2465
{
2466
val->totalram = totalram_pages;
2467
val->sharedram = 0;
2468
val->freeram = global_page_state(NR_FREE_PAGES);
2469
val->bufferram = nr_blockdev_pages();
2470
val->totalhigh = totalhigh_pages;
2471
val->freehigh = nr_free_highpages();
2472
val->mem_unit = PAGE_SIZE;
2473
}
2474
2475
EXPORT_SYMBOL(si_meminfo);
2476
2477
#ifdef CONFIG_NUMA
2478
void si_meminfo_node(struct sysinfo *val, int nid)
2479
{
2480
pg_data_t *pgdat = NODE_DATA(nid);
2481
2482
val->totalram = pgdat->node_present_pages;
2483
val->freeram = node_page_state(nid, NR_FREE_PAGES);
2484
#ifdef CONFIG_HIGHMEM
2485
val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2486
val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2487
NR_FREE_PAGES);
2488
#else
2489
val->totalhigh = 0;
2490
val->freehigh = 0;
2491
#endif
2492
val->mem_unit = PAGE_SIZE;
2493
}
2494
#endif
2495
2496
/*
2497
* Determine whether the node should be displayed or not, depending on whether
2498
* SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2499
*/
2500
bool skip_free_areas_node(unsigned int flags, int nid)
2501
{
2502
bool ret = false;
2503
2504
if (!(flags & SHOW_MEM_FILTER_NODES))
2505
goto out;
2506
2507
get_mems_allowed();
2508
ret = !node_isset(nid, cpuset_current_mems_allowed);
2509
put_mems_allowed();
2510
out:
2511
return ret;
2512
}
2513
2514
#define K(x) ((x) << (PAGE_SHIFT-10))
2515
2516
/*
2517
* Show free area list (used inside shift_scroll-lock stuff)
2518
* We also calculate the percentage fragmentation. We do this by counting the
2519
* memory on each free list with the exception of the first item on the list.
2520
* Suppresses nodes that are not allowed by current's cpuset if
2521
* SHOW_MEM_FILTER_NODES is passed.
2522
*/
2523
void show_free_areas(unsigned int filter)
2524
{
2525
int cpu;
2526
struct zone *zone;
2527
2528
for_each_populated_zone(zone) {
2529
if (skip_free_areas_node(filter, zone_to_nid(zone)))
2530
continue;
2531
show_node(zone);
2532
printk("%s per-cpu:\n", zone->name);
2533
2534
for_each_online_cpu(cpu) {
2535
struct per_cpu_pageset *pageset;
2536
2537
pageset = per_cpu_ptr(zone->pageset, cpu);
2538
2539
printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2540
cpu, pageset->pcp.high,
2541
pageset->pcp.batch, pageset->pcp.count);
2542
}
2543
}
2544
2545
printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2546
" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2547
" unevictable:%lu"
2548
" dirty:%lu writeback:%lu unstable:%lu\n"
2549
" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2550
" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2551
global_page_state(NR_ACTIVE_ANON),
2552
global_page_state(NR_INACTIVE_ANON),
2553
global_page_state(NR_ISOLATED_ANON),
2554
global_page_state(NR_ACTIVE_FILE),
2555
global_page_state(NR_INACTIVE_FILE),
2556
global_page_state(NR_ISOLATED_FILE),
2557
global_page_state(NR_UNEVICTABLE),
2558
global_page_state(NR_FILE_DIRTY),
2559
global_page_state(NR_WRITEBACK),
2560
global_page_state(NR_UNSTABLE_NFS),
2561
global_page_state(NR_FREE_PAGES),
2562
global_page_state(NR_SLAB_RECLAIMABLE),
2563
global_page_state(NR_SLAB_UNRECLAIMABLE),
2564
global_page_state(NR_FILE_MAPPED),
2565
global_page_state(NR_SHMEM),
2566
global_page_state(NR_PAGETABLE),
2567
global_page_state(NR_BOUNCE));
2568
2569
for_each_populated_zone(zone) {
2570
int i;
2571
2572
if (skip_free_areas_node(filter, zone_to_nid(zone)))
2573
continue;
2574
show_node(zone);
2575
printk("%s"
2576
" free:%lukB"
2577
" min:%lukB"
2578
" low:%lukB"
2579
" high:%lukB"
2580
" active_anon:%lukB"
2581
" inactive_anon:%lukB"
2582
" active_file:%lukB"
2583
" inactive_file:%lukB"
2584
" unevictable:%lukB"
2585
" isolated(anon):%lukB"
2586
" isolated(file):%lukB"
2587
" present:%lukB"
2588
" mlocked:%lukB"
2589
" dirty:%lukB"
2590
" writeback:%lukB"
2591
" mapped:%lukB"
2592
" shmem:%lukB"
2593
" slab_reclaimable:%lukB"
2594
" slab_unreclaimable:%lukB"
2595
" kernel_stack:%lukB"
2596
" pagetables:%lukB"
2597
" unstable:%lukB"
2598
" bounce:%lukB"
2599
" writeback_tmp:%lukB"
2600
" pages_scanned:%lu"
2601
" all_unreclaimable? %s"
2602
"\n",
2603
zone->name,
2604
K(zone_page_state(zone, NR_FREE_PAGES)),
2605
K(min_wmark_pages(zone)),
2606
K(low_wmark_pages(zone)),
2607
K(high_wmark_pages(zone)),
2608
K(zone_page_state(zone, NR_ACTIVE_ANON)),
2609
K(zone_page_state(zone, NR_INACTIVE_ANON)),
2610
K(zone_page_state(zone, NR_ACTIVE_FILE)),
2611
K(zone_page_state(zone, NR_INACTIVE_FILE)),
2612
K(zone_page_state(zone, NR_UNEVICTABLE)),
2613
K(zone_page_state(zone, NR_ISOLATED_ANON)),
2614
K(zone_page_state(zone, NR_ISOLATED_FILE)),
2615
K(zone->present_pages),
2616
K(zone_page_state(zone, NR_MLOCK)),
2617
K(zone_page_state(zone, NR_FILE_DIRTY)),
2618
K(zone_page_state(zone, NR_WRITEBACK)),
2619
K(zone_page_state(zone, NR_FILE_MAPPED)),
2620
K(zone_page_state(zone, NR_SHMEM)),
2621
K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2622
K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2623
zone_page_state(zone, NR_KERNEL_STACK) *
2624
THREAD_SIZE / 1024,
2625
K(zone_page_state(zone, NR_PAGETABLE)),
2626
K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2627
K(zone_page_state(zone, NR_BOUNCE)),
2628
K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2629
zone->pages_scanned,
2630
(zone->all_unreclaimable ? "yes" : "no")
2631
);
2632
printk("lowmem_reserve[]:");
2633
for (i = 0; i < MAX_NR_ZONES; i++)
2634
printk(" %lu", zone->lowmem_reserve[i]);
2635
printk("\n");
2636
}
2637
2638
for_each_populated_zone(zone) {
2639
unsigned long nr[MAX_ORDER], flags, order, total = 0;
2640
2641
if (skip_free_areas_node(filter, zone_to_nid(zone)))
2642
continue;
2643
show_node(zone);
2644
printk("%s: ", zone->name);
2645
2646
spin_lock_irqsave(&zone->lock, flags);
2647
for (order = 0; order < MAX_ORDER; order++) {
2648
nr[order] = zone->free_area[order].nr_free;
2649
total += nr[order] << order;
2650
}
2651
spin_unlock_irqrestore(&zone->lock, flags);
2652
for (order = 0; order < MAX_ORDER; order++)
2653
printk("%lu*%lukB ", nr[order], K(1UL) << order);
2654
printk("= %lukB\n", K(total));
2655
}
2656
2657
printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2658
2659
show_swap_cache_info();
2660
}
2661
2662
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2663
{
2664
zoneref->zone = zone;
2665
zoneref->zone_idx = zone_idx(zone);
2666
}
2667
2668
/*
2669
* Builds allocation fallback zone lists.
2670
*
2671
* Add all populated zones of a node to the zonelist.
2672
*/
2673
static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2674
int nr_zones, enum zone_type zone_type)
2675
{
2676
struct zone *zone;
2677
2678
BUG_ON(zone_type >= MAX_NR_ZONES);
2679
zone_type++;
2680
2681
do {
2682
zone_type--;
2683
zone = pgdat->node_zones + zone_type;
2684
if (populated_zone(zone)) {
2685
zoneref_set_zone(zone,
2686
&zonelist->_zonerefs[nr_zones++]);
2687
check_highest_zone(zone_type);
2688
}
2689
2690
} while (zone_type);
2691
return nr_zones;
2692
}
2693
2694
2695
/*
2696
* zonelist_order:
2697
* 0 = automatic detection of better ordering.
2698
* 1 = order by ([node] distance, -zonetype)
2699
* 2 = order by (-zonetype, [node] distance)
2700
*
2701
* If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2702
* the same zonelist. So only NUMA can configure this param.
2703
*/
2704
#define ZONELIST_ORDER_DEFAULT 0
2705
#define ZONELIST_ORDER_NODE 1
2706
#define ZONELIST_ORDER_ZONE 2
2707
2708
/* zonelist order in the kernel.
2709
* set_zonelist_order() will set this to NODE or ZONE.
2710
*/
2711
static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2712
static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2713
2714
2715
#ifdef CONFIG_NUMA
2716
/* The value user specified ....changed by config */
2717
static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2718
/* string for sysctl */
2719
#define NUMA_ZONELIST_ORDER_LEN 16
2720
char numa_zonelist_order[16] = "default";
2721
2722
/*
2723
* interface for configure zonelist ordering.
2724
* command line option "numa_zonelist_order"
2725
* = "[dD]efault - default, automatic configuration.
2726
* = "[nN]ode - order by node locality, then by zone within node
2727
* = "[zZ]one - order by zone, then by locality within zone
2728
*/
2729
2730
static int __parse_numa_zonelist_order(char *s)
2731
{
2732
if (*s == 'd' || *s == 'D') {
2733
user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2734
} else if (*s == 'n' || *s == 'N') {
2735
user_zonelist_order = ZONELIST_ORDER_NODE;
2736
} else if (*s == 'z' || *s == 'Z') {
2737
user_zonelist_order = ZONELIST_ORDER_ZONE;
2738
} else {
2739
printk(KERN_WARNING
2740
"Ignoring invalid numa_zonelist_order value: "
2741
"%s\n", s);
2742
return -EINVAL;
2743
}
2744
return 0;
2745
}
2746
2747
static __init int setup_numa_zonelist_order(char *s)
2748
{
2749
int ret;
2750
2751
if (!s)
2752
return 0;
2753
2754
ret = __parse_numa_zonelist_order(s);
2755
if (ret == 0)
2756
strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2757
2758
return ret;
2759
}
2760
early_param("numa_zonelist_order", setup_numa_zonelist_order);
2761
2762
/*
2763
* sysctl handler for numa_zonelist_order
2764
*/
2765
int numa_zonelist_order_handler(ctl_table *table, int write,
2766
void __user *buffer, size_t *length,
2767
loff_t *ppos)
2768
{
2769
char saved_string[NUMA_ZONELIST_ORDER_LEN];
2770
int ret;
2771
static DEFINE_MUTEX(zl_order_mutex);
2772
2773
mutex_lock(&zl_order_mutex);
2774
if (write)
2775
strcpy(saved_string, (char*)table->data);
2776
ret = proc_dostring(table, write, buffer, length, ppos);
2777
if (ret)
2778
goto out;
2779
if (write) {
2780
int oldval = user_zonelist_order;
2781
if (__parse_numa_zonelist_order((char*)table->data)) {
2782
/*
2783
* bogus value. restore saved string
2784
*/
2785
strncpy((char*)table->data, saved_string,
2786
NUMA_ZONELIST_ORDER_LEN);
2787
user_zonelist_order = oldval;
2788
} else if (oldval != user_zonelist_order) {
2789
mutex_lock(&zonelists_mutex);
2790
build_all_zonelists(NULL);
2791
mutex_unlock(&zonelists_mutex);
2792
}
2793
}
2794
out:
2795
mutex_unlock(&zl_order_mutex);
2796
return ret;
2797
}
2798
2799
2800
#define MAX_NODE_LOAD (nr_online_nodes)
2801
static int node_load[MAX_NUMNODES];
2802
2803
/**
2804
* find_next_best_node - find the next node that should appear in a given node's fallback list
2805
* @node: node whose fallback list we're appending
2806
* @used_node_mask: nodemask_t of already used nodes
2807
*
2808
* We use a number of factors to determine which is the next node that should
2809
* appear on a given node's fallback list. The node should not have appeared
2810
* already in @node's fallback list, and it should be the next closest node
2811
* according to the distance array (which contains arbitrary distance values
2812
* from each node to each node in the system), and should also prefer nodes
2813
* with no CPUs, since presumably they'll have very little allocation pressure
2814
* on them otherwise.
2815
* It returns -1 if no node is found.
2816
*/
2817
static int find_next_best_node(int node, nodemask_t *used_node_mask)
2818
{
2819
int n, val;
2820
int min_val = INT_MAX;
2821
int best_node = -1;
2822
const struct cpumask *tmp = cpumask_of_node(0);
2823
2824
/* Use the local node if we haven't already */
2825
if (!node_isset(node, *used_node_mask)) {
2826
node_set(node, *used_node_mask);
2827
return node;
2828
}
2829
2830
for_each_node_state(n, N_HIGH_MEMORY) {
2831
2832
/* Don't want a node to appear more than once */
2833
if (node_isset(n, *used_node_mask))
2834
continue;
2835
2836
/* Use the distance array to find the distance */
2837
val = node_distance(node, n);
2838
2839
/* Penalize nodes under us ("prefer the next node") */
2840
val += (n < node);
2841
2842
/* Give preference to headless and unused nodes */
2843
tmp = cpumask_of_node(n);
2844
if (!cpumask_empty(tmp))
2845
val += PENALTY_FOR_NODE_WITH_CPUS;
2846
2847
/* Slight preference for less loaded node */
2848
val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2849
val += node_load[n];
2850
2851
if (val < min_val) {
2852
min_val = val;
2853
best_node = n;
2854
}
2855
}
2856
2857
if (best_node >= 0)
2858
node_set(best_node, *used_node_mask);
2859
2860
return best_node;
2861
}
2862
2863
2864
/*
2865
* Build zonelists ordered by node and zones within node.
2866
* This results in maximum locality--normal zone overflows into local
2867
* DMA zone, if any--but risks exhausting DMA zone.
2868
*/
2869
static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2870
{
2871
int j;
2872
struct zonelist *zonelist;
2873
2874
zonelist = &pgdat->node_zonelists[0];
2875
for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2876
;
2877
j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2878
MAX_NR_ZONES - 1);
2879
zonelist->_zonerefs[j].zone = NULL;
2880
zonelist->_zonerefs[j].zone_idx = 0;
2881
}
2882
2883
/*
2884
* Build gfp_thisnode zonelists
2885
*/
2886
static void build_thisnode_zonelists(pg_data_t *pgdat)
2887
{
2888
int j;
2889
struct zonelist *zonelist;
2890
2891
zonelist = &pgdat->node_zonelists[1];
2892
j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2893
zonelist->_zonerefs[j].zone = NULL;
2894
zonelist->_zonerefs[j].zone_idx = 0;
2895
}
2896
2897
/*
2898
* Build zonelists ordered by zone and nodes within zones.
2899
* This results in conserving DMA zone[s] until all Normal memory is
2900
* exhausted, but results in overflowing to remote node while memory
2901
* may still exist in local DMA zone.
2902
*/
2903
static int node_order[MAX_NUMNODES];
2904
2905
static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2906
{
2907
int pos, j, node;
2908
int zone_type; /* needs to be signed */
2909
struct zone *z;
2910
struct zonelist *zonelist;
2911
2912
zonelist = &pgdat->node_zonelists[0];
2913
pos = 0;
2914
for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2915
for (j = 0; j < nr_nodes; j++) {
2916
node = node_order[j];
2917
z = &NODE_DATA(node)->node_zones[zone_type];
2918
if (populated_zone(z)) {
2919
zoneref_set_zone(z,
2920
&zonelist->_zonerefs[pos++]);
2921
check_highest_zone(zone_type);
2922
}
2923
}
2924
}
2925
zonelist->_zonerefs[pos].zone = NULL;
2926
zonelist->_zonerefs[pos].zone_idx = 0;
2927
}
2928
2929
static int default_zonelist_order(void)
2930
{
2931
int nid, zone_type;
2932
unsigned long low_kmem_size,total_size;
2933
struct zone *z;
2934
int average_size;
2935
/*
2936
* ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2937
* If they are really small and used heavily, the system can fall
2938
* into OOM very easily.
2939
* This function detect ZONE_DMA/DMA32 size and configures zone order.
2940
*/
2941
/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2942
low_kmem_size = 0;
2943
total_size = 0;
2944
for_each_online_node(nid) {
2945
for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2946
z = &NODE_DATA(nid)->node_zones[zone_type];
2947
if (populated_zone(z)) {
2948
if (zone_type < ZONE_NORMAL)
2949
low_kmem_size += z->present_pages;
2950
total_size += z->present_pages;
2951
} else if (zone_type == ZONE_NORMAL) {
2952
/*
2953
* If any node has only lowmem, then node order
2954
* is preferred to allow kernel allocations
2955
* locally; otherwise, they can easily infringe
2956
* on other nodes when there is an abundance of
2957
* lowmem available to allocate from.
2958
*/
2959
return ZONELIST_ORDER_NODE;
2960
}
2961
}
2962
}
2963
if (!low_kmem_size || /* there are no DMA area. */
2964
low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2965
return ZONELIST_ORDER_NODE;
2966
/*
2967
* look into each node's config.
2968
* If there is a node whose DMA/DMA32 memory is very big area on
2969
* local memory, NODE_ORDER may be suitable.
2970
*/
2971
average_size = total_size /
2972
(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2973
for_each_online_node(nid) {
2974
low_kmem_size = 0;
2975
total_size = 0;
2976
for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2977
z = &NODE_DATA(nid)->node_zones[zone_type];
2978
if (populated_zone(z)) {
2979
if (zone_type < ZONE_NORMAL)
2980
low_kmem_size += z->present_pages;
2981
total_size += z->present_pages;
2982
}
2983
}
2984
if (low_kmem_size &&
2985
total_size > average_size && /* ignore small node */
2986
low_kmem_size > total_size * 70/100)
2987
return ZONELIST_ORDER_NODE;
2988
}
2989
return ZONELIST_ORDER_ZONE;
2990
}
2991
2992
static void set_zonelist_order(void)
2993
{
2994
if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2995
current_zonelist_order = default_zonelist_order();
2996
else
2997
current_zonelist_order = user_zonelist_order;
2998
}
2999
3000
static void build_zonelists(pg_data_t *pgdat)
3001
{
3002
int j, node, load;
3003
enum zone_type i;
3004
nodemask_t used_mask;
3005
int local_node, prev_node;
3006
struct zonelist *zonelist;
3007
int order = current_zonelist_order;
3008
3009
/* initialize zonelists */
3010
for (i = 0; i < MAX_ZONELISTS; i++) {
3011
zonelist = pgdat->node_zonelists + i;
3012
zonelist->_zonerefs[0].zone = NULL;
3013
zonelist->_zonerefs[0].zone_idx = 0;
3014
}
3015
3016
/* NUMA-aware ordering of nodes */
3017
local_node = pgdat->node_id;
3018
load = nr_online_nodes;
3019
prev_node = local_node;
3020
nodes_clear(used_mask);
3021
3022
memset(node_order, 0, sizeof(node_order));
3023
j = 0;
3024
3025
while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3026
int distance = node_distance(local_node, node);
3027
3028
/*
3029
* If another node is sufficiently far away then it is better
3030
* to reclaim pages in a zone before going off node.
3031
*/
3032
if (distance > RECLAIM_DISTANCE)
3033
zone_reclaim_mode = 1;
3034
3035
/*
3036
* We don't want to pressure a particular node.
3037
* So adding penalty to the first node in same
3038
* distance group to make it round-robin.
3039
*/
3040
if (distance != node_distance(local_node, prev_node))
3041
node_load[node] = load;
3042
3043
prev_node = node;
3044
load--;
3045
if (order == ZONELIST_ORDER_NODE)
3046
build_zonelists_in_node_order(pgdat, node);
3047
else
3048
node_order[j++] = node; /* remember order */
3049
}
3050
3051
if (order == ZONELIST_ORDER_ZONE) {
3052
/* calculate node order -- i.e., DMA last! */
3053
build_zonelists_in_zone_order(pgdat, j);
3054
}
3055
3056
build_thisnode_zonelists(pgdat);
3057
}
3058
3059
/* Construct the zonelist performance cache - see further mmzone.h */
3060
static void build_zonelist_cache(pg_data_t *pgdat)
3061
{
3062
struct zonelist *zonelist;
3063
struct zonelist_cache *zlc;
3064
struct zoneref *z;
3065
3066
zonelist = &pgdat->node_zonelists[0];
3067
zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3068
bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3069
for (z = zonelist->_zonerefs; z->zone; z++)
3070
zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3071
}
3072
3073
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3074
/*
3075
* Return node id of node used for "local" allocations.
3076
* I.e., first node id of first zone in arg node's generic zonelist.
3077
* Used for initializing percpu 'numa_mem', which is used primarily
3078
* for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3079
*/
3080
int local_memory_node(int node)
3081
{
3082
struct zone *zone;
3083
3084
(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3085
gfp_zone(GFP_KERNEL),
3086
NULL,
3087
&zone);
3088
return zone->node;
3089
}
3090
#endif
3091
3092
#else /* CONFIG_NUMA */
3093
3094
static void set_zonelist_order(void)
3095
{
3096
current_zonelist_order = ZONELIST_ORDER_ZONE;
3097
}
3098
3099
static void build_zonelists(pg_data_t *pgdat)
3100
{
3101
int node, local_node;
3102
enum zone_type j;
3103
struct zonelist *zonelist;
3104
3105
local_node = pgdat->node_id;
3106
3107
zonelist = &pgdat->node_zonelists[0];
3108
j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3109
3110
/*
3111
* Now we build the zonelist so that it contains the zones
3112
* of all the other nodes.
3113
* We don't want to pressure a particular node, so when
3114
* building the zones for node N, we make sure that the
3115
* zones coming right after the local ones are those from
3116
* node N+1 (modulo N)
3117
*/
3118
for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3119
if (!node_online(node))
3120
continue;
3121
j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3122
MAX_NR_ZONES - 1);
3123
}
3124
for (node = 0; node < local_node; node++) {
3125
if (!node_online(node))
3126
continue;
3127
j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3128
MAX_NR_ZONES - 1);
3129
}
3130
3131
zonelist->_zonerefs[j].zone = NULL;
3132
zonelist->_zonerefs[j].zone_idx = 0;
3133
}
3134
3135
/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3136
static void build_zonelist_cache(pg_data_t *pgdat)
3137
{
3138
pgdat->node_zonelists[0].zlcache_ptr = NULL;
3139
}
3140
3141
#endif /* CONFIG_NUMA */
3142
3143
/*
3144
* Boot pageset table. One per cpu which is going to be used for all
3145
* zones and all nodes. The parameters will be set in such a way
3146
* that an item put on a list will immediately be handed over to
3147
* the buddy list. This is safe since pageset manipulation is done
3148
* with interrupts disabled.
3149
*
3150
* The boot_pagesets must be kept even after bootup is complete for
3151
* unused processors and/or zones. They do play a role for bootstrapping
3152
* hotplugged processors.
3153
*
3154
* zoneinfo_show() and maybe other functions do
3155
* not check if the processor is online before following the pageset pointer.
3156
* Other parts of the kernel may not check if the zone is available.
3157
*/
3158
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3159
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3160
static void setup_zone_pageset(struct zone *zone);
3161
3162
/*
3163
* Global mutex to protect against size modification of zonelists
3164
* as well as to serialize pageset setup for the new populated zone.
3165
*/
3166
DEFINE_MUTEX(zonelists_mutex);
3167
3168
/* return values int ....just for stop_machine() */
3169
static __init_refok int __build_all_zonelists(void *data)
3170
{
3171
int nid;
3172
int cpu;
3173
3174
#ifdef CONFIG_NUMA
3175
memset(node_load, 0, sizeof(node_load));
3176
#endif
3177
for_each_online_node(nid) {
3178
pg_data_t *pgdat = NODE_DATA(nid);
3179
3180
build_zonelists(pgdat);
3181
build_zonelist_cache(pgdat);
3182
}
3183
3184
/*
3185
* Initialize the boot_pagesets that are going to be used
3186
* for bootstrapping processors. The real pagesets for
3187
* each zone will be allocated later when the per cpu
3188
* allocator is available.
3189
*
3190
* boot_pagesets are used also for bootstrapping offline
3191
* cpus if the system is already booted because the pagesets
3192
* are needed to initialize allocators on a specific cpu too.
3193
* F.e. the percpu allocator needs the page allocator which
3194
* needs the percpu allocator in order to allocate its pagesets
3195
* (a chicken-egg dilemma).
3196
*/
3197
for_each_possible_cpu(cpu) {
3198
setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3199
3200
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3201
/*
3202
* We now know the "local memory node" for each node--
3203
* i.e., the node of the first zone in the generic zonelist.
3204
* Set up numa_mem percpu variable for on-line cpus. During
3205
* boot, only the boot cpu should be on-line; we'll init the
3206
* secondary cpus' numa_mem as they come on-line. During
3207
* node/memory hotplug, we'll fixup all on-line cpus.
3208
*/
3209
if (cpu_online(cpu))
3210
set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3211
#endif
3212
}
3213
3214
return 0;
3215
}
3216
3217
/*
3218
* Called with zonelists_mutex held always
3219
* unless system_state == SYSTEM_BOOTING.
3220
*/
3221
void __ref build_all_zonelists(void *data)
3222
{
3223
set_zonelist_order();
3224
3225
if (system_state == SYSTEM_BOOTING) {
3226
__build_all_zonelists(NULL);
3227
mminit_verify_zonelist();
3228
cpuset_init_current_mems_allowed();
3229
} else {
3230
/* we have to stop all cpus to guarantee there is no user
3231
of zonelist */
3232
#ifdef CONFIG_MEMORY_HOTPLUG
3233
if (data)
3234
setup_zone_pageset((struct zone *)data);
3235
#endif
3236
stop_machine(__build_all_zonelists, NULL, NULL);
3237
/* cpuset refresh routine should be here */
3238
}
3239
vm_total_pages = nr_free_pagecache_pages();
3240
/*
3241
* Disable grouping by mobility if the number of pages in the
3242
* system is too low to allow the mechanism to work. It would be
3243
* more accurate, but expensive to check per-zone. This check is
3244
* made on memory-hotadd so a system can start with mobility
3245
* disabled and enable it later
3246
*/
3247
if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3248
page_group_by_mobility_disabled = 1;
3249
else
3250
page_group_by_mobility_disabled = 0;
3251
3252
printk("Built %i zonelists in %s order, mobility grouping %s. "
3253
"Total pages: %ld\n",
3254
nr_online_nodes,
3255
zonelist_order_name[current_zonelist_order],
3256
page_group_by_mobility_disabled ? "off" : "on",
3257
vm_total_pages);
3258
#ifdef CONFIG_NUMA
3259
printk("Policy zone: %s\n", zone_names[policy_zone]);
3260
#endif
3261
}
3262
3263
/*
3264
* Helper functions to size the waitqueue hash table.
3265
* Essentially these want to choose hash table sizes sufficiently
3266
* large so that collisions trying to wait on pages are rare.
3267
* But in fact, the number of active page waitqueues on typical
3268
* systems is ridiculously low, less than 200. So this is even
3269
* conservative, even though it seems large.
3270
*
3271
* The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3272
* waitqueues, i.e. the size of the waitq table given the number of pages.
3273
*/
3274
#define PAGES_PER_WAITQUEUE 256
3275
3276
#ifndef CONFIG_MEMORY_HOTPLUG
3277
static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3278
{
3279
unsigned long size = 1;
3280
3281
pages /= PAGES_PER_WAITQUEUE;
3282
3283
while (size < pages)
3284
size <<= 1;
3285
3286
/*
3287
* Once we have dozens or even hundreds of threads sleeping
3288
* on IO we've got bigger problems than wait queue collision.
3289
* Limit the size of the wait table to a reasonable size.
3290
*/
3291
size = min(size, 4096UL);
3292
3293
return max(size, 4UL);
3294
}
3295
#else
3296
/*
3297
* A zone's size might be changed by hot-add, so it is not possible to determine
3298
* a suitable size for its wait_table. So we use the maximum size now.
3299
*
3300
* The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3301
*
3302
* i386 (preemption config) : 4096 x 16 = 64Kbyte.
3303
* ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3304
* ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3305
*
3306
* The maximum entries are prepared when a zone's memory is (512K + 256) pages
3307
* or more by the traditional way. (See above). It equals:
3308
*
3309
* i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3310
* ia64(16K page size) : = ( 8G + 4M)byte.
3311
* powerpc (64K page size) : = (32G +16M)byte.
3312
*/
3313
static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3314
{
3315
return 4096UL;
3316
}
3317
#endif
3318
3319
/*
3320
* This is an integer logarithm so that shifts can be used later
3321
* to extract the more random high bits from the multiplicative
3322
* hash function before the remainder is taken.
3323
*/
3324
static inline unsigned long wait_table_bits(unsigned long size)
3325
{
3326
return ffz(~size);
3327
}
3328
3329
#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3330
3331
/*
3332
* Check if a pageblock contains reserved pages
3333
*/
3334
static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3335
{
3336
unsigned long pfn;
3337
3338
for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3339
if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3340
return 1;
3341
}
3342
return 0;
3343
}
3344
3345
/*
3346
* Mark a number of pageblocks as MIGRATE_RESERVE. The number
3347
* of blocks reserved is based on min_wmark_pages(zone). The memory within
3348
* the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3349
* higher will lead to a bigger reserve which will get freed as contiguous
3350
* blocks as reclaim kicks in
3351
*/
3352
static void setup_zone_migrate_reserve(struct zone *zone)
3353
{
3354
unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3355
struct page *page;
3356
unsigned long block_migratetype;
3357
int reserve;
3358
3359
/* Get the start pfn, end pfn and the number of blocks to reserve */
3360
start_pfn = zone->zone_start_pfn;
3361
end_pfn = start_pfn + zone->spanned_pages;
3362
reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3363
pageblock_order;
3364
3365
/*
3366
* Reserve blocks are generally in place to help high-order atomic
3367
* allocations that are short-lived. A min_free_kbytes value that
3368
* would result in more than 2 reserve blocks for atomic allocations
3369
* is assumed to be in place to help anti-fragmentation for the
3370
* future allocation of hugepages at runtime.
3371
*/
3372
reserve = min(2, reserve);
3373
3374
for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3375
if (!pfn_valid(pfn))
3376
continue;
3377
page = pfn_to_page(pfn);
3378
3379
/* Watch out for overlapping nodes */
3380
if (page_to_nid(page) != zone_to_nid(zone))
3381
continue;
3382
3383
/* Blocks with reserved pages will never free, skip them. */
3384
block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3385
if (pageblock_is_reserved(pfn, block_end_pfn))
3386
continue;
3387
3388
block_migratetype = get_pageblock_migratetype(page);
3389
3390
/* If this block is reserved, account for it */
3391
if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3392
reserve--;
3393
continue;
3394
}
3395
3396
/* Suitable for reserving if this block is movable */
3397
if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3398
set_pageblock_migratetype(page, MIGRATE_RESERVE);
3399
move_freepages_block(zone, page, MIGRATE_RESERVE);
3400
reserve--;
3401
continue;
3402
}
3403
3404
/*
3405
* If the reserve is met and this is a previous reserved block,
3406
* take it back
3407
*/
3408
if (block_migratetype == MIGRATE_RESERVE) {
3409
set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3410
move_freepages_block(zone, page, MIGRATE_MOVABLE);
3411
}
3412
}
3413
}
3414
3415
/*
3416
* Initially all pages are reserved - free ones are freed
3417
* up by free_all_bootmem() once the early boot process is
3418
* done. Non-atomic initialization, single-pass.
3419
*/
3420
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3421
unsigned long start_pfn, enum memmap_context context)
3422
{
3423
struct page *page;
3424
unsigned long end_pfn = start_pfn + size;
3425
unsigned long pfn;
3426
struct zone *z;
3427
3428
if (highest_memmap_pfn < end_pfn - 1)
3429
highest_memmap_pfn = end_pfn - 1;
3430
3431
z = &NODE_DATA(nid)->node_zones[zone];
3432
for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3433
/*
3434
* There can be holes in boot-time mem_map[]s
3435
* handed to this function. They do not
3436
* exist on hotplugged memory.
3437
*/
3438
if (context == MEMMAP_EARLY) {
3439
if (!early_pfn_valid(pfn))
3440
continue;
3441
if (!early_pfn_in_nid(pfn, nid))
3442
continue;
3443
}
3444
page = pfn_to_page(pfn);
3445
set_page_links(page, zone, nid, pfn);
3446
mminit_verify_page_links(page, zone, nid, pfn);
3447
init_page_count(page);
3448
reset_page_mapcount(page);
3449
SetPageReserved(page);
3450
/*
3451
* Mark the block movable so that blocks are reserved for
3452
* movable at startup. This will force kernel allocations
3453
* to reserve their blocks rather than leaking throughout
3454
* the address space during boot when many long-lived
3455
* kernel allocations are made. Later some blocks near
3456
* the start are marked MIGRATE_RESERVE by
3457
* setup_zone_migrate_reserve()
3458
*
3459
* bitmap is created for zone's valid pfn range. but memmap
3460
* can be created for invalid pages (for alignment)
3461
* check here not to call set_pageblock_migratetype() against
3462
* pfn out of zone.
3463
*/
3464
if ((z->zone_start_pfn <= pfn)
3465
&& (pfn < z->zone_start_pfn + z->spanned_pages)
3466
&& !(pfn & (pageblock_nr_pages - 1)))
3467
set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3468
3469
INIT_LIST_HEAD(&page->lru);
3470
#ifdef WANT_PAGE_VIRTUAL
3471
/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3472
if (!is_highmem_idx(zone))
3473
set_page_address(page, __va(pfn << PAGE_SHIFT));
3474
#endif
3475
}
3476
}
3477
3478
static void __meminit zone_init_free_lists(struct zone *zone)
3479
{
3480
int order, t;
3481
for_each_migratetype_order(order, t) {
3482
INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3483
zone->free_area[order].nr_free = 0;
3484
}
3485
}
3486
3487
#ifndef __HAVE_ARCH_MEMMAP_INIT
3488
#define memmap_init(size, nid, zone, start_pfn) \
3489
memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3490
#endif
3491
3492
static int zone_batchsize(struct zone *zone)
3493
{
3494
#ifdef CONFIG_MMU
3495
int batch;
3496
3497
/*
3498
* The per-cpu-pages pools are set to around 1000th of the
3499
* size of the zone. But no more than 1/2 of a meg.
3500
*
3501
* OK, so we don't know how big the cache is. So guess.
3502
*/
3503
batch = zone->present_pages / 1024;
3504
if (batch * PAGE_SIZE > 512 * 1024)
3505
batch = (512 * 1024) / PAGE_SIZE;
3506
batch /= 4; /* We effectively *= 4 below */
3507
if (batch < 1)
3508
batch = 1;
3509
3510
/*
3511
* Clamp the batch to a 2^n - 1 value. Having a power
3512
* of 2 value was found to be more likely to have
3513
* suboptimal cache aliasing properties in some cases.
3514
*
3515
* For example if 2 tasks are alternately allocating
3516
* batches of pages, one task can end up with a lot
3517
* of pages of one half of the possible page colors
3518
* and the other with pages of the other colors.
3519
*/
3520
batch = rounddown_pow_of_two(batch + batch/2) - 1;
3521
3522
return batch;
3523
3524
#else
3525
/* The deferral and batching of frees should be suppressed under NOMMU
3526
* conditions.
3527
*
3528
* The problem is that NOMMU needs to be able to allocate large chunks
3529
* of contiguous memory as there's no hardware page translation to
3530
* assemble apparent contiguous memory from discontiguous pages.
3531
*
3532
* Queueing large contiguous runs of pages for batching, however,
3533
* causes the pages to actually be freed in smaller chunks. As there
3534
* can be a significant delay between the individual batches being
3535
* recycled, this leads to the once large chunks of space being
3536
* fragmented and becoming unavailable for high-order allocations.
3537
*/
3538
return 0;
3539
#endif
3540
}
3541
3542
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3543
{
3544
struct per_cpu_pages *pcp;
3545
int migratetype;
3546
3547
memset(p, 0, sizeof(*p));
3548
3549
pcp = &p->pcp;
3550
pcp->count = 0;
3551
pcp->high = 6 * batch;
3552
pcp->batch = max(1UL, 1 * batch);
3553
for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3554
INIT_LIST_HEAD(&pcp->lists[migratetype]);
3555
}
3556
3557
/*
3558
* setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3559
* to the value high for the pageset p.
3560
*/
3561
3562
static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3563
unsigned long high)
3564
{
3565
struct per_cpu_pages *pcp;
3566
3567
pcp = &p->pcp;
3568
pcp->high = high;
3569
pcp->batch = max(1UL, high/4);
3570
if ((high/4) > (PAGE_SHIFT * 8))
3571
pcp->batch = PAGE_SHIFT * 8;
3572
}
3573
3574
static void setup_zone_pageset(struct zone *zone)
3575
{
3576
int cpu;
3577
3578
zone->pageset = alloc_percpu(struct per_cpu_pageset);
3579
3580
for_each_possible_cpu(cpu) {
3581
struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3582
3583
setup_pageset(pcp, zone_batchsize(zone));
3584
3585
if (percpu_pagelist_fraction)
3586
setup_pagelist_highmark(pcp,
3587
(zone->present_pages /
3588
percpu_pagelist_fraction));
3589
}
3590
}
3591
3592
/*
3593
* Allocate per cpu pagesets and initialize them.
3594
* Before this call only boot pagesets were available.
3595
*/
3596
void __init setup_per_cpu_pageset(void)
3597
{
3598
struct zone *zone;
3599
3600
for_each_populated_zone(zone)
3601
setup_zone_pageset(zone);
3602
}
3603
3604
static noinline __init_refok
3605
int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3606
{
3607
int i;
3608
struct pglist_data *pgdat = zone->zone_pgdat;
3609
size_t alloc_size;
3610
3611
/*
3612
* The per-page waitqueue mechanism uses hashed waitqueues
3613
* per zone.
3614
*/
3615
zone->wait_table_hash_nr_entries =
3616
wait_table_hash_nr_entries(zone_size_pages);
3617
zone->wait_table_bits =
3618
wait_table_bits(zone->wait_table_hash_nr_entries);
3619
alloc_size = zone->wait_table_hash_nr_entries
3620
* sizeof(wait_queue_head_t);
3621
3622
if (!slab_is_available()) {
3623
zone->wait_table = (wait_queue_head_t *)
3624
alloc_bootmem_node_nopanic(pgdat, alloc_size);
3625
} else {
3626
/*
3627
* This case means that a zone whose size was 0 gets new memory
3628
* via memory hot-add.
3629
* But it may be the case that a new node was hot-added. In
3630
* this case vmalloc() will not be able to use this new node's
3631
* memory - this wait_table must be initialized to use this new
3632
* node itself as well.
3633
* To use this new node's memory, further consideration will be
3634
* necessary.
3635
*/
3636
zone->wait_table = vmalloc(alloc_size);
3637
}
3638
if (!zone->wait_table)
3639
return -ENOMEM;
3640
3641
for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3642
init_waitqueue_head(zone->wait_table + i);
3643
3644
return 0;
3645
}
3646
3647
static int __zone_pcp_update(void *data)
3648
{
3649
struct zone *zone = data;
3650
int cpu;
3651
unsigned long batch = zone_batchsize(zone), flags;
3652
3653
for_each_possible_cpu(cpu) {
3654
struct per_cpu_pageset *pset;
3655
struct per_cpu_pages *pcp;
3656
3657
pset = per_cpu_ptr(zone->pageset, cpu);
3658
pcp = &pset->pcp;
3659
3660
local_irq_save(flags);
3661
free_pcppages_bulk(zone, pcp->count, pcp);
3662
setup_pageset(pset, batch);
3663
local_irq_restore(flags);
3664
}
3665
return 0;
3666
}
3667
3668
void zone_pcp_update(struct zone *zone)
3669
{
3670
stop_machine(__zone_pcp_update, zone, NULL);
3671
}
3672
3673
static __meminit void zone_pcp_init(struct zone *zone)
3674
{
3675
/*
3676
* per cpu subsystem is not up at this point. The following code
3677
* relies on the ability of the linker to provide the
3678
* offset of a (static) per cpu variable into the per cpu area.
3679
*/
3680
zone->pageset = &boot_pageset;
3681
3682
if (zone->present_pages)
3683
printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3684
zone->name, zone->present_pages,
3685
zone_batchsize(zone));
3686
}
3687
3688
__meminit int init_currently_empty_zone(struct zone *zone,
3689
unsigned long zone_start_pfn,
3690
unsigned long size,
3691
enum memmap_context context)
3692
{
3693
struct pglist_data *pgdat = zone->zone_pgdat;
3694
int ret;
3695
ret = zone_wait_table_init(zone, size);
3696
if (ret)
3697
return ret;
3698
pgdat->nr_zones = zone_idx(zone) + 1;
3699
3700
zone->zone_start_pfn = zone_start_pfn;
3701
3702
mminit_dprintk(MMINIT_TRACE, "memmap_init",
3703
"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3704
pgdat->node_id,
3705
(unsigned long)zone_idx(zone),
3706
zone_start_pfn, (zone_start_pfn + size));
3707
3708
zone_init_free_lists(zone);
3709
3710
return 0;
3711
}
3712
3713
#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3714
/*
3715
* Basic iterator support. Return the first range of PFNs for a node
3716
* Note: nid == MAX_NUMNODES returns first region regardless of node
3717
*/
3718
static int __meminit first_active_region_index_in_nid(int nid)
3719
{
3720
int i;
3721
3722
for (i = 0; i < nr_nodemap_entries; i++)
3723
if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3724
return i;
3725
3726
return -1;
3727
}
3728
3729
/*
3730
* Basic iterator support. Return the next active range of PFNs for a node
3731
* Note: nid == MAX_NUMNODES returns next region regardless of node
3732
*/
3733
static int __meminit next_active_region_index_in_nid(int index, int nid)
3734
{
3735
for (index = index + 1; index < nr_nodemap_entries; index++)
3736
if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3737
return index;
3738
3739
return -1;
3740
}
3741
3742
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3743
/*
3744
* Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3745
* Architectures may implement their own version but if add_active_range()
3746
* was used and there are no special requirements, this is a convenient
3747
* alternative
3748
*/
3749
int __meminit __early_pfn_to_nid(unsigned long pfn)
3750
{
3751
int i;
3752
3753
for (i = 0; i < nr_nodemap_entries; i++) {
3754
unsigned long start_pfn = early_node_map[i].start_pfn;
3755
unsigned long end_pfn = early_node_map[i].end_pfn;
3756
3757
if (start_pfn <= pfn && pfn < end_pfn)
3758
return early_node_map[i].nid;
3759
}
3760
/* This is a memory hole */
3761
return -1;
3762
}
3763
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3764
3765
int __meminit early_pfn_to_nid(unsigned long pfn)
3766
{
3767
int nid;
3768
3769
nid = __early_pfn_to_nid(pfn);
3770
if (nid >= 0)
3771
return nid;
3772
/* just returns 0 */
3773
return 0;
3774
}
3775
3776
#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3777
bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3778
{
3779
int nid;
3780
3781
nid = __early_pfn_to_nid(pfn);
3782
if (nid >= 0 && nid != node)
3783
return false;
3784
return true;
3785
}
3786
#endif
3787
3788
/* Basic iterator support to walk early_node_map[] */
3789
#define for_each_active_range_index_in_nid(i, nid) \
3790
for (i = first_active_region_index_in_nid(nid); i != -1; \
3791
i = next_active_region_index_in_nid(i, nid))
3792
3793
/**
3794
* free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3795
* @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3796
* @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3797
*
3798
* If an architecture guarantees that all ranges registered with
3799
* add_active_ranges() contain no holes and may be freed, this
3800
* this function may be used instead of calling free_bootmem() manually.
3801
*/
3802
void __init free_bootmem_with_active_regions(int nid,
3803
unsigned long max_low_pfn)
3804
{
3805
int i;
3806
3807
for_each_active_range_index_in_nid(i, nid) {
3808
unsigned long size_pages = 0;
3809
unsigned long end_pfn = early_node_map[i].end_pfn;
3810
3811
if (early_node_map[i].start_pfn >= max_low_pfn)
3812
continue;
3813
3814
if (end_pfn > max_low_pfn)
3815
end_pfn = max_low_pfn;
3816
3817
size_pages = end_pfn - early_node_map[i].start_pfn;
3818
free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3819
PFN_PHYS(early_node_map[i].start_pfn),
3820
size_pages << PAGE_SHIFT);
3821
}
3822
}
3823
3824
#ifdef CONFIG_HAVE_MEMBLOCK
3825
/*
3826
* Basic iterator support. Return the last range of PFNs for a node
3827
* Note: nid == MAX_NUMNODES returns last region regardless of node
3828
*/
3829
static int __meminit last_active_region_index_in_nid(int nid)
3830
{
3831
int i;
3832
3833
for (i = nr_nodemap_entries - 1; i >= 0; i--)
3834
if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3835
return i;
3836
3837
return -1;
3838
}
3839
3840
/*
3841
* Basic iterator support. Return the previous active range of PFNs for a node
3842
* Note: nid == MAX_NUMNODES returns next region regardless of node
3843
*/
3844
static int __meminit previous_active_region_index_in_nid(int index, int nid)
3845
{
3846
for (index = index - 1; index >= 0; index--)
3847
if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3848
return index;
3849
3850
return -1;
3851
}
3852
3853
#define for_each_active_range_index_in_nid_reverse(i, nid) \
3854
for (i = last_active_region_index_in_nid(nid); i != -1; \
3855
i = previous_active_region_index_in_nid(i, nid))
3856
3857
u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3858
u64 goal, u64 limit)
3859
{
3860
int i;
3861
3862
/* Need to go over early_node_map to find out good range for node */
3863
for_each_active_range_index_in_nid_reverse(i, nid) {
3864
u64 addr;
3865
u64 ei_start, ei_last;
3866
u64 final_start, final_end;
3867
3868
ei_last = early_node_map[i].end_pfn;
3869
ei_last <<= PAGE_SHIFT;
3870
ei_start = early_node_map[i].start_pfn;
3871
ei_start <<= PAGE_SHIFT;
3872
3873
final_start = max(ei_start, goal);
3874
final_end = min(ei_last, limit);
3875
3876
if (final_start >= final_end)
3877
continue;
3878
3879
addr = memblock_find_in_range(final_start, final_end, size, align);
3880
3881
if (addr == MEMBLOCK_ERROR)
3882
continue;
3883
3884
return addr;
3885
}
3886
3887
return MEMBLOCK_ERROR;
3888
}
3889
#endif
3890
3891
int __init add_from_early_node_map(struct range *range, int az,
3892
int nr_range, int nid)
3893
{
3894
int i;
3895
u64 start, end;
3896
3897
/* need to go over early_node_map to find out good range for node */
3898
for_each_active_range_index_in_nid(i, nid) {
3899
start = early_node_map[i].start_pfn;
3900
end = early_node_map[i].end_pfn;
3901
nr_range = add_range(range, az, nr_range, start, end);
3902
}
3903
return nr_range;
3904
}
3905
3906
void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3907
{
3908
int i;
3909
int ret;
3910
3911
for_each_active_range_index_in_nid(i, nid) {
3912
ret = work_fn(early_node_map[i].start_pfn,
3913
early_node_map[i].end_pfn, data);
3914
if (ret)
3915
break;
3916
}
3917
}
3918
/**
3919
* sparse_memory_present_with_active_regions - Call memory_present for each active range
3920
* @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3921
*
3922
* If an architecture guarantees that all ranges registered with
3923
* add_active_ranges() contain no holes and may be freed, this
3924
* function may be used instead of calling memory_present() manually.
3925
*/
3926
void __init sparse_memory_present_with_active_regions(int nid)
3927
{
3928
int i;
3929
3930
for_each_active_range_index_in_nid(i, nid)
3931
memory_present(early_node_map[i].nid,
3932
early_node_map[i].start_pfn,
3933
early_node_map[i].end_pfn);
3934
}
3935
3936
/**
3937
* get_pfn_range_for_nid - Return the start and end page frames for a node
3938
* @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3939
* @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3940
* @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3941
*
3942
* It returns the start and end page frame of a node based on information
3943
* provided by an arch calling add_active_range(). If called for a node
3944
* with no available memory, a warning is printed and the start and end
3945
* PFNs will be 0.
3946
*/
3947
void __meminit get_pfn_range_for_nid(unsigned int nid,
3948
unsigned long *start_pfn, unsigned long *end_pfn)
3949
{
3950
int i;
3951
*start_pfn = -1UL;
3952
*end_pfn = 0;
3953
3954
for_each_active_range_index_in_nid(i, nid) {
3955
*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3956
*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3957
}
3958
3959
if (*start_pfn == -1UL)
3960
*start_pfn = 0;
3961
}
3962
3963
/*
3964
* This finds a zone that can be used for ZONE_MOVABLE pages. The
3965
* assumption is made that zones within a node are ordered in monotonic
3966
* increasing memory addresses so that the "highest" populated zone is used
3967
*/
3968
static void __init find_usable_zone_for_movable(void)
3969
{
3970
int zone_index;
3971
for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3972
if (zone_index == ZONE_MOVABLE)
3973
continue;
3974
3975
if (arch_zone_highest_possible_pfn[zone_index] >
3976
arch_zone_lowest_possible_pfn[zone_index])
3977
break;
3978
}
3979
3980
VM_BUG_ON(zone_index == -1);
3981
movable_zone = zone_index;
3982
}
3983
3984
/*
3985
* The zone ranges provided by the architecture do not include ZONE_MOVABLE
3986
* because it is sized independent of architecture. Unlike the other zones,
3987
* the starting point for ZONE_MOVABLE is not fixed. It may be different
3988
* in each node depending on the size of each node and how evenly kernelcore
3989
* is distributed. This helper function adjusts the zone ranges
3990
* provided by the architecture for a given node by using the end of the
3991
* highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3992
* zones within a node are in order of monotonic increases memory addresses
3993
*/
3994
static void __meminit adjust_zone_range_for_zone_movable(int nid,
3995
unsigned long zone_type,
3996
unsigned long node_start_pfn,
3997
unsigned long node_end_pfn,
3998
unsigned long *zone_start_pfn,
3999
unsigned long *zone_end_pfn)
4000
{
4001
/* Only adjust if ZONE_MOVABLE is on this node */
4002
if (zone_movable_pfn[nid]) {
4003
/* Size ZONE_MOVABLE */
4004
if (zone_type == ZONE_MOVABLE) {
4005
*zone_start_pfn = zone_movable_pfn[nid];
4006
*zone_end_pfn = min(node_end_pfn,
4007
arch_zone_highest_possible_pfn[movable_zone]);
4008
4009
/* Adjust for ZONE_MOVABLE starting within this range */
4010
} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4011
*zone_end_pfn > zone_movable_pfn[nid]) {
4012
*zone_end_pfn = zone_movable_pfn[nid];
4013
4014
/* Check if this whole range is within ZONE_MOVABLE */
4015
} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4016
*zone_start_pfn = *zone_end_pfn;
4017
}
4018
}
4019
4020
/*
4021
* Return the number of pages a zone spans in a node, including holes
4022
* present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4023
*/
4024
static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4025
unsigned long zone_type,
4026
unsigned long *ignored)
4027
{
4028
unsigned long node_start_pfn, node_end_pfn;
4029
unsigned long zone_start_pfn, zone_end_pfn;
4030
4031
/* Get the start and end of the node and zone */
4032
get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4033
zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4034
zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4035
adjust_zone_range_for_zone_movable(nid, zone_type,
4036
node_start_pfn, node_end_pfn,
4037
&zone_start_pfn, &zone_end_pfn);
4038
4039
/* Check that this node has pages within the zone's required range */
4040
if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4041
return 0;
4042
4043
/* Move the zone boundaries inside the node if necessary */
4044
zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4045
zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4046
4047
/* Return the spanned pages */
4048
return zone_end_pfn - zone_start_pfn;
4049
}
4050
4051
/*
4052
* Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4053
* then all holes in the requested range will be accounted for.
4054
*/
4055
unsigned long __meminit __absent_pages_in_range(int nid,
4056
unsigned long range_start_pfn,
4057
unsigned long range_end_pfn)
4058
{
4059
int i = 0;
4060
unsigned long prev_end_pfn = 0, hole_pages = 0;
4061
unsigned long start_pfn;
4062
4063
/* Find the end_pfn of the first active range of pfns in the node */
4064
i = first_active_region_index_in_nid(nid);
4065
if (i == -1)
4066
return 0;
4067
4068
prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4069
4070
/* Account for ranges before physical memory on this node */
4071
if (early_node_map[i].start_pfn > range_start_pfn)
4072
hole_pages = prev_end_pfn - range_start_pfn;
4073
4074
/* Find all holes for the zone within the node */
4075
for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
4076
4077
/* No need to continue if prev_end_pfn is outside the zone */
4078
if (prev_end_pfn >= range_end_pfn)
4079
break;
4080
4081
/* Make sure the end of the zone is not within the hole */
4082
start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4083
prev_end_pfn = max(prev_end_pfn, range_start_pfn);
4084
4085
/* Update the hole size cound and move on */
4086
if (start_pfn > range_start_pfn) {
4087
BUG_ON(prev_end_pfn > start_pfn);
4088
hole_pages += start_pfn - prev_end_pfn;
4089
}
4090
prev_end_pfn = early_node_map[i].end_pfn;
4091
}
4092
4093
/* Account for ranges past physical memory on this node */
4094
if (range_end_pfn > prev_end_pfn)
4095
hole_pages += range_end_pfn -
4096
max(range_start_pfn, prev_end_pfn);
4097
4098
return hole_pages;
4099
}
4100
4101
/**
4102
* absent_pages_in_range - Return number of page frames in holes within a range
4103
* @start_pfn: The start PFN to start searching for holes
4104
* @end_pfn: The end PFN to stop searching for holes
4105
*
4106
* It returns the number of pages frames in memory holes within a range.
4107
*/
4108
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4109
unsigned long end_pfn)
4110
{
4111
return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4112
}
4113
4114
/* Return the number of page frames in holes in a zone on a node */
4115
static unsigned long __meminit zone_absent_pages_in_node(int nid,
4116
unsigned long zone_type,
4117
unsigned long *ignored)
4118
{
4119
unsigned long node_start_pfn, node_end_pfn;
4120
unsigned long zone_start_pfn, zone_end_pfn;
4121
4122
get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4123
zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
4124
node_start_pfn);
4125
zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
4126
node_end_pfn);
4127
4128
adjust_zone_range_for_zone_movable(nid, zone_type,
4129
node_start_pfn, node_end_pfn,
4130
&zone_start_pfn, &zone_end_pfn);
4131
return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4132
}
4133
4134
#else
4135
static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4136
unsigned long zone_type,
4137
unsigned long *zones_size)
4138
{
4139
return zones_size[zone_type];
4140
}
4141
4142
static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4143
unsigned long zone_type,
4144
unsigned long *zholes_size)
4145
{
4146
if (!zholes_size)
4147
return 0;
4148
4149
return zholes_size[zone_type];
4150
}
4151
4152
#endif
4153
4154
static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4155
unsigned long *zones_size, unsigned long *zholes_size)
4156
{
4157
unsigned long realtotalpages, totalpages = 0;
4158
enum zone_type i;
4159
4160
for (i = 0; i < MAX_NR_ZONES; i++)
4161
totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4162
zones_size);
4163
pgdat->node_spanned_pages = totalpages;
4164
4165
realtotalpages = totalpages;
4166
for (i = 0; i < MAX_NR_ZONES; i++)
4167
realtotalpages -=
4168
zone_absent_pages_in_node(pgdat->node_id, i,
4169
zholes_size);
4170
pgdat->node_present_pages = realtotalpages;
4171
printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4172
realtotalpages);
4173
}
4174
4175
#ifndef CONFIG_SPARSEMEM
4176
/*
4177
* Calculate the size of the zone->blockflags rounded to an unsigned long
4178
* Start by making sure zonesize is a multiple of pageblock_order by rounding
4179
* up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4180
* round what is now in bits to nearest long in bits, then return it in
4181
* bytes.
4182
*/
4183
static unsigned long __init usemap_size(unsigned long zonesize)
4184
{
4185
unsigned long usemapsize;
4186
4187
usemapsize = roundup(zonesize, pageblock_nr_pages);
4188
usemapsize = usemapsize >> pageblock_order;
4189
usemapsize *= NR_PAGEBLOCK_BITS;
4190
usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4191
4192
return usemapsize / 8;
4193
}
4194
4195
static void __init setup_usemap(struct pglist_data *pgdat,
4196
struct zone *zone, unsigned long zonesize)
4197
{
4198
unsigned long usemapsize = usemap_size(zonesize);
4199
zone->pageblock_flags = NULL;
4200
if (usemapsize)
4201
zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4202
usemapsize);
4203
}
4204
#else
4205
static inline void setup_usemap(struct pglist_data *pgdat,
4206
struct zone *zone, unsigned long zonesize) {}
4207
#endif /* CONFIG_SPARSEMEM */
4208
4209
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4210
4211
/* Return a sensible default order for the pageblock size. */
4212
static inline int pageblock_default_order(void)
4213
{
4214
if (HPAGE_SHIFT > PAGE_SHIFT)
4215
return HUGETLB_PAGE_ORDER;
4216
4217
return MAX_ORDER-1;
4218
}
4219
4220
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4221
static inline void __init set_pageblock_order(unsigned int order)
4222
{
4223
/* Check that pageblock_nr_pages has not already been setup */
4224
if (pageblock_order)
4225
return;
4226
4227
/*
4228
* Assume the largest contiguous order of interest is a huge page.
4229
* This value may be variable depending on boot parameters on IA64
4230
*/
4231
pageblock_order = order;
4232
}
4233
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4234
4235
/*
4236
* When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4237
* and pageblock_default_order() are unused as pageblock_order is set
4238
* at compile-time. See include/linux/pageblock-flags.h for the values of
4239
* pageblock_order based on the kernel config
4240
*/
4241
static inline int pageblock_default_order(unsigned int order)
4242
{
4243
return MAX_ORDER-1;
4244
}
4245
#define set_pageblock_order(x) do {} while (0)
4246
4247
#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4248
4249
/*
4250
* Set up the zone data structures:
4251
* - mark all pages reserved
4252
* - mark all memory queues empty
4253
* - clear the memory bitmaps
4254
*/
4255
static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4256
unsigned long *zones_size, unsigned long *zholes_size)
4257
{
4258
enum zone_type j;
4259
int nid = pgdat->node_id;
4260
unsigned long zone_start_pfn = pgdat->node_start_pfn;
4261
int ret;
4262
4263
pgdat_resize_init(pgdat);
4264
pgdat->nr_zones = 0;
4265
init_waitqueue_head(&pgdat->kswapd_wait);
4266
pgdat->kswapd_max_order = 0;
4267
pgdat_page_cgroup_init(pgdat);
4268
4269
for (j = 0; j < MAX_NR_ZONES; j++) {
4270
struct zone *zone = pgdat->node_zones + j;
4271
unsigned long size, realsize, memmap_pages;
4272
enum lru_list l;
4273
4274
size = zone_spanned_pages_in_node(nid, j, zones_size);
4275
realsize = size - zone_absent_pages_in_node(nid, j,
4276
zholes_size);
4277
4278
/*
4279
* Adjust realsize so that it accounts for how much memory
4280
* is used by this zone for memmap. This affects the watermark
4281
* and per-cpu initialisations
4282
*/
4283
memmap_pages =
4284
PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4285
if (realsize >= memmap_pages) {
4286
realsize -= memmap_pages;
4287
if (memmap_pages)
4288
printk(KERN_DEBUG
4289
" %s zone: %lu pages used for memmap\n",
4290
zone_names[j], memmap_pages);
4291
} else
4292
printk(KERN_WARNING
4293
" %s zone: %lu pages exceeds realsize %lu\n",
4294
zone_names[j], memmap_pages, realsize);
4295
4296
/* Account for reserved pages */
4297
if (j == 0 && realsize > dma_reserve) {
4298
realsize -= dma_reserve;
4299
printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4300
zone_names[0], dma_reserve);
4301
}
4302
4303
if (!is_highmem_idx(j))
4304
nr_kernel_pages += realsize;
4305
nr_all_pages += realsize;
4306
4307
zone->spanned_pages = size;
4308
zone->present_pages = realsize;
4309
#ifdef CONFIG_NUMA
4310
zone->node = nid;
4311
zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4312
/ 100;
4313
zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4314
#endif
4315
zone->name = zone_names[j];
4316
spin_lock_init(&zone->lock);
4317
spin_lock_init(&zone->lru_lock);
4318
zone_seqlock_init(zone);
4319
zone->zone_pgdat = pgdat;
4320
4321
zone_pcp_init(zone);
4322
for_each_lru(l)
4323
INIT_LIST_HEAD(&zone->lru[l].list);
4324
zone->reclaim_stat.recent_rotated[0] = 0;
4325
zone->reclaim_stat.recent_rotated[1] = 0;
4326
zone->reclaim_stat.recent_scanned[0] = 0;
4327
zone->reclaim_stat.recent_scanned[1] = 0;
4328
zap_zone_vm_stats(zone);
4329
zone->flags = 0;
4330
if (!size)
4331
continue;
4332
4333
set_pageblock_order(pageblock_default_order());
4334
setup_usemap(pgdat, zone, size);
4335
ret = init_currently_empty_zone(zone, zone_start_pfn,
4336
size, MEMMAP_EARLY);
4337
BUG_ON(ret);
4338
memmap_init(size, nid, j, zone_start_pfn);
4339
zone_start_pfn += size;
4340
}
4341
}
4342
4343
static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4344
{
4345
/* Skip empty nodes */
4346
if (!pgdat->node_spanned_pages)
4347
return;
4348
4349
#ifdef CONFIG_FLAT_NODE_MEM_MAP
4350
/* ia64 gets its own node_mem_map, before this, without bootmem */
4351
if (!pgdat->node_mem_map) {
4352
unsigned long size, start, end;
4353
struct page *map;
4354
4355
/*
4356
* The zone's endpoints aren't required to be MAX_ORDER
4357
* aligned but the node_mem_map endpoints must be in order
4358
* for the buddy allocator to function correctly.
4359
*/
4360
start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4361
end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4362
end = ALIGN(end, MAX_ORDER_NR_PAGES);
4363
size = (end - start) * sizeof(struct page);
4364
map = alloc_remap(pgdat->node_id, size);
4365
if (!map)
4366
map = alloc_bootmem_node_nopanic(pgdat, size);
4367
pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4368
}
4369
#ifndef CONFIG_NEED_MULTIPLE_NODES
4370
/*
4371
* With no DISCONTIG, the global mem_map is just set as node 0's
4372
*/
4373
if (pgdat == NODE_DATA(0)) {
4374
mem_map = NODE_DATA(0)->node_mem_map;
4375
#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4376
if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4377
mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4378
#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4379
}
4380
#endif
4381
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
4382
}
4383
4384
void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4385
unsigned long node_start_pfn, unsigned long *zholes_size)
4386
{
4387
pg_data_t *pgdat = NODE_DATA(nid);
4388
4389
pgdat->node_id = nid;
4390
pgdat->node_start_pfn = node_start_pfn;
4391
calculate_node_totalpages(pgdat, zones_size, zholes_size);
4392
4393
alloc_node_mem_map(pgdat);
4394
#ifdef CONFIG_FLAT_NODE_MEM_MAP
4395
printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4396
nid, (unsigned long)pgdat,
4397
(unsigned long)pgdat->node_mem_map);
4398
#endif
4399
4400
free_area_init_core(pgdat, zones_size, zholes_size);
4401
}
4402
4403
#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4404
4405
#if MAX_NUMNODES > 1
4406
/*
4407
* Figure out the number of possible node ids.
4408
*/
4409
static void __init setup_nr_node_ids(void)
4410
{
4411
unsigned int node;
4412
unsigned int highest = 0;
4413
4414
for_each_node_mask(node, node_possible_map)
4415
highest = node;
4416
nr_node_ids = highest + 1;
4417
}
4418
#else
4419
static inline void setup_nr_node_ids(void)
4420
{
4421
}
4422
#endif
4423
4424
/**
4425
* add_active_range - Register a range of PFNs backed by physical memory
4426
* @nid: The node ID the range resides on
4427
* @start_pfn: The start PFN of the available physical memory
4428
* @end_pfn: The end PFN of the available physical memory
4429
*
4430
* These ranges are stored in an early_node_map[] and later used by
4431
* free_area_init_nodes() to calculate zone sizes and holes. If the
4432
* range spans a memory hole, it is up to the architecture to ensure
4433
* the memory is not freed by the bootmem allocator. If possible
4434
* the range being registered will be merged with existing ranges.
4435
*/
4436
void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4437
unsigned long end_pfn)
4438
{
4439
int i;
4440
4441
mminit_dprintk(MMINIT_TRACE, "memory_register",
4442
"Entering add_active_range(%d, %#lx, %#lx) "
4443
"%d entries of %d used\n",
4444
nid, start_pfn, end_pfn,
4445
nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4446
4447
mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4448
4449
/* Merge with existing active regions if possible */
4450
for (i = 0; i < nr_nodemap_entries; i++) {
4451
if (early_node_map[i].nid != nid)
4452
continue;
4453
4454
/* Skip if an existing region covers this new one */
4455
if (start_pfn >= early_node_map[i].start_pfn &&
4456
end_pfn <= early_node_map[i].end_pfn)
4457
return;
4458
4459
/* Merge forward if suitable */
4460
if (start_pfn <= early_node_map[i].end_pfn &&
4461
end_pfn > early_node_map[i].end_pfn) {
4462
early_node_map[i].end_pfn = end_pfn;
4463
return;
4464
}
4465
4466
/* Merge backward if suitable */
4467
if (start_pfn < early_node_map[i].start_pfn &&
4468
end_pfn >= early_node_map[i].start_pfn) {
4469
early_node_map[i].start_pfn = start_pfn;
4470
return;
4471
}
4472
}
4473
4474
/* Check that early_node_map is large enough */
4475
if (i >= MAX_ACTIVE_REGIONS) {
4476
printk(KERN_CRIT "More than %d memory regions, truncating\n",
4477
MAX_ACTIVE_REGIONS);
4478
return;
4479
}
4480
4481
early_node_map[i].nid = nid;
4482
early_node_map[i].start_pfn = start_pfn;
4483
early_node_map[i].end_pfn = end_pfn;
4484
nr_nodemap_entries = i + 1;
4485
}
4486
4487
/**
4488
* remove_active_range - Shrink an existing registered range of PFNs
4489
* @nid: The node id the range is on that should be shrunk
4490
* @start_pfn: The new PFN of the range
4491
* @end_pfn: The new PFN of the range
4492
*
4493
* i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4494
* The map is kept near the end physical page range that has already been
4495
* registered. This function allows an arch to shrink an existing registered
4496
* range.
4497
*/
4498
void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4499
unsigned long end_pfn)
4500
{
4501
int i, j;
4502
int removed = 0;
4503
4504
printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4505
nid, start_pfn, end_pfn);
4506
4507
/* Find the old active region end and shrink */
4508
for_each_active_range_index_in_nid(i, nid) {
4509
if (early_node_map[i].start_pfn >= start_pfn &&
4510
early_node_map[i].end_pfn <= end_pfn) {
4511
/* clear it */
4512
early_node_map[i].start_pfn = 0;
4513
early_node_map[i].end_pfn = 0;
4514
removed = 1;
4515
continue;
4516
}
4517
if (early_node_map[i].start_pfn < start_pfn &&
4518
early_node_map[i].end_pfn > start_pfn) {
4519
unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4520
early_node_map[i].end_pfn = start_pfn;
4521
if (temp_end_pfn > end_pfn)
4522
add_active_range(nid, end_pfn, temp_end_pfn);
4523
continue;
4524
}
4525
if (early_node_map[i].start_pfn >= start_pfn &&
4526
early_node_map[i].end_pfn > end_pfn &&
4527
early_node_map[i].start_pfn < end_pfn) {
4528
early_node_map[i].start_pfn = end_pfn;
4529
continue;
4530
}
4531
}
4532
4533
if (!removed)
4534
return;
4535
4536
/* remove the blank ones */
4537
for (i = nr_nodemap_entries - 1; i > 0; i--) {
4538
if (early_node_map[i].nid != nid)
4539
continue;
4540
if (early_node_map[i].end_pfn)
4541
continue;
4542
/* we found it, get rid of it */
4543
for (j = i; j < nr_nodemap_entries - 1; j++)
4544
memcpy(&early_node_map[j], &early_node_map[j+1],
4545
sizeof(early_node_map[j]));
4546
j = nr_nodemap_entries - 1;
4547
memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4548
nr_nodemap_entries--;
4549
}
4550
}
4551
4552
/**
4553
* remove_all_active_ranges - Remove all currently registered regions
4554
*
4555
* During discovery, it may be found that a table like SRAT is invalid
4556
* and an alternative discovery method must be used. This function removes
4557
* all currently registered regions.
4558
*/
4559
void __init remove_all_active_ranges(void)
4560
{
4561
memset(early_node_map, 0, sizeof(early_node_map));
4562
nr_nodemap_entries = 0;
4563
}
4564
4565
/* Compare two active node_active_regions */
4566
static int __init cmp_node_active_region(const void *a, const void *b)
4567
{
4568
struct node_active_region *arange = (struct node_active_region *)a;
4569
struct node_active_region *brange = (struct node_active_region *)b;
4570
4571
/* Done this way to avoid overflows */
4572
if (arange->start_pfn > brange->start_pfn)
4573
return 1;
4574
if (arange->start_pfn < brange->start_pfn)
4575
return -1;
4576
4577
return 0;
4578
}
4579
4580
/* sort the node_map by start_pfn */
4581
void __init sort_node_map(void)
4582
{
4583
sort(early_node_map, (size_t)nr_nodemap_entries,
4584
sizeof(struct node_active_region),
4585
cmp_node_active_region, NULL);
4586
}
4587
4588
/* Find the lowest pfn for a node */
4589
static unsigned long __init find_min_pfn_for_node(int nid)
4590
{
4591
int i;
4592
unsigned long min_pfn = ULONG_MAX;
4593
4594
/* Assuming a sorted map, the first range found has the starting pfn */
4595
for_each_active_range_index_in_nid(i, nid)
4596
min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4597
4598
if (min_pfn == ULONG_MAX) {
4599
printk(KERN_WARNING
4600
"Could not find start_pfn for node %d\n", nid);
4601
return 0;
4602
}
4603
4604
return min_pfn;
4605
}
4606
4607
/**
4608
* find_min_pfn_with_active_regions - Find the minimum PFN registered
4609
*
4610
* It returns the minimum PFN based on information provided via
4611
* add_active_range().
4612
*/
4613
unsigned long __init find_min_pfn_with_active_regions(void)
4614
{
4615
return find_min_pfn_for_node(MAX_NUMNODES);
4616
}
4617
4618
/*
4619
* early_calculate_totalpages()
4620
* Sum pages in active regions for movable zone.
4621
* Populate N_HIGH_MEMORY for calculating usable_nodes.
4622
*/
4623
static unsigned long __init early_calculate_totalpages(void)
4624
{
4625
int i;
4626
unsigned long totalpages = 0;
4627
4628
for (i = 0; i < nr_nodemap_entries; i++) {
4629
unsigned long pages = early_node_map[i].end_pfn -
4630
early_node_map[i].start_pfn;
4631
totalpages += pages;
4632
if (pages)
4633
node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4634
}
4635
return totalpages;
4636
}
4637
4638
/*
4639
* Find the PFN the Movable zone begins in each node. Kernel memory
4640
* is spread evenly between nodes as long as the nodes have enough
4641
* memory. When they don't, some nodes will have more kernelcore than
4642
* others
4643
*/
4644
static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4645
{
4646
int i, nid;
4647
unsigned long usable_startpfn;
4648
unsigned long kernelcore_node, kernelcore_remaining;
4649
/* save the state before borrow the nodemask */
4650
nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4651
unsigned long totalpages = early_calculate_totalpages();
4652
int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4653
4654
/*
4655
* If movablecore was specified, calculate what size of
4656
* kernelcore that corresponds so that memory usable for
4657
* any allocation type is evenly spread. If both kernelcore
4658
* and movablecore are specified, then the value of kernelcore
4659
* will be used for required_kernelcore if it's greater than
4660
* what movablecore would have allowed.
4661
*/
4662
if (required_movablecore) {
4663
unsigned long corepages;
4664
4665
/*
4666
* Round-up so that ZONE_MOVABLE is at least as large as what
4667
* was requested by the user
4668
*/
4669
required_movablecore =
4670
roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4671
corepages = totalpages - required_movablecore;
4672
4673
required_kernelcore = max(required_kernelcore, corepages);
4674
}
4675
4676
/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4677
if (!required_kernelcore)
4678
goto out;
4679
4680
/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4681
find_usable_zone_for_movable();
4682
usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4683
4684
restart:
4685
/* Spread kernelcore memory as evenly as possible throughout nodes */
4686
kernelcore_node = required_kernelcore / usable_nodes;
4687
for_each_node_state(nid, N_HIGH_MEMORY) {
4688
/*
4689
* Recalculate kernelcore_node if the division per node
4690
* now exceeds what is necessary to satisfy the requested
4691
* amount of memory for the kernel
4692
*/
4693
if (required_kernelcore < kernelcore_node)
4694
kernelcore_node = required_kernelcore / usable_nodes;
4695
4696
/*
4697
* As the map is walked, we track how much memory is usable
4698
* by the kernel using kernelcore_remaining. When it is
4699
* 0, the rest of the node is usable by ZONE_MOVABLE
4700
*/
4701
kernelcore_remaining = kernelcore_node;
4702
4703
/* Go through each range of PFNs within this node */
4704
for_each_active_range_index_in_nid(i, nid) {
4705
unsigned long start_pfn, end_pfn;
4706
unsigned long size_pages;
4707
4708
start_pfn = max(early_node_map[i].start_pfn,
4709
zone_movable_pfn[nid]);
4710
end_pfn = early_node_map[i].end_pfn;
4711
if (start_pfn >= end_pfn)
4712
continue;
4713
4714
/* Account for what is only usable for kernelcore */
4715
if (start_pfn < usable_startpfn) {
4716
unsigned long kernel_pages;
4717
kernel_pages = min(end_pfn, usable_startpfn)
4718
- start_pfn;
4719
4720
kernelcore_remaining -= min(kernel_pages,
4721
kernelcore_remaining);
4722
required_kernelcore -= min(kernel_pages,
4723
required_kernelcore);
4724
4725
/* Continue if range is now fully accounted */
4726
if (end_pfn <= usable_startpfn) {
4727
4728
/*
4729
* Push zone_movable_pfn to the end so
4730
* that if we have to rebalance
4731
* kernelcore across nodes, we will
4732
* not double account here
4733
*/
4734
zone_movable_pfn[nid] = end_pfn;
4735
continue;
4736
}
4737
start_pfn = usable_startpfn;
4738
}
4739
4740
/*
4741
* The usable PFN range for ZONE_MOVABLE is from
4742
* start_pfn->end_pfn. Calculate size_pages as the
4743
* number of pages used as kernelcore
4744
*/
4745
size_pages = end_pfn - start_pfn;
4746
if (size_pages > kernelcore_remaining)
4747
size_pages = kernelcore_remaining;
4748
zone_movable_pfn[nid] = start_pfn + size_pages;
4749
4750
/*
4751
* Some kernelcore has been met, update counts and
4752
* break if the kernelcore for this node has been
4753
* satisified
4754
*/
4755
required_kernelcore -= min(required_kernelcore,
4756
size_pages);
4757
kernelcore_remaining -= size_pages;
4758
if (!kernelcore_remaining)
4759
break;
4760
}
4761
}
4762
4763
/*
4764
* If there is still required_kernelcore, we do another pass with one
4765
* less node in the count. This will push zone_movable_pfn[nid] further
4766
* along on the nodes that still have memory until kernelcore is
4767
* satisified
4768
*/
4769
usable_nodes--;
4770
if (usable_nodes && required_kernelcore > usable_nodes)
4771
goto restart;
4772
4773
/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4774
for (nid = 0; nid < MAX_NUMNODES; nid++)
4775
zone_movable_pfn[nid] =
4776
roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4777
4778
out:
4779
/* restore the node_state */
4780
node_states[N_HIGH_MEMORY] = saved_node_state;
4781
}
4782
4783
/* Any regular memory on that node ? */
4784
static void check_for_regular_memory(pg_data_t *pgdat)
4785
{
4786
#ifdef CONFIG_HIGHMEM
4787
enum zone_type zone_type;
4788
4789
for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4790
struct zone *zone = &pgdat->node_zones[zone_type];
4791
if (zone->present_pages)
4792
node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4793
}
4794
#endif
4795
}
4796
4797
/**
4798
* free_area_init_nodes - Initialise all pg_data_t and zone data
4799
* @max_zone_pfn: an array of max PFNs for each zone
4800
*
4801
* This will call free_area_init_node() for each active node in the system.
4802
* Using the page ranges provided by add_active_range(), the size of each
4803
* zone in each node and their holes is calculated. If the maximum PFN
4804
* between two adjacent zones match, it is assumed that the zone is empty.
4805
* For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4806
* that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4807
* starts where the previous one ended. For example, ZONE_DMA32 starts
4808
* at arch_max_dma_pfn.
4809
*/
4810
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4811
{
4812
unsigned long nid;
4813
int i;
4814
4815
/* Sort early_node_map as initialisation assumes it is sorted */
4816
sort_node_map();
4817
4818
/* Record where the zone boundaries are */
4819
memset(arch_zone_lowest_possible_pfn, 0,
4820
sizeof(arch_zone_lowest_possible_pfn));
4821
memset(arch_zone_highest_possible_pfn, 0,
4822
sizeof(arch_zone_highest_possible_pfn));
4823
arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4824
arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4825
for (i = 1; i < MAX_NR_ZONES; i++) {
4826
if (i == ZONE_MOVABLE)
4827
continue;
4828
arch_zone_lowest_possible_pfn[i] =
4829
arch_zone_highest_possible_pfn[i-1];
4830
arch_zone_highest_possible_pfn[i] =
4831
max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4832
}
4833
arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4834
arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4835
4836
/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4837
memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4838
find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4839
4840
/* Print out the zone ranges */
4841
printk("Zone PFN ranges:\n");
4842
for (i = 0; i < MAX_NR_ZONES; i++) {
4843
if (i == ZONE_MOVABLE)
4844
continue;
4845
printk(" %-8s ", zone_names[i]);
4846
if (arch_zone_lowest_possible_pfn[i] ==
4847
arch_zone_highest_possible_pfn[i])
4848
printk("empty\n");
4849
else
4850
printk("%0#10lx -> %0#10lx\n",
4851
arch_zone_lowest_possible_pfn[i],
4852
arch_zone_highest_possible_pfn[i]);
4853
}
4854
4855
/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4856
printk("Movable zone start PFN for each node\n");
4857
for (i = 0; i < MAX_NUMNODES; i++) {
4858
if (zone_movable_pfn[i])
4859
printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4860
}
4861
4862
/* Print out the early_node_map[] */
4863
printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4864
for (i = 0; i < nr_nodemap_entries; i++)
4865
printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4866
early_node_map[i].start_pfn,
4867
early_node_map[i].end_pfn);
4868
4869
/* Initialise every node */
4870
mminit_verify_pageflags_layout();
4871
setup_nr_node_ids();
4872
for_each_online_node(nid) {
4873
pg_data_t *pgdat = NODE_DATA(nid);
4874
free_area_init_node(nid, NULL,
4875
find_min_pfn_for_node(nid), NULL);
4876
4877
/* Any memory on that node */
4878
if (pgdat->node_present_pages)
4879
node_set_state(nid, N_HIGH_MEMORY);
4880
check_for_regular_memory(pgdat);
4881
}
4882
}
4883
4884
static int __init cmdline_parse_core(char *p, unsigned long *core)
4885
{
4886
unsigned long long coremem;
4887
if (!p)
4888
return -EINVAL;
4889
4890
coremem = memparse(p, &p);
4891
*core = coremem >> PAGE_SHIFT;
4892
4893
/* Paranoid check that UL is enough for the coremem value */
4894
WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4895
4896
return 0;
4897
}
4898
4899
/*
4900
* kernelcore=size sets the amount of memory for use for allocations that
4901
* cannot be reclaimed or migrated.
4902
*/
4903
static int __init cmdline_parse_kernelcore(char *p)
4904
{
4905
return cmdline_parse_core(p, &required_kernelcore);
4906
}
4907
4908
/*
4909
* movablecore=size sets the amount of memory for use for allocations that
4910
* can be reclaimed or migrated.
4911
*/
4912
static int __init cmdline_parse_movablecore(char *p)
4913
{
4914
return cmdline_parse_core(p, &required_movablecore);
4915
}
4916
4917
early_param("kernelcore", cmdline_parse_kernelcore);
4918
early_param("movablecore", cmdline_parse_movablecore);
4919
4920
#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4921
4922
/**
4923
* set_dma_reserve - set the specified number of pages reserved in the first zone
4924
* @new_dma_reserve: The number of pages to mark reserved
4925
*
4926
* The per-cpu batchsize and zone watermarks are determined by present_pages.
4927
* In the DMA zone, a significant percentage may be consumed by kernel image
4928
* and other unfreeable allocations which can skew the watermarks badly. This
4929
* function may optionally be used to account for unfreeable pages in the
4930
* first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4931
* smaller per-cpu batchsize.
4932
*/
4933
void __init set_dma_reserve(unsigned long new_dma_reserve)
4934
{
4935
dma_reserve = new_dma_reserve;
4936
}
4937
4938
void __init free_area_init(unsigned long *zones_size)
4939
{
4940
free_area_init_node(0, zones_size,
4941
__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4942
}
4943
4944
static int page_alloc_cpu_notify(struct notifier_block *self,
4945
unsigned long action, void *hcpu)
4946
{
4947
int cpu = (unsigned long)hcpu;
4948
4949
if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4950
drain_pages(cpu);
4951
4952
/*
4953
* Spill the event counters of the dead processor
4954
* into the current processors event counters.
4955
* This artificially elevates the count of the current
4956
* processor.
4957
*/
4958
vm_events_fold_cpu(cpu);
4959
4960
/*
4961
* Zero the differential counters of the dead processor
4962
* so that the vm statistics are consistent.
4963
*
4964
* This is only okay since the processor is dead and cannot
4965
* race with what we are doing.
4966
*/
4967
refresh_cpu_vm_stats(cpu);
4968
}
4969
return NOTIFY_OK;
4970
}
4971
4972
void __init page_alloc_init(void)
4973
{
4974
hotcpu_notifier(page_alloc_cpu_notify, 0);
4975
}
4976
4977
/*
4978
* calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4979
* or min_free_kbytes changes.
4980
*/
4981
static void calculate_totalreserve_pages(void)
4982
{
4983
struct pglist_data *pgdat;
4984
unsigned long reserve_pages = 0;
4985
enum zone_type i, j;
4986
4987
for_each_online_pgdat(pgdat) {
4988
for (i = 0; i < MAX_NR_ZONES; i++) {
4989
struct zone *zone = pgdat->node_zones + i;
4990
unsigned long max = 0;
4991
4992
/* Find valid and maximum lowmem_reserve in the zone */
4993
for (j = i; j < MAX_NR_ZONES; j++) {
4994
if (zone->lowmem_reserve[j] > max)
4995
max = zone->lowmem_reserve[j];
4996
}
4997
4998
/* we treat the high watermark as reserved pages. */
4999
max += high_wmark_pages(zone);
5000
5001
if (max > zone->present_pages)
5002
max = zone->present_pages;
5003
reserve_pages += max;
5004
}
5005
}
5006
totalreserve_pages = reserve_pages;
5007
}
5008
5009
/*
5010
* setup_per_zone_lowmem_reserve - called whenever
5011
* sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5012
* has a correct pages reserved value, so an adequate number of
5013
* pages are left in the zone after a successful __alloc_pages().
5014
*/
5015
static void setup_per_zone_lowmem_reserve(void)
5016
{
5017
struct pglist_data *pgdat;
5018
enum zone_type j, idx;
5019
5020
for_each_online_pgdat(pgdat) {
5021
for (j = 0; j < MAX_NR_ZONES; j++) {
5022
struct zone *zone = pgdat->node_zones + j;
5023
unsigned long present_pages = zone->present_pages;
5024
5025
zone->lowmem_reserve[j] = 0;
5026
5027
idx = j;
5028
while (idx) {
5029
struct zone *lower_zone;
5030
5031
idx--;
5032
5033
if (sysctl_lowmem_reserve_ratio[idx] < 1)
5034
sysctl_lowmem_reserve_ratio[idx] = 1;
5035
5036
lower_zone = pgdat->node_zones + idx;
5037
lower_zone->lowmem_reserve[j] = present_pages /
5038
sysctl_lowmem_reserve_ratio[idx];
5039
present_pages += lower_zone->present_pages;
5040
}
5041
}
5042
}
5043
5044
/* update totalreserve_pages */
5045
calculate_totalreserve_pages();
5046
}
5047
5048
/**
5049
* setup_per_zone_wmarks - called when min_free_kbytes changes
5050
* or when memory is hot-{added|removed}
5051
*
5052
* Ensures that the watermark[min,low,high] values for each zone are set
5053
* correctly with respect to min_free_kbytes.
5054
*/
5055
void setup_per_zone_wmarks(void)
5056
{
5057
unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5058
unsigned long lowmem_pages = 0;
5059
struct zone *zone;
5060
unsigned long flags;
5061
5062
/* Calculate total number of !ZONE_HIGHMEM pages */
5063
for_each_zone(zone) {
5064
if (!is_highmem(zone))
5065
lowmem_pages += zone->present_pages;
5066
}
5067
5068
for_each_zone(zone) {
5069
u64 tmp;
5070
5071
spin_lock_irqsave(&zone->lock, flags);
5072
tmp = (u64)pages_min * zone->present_pages;
5073
do_div(tmp, lowmem_pages);
5074
if (is_highmem(zone)) {
5075
/*
5076
* __GFP_HIGH and PF_MEMALLOC allocations usually don't
5077
* need highmem pages, so cap pages_min to a small
5078
* value here.
5079
*
5080
* The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5081
* deltas controls asynch page reclaim, and so should
5082
* not be capped for highmem.
5083
*/
5084
int min_pages;
5085
5086
min_pages = zone->present_pages / 1024;
5087
if (min_pages < SWAP_CLUSTER_MAX)
5088
min_pages = SWAP_CLUSTER_MAX;
5089
if (min_pages > 128)
5090
min_pages = 128;
5091
zone->watermark[WMARK_MIN] = min_pages;
5092
} else {
5093
/*
5094
* If it's a lowmem zone, reserve a number of pages
5095
* proportionate to the zone's size.
5096
*/
5097
zone->watermark[WMARK_MIN] = tmp;
5098
}
5099
5100
zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5101
zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5102
setup_zone_migrate_reserve(zone);
5103
spin_unlock_irqrestore(&zone->lock, flags);
5104
}
5105
5106
/* update totalreserve_pages */
5107
calculate_totalreserve_pages();
5108
}
5109
5110
/*
5111
* The inactive anon list should be small enough that the VM never has to
5112
* do too much work, but large enough that each inactive page has a chance
5113
* to be referenced again before it is swapped out.
5114
*
5115
* The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5116
* INACTIVE_ANON pages on this zone's LRU, maintained by the
5117
* pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5118
* the anonymous pages are kept on the inactive list.
5119
*
5120
* total target max
5121
* memory ratio inactive anon
5122
* -------------------------------------
5123
* 10MB 1 5MB
5124
* 100MB 1 50MB
5125
* 1GB 3 250MB
5126
* 10GB 10 0.9GB
5127
* 100GB 31 3GB
5128
* 1TB 101 10GB
5129
* 10TB 320 32GB
5130
*/
5131
static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5132
{
5133
unsigned int gb, ratio;
5134
5135
/* Zone size in gigabytes */
5136
gb = zone->present_pages >> (30 - PAGE_SHIFT);
5137
if (gb)
5138
ratio = int_sqrt(10 * gb);
5139
else
5140
ratio = 1;
5141
5142
zone->inactive_ratio = ratio;
5143
}
5144
5145
static void __meminit setup_per_zone_inactive_ratio(void)
5146
{
5147
struct zone *zone;
5148
5149
for_each_zone(zone)
5150
calculate_zone_inactive_ratio(zone);
5151
}
5152
5153
/*
5154
* Initialise min_free_kbytes.
5155
*
5156
* For small machines we want it small (128k min). For large machines
5157
* we want it large (64MB max). But it is not linear, because network
5158
* bandwidth does not increase linearly with machine size. We use
5159
*
5160
* min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5161
* min_free_kbytes = sqrt(lowmem_kbytes * 16)
5162
*
5163
* which yields
5164
*
5165
* 16MB: 512k
5166
* 32MB: 724k
5167
* 64MB: 1024k
5168
* 128MB: 1448k
5169
* 256MB: 2048k
5170
* 512MB: 2896k
5171
* 1024MB: 4096k
5172
* 2048MB: 5792k
5173
* 4096MB: 8192k
5174
* 8192MB: 11584k
5175
* 16384MB: 16384k
5176
*/
5177
int __meminit init_per_zone_wmark_min(void)
5178
{
5179
unsigned long lowmem_kbytes;
5180
5181
lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5182
5183
min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5184
if (min_free_kbytes < 128)
5185
min_free_kbytes = 128;
5186
if (min_free_kbytes > 65536)
5187
min_free_kbytes = 65536;
5188
setup_per_zone_wmarks();
5189
refresh_zone_stat_thresholds();
5190
setup_per_zone_lowmem_reserve();
5191
setup_per_zone_inactive_ratio();
5192
return 0;
5193
}
5194
module_init(init_per_zone_wmark_min)
5195
5196
/*
5197
* min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5198
* that we can call two helper functions whenever min_free_kbytes
5199
* changes.
5200
*/
5201
int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5202
void __user *buffer, size_t *length, loff_t *ppos)
5203
{
5204
proc_dointvec(table, write, buffer, length, ppos);
5205
if (write)
5206
setup_per_zone_wmarks();
5207
return 0;
5208
}
5209
5210
#ifdef CONFIG_NUMA
5211
int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5212
void __user *buffer, size_t *length, loff_t *ppos)
5213
{
5214
struct zone *zone;
5215
int rc;
5216
5217
rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5218
if (rc)
5219
return rc;
5220
5221
for_each_zone(zone)
5222
zone->min_unmapped_pages = (zone->present_pages *
5223
sysctl_min_unmapped_ratio) / 100;
5224
return 0;
5225
}
5226
5227
int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5228
void __user *buffer, size_t *length, loff_t *ppos)
5229
{
5230
struct zone *zone;
5231
int rc;
5232
5233
rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5234
if (rc)
5235
return rc;
5236
5237
for_each_zone(zone)
5238
zone->min_slab_pages = (zone->present_pages *
5239
sysctl_min_slab_ratio) / 100;
5240
return 0;
5241
}
5242
#endif
5243
5244
/*
5245
* lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5246
* proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5247
* whenever sysctl_lowmem_reserve_ratio changes.
5248
*
5249
* The reserve ratio obviously has absolutely no relation with the
5250
* minimum watermarks. The lowmem reserve ratio can only make sense
5251
* if in function of the boot time zone sizes.
5252
*/
5253
int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5254
void __user *buffer, size_t *length, loff_t *ppos)
5255
{
5256
proc_dointvec_minmax(table, write, buffer, length, ppos);
5257
setup_per_zone_lowmem_reserve();
5258
return 0;
5259
}
5260
5261
/*
5262
* percpu_pagelist_fraction - changes the pcp->high for each zone on each
5263
* cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5264
* can have before it gets flushed back to buddy allocator.
5265
*/
5266
5267
int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5268
void __user *buffer, size_t *length, loff_t *ppos)
5269
{
5270
struct zone *zone;
5271
unsigned int cpu;
5272
int ret;
5273
5274
ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5275
if (!write || (ret == -EINVAL))
5276
return ret;
5277
for_each_populated_zone(zone) {
5278
for_each_possible_cpu(cpu) {
5279
unsigned long high;
5280
high = zone->present_pages / percpu_pagelist_fraction;
5281
setup_pagelist_highmark(
5282
per_cpu_ptr(zone->pageset, cpu), high);
5283
}
5284
}
5285
return 0;
5286
}
5287
5288
int hashdist = HASHDIST_DEFAULT;
5289
5290
#ifdef CONFIG_NUMA
5291
static int __init set_hashdist(char *str)
5292
{
5293
if (!str)
5294
return 0;
5295
hashdist = simple_strtoul(str, &str, 0);
5296
return 1;
5297
}
5298
__setup("hashdist=", set_hashdist);
5299
#endif
5300
5301
/*
5302
* allocate a large system hash table from bootmem
5303
* - it is assumed that the hash table must contain an exact power-of-2
5304
* quantity of entries
5305
* - limit is the number of hash buckets, not the total allocation size
5306
*/
5307
void *__init alloc_large_system_hash(const char *tablename,
5308
unsigned long bucketsize,
5309
unsigned long numentries,
5310
int scale,
5311
int flags,
5312
unsigned int *_hash_shift,
5313
unsigned int *_hash_mask,
5314
unsigned long limit)
5315
{
5316
unsigned long long max = limit;
5317
unsigned long log2qty, size;
5318
void *table = NULL;
5319
5320
/* allow the kernel cmdline to have a say */
5321
if (!numentries) {
5322
/* round applicable memory size up to nearest megabyte */
5323
numentries = nr_kernel_pages;
5324
numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5325
numentries >>= 20 - PAGE_SHIFT;
5326
numentries <<= 20 - PAGE_SHIFT;
5327
5328
/* limit to 1 bucket per 2^scale bytes of low memory */
5329
if (scale > PAGE_SHIFT)
5330
numentries >>= (scale - PAGE_SHIFT);
5331
else
5332
numentries <<= (PAGE_SHIFT - scale);
5333
5334
/* Make sure we've got at least a 0-order allocation.. */
5335
if (unlikely(flags & HASH_SMALL)) {
5336
/* Makes no sense without HASH_EARLY */
5337
WARN_ON(!(flags & HASH_EARLY));
5338
if (!(numentries >> *_hash_shift)) {
5339
numentries = 1UL << *_hash_shift;
5340
BUG_ON(!numentries);
5341
}
5342
} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5343
numentries = PAGE_SIZE / bucketsize;
5344
}
5345
numentries = roundup_pow_of_two(numentries);
5346
5347
/* limit allocation size to 1/16 total memory by default */
5348
if (max == 0) {
5349
max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5350
do_div(max, bucketsize);
5351
}
5352
5353
if (numentries > max)
5354
numentries = max;
5355
5356
log2qty = ilog2(numentries);
5357
5358
do {
5359
size = bucketsize << log2qty;
5360
if (flags & HASH_EARLY)
5361
table = alloc_bootmem_nopanic(size);
5362
else if (hashdist)
5363
table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5364
else {
5365
/*
5366
* If bucketsize is not a power-of-two, we may free
5367
* some pages at the end of hash table which
5368
* alloc_pages_exact() automatically does
5369
*/
5370
if (get_order(size) < MAX_ORDER) {
5371
table = alloc_pages_exact(size, GFP_ATOMIC);
5372
kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5373
}
5374
}
5375
} while (!table && size > PAGE_SIZE && --log2qty);
5376
5377
if (!table)
5378
panic("Failed to allocate %s hash table\n", tablename);
5379
5380
printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5381
tablename,
5382
(1UL << log2qty),
5383
ilog2(size) - PAGE_SHIFT,
5384
size);
5385
5386
if (_hash_shift)
5387
*_hash_shift = log2qty;
5388
if (_hash_mask)
5389
*_hash_mask = (1 << log2qty) - 1;
5390
5391
return table;
5392
}
5393
5394
/* Return a pointer to the bitmap storing bits affecting a block of pages */
5395
static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5396
unsigned long pfn)
5397
{
5398
#ifdef CONFIG_SPARSEMEM
5399
return __pfn_to_section(pfn)->pageblock_flags;
5400
#else
5401
return zone->pageblock_flags;
5402
#endif /* CONFIG_SPARSEMEM */
5403
}
5404
5405
static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5406
{
5407
#ifdef CONFIG_SPARSEMEM
5408
pfn &= (PAGES_PER_SECTION-1);
5409
return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5410
#else
5411
pfn = pfn - zone->zone_start_pfn;
5412
return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5413
#endif /* CONFIG_SPARSEMEM */
5414
}
5415
5416
/**
5417
* get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5418
* @page: The page within the block of interest
5419
* @start_bitidx: The first bit of interest to retrieve
5420
* @end_bitidx: The last bit of interest
5421
* returns pageblock_bits flags
5422
*/
5423
unsigned long get_pageblock_flags_group(struct page *page,
5424
int start_bitidx, int end_bitidx)
5425
{
5426
struct zone *zone;
5427
unsigned long *bitmap;
5428
unsigned long pfn, bitidx;
5429
unsigned long flags = 0;
5430
unsigned long value = 1;
5431
5432
zone = page_zone(page);
5433
pfn = page_to_pfn(page);
5434
bitmap = get_pageblock_bitmap(zone, pfn);
5435
bitidx = pfn_to_bitidx(zone, pfn);
5436
5437
for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5438
if (test_bit(bitidx + start_bitidx, bitmap))
5439
flags |= value;
5440
5441
return flags;
5442
}
5443
5444
/**
5445
* set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5446
* @page: The page within the block of interest
5447
* @start_bitidx: The first bit of interest
5448
* @end_bitidx: The last bit of interest
5449
* @flags: The flags to set
5450
*/
5451
void set_pageblock_flags_group(struct page *page, unsigned long flags,
5452
int start_bitidx, int end_bitidx)
5453
{
5454
struct zone *zone;
5455
unsigned long *bitmap;
5456
unsigned long pfn, bitidx;
5457
unsigned long value = 1;
5458
5459
zone = page_zone(page);
5460
pfn = page_to_pfn(page);
5461
bitmap = get_pageblock_bitmap(zone, pfn);
5462
bitidx = pfn_to_bitidx(zone, pfn);
5463
VM_BUG_ON(pfn < zone->zone_start_pfn);
5464
VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5465
5466
for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5467
if (flags & value)
5468
__set_bit(bitidx + start_bitidx, bitmap);
5469
else
5470
__clear_bit(bitidx + start_bitidx, bitmap);
5471
}
5472
5473
/*
5474
* This is designed as sub function...plz see page_isolation.c also.
5475
* set/clear page block's type to be ISOLATE.
5476
* page allocater never alloc memory from ISOLATE block.
5477
*/
5478
5479
static int
5480
__count_immobile_pages(struct zone *zone, struct page *page, int count)
5481
{
5482
unsigned long pfn, iter, found;
5483
/*
5484
* For avoiding noise data, lru_add_drain_all() should be called
5485
* If ZONE_MOVABLE, the zone never contains immobile pages
5486
*/
5487
if (zone_idx(zone) == ZONE_MOVABLE)
5488
return true;
5489
5490
if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5491
return true;
5492
5493
pfn = page_to_pfn(page);
5494
for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5495
unsigned long check = pfn + iter;
5496
5497
if (!pfn_valid_within(check))
5498
continue;
5499
5500
page = pfn_to_page(check);
5501
if (!page_count(page)) {
5502
if (PageBuddy(page))
5503
iter += (1 << page_order(page)) - 1;
5504
continue;
5505
}
5506
if (!PageLRU(page))
5507
found++;
5508
/*
5509
* If there are RECLAIMABLE pages, we need to check it.
5510
* But now, memory offline itself doesn't call shrink_slab()
5511
* and it still to be fixed.
5512
*/
5513
/*
5514
* If the page is not RAM, page_count()should be 0.
5515
* we don't need more check. This is an _used_ not-movable page.
5516
*
5517
* The problematic thing here is PG_reserved pages. PG_reserved
5518
* is set to both of a memory hole page and a _used_ kernel
5519
* page at boot.
5520
*/
5521
if (found > count)
5522
return false;
5523
}
5524
return true;
5525
}
5526
5527
bool is_pageblock_removable_nolock(struct page *page)
5528
{
5529
struct zone *zone = page_zone(page);
5530
return __count_immobile_pages(zone, page, 0);
5531
}
5532
5533
int set_migratetype_isolate(struct page *page)
5534
{
5535
struct zone *zone;
5536
unsigned long flags, pfn;
5537
struct memory_isolate_notify arg;
5538
int notifier_ret;
5539
int ret = -EBUSY;
5540
5541
zone = page_zone(page);
5542
5543
spin_lock_irqsave(&zone->lock, flags);
5544
5545
pfn = page_to_pfn(page);
5546
arg.start_pfn = pfn;
5547
arg.nr_pages = pageblock_nr_pages;
5548
arg.pages_found = 0;
5549
5550
/*
5551
* It may be possible to isolate a pageblock even if the
5552
* migratetype is not MIGRATE_MOVABLE. The memory isolation
5553
* notifier chain is used by balloon drivers to return the
5554
* number of pages in a range that are held by the balloon
5555
* driver to shrink memory. If all the pages are accounted for
5556
* by balloons, are free, or on the LRU, isolation can continue.
5557
* Later, for example, when memory hotplug notifier runs, these
5558
* pages reported as "can be isolated" should be isolated(freed)
5559
* by the balloon driver through the memory notifier chain.
5560
*/
5561
notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5562
notifier_ret = notifier_to_errno(notifier_ret);
5563
if (notifier_ret)
5564
goto out;
5565
/*
5566
* FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5567
* We just check MOVABLE pages.
5568
*/
5569
if (__count_immobile_pages(zone, page, arg.pages_found))
5570
ret = 0;
5571
5572
/*
5573
* immobile means "not-on-lru" paes. If immobile is larger than
5574
* removable-by-driver pages reported by notifier, we'll fail.
5575
*/
5576
5577
out:
5578
if (!ret) {
5579
set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5580
move_freepages_block(zone, page, MIGRATE_ISOLATE);
5581
}
5582
5583
spin_unlock_irqrestore(&zone->lock, flags);
5584
if (!ret)
5585
drain_all_pages();
5586
return ret;
5587
}
5588
5589
void unset_migratetype_isolate(struct page *page)
5590
{
5591
struct zone *zone;
5592
unsigned long flags;
5593
zone = page_zone(page);
5594
spin_lock_irqsave(&zone->lock, flags);
5595
if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5596
goto out;
5597
set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5598
move_freepages_block(zone, page, MIGRATE_MOVABLE);
5599
out:
5600
spin_unlock_irqrestore(&zone->lock, flags);
5601
}
5602
5603
#ifdef CONFIG_MEMORY_HOTREMOVE
5604
/*
5605
* All pages in the range must be isolated before calling this.
5606
*/
5607
void
5608
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5609
{
5610
struct page *page;
5611
struct zone *zone;
5612
int order, i;
5613
unsigned long pfn;
5614
unsigned long flags;
5615
/* find the first valid pfn */
5616
for (pfn = start_pfn; pfn < end_pfn; pfn++)
5617
if (pfn_valid(pfn))
5618
break;
5619
if (pfn == end_pfn)
5620
return;
5621
zone = page_zone(pfn_to_page(pfn));
5622
spin_lock_irqsave(&zone->lock, flags);
5623
pfn = start_pfn;
5624
while (pfn < end_pfn) {
5625
if (!pfn_valid(pfn)) {
5626
pfn++;
5627
continue;
5628
}
5629
page = pfn_to_page(pfn);
5630
BUG_ON(page_count(page));
5631
BUG_ON(!PageBuddy(page));
5632
order = page_order(page);
5633
#ifdef CONFIG_DEBUG_VM
5634
printk(KERN_INFO "remove from free list %lx %d %lx\n",
5635
pfn, 1 << order, end_pfn);
5636
#endif
5637
list_del(&page->lru);
5638
rmv_page_order(page);
5639
zone->free_area[order].nr_free--;
5640
__mod_zone_page_state(zone, NR_FREE_PAGES,
5641
- (1UL << order));
5642
for (i = 0; i < (1 << order); i++)
5643
SetPageReserved((page+i));
5644
pfn += (1 << order);
5645
}
5646
spin_unlock_irqrestore(&zone->lock, flags);
5647
}
5648
#endif
5649
5650
#ifdef CONFIG_MEMORY_FAILURE
5651
bool is_free_buddy_page(struct page *page)
5652
{
5653
struct zone *zone = page_zone(page);
5654
unsigned long pfn = page_to_pfn(page);
5655
unsigned long flags;
5656
int order;
5657
5658
spin_lock_irqsave(&zone->lock, flags);
5659
for (order = 0; order < MAX_ORDER; order++) {
5660
struct page *page_head = page - (pfn & ((1 << order) - 1));
5661
5662
if (PageBuddy(page_head) && page_order(page_head) >= order)
5663
break;
5664
}
5665
spin_unlock_irqrestore(&zone->lock, flags);
5666
5667
return order < MAX_ORDER;
5668
}
5669
#endif
5670
5671
static struct trace_print_flags pageflag_names[] = {
5672
{1UL << PG_locked, "locked" },
5673
{1UL << PG_error, "error" },
5674
{1UL << PG_referenced, "referenced" },
5675
{1UL << PG_uptodate, "uptodate" },
5676
{1UL << PG_dirty, "dirty" },
5677
{1UL << PG_lru, "lru" },
5678
{1UL << PG_active, "active" },
5679
{1UL << PG_slab, "slab" },
5680
{1UL << PG_owner_priv_1, "owner_priv_1" },
5681
{1UL << PG_arch_1, "arch_1" },
5682
{1UL << PG_reserved, "reserved" },
5683
{1UL << PG_private, "private" },
5684
{1UL << PG_private_2, "private_2" },
5685
{1UL << PG_writeback, "writeback" },
5686
#ifdef CONFIG_PAGEFLAGS_EXTENDED
5687
{1UL << PG_head, "head" },
5688
{1UL << PG_tail, "tail" },
5689
#else
5690
{1UL << PG_compound, "compound" },
5691
#endif
5692
{1UL << PG_swapcache, "swapcache" },
5693
{1UL << PG_mappedtodisk, "mappedtodisk" },
5694
{1UL << PG_reclaim, "reclaim" },
5695
{1UL << PG_swapbacked, "swapbacked" },
5696
{1UL << PG_unevictable, "unevictable" },
5697
#ifdef CONFIG_MMU
5698
{1UL << PG_mlocked, "mlocked" },
5699
#endif
5700
#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5701
{1UL << PG_uncached, "uncached" },
5702
#endif
5703
#ifdef CONFIG_MEMORY_FAILURE
5704
{1UL << PG_hwpoison, "hwpoison" },
5705
#endif
5706
{-1UL, NULL },
5707
};
5708
5709
static void dump_page_flags(unsigned long flags)
5710
{
5711
const char *delim = "";
5712
unsigned long mask;
5713
int i;
5714
5715
printk(KERN_ALERT "page flags: %#lx(", flags);
5716
5717
/* remove zone id */
5718
flags &= (1UL << NR_PAGEFLAGS) - 1;
5719
5720
for (i = 0; pageflag_names[i].name && flags; i++) {
5721
5722
mask = pageflag_names[i].mask;
5723
if ((flags & mask) != mask)
5724
continue;
5725
5726
flags &= ~mask;
5727
printk("%s%s", delim, pageflag_names[i].name);
5728
delim = "|";
5729
}
5730
5731
/* check for left over flags */
5732
if (flags)
5733
printk("%s%#lx", delim, flags);
5734
5735
printk(")\n");
5736
}
5737
5738
void dump_page(struct page *page)
5739
{
5740
printk(KERN_ALERT
5741
"page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5742
page, atomic_read(&page->_count), page_mapcount(page),
5743
page->mapping, page->index);
5744
dump_page_flags(page->flags);
5745
mem_cgroup_print_bad_page(page);
5746
}
5747
5748