Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/net/ceph/messenger.c
15109 views
1
#include <linux/ceph/ceph_debug.h>
2
3
#include <linux/crc32c.h>
4
#include <linux/ctype.h>
5
#include <linux/highmem.h>
6
#include <linux/inet.h>
7
#include <linux/kthread.h>
8
#include <linux/net.h>
9
#include <linux/slab.h>
10
#include <linux/socket.h>
11
#include <linux/string.h>
12
#include <linux/bio.h>
13
#include <linux/blkdev.h>
14
#include <net/tcp.h>
15
16
#include <linux/ceph/libceph.h>
17
#include <linux/ceph/messenger.h>
18
#include <linux/ceph/decode.h>
19
#include <linux/ceph/pagelist.h>
20
21
/*
22
* Ceph uses the messenger to exchange ceph_msg messages with other
23
* hosts in the system. The messenger provides ordered and reliable
24
* delivery. We tolerate TCP disconnects by reconnecting (with
25
* exponential backoff) in the case of a fault (disconnection, bad
26
* crc, protocol error). Acks allow sent messages to be discarded by
27
* the sender.
28
*/
29
30
/* static tag bytes (protocol control messages) */
31
static char tag_msg = CEPH_MSGR_TAG_MSG;
32
static char tag_ack = CEPH_MSGR_TAG_ACK;
33
static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
34
35
#ifdef CONFIG_LOCKDEP
36
static struct lock_class_key socket_class;
37
#endif
38
39
40
static void queue_con(struct ceph_connection *con);
41
static void con_work(struct work_struct *);
42
static void ceph_fault(struct ceph_connection *con);
43
44
/*
45
* nicely render a sockaddr as a string.
46
*/
47
#define MAX_ADDR_STR 20
48
#define MAX_ADDR_STR_LEN 60
49
static char addr_str[MAX_ADDR_STR][MAX_ADDR_STR_LEN];
50
static DEFINE_SPINLOCK(addr_str_lock);
51
static int last_addr_str;
52
53
const char *ceph_pr_addr(const struct sockaddr_storage *ss)
54
{
55
int i;
56
char *s;
57
struct sockaddr_in *in4 = (void *)ss;
58
struct sockaddr_in6 *in6 = (void *)ss;
59
60
spin_lock(&addr_str_lock);
61
i = last_addr_str++;
62
if (last_addr_str == MAX_ADDR_STR)
63
last_addr_str = 0;
64
spin_unlock(&addr_str_lock);
65
s = addr_str[i];
66
67
switch (ss->ss_family) {
68
case AF_INET:
69
snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%u", &in4->sin_addr,
70
(unsigned int)ntohs(in4->sin_port));
71
break;
72
73
case AF_INET6:
74
snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%u", &in6->sin6_addr,
75
(unsigned int)ntohs(in6->sin6_port));
76
break;
77
78
default:
79
snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %d)",
80
(int)ss->ss_family);
81
}
82
83
return s;
84
}
85
EXPORT_SYMBOL(ceph_pr_addr);
86
87
static void encode_my_addr(struct ceph_messenger *msgr)
88
{
89
memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
90
ceph_encode_addr(&msgr->my_enc_addr);
91
}
92
93
/*
94
* work queue for all reading and writing to/from the socket.
95
*/
96
struct workqueue_struct *ceph_msgr_wq;
97
98
int ceph_msgr_init(void)
99
{
100
ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
101
if (!ceph_msgr_wq) {
102
pr_err("msgr_init failed to create workqueue\n");
103
return -ENOMEM;
104
}
105
return 0;
106
}
107
EXPORT_SYMBOL(ceph_msgr_init);
108
109
void ceph_msgr_exit(void)
110
{
111
destroy_workqueue(ceph_msgr_wq);
112
}
113
EXPORT_SYMBOL(ceph_msgr_exit);
114
115
void ceph_msgr_flush(void)
116
{
117
flush_workqueue(ceph_msgr_wq);
118
}
119
EXPORT_SYMBOL(ceph_msgr_flush);
120
121
122
/*
123
* socket callback functions
124
*/
125
126
/* data available on socket, or listen socket received a connect */
127
static void ceph_data_ready(struct sock *sk, int count_unused)
128
{
129
struct ceph_connection *con =
130
(struct ceph_connection *)sk->sk_user_data;
131
if (sk->sk_state != TCP_CLOSE_WAIT) {
132
dout("ceph_data_ready on %p state = %lu, queueing work\n",
133
con, con->state);
134
queue_con(con);
135
}
136
}
137
138
/* socket has buffer space for writing */
139
static void ceph_write_space(struct sock *sk)
140
{
141
struct ceph_connection *con =
142
(struct ceph_connection *)sk->sk_user_data;
143
144
/* only queue to workqueue if there is data we want to write. */
145
if (test_bit(WRITE_PENDING, &con->state)) {
146
dout("ceph_write_space %p queueing write work\n", con);
147
queue_con(con);
148
} else {
149
dout("ceph_write_space %p nothing to write\n", con);
150
}
151
152
/* since we have our own write_space, clear the SOCK_NOSPACE flag */
153
clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
154
}
155
156
/* socket's state has changed */
157
static void ceph_state_change(struct sock *sk)
158
{
159
struct ceph_connection *con =
160
(struct ceph_connection *)sk->sk_user_data;
161
162
dout("ceph_state_change %p state = %lu sk_state = %u\n",
163
con, con->state, sk->sk_state);
164
165
if (test_bit(CLOSED, &con->state))
166
return;
167
168
switch (sk->sk_state) {
169
case TCP_CLOSE:
170
dout("ceph_state_change TCP_CLOSE\n");
171
case TCP_CLOSE_WAIT:
172
dout("ceph_state_change TCP_CLOSE_WAIT\n");
173
if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
174
if (test_bit(CONNECTING, &con->state))
175
con->error_msg = "connection failed";
176
else
177
con->error_msg = "socket closed";
178
queue_con(con);
179
}
180
break;
181
case TCP_ESTABLISHED:
182
dout("ceph_state_change TCP_ESTABLISHED\n");
183
queue_con(con);
184
break;
185
}
186
}
187
188
/*
189
* set up socket callbacks
190
*/
191
static void set_sock_callbacks(struct socket *sock,
192
struct ceph_connection *con)
193
{
194
struct sock *sk = sock->sk;
195
sk->sk_user_data = (void *)con;
196
sk->sk_data_ready = ceph_data_ready;
197
sk->sk_write_space = ceph_write_space;
198
sk->sk_state_change = ceph_state_change;
199
}
200
201
202
/*
203
* socket helpers
204
*/
205
206
/*
207
* initiate connection to a remote socket.
208
*/
209
static struct socket *ceph_tcp_connect(struct ceph_connection *con)
210
{
211
struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
212
struct socket *sock;
213
int ret;
214
215
BUG_ON(con->sock);
216
ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
217
IPPROTO_TCP, &sock);
218
if (ret)
219
return ERR_PTR(ret);
220
con->sock = sock;
221
sock->sk->sk_allocation = GFP_NOFS;
222
223
#ifdef CONFIG_LOCKDEP
224
lockdep_set_class(&sock->sk->sk_lock, &socket_class);
225
#endif
226
227
set_sock_callbacks(sock, con);
228
229
dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
230
231
ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
232
O_NONBLOCK);
233
if (ret == -EINPROGRESS) {
234
dout("connect %s EINPROGRESS sk_state = %u\n",
235
ceph_pr_addr(&con->peer_addr.in_addr),
236
sock->sk->sk_state);
237
ret = 0;
238
}
239
if (ret < 0) {
240
pr_err("connect %s error %d\n",
241
ceph_pr_addr(&con->peer_addr.in_addr), ret);
242
sock_release(sock);
243
con->sock = NULL;
244
con->error_msg = "connect error";
245
}
246
247
if (ret < 0)
248
return ERR_PTR(ret);
249
return sock;
250
}
251
252
static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
253
{
254
struct kvec iov = {buf, len};
255
struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
256
int r;
257
258
r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
259
if (r == -EAGAIN)
260
r = 0;
261
return r;
262
}
263
264
/*
265
* write something. @more is true if caller will be sending more data
266
* shortly.
267
*/
268
static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
269
size_t kvlen, size_t len, int more)
270
{
271
struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
272
int r;
273
274
if (more)
275
msg.msg_flags |= MSG_MORE;
276
else
277
msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
278
279
r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
280
if (r == -EAGAIN)
281
r = 0;
282
return r;
283
}
284
285
286
/*
287
* Shutdown/close the socket for the given connection.
288
*/
289
static int con_close_socket(struct ceph_connection *con)
290
{
291
int rc;
292
293
dout("con_close_socket on %p sock %p\n", con, con->sock);
294
if (!con->sock)
295
return 0;
296
set_bit(SOCK_CLOSED, &con->state);
297
rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
298
sock_release(con->sock);
299
con->sock = NULL;
300
clear_bit(SOCK_CLOSED, &con->state);
301
return rc;
302
}
303
304
/*
305
* Reset a connection. Discard all incoming and outgoing messages
306
* and clear *_seq state.
307
*/
308
static void ceph_msg_remove(struct ceph_msg *msg)
309
{
310
list_del_init(&msg->list_head);
311
ceph_msg_put(msg);
312
}
313
static void ceph_msg_remove_list(struct list_head *head)
314
{
315
while (!list_empty(head)) {
316
struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
317
list_head);
318
ceph_msg_remove(msg);
319
}
320
}
321
322
static void reset_connection(struct ceph_connection *con)
323
{
324
/* reset connection, out_queue, msg_ and connect_seq */
325
/* discard existing out_queue and msg_seq */
326
ceph_msg_remove_list(&con->out_queue);
327
ceph_msg_remove_list(&con->out_sent);
328
329
if (con->in_msg) {
330
ceph_msg_put(con->in_msg);
331
con->in_msg = NULL;
332
}
333
334
con->connect_seq = 0;
335
con->out_seq = 0;
336
if (con->out_msg) {
337
ceph_msg_put(con->out_msg);
338
con->out_msg = NULL;
339
}
340
con->in_seq = 0;
341
con->in_seq_acked = 0;
342
}
343
344
/*
345
* mark a peer down. drop any open connections.
346
*/
347
void ceph_con_close(struct ceph_connection *con)
348
{
349
dout("con_close %p peer %s\n", con,
350
ceph_pr_addr(&con->peer_addr.in_addr));
351
set_bit(CLOSED, &con->state); /* in case there's queued work */
352
clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
353
clear_bit(LOSSYTX, &con->state); /* so we retry next connect */
354
clear_bit(KEEPALIVE_PENDING, &con->state);
355
clear_bit(WRITE_PENDING, &con->state);
356
mutex_lock(&con->mutex);
357
reset_connection(con);
358
con->peer_global_seq = 0;
359
cancel_delayed_work(&con->work);
360
mutex_unlock(&con->mutex);
361
queue_con(con);
362
}
363
EXPORT_SYMBOL(ceph_con_close);
364
365
/*
366
* Reopen a closed connection, with a new peer address.
367
*/
368
void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
369
{
370
dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
371
set_bit(OPENING, &con->state);
372
clear_bit(CLOSED, &con->state);
373
memcpy(&con->peer_addr, addr, sizeof(*addr));
374
con->delay = 0; /* reset backoff memory */
375
queue_con(con);
376
}
377
EXPORT_SYMBOL(ceph_con_open);
378
379
/*
380
* return true if this connection ever successfully opened
381
*/
382
bool ceph_con_opened(struct ceph_connection *con)
383
{
384
return con->connect_seq > 0;
385
}
386
387
/*
388
* generic get/put
389
*/
390
struct ceph_connection *ceph_con_get(struct ceph_connection *con)
391
{
392
dout("con_get %p nref = %d -> %d\n", con,
393
atomic_read(&con->nref), atomic_read(&con->nref) + 1);
394
if (atomic_inc_not_zero(&con->nref))
395
return con;
396
return NULL;
397
}
398
399
void ceph_con_put(struct ceph_connection *con)
400
{
401
dout("con_put %p nref = %d -> %d\n", con,
402
atomic_read(&con->nref), atomic_read(&con->nref) - 1);
403
BUG_ON(atomic_read(&con->nref) == 0);
404
if (atomic_dec_and_test(&con->nref)) {
405
BUG_ON(con->sock);
406
kfree(con);
407
}
408
}
409
410
/*
411
* initialize a new connection.
412
*/
413
void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
414
{
415
dout("con_init %p\n", con);
416
memset(con, 0, sizeof(*con));
417
atomic_set(&con->nref, 1);
418
con->msgr = msgr;
419
mutex_init(&con->mutex);
420
INIT_LIST_HEAD(&con->out_queue);
421
INIT_LIST_HEAD(&con->out_sent);
422
INIT_DELAYED_WORK(&con->work, con_work);
423
}
424
EXPORT_SYMBOL(ceph_con_init);
425
426
427
/*
428
* We maintain a global counter to order connection attempts. Get
429
* a unique seq greater than @gt.
430
*/
431
static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
432
{
433
u32 ret;
434
435
spin_lock(&msgr->global_seq_lock);
436
if (msgr->global_seq < gt)
437
msgr->global_seq = gt;
438
ret = ++msgr->global_seq;
439
spin_unlock(&msgr->global_seq_lock);
440
return ret;
441
}
442
443
444
/*
445
* Prepare footer for currently outgoing message, and finish things
446
* off. Assumes out_kvec* are already valid.. we just add on to the end.
447
*/
448
static void prepare_write_message_footer(struct ceph_connection *con, int v)
449
{
450
struct ceph_msg *m = con->out_msg;
451
452
dout("prepare_write_message_footer %p\n", con);
453
con->out_kvec_is_msg = true;
454
con->out_kvec[v].iov_base = &m->footer;
455
con->out_kvec[v].iov_len = sizeof(m->footer);
456
con->out_kvec_bytes += sizeof(m->footer);
457
con->out_kvec_left++;
458
con->out_more = m->more_to_follow;
459
con->out_msg_done = true;
460
}
461
462
/*
463
* Prepare headers for the next outgoing message.
464
*/
465
static void prepare_write_message(struct ceph_connection *con)
466
{
467
struct ceph_msg *m;
468
int v = 0;
469
470
con->out_kvec_bytes = 0;
471
con->out_kvec_is_msg = true;
472
con->out_msg_done = false;
473
474
/* Sneak an ack in there first? If we can get it into the same
475
* TCP packet that's a good thing. */
476
if (con->in_seq > con->in_seq_acked) {
477
con->in_seq_acked = con->in_seq;
478
con->out_kvec[v].iov_base = &tag_ack;
479
con->out_kvec[v++].iov_len = 1;
480
con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
481
con->out_kvec[v].iov_base = &con->out_temp_ack;
482
con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack);
483
con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
484
}
485
486
m = list_first_entry(&con->out_queue,
487
struct ceph_msg, list_head);
488
con->out_msg = m;
489
if (test_bit(LOSSYTX, &con->state)) {
490
list_del_init(&m->list_head);
491
} else {
492
/* put message on sent list */
493
ceph_msg_get(m);
494
list_move_tail(&m->list_head, &con->out_sent);
495
}
496
497
/*
498
* only assign outgoing seq # if we haven't sent this message
499
* yet. if it is requeued, resend with it's original seq.
500
*/
501
if (m->needs_out_seq) {
502
m->hdr.seq = cpu_to_le64(++con->out_seq);
503
m->needs_out_seq = false;
504
}
505
506
dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
507
m, con->out_seq, le16_to_cpu(m->hdr.type),
508
le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
509
le32_to_cpu(m->hdr.data_len),
510
m->nr_pages);
511
BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
512
513
/* tag + hdr + front + middle */
514
con->out_kvec[v].iov_base = &tag_msg;
515
con->out_kvec[v++].iov_len = 1;
516
con->out_kvec[v].iov_base = &m->hdr;
517
con->out_kvec[v++].iov_len = sizeof(m->hdr);
518
con->out_kvec[v++] = m->front;
519
if (m->middle)
520
con->out_kvec[v++] = m->middle->vec;
521
con->out_kvec_left = v;
522
con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len +
523
(m->middle ? m->middle->vec.iov_len : 0);
524
con->out_kvec_cur = con->out_kvec;
525
526
/* fill in crc (except data pages), footer */
527
con->out_msg->hdr.crc =
528
cpu_to_le32(crc32c(0, (void *)&m->hdr,
529
sizeof(m->hdr) - sizeof(m->hdr.crc)));
530
con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
531
con->out_msg->footer.front_crc =
532
cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
533
if (m->middle)
534
con->out_msg->footer.middle_crc =
535
cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
536
m->middle->vec.iov_len));
537
else
538
con->out_msg->footer.middle_crc = 0;
539
con->out_msg->footer.data_crc = 0;
540
dout("prepare_write_message front_crc %u data_crc %u\n",
541
le32_to_cpu(con->out_msg->footer.front_crc),
542
le32_to_cpu(con->out_msg->footer.middle_crc));
543
544
/* is there a data payload? */
545
if (le32_to_cpu(m->hdr.data_len) > 0) {
546
/* initialize page iterator */
547
con->out_msg_pos.page = 0;
548
if (m->pages)
549
con->out_msg_pos.page_pos = m->page_alignment;
550
else
551
con->out_msg_pos.page_pos = 0;
552
con->out_msg_pos.data_pos = 0;
553
con->out_msg_pos.did_page_crc = 0;
554
con->out_more = 1; /* data + footer will follow */
555
} else {
556
/* no, queue up footer too and be done */
557
prepare_write_message_footer(con, v);
558
}
559
560
set_bit(WRITE_PENDING, &con->state);
561
}
562
563
/*
564
* Prepare an ack.
565
*/
566
static void prepare_write_ack(struct ceph_connection *con)
567
{
568
dout("prepare_write_ack %p %llu -> %llu\n", con,
569
con->in_seq_acked, con->in_seq);
570
con->in_seq_acked = con->in_seq;
571
572
con->out_kvec[0].iov_base = &tag_ack;
573
con->out_kvec[0].iov_len = 1;
574
con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
575
con->out_kvec[1].iov_base = &con->out_temp_ack;
576
con->out_kvec[1].iov_len = sizeof(con->out_temp_ack);
577
con->out_kvec_left = 2;
578
con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
579
con->out_kvec_cur = con->out_kvec;
580
con->out_more = 1; /* more will follow.. eventually.. */
581
set_bit(WRITE_PENDING, &con->state);
582
}
583
584
/*
585
* Prepare to write keepalive byte.
586
*/
587
static void prepare_write_keepalive(struct ceph_connection *con)
588
{
589
dout("prepare_write_keepalive %p\n", con);
590
con->out_kvec[0].iov_base = &tag_keepalive;
591
con->out_kvec[0].iov_len = 1;
592
con->out_kvec_left = 1;
593
con->out_kvec_bytes = 1;
594
con->out_kvec_cur = con->out_kvec;
595
set_bit(WRITE_PENDING, &con->state);
596
}
597
598
/*
599
* Connection negotiation.
600
*/
601
602
static int prepare_connect_authorizer(struct ceph_connection *con)
603
{
604
void *auth_buf;
605
int auth_len = 0;
606
int auth_protocol = 0;
607
608
mutex_unlock(&con->mutex);
609
if (con->ops->get_authorizer)
610
con->ops->get_authorizer(con, &auth_buf, &auth_len,
611
&auth_protocol, &con->auth_reply_buf,
612
&con->auth_reply_buf_len,
613
con->auth_retry);
614
mutex_lock(&con->mutex);
615
616
if (test_bit(CLOSED, &con->state) ||
617
test_bit(OPENING, &con->state))
618
return -EAGAIN;
619
620
con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
621
con->out_connect.authorizer_len = cpu_to_le32(auth_len);
622
623
if (auth_len) {
624
con->out_kvec[con->out_kvec_left].iov_base = auth_buf;
625
con->out_kvec[con->out_kvec_left].iov_len = auth_len;
626
con->out_kvec_left++;
627
con->out_kvec_bytes += auth_len;
628
}
629
return 0;
630
}
631
632
/*
633
* We connected to a peer and are saying hello.
634
*/
635
static void prepare_write_banner(struct ceph_messenger *msgr,
636
struct ceph_connection *con)
637
{
638
int len = strlen(CEPH_BANNER);
639
640
con->out_kvec[0].iov_base = CEPH_BANNER;
641
con->out_kvec[0].iov_len = len;
642
con->out_kvec[1].iov_base = &msgr->my_enc_addr;
643
con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr);
644
con->out_kvec_left = 2;
645
con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr);
646
con->out_kvec_cur = con->out_kvec;
647
con->out_more = 0;
648
set_bit(WRITE_PENDING, &con->state);
649
}
650
651
static int prepare_write_connect(struct ceph_messenger *msgr,
652
struct ceph_connection *con,
653
int after_banner)
654
{
655
unsigned global_seq = get_global_seq(con->msgr, 0);
656
int proto;
657
658
switch (con->peer_name.type) {
659
case CEPH_ENTITY_TYPE_MON:
660
proto = CEPH_MONC_PROTOCOL;
661
break;
662
case CEPH_ENTITY_TYPE_OSD:
663
proto = CEPH_OSDC_PROTOCOL;
664
break;
665
case CEPH_ENTITY_TYPE_MDS:
666
proto = CEPH_MDSC_PROTOCOL;
667
break;
668
default:
669
BUG();
670
}
671
672
dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
673
con->connect_seq, global_seq, proto);
674
675
con->out_connect.features = cpu_to_le64(msgr->supported_features);
676
con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
677
con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
678
con->out_connect.global_seq = cpu_to_le32(global_seq);
679
con->out_connect.protocol_version = cpu_to_le32(proto);
680
con->out_connect.flags = 0;
681
682
if (!after_banner) {
683
con->out_kvec_left = 0;
684
con->out_kvec_bytes = 0;
685
}
686
con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect;
687
con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect);
688
con->out_kvec_left++;
689
con->out_kvec_bytes += sizeof(con->out_connect);
690
con->out_kvec_cur = con->out_kvec;
691
con->out_more = 0;
692
set_bit(WRITE_PENDING, &con->state);
693
694
return prepare_connect_authorizer(con);
695
}
696
697
698
/*
699
* write as much of pending kvecs to the socket as we can.
700
* 1 -> done
701
* 0 -> socket full, but more to do
702
* <0 -> error
703
*/
704
static int write_partial_kvec(struct ceph_connection *con)
705
{
706
int ret;
707
708
dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
709
while (con->out_kvec_bytes > 0) {
710
ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
711
con->out_kvec_left, con->out_kvec_bytes,
712
con->out_more);
713
if (ret <= 0)
714
goto out;
715
con->out_kvec_bytes -= ret;
716
if (con->out_kvec_bytes == 0)
717
break; /* done */
718
while (ret > 0) {
719
if (ret >= con->out_kvec_cur->iov_len) {
720
ret -= con->out_kvec_cur->iov_len;
721
con->out_kvec_cur++;
722
con->out_kvec_left--;
723
} else {
724
con->out_kvec_cur->iov_len -= ret;
725
con->out_kvec_cur->iov_base += ret;
726
ret = 0;
727
break;
728
}
729
}
730
}
731
con->out_kvec_left = 0;
732
con->out_kvec_is_msg = false;
733
ret = 1;
734
out:
735
dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
736
con->out_kvec_bytes, con->out_kvec_left, ret);
737
return ret; /* done! */
738
}
739
740
#ifdef CONFIG_BLOCK
741
static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
742
{
743
if (!bio) {
744
*iter = NULL;
745
*seg = 0;
746
return;
747
}
748
*iter = bio;
749
*seg = bio->bi_idx;
750
}
751
752
static void iter_bio_next(struct bio **bio_iter, int *seg)
753
{
754
if (*bio_iter == NULL)
755
return;
756
757
BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
758
759
(*seg)++;
760
if (*seg == (*bio_iter)->bi_vcnt)
761
init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
762
}
763
#endif
764
765
/*
766
* Write as much message data payload as we can. If we finish, queue
767
* up the footer.
768
* 1 -> done, footer is now queued in out_kvec[].
769
* 0 -> socket full, but more to do
770
* <0 -> error
771
*/
772
static int write_partial_msg_pages(struct ceph_connection *con)
773
{
774
struct ceph_msg *msg = con->out_msg;
775
unsigned data_len = le32_to_cpu(msg->hdr.data_len);
776
size_t len;
777
int crc = con->msgr->nocrc;
778
int ret;
779
int total_max_write;
780
int in_trail = 0;
781
size_t trail_len = (msg->trail ? msg->trail->length : 0);
782
783
dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
784
con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
785
con->out_msg_pos.page_pos);
786
787
#ifdef CONFIG_BLOCK
788
if (msg->bio && !msg->bio_iter)
789
init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
790
#endif
791
792
while (data_len > con->out_msg_pos.data_pos) {
793
struct page *page = NULL;
794
void *kaddr = NULL;
795
int max_write = PAGE_SIZE;
796
int page_shift = 0;
797
798
total_max_write = data_len - trail_len -
799
con->out_msg_pos.data_pos;
800
801
/*
802
* if we are calculating the data crc (the default), we need
803
* to map the page. if our pages[] has been revoked, use the
804
* zero page.
805
*/
806
807
/* have we reached the trail part of the data? */
808
if (con->out_msg_pos.data_pos >= data_len - trail_len) {
809
in_trail = 1;
810
811
total_max_write = data_len - con->out_msg_pos.data_pos;
812
813
page = list_first_entry(&msg->trail->head,
814
struct page, lru);
815
if (crc)
816
kaddr = kmap(page);
817
max_write = PAGE_SIZE;
818
} else if (msg->pages) {
819
page = msg->pages[con->out_msg_pos.page];
820
if (crc)
821
kaddr = kmap(page);
822
} else if (msg->pagelist) {
823
page = list_first_entry(&msg->pagelist->head,
824
struct page, lru);
825
if (crc)
826
kaddr = kmap(page);
827
#ifdef CONFIG_BLOCK
828
} else if (msg->bio) {
829
struct bio_vec *bv;
830
831
bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
832
page = bv->bv_page;
833
page_shift = bv->bv_offset;
834
if (crc)
835
kaddr = kmap(page) + page_shift;
836
max_write = bv->bv_len;
837
#endif
838
} else {
839
page = con->msgr->zero_page;
840
if (crc)
841
kaddr = page_address(con->msgr->zero_page);
842
}
843
len = min_t(int, max_write - con->out_msg_pos.page_pos,
844
total_max_write);
845
846
if (crc && !con->out_msg_pos.did_page_crc) {
847
void *base = kaddr + con->out_msg_pos.page_pos;
848
u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
849
850
BUG_ON(kaddr == NULL);
851
con->out_msg->footer.data_crc =
852
cpu_to_le32(crc32c(tmpcrc, base, len));
853
con->out_msg_pos.did_page_crc = 1;
854
}
855
ret = kernel_sendpage(con->sock, page,
856
con->out_msg_pos.page_pos + page_shift,
857
len,
858
MSG_DONTWAIT | MSG_NOSIGNAL |
859
MSG_MORE);
860
861
if (crc &&
862
(msg->pages || msg->pagelist || msg->bio || in_trail))
863
kunmap(page);
864
865
if (ret == -EAGAIN)
866
ret = 0;
867
if (ret <= 0)
868
goto out;
869
870
con->out_msg_pos.data_pos += ret;
871
con->out_msg_pos.page_pos += ret;
872
if (ret == len) {
873
con->out_msg_pos.page_pos = 0;
874
con->out_msg_pos.page++;
875
con->out_msg_pos.did_page_crc = 0;
876
if (in_trail)
877
list_move_tail(&page->lru,
878
&msg->trail->head);
879
else if (msg->pagelist)
880
list_move_tail(&page->lru,
881
&msg->pagelist->head);
882
#ifdef CONFIG_BLOCK
883
else if (msg->bio)
884
iter_bio_next(&msg->bio_iter, &msg->bio_seg);
885
#endif
886
}
887
}
888
889
dout("write_partial_msg_pages %p msg %p done\n", con, msg);
890
891
/* prepare and queue up footer, too */
892
if (!crc)
893
con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
894
con->out_kvec_bytes = 0;
895
con->out_kvec_left = 0;
896
con->out_kvec_cur = con->out_kvec;
897
prepare_write_message_footer(con, 0);
898
ret = 1;
899
out:
900
return ret;
901
}
902
903
/*
904
* write some zeros
905
*/
906
static int write_partial_skip(struct ceph_connection *con)
907
{
908
int ret;
909
910
while (con->out_skip > 0) {
911
struct kvec iov = {
912
.iov_base = page_address(con->msgr->zero_page),
913
.iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
914
};
915
916
ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
917
if (ret <= 0)
918
goto out;
919
con->out_skip -= ret;
920
}
921
ret = 1;
922
out:
923
return ret;
924
}
925
926
/*
927
* Prepare to read connection handshake, or an ack.
928
*/
929
static void prepare_read_banner(struct ceph_connection *con)
930
{
931
dout("prepare_read_banner %p\n", con);
932
con->in_base_pos = 0;
933
}
934
935
static void prepare_read_connect(struct ceph_connection *con)
936
{
937
dout("prepare_read_connect %p\n", con);
938
con->in_base_pos = 0;
939
}
940
941
static void prepare_read_ack(struct ceph_connection *con)
942
{
943
dout("prepare_read_ack %p\n", con);
944
con->in_base_pos = 0;
945
}
946
947
static void prepare_read_tag(struct ceph_connection *con)
948
{
949
dout("prepare_read_tag %p\n", con);
950
con->in_base_pos = 0;
951
con->in_tag = CEPH_MSGR_TAG_READY;
952
}
953
954
/*
955
* Prepare to read a message.
956
*/
957
static int prepare_read_message(struct ceph_connection *con)
958
{
959
dout("prepare_read_message %p\n", con);
960
BUG_ON(con->in_msg != NULL);
961
con->in_base_pos = 0;
962
con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
963
return 0;
964
}
965
966
967
static int read_partial(struct ceph_connection *con,
968
int *to, int size, void *object)
969
{
970
*to += size;
971
while (con->in_base_pos < *to) {
972
int left = *to - con->in_base_pos;
973
int have = size - left;
974
int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
975
if (ret <= 0)
976
return ret;
977
con->in_base_pos += ret;
978
}
979
return 1;
980
}
981
982
983
/*
984
* Read all or part of the connect-side handshake on a new connection
985
*/
986
static int read_partial_banner(struct ceph_connection *con)
987
{
988
int ret, to = 0;
989
990
dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
991
992
/* peer's banner */
993
ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
994
if (ret <= 0)
995
goto out;
996
ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
997
&con->actual_peer_addr);
998
if (ret <= 0)
999
goto out;
1000
ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
1001
&con->peer_addr_for_me);
1002
if (ret <= 0)
1003
goto out;
1004
out:
1005
return ret;
1006
}
1007
1008
static int read_partial_connect(struct ceph_connection *con)
1009
{
1010
int ret, to = 0;
1011
1012
dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1013
1014
ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
1015
if (ret <= 0)
1016
goto out;
1017
ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
1018
con->auth_reply_buf);
1019
if (ret <= 0)
1020
goto out;
1021
1022
dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1023
con, (int)con->in_reply.tag,
1024
le32_to_cpu(con->in_reply.connect_seq),
1025
le32_to_cpu(con->in_reply.global_seq));
1026
out:
1027
return ret;
1028
1029
}
1030
1031
/*
1032
* Verify the hello banner looks okay.
1033
*/
1034
static int verify_hello(struct ceph_connection *con)
1035
{
1036
if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1037
pr_err("connect to %s got bad banner\n",
1038
ceph_pr_addr(&con->peer_addr.in_addr));
1039
con->error_msg = "protocol error, bad banner";
1040
return -1;
1041
}
1042
return 0;
1043
}
1044
1045
static bool addr_is_blank(struct sockaddr_storage *ss)
1046
{
1047
switch (ss->ss_family) {
1048
case AF_INET:
1049
return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1050
case AF_INET6:
1051
return
1052
((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1053
((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1054
((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1055
((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1056
}
1057
return false;
1058
}
1059
1060
static int addr_port(struct sockaddr_storage *ss)
1061
{
1062
switch (ss->ss_family) {
1063
case AF_INET:
1064
return ntohs(((struct sockaddr_in *)ss)->sin_port);
1065
case AF_INET6:
1066
return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1067
}
1068
return 0;
1069
}
1070
1071
static void addr_set_port(struct sockaddr_storage *ss, int p)
1072
{
1073
switch (ss->ss_family) {
1074
case AF_INET:
1075
((struct sockaddr_in *)ss)->sin_port = htons(p);
1076
break;
1077
case AF_INET6:
1078
((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1079
break;
1080
}
1081
}
1082
1083
/*
1084
* Parse an ip[:port] list into an addr array. Use the default
1085
* monitor port if a port isn't specified.
1086
*/
1087
int ceph_parse_ips(const char *c, const char *end,
1088
struct ceph_entity_addr *addr,
1089
int max_count, int *count)
1090
{
1091
int i;
1092
const char *p = c;
1093
1094
dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1095
for (i = 0; i < max_count; i++) {
1096
const char *ipend;
1097
struct sockaddr_storage *ss = &addr[i].in_addr;
1098
struct sockaddr_in *in4 = (void *)ss;
1099
struct sockaddr_in6 *in6 = (void *)ss;
1100
int port;
1101
char delim = ',';
1102
1103
if (*p == '[') {
1104
delim = ']';
1105
p++;
1106
}
1107
1108
memset(ss, 0, sizeof(*ss));
1109
if (in4_pton(p, end - p, (u8 *)&in4->sin_addr.s_addr,
1110
delim, &ipend))
1111
ss->ss_family = AF_INET;
1112
else if (in6_pton(p, end - p, (u8 *)&in6->sin6_addr.s6_addr,
1113
delim, &ipend))
1114
ss->ss_family = AF_INET6;
1115
else
1116
goto bad;
1117
p = ipend;
1118
1119
if (delim == ']') {
1120
if (*p != ']') {
1121
dout("missing matching ']'\n");
1122
goto bad;
1123
}
1124
p++;
1125
}
1126
1127
/* port? */
1128
if (p < end && *p == ':') {
1129
port = 0;
1130
p++;
1131
while (p < end && *p >= '0' && *p <= '9') {
1132
port = (port * 10) + (*p - '0');
1133
p++;
1134
}
1135
if (port > 65535 || port == 0)
1136
goto bad;
1137
} else {
1138
port = CEPH_MON_PORT;
1139
}
1140
1141
addr_set_port(ss, port);
1142
1143
dout("parse_ips got %s\n", ceph_pr_addr(ss));
1144
1145
if (p == end)
1146
break;
1147
if (*p != ',')
1148
goto bad;
1149
p++;
1150
}
1151
1152
if (p != end)
1153
goto bad;
1154
1155
if (count)
1156
*count = i + 1;
1157
return 0;
1158
1159
bad:
1160
pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1161
return -EINVAL;
1162
}
1163
EXPORT_SYMBOL(ceph_parse_ips);
1164
1165
static int process_banner(struct ceph_connection *con)
1166
{
1167
dout("process_banner on %p\n", con);
1168
1169
if (verify_hello(con) < 0)
1170
return -1;
1171
1172
ceph_decode_addr(&con->actual_peer_addr);
1173
ceph_decode_addr(&con->peer_addr_for_me);
1174
1175
/*
1176
* Make sure the other end is who we wanted. note that the other
1177
* end may not yet know their ip address, so if it's 0.0.0.0, give
1178
* them the benefit of the doubt.
1179
*/
1180
if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1181
sizeof(con->peer_addr)) != 0 &&
1182
!(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1183
con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1184
pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1185
ceph_pr_addr(&con->peer_addr.in_addr),
1186
(int)le32_to_cpu(con->peer_addr.nonce),
1187
ceph_pr_addr(&con->actual_peer_addr.in_addr),
1188
(int)le32_to_cpu(con->actual_peer_addr.nonce));
1189
con->error_msg = "wrong peer at address";
1190
return -1;
1191
}
1192
1193
/*
1194
* did we learn our address?
1195
*/
1196
if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1197
int port = addr_port(&con->msgr->inst.addr.in_addr);
1198
1199
memcpy(&con->msgr->inst.addr.in_addr,
1200
&con->peer_addr_for_me.in_addr,
1201
sizeof(con->peer_addr_for_me.in_addr));
1202
addr_set_port(&con->msgr->inst.addr.in_addr, port);
1203
encode_my_addr(con->msgr);
1204
dout("process_banner learned my addr is %s\n",
1205
ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1206
}
1207
1208
set_bit(NEGOTIATING, &con->state);
1209
prepare_read_connect(con);
1210
return 0;
1211
}
1212
1213
static void fail_protocol(struct ceph_connection *con)
1214
{
1215
reset_connection(con);
1216
set_bit(CLOSED, &con->state); /* in case there's queued work */
1217
1218
mutex_unlock(&con->mutex);
1219
if (con->ops->bad_proto)
1220
con->ops->bad_proto(con);
1221
mutex_lock(&con->mutex);
1222
}
1223
1224
static int process_connect(struct ceph_connection *con)
1225
{
1226
u64 sup_feat = con->msgr->supported_features;
1227
u64 req_feat = con->msgr->required_features;
1228
u64 server_feat = le64_to_cpu(con->in_reply.features);
1229
int ret;
1230
1231
dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1232
1233
switch (con->in_reply.tag) {
1234
case CEPH_MSGR_TAG_FEATURES:
1235
pr_err("%s%lld %s feature set mismatch,"
1236
" my %llx < server's %llx, missing %llx\n",
1237
ENTITY_NAME(con->peer_name),
1238
ceph_pr_addr(&con->peer_addr.in_addr),
1239
sup_feat, server_feat, server_feat & ~sup_feat);
1240
con->error_msg = "missing required protocol features";
1241
fail_protocol(con);
1242
return -1;
1243
1244
case CEPH_MSGR_TAG_BADPROTOVER:
1245
pr_err("%s%lld %s protocol version mismatch,"
1246
" my %d != server's %d\n",
1247
ENTITY_NAME(con->peer_name),
1248
ceph_pr_addr(&con->peer_addr.in_addr),
1249
le32_to_cpu(con->out_connect.protocol_version),
1250
le32_to_cpu(con->in_reply.protocol_version));
1251
con->error_msg = "protocol version mismatch";
1252
fail_protocol(con);
1253
return -1;
1254
1255
case CEPH_MSGR_TAG_BADAUTHORIZER:
1256
con->auth_retry++;
1257
dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1258
con->auth_retry);
1259
if (con->auth_retry == 2) {
1260
con->error_msg = "connect authorization failure";
1261
return -1;
1262
}
1263
con->auth_retry = 1;
1264
ret = prepare_write_connect(con->msgr, con, 0);
1265
if (ret < 0)
1266
return ret;
1267
prepare_read_connect(con);
1268
break;
1269
1270
case CEPH_MSGR_TAG_RESETSESSION:
1271
/*
1272
* If we connected with a large connect_seq but the peer
1273
* has no record of a session with us (no connection, or
1274
* connect_seq == 0), they will send RESETSESION to indicate
1275
* that they must have reset their session, and may have
1276
* dropped messages.
1277
*/
1278
dout("process_connect got RESET peer seq %u\n",
1279
le32_to_cpu(con->in_connect.connect_seq));
1280
pr_err("%s%lld %s connection reset\n",
1281
ENTITY_NAME(con->peer_name),
1282
ceph_pr_addr(&con->peer_addr.in_addr));
1283
reset_connection(con);
1284
prepare_write_connect(con->msgr, con, 0);
1285
prepare_read_connect(con);
1286
1287
/* Tell ceph about it. */
1288
mutex_unlock(&con->mutex);
1289
pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1290
if (con->ops->peer_reset)
1291
con->ops->peer_reset(con);
1292
mutex_lock(&con->mutex);
1293
if (test_bit(CLOSED, &con->state) ||
1294
test_bit(OPENING, &con->state))
1295
return -EAGAIN;
1296
break;
1297
1298
case CEPH_MSGR_TAG_RETRY_SESSION:
1299
/*
1300
* If we sent a smaller connect_seq than the peer has, try
1301
* again with a larger value.
1302
*/
1303
dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1304
le32_to_cpu(con->out_connect.connect_seq),
1305
le32_to_cpu(con->in_connect.connect_seq));
1306
con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1307
prepare_write_connect(con->msgr, con, 0);
1308
prepare_read_connect(con);
1309
break;
1310
1311
case CEPH_MSGR_TAG_RETRY_GLOBAL:
1312
/*
1313
* If we sent a smaller global_seq than the peer has, try
1314
* again with a larger value.
1315
*/
1316
dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1317
con->peer_global_seq,
1318
le32_to_cpu(con->in_connect.global_seq));
1319
get_global_seq(con->msgr,
1320
le32_to_cpu(con->in_connect.global_seq));
1321
prepare_write_connect(con->msgr, con, 0);
1322
prepare_read_connect(con);
1323
break;
1324
1325
case CEPH_MSGR_TAG_READY:
1326
if (req_feat & ~server_feat) {
1327
pr_err("%s%lld %s protocol feature mismatch,"
1328
" my required %llx > server's %llx, need %llx\n",
1329
ENTITY_NAME(con->peer_name),
1330
ceph_pr_addr(&con->peer_addr.in_addr),
1331
req_feat, server_feat, req_feat & ~server_feat);
1332
con->error_msg = "missing required protocol features";
1333
fail_protocol(con);
1334
return -1;
1335
}
1336
clear_bit(CONNECTING, &con->state);
1337
con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1338
con->connect_seq++;
1339
con->peer_features = server_feat;
1340
dout("process_connect got READY gseq %d cseq %d (%d)\n",
1341
con->peer_global_seq,
1342
le32_to_cpu(con->in_reply.connect_seq),
1343
con->connect_seq);
1344
WARN_ON(con->connect_seq !=
1345
le32_to_cpu(con->in_reply.connect_seq));
1346
1347
if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1348
set_bit(LOSSYTX, &con->state);
1349
1350
prepare_read_tag(con);
1351
break;
1352
1353
case CEPH_MSGR_TAG_WAIT:
1354
/*
1355
* If there is a connection race (we are opening
1356
* connections to each other), one of us may just have
1357
* to WAIT. This shouldn't happen if we are the
1358
* client.
1359
*/
1360
pr_err("process_connect got WAIT as client\n");
1361
con->error_msg = "protocol error, got WAIT as client";
1362
return -1;
1363
1364
default:
1365
pr_err("connect protocol error, will retry\n");
1366
con->error_msg = "protocol error, garbage tag during connect";
1367
return -1;
1368
}
1369
return 0;
1370
}
1371
1372
1373
/*
1374
* read (part of) an ack
1375
*/
1376
static int read_partial_ack(struct ceph_connection *con)
1377
{
1378
int to = 0;
1379
1380
return read_partial(con, &to, sizeof(con->in_temp_ack),
1381
&con->in_temp_ack);
1382
}
1383
1384
1385
/*
1386
* We can finally discard anything that's been acked.
1387
*/
1388
static void process_ack(struct ceph_connection *con)
1389
{
1390
struct ceph_msg *m;
1391
u64 ack = le64_to_cpu(con->in_temp_ack);
1392
u64 seq;
1393
1394
while (!list_empty(&con->out_sent)) {
1395
m = list_first_entry(&con->out_sent, struct ceph_msg,
1396
list_head);
1397
seq = le64_to_cpu(m->hdr.seq);
1398
if (seq > ack)
1399
break;
1400
dout("got ack for seq %llu type %d at %p\n", seq,
1401
le16_to_cpu(m->hdr.type), m);
1402
ceph_msg_remove(m);
1403
}
1404
prepare_read_tag(con);
1405
}
1406
1407
1408
1409
1410
static int read_partial_message_section(struct ceph_connection *con,
1411
struct kvec *section,
1412
unsigned int sec_len, u32 *crc)
1413
{
1414
int ret, left;
1415
1416
BUG_ON(!section);
1417
1418
while (section->iov_len < sec_len) {
1419
BUG_ON(section->iov_base == NULL);
1420
left = sec_len - section->iov_len;
1421
ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1422
section->iov_len, left);
1423
if (ret <= 0)
1424
return ret;
1425
section->iov_len += ret;
1426
if (section->iov_len == sec_len)
1427
*crc = crc32c(0, section->iov_base,
1428
section->iov_len);
1429
}
1430
1431
return 1;
1432
}
1433
1434
static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1435
struct ceph_msg_header *hdr,
1436
int *skip);
1437
1438
1439
static int read_partial_message_pages(struct ceph_connection *con,
1440
struct page **pages,
1441
unsigned data_len, int datacrc)
1442
{
1443
void *p;
1444
int ret;
1445
int left;
1446
1447
left = min((int)(data_len - con->in_msg_pos.data_pos),
1448
(int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1449
/* (page) data */
1450
BUG_ON(pages == NULL);
1451
p = kmap(pages[con->in_msg_pos.page]);
1452
ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1453
left);
1454
if (ret > 0 && datacrc)
1455
con->in_data_crc =
1456
crc32c(con->in_data_crc,
1457
p + con->in_msg_pos.page_pos, ret);
1458
kunmap(pages[con->in_msg_pos.page]);
1459
if (ret <= 0)
1460
return ret;
1461
con->in_msg_pos.data_pos += ret;
1462
con->in_msg_pos.page_pos += ret;
1463
if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1464
con->in_msg_pos.page_pos = 0;
1465
con->in_msg_pos.page++;
1466
}
1467
1468
return ret;
1469
}
1470
1471
#ifdef CONFIG_BLOCK
1472
static int read_partial_message_bio(struct ceph_connection *con,
1473
struct bio **bio_iter, int *bio_seg,
1474
unsigned data_len, int datacrc)
1475
{
1476
struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1477
void *p;
1478
int ret, left;
1479
1480
if (IS_ERR(bv))
1481
return PTR_ERR(bv);
1482
1483
left = min((int)(data_len - con->in_msg_pos.data_pos),
1484
(int)(bv->bv_len - con->in_msg_pos.page_pos));
1485
1486
p = kmap(bv->bv_page) + bv->bv_offset;
1487
1488
ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1489
left);
1490
if (ret > 0 && datacrc)
1491
con->in_data_crc =
1492
crc32c(con->in_data_crc,
1493
p + con->in_msg_pos.page_pos, ret);
1494
kunmap(bv->bv_page);
1495
if (ret <= 0)
1496
return ret;
1497
con->in_msg_pos.data_pos += ret;
1498
con->in_msg_pos.page_pos += ret;
1499
if (con->in_msg_pos.page_pos == bv->bv_len) {
1500
con->in_msg_pos.page_pos = 0;
1501
iter_bio_next(bio_iter, bio_seg);
1502
}
1503
1504
return ret;
1505
}
1506
#endif
1507
1508
/*
1509
* read (part of) a message.
1510
*/
1511
static int read_partial_message(struct ceph_connection *con)
1512
{
1513
struct ceph_msg *m = con->in_msg;
1514
int ret;
1515
int to, left;
1516
unsigned front_len, middle_len, data_len;
1517
int datacrc = con->msgr->nocrc;
1518
int skip;
1519
u64 seq;
1520
1521
dout("read_partial_message con %p msg %p\n", con, m);
1522
1523
/* header */
1524
while (con->in_base_pos < sizeof(con->in_hdr)) {
1525
left = sizeof(con->in_hdr) - con->in_base_pos;
1526
ret = ceph_tcp_recvmsg(con->sock,
1527
(char *)&con->in_hdr + con->in_base_pos,
1528
left);
1529
if (ret <= 0)
1530
return ret;
1531
con->in_base_pos += ret;
1532
if (con->in_base_pos == sizeof(con->in_hdr)) {
1533
u32 crc = crc32c(0, (void *)&con->in_hdr,
1534
sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
1535
if (crc != le32_to_cpu(con->in_hdr.crc)) {
1536
pr_err("read_partial_message bad hdr "
1537
" crc %u != expected %u\n",
1538
crc, con->in_hdr.crc);
1539
return -EBADMSG;
1540
}
1541
}
1542
}
1543
front_len = le32_to_cpu(con->in_hdr.front_len);
1544
if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1545
return -EIO;
1546
middle_len = le32_to_cpu(con->in_hdr.middle_len);
1547
if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1548
return -EIO;
1549
data_len = le32_to_cpu(con->in_hdr.data_len);
1550
if (data_len > CEPH_MSG_MAX_DATA_LEN)
1551
return -EIO;
1552
1553
/* verify seq# */
1554
seq = le64_to_cpu(con->in_hdr.seq);
1555
if ((s64)seq - (s64)con->in_seq < 1) {
1556
pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1557
ENTITY_NAME(con->peer_name),
1558
ceph_pr_addr(&con->peer_addr.in_addr),
1559
seq, con->in_seq + 1);
1560
con->in_base_pos = -front_len - middle_len - data_len -
1561
sizeof(m->footer);
1562
con->in_tag = CEPH_MSGR_TAG_READY;
1563
return 0;
1564
} else if ((s64)seq - (s64)con->in_seq > 1) {
1565
pr_err("read_partial_message bad seq %lld expected %lld\n",
1566
seq, con->in_seq + 1);
1567
con->error_msg = "bad message sequence # for incoming message";
1568
return -EBADMSG;
1569
}
1570
1571
/* allocate message? */
1572
if (!con->in_msg) {
1573
dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1574
con->in_hdr.front_len, con->in_hdr.data_len);
1575
skip = 0;
1576
con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1577
if (skip) {
1578
/* skip this message */
1579
dout("alloc_msg said skip message\n");
1580
BUG_ON(con->in_msg);
1581
con->in_base_pos = -front_len - middle_len - data_len -
1582
sizeof(m->footer);
1583
con->in_tag = CEPH_MSGR_TAG_READY;
1584
con->in_seq++;
1585
return 0;
1586
}
1587
if (!con->in_msg) {
1588
con->error_msg =
1589
"error allocating memory for incoming message";
1590
return -ENOMEM;
1591
}
1592
m = con->in_msg;
1593
m->front.iov_len = 0; /* haven't read it yet */
1594
if (m->middle)
1595
m->middle->vec.iov_len = 0;
1596
1597
con->in_msg_pos.page = 0;
1598
if (m->pages)
1599
con->in_msg_pos.page_pos = m->page_alignment;
1600
else
1601
con->in_msg_pos.page_pos = 0;
1602
con->in_msg_pos.data_pos = 0;
1603
}
1604
1605
/* front */
1606
ret = read_partial_message_section(con, &m->front, front_len,
1607
&con->in_front_crc);
1608
if (ret <= 0)
1609
return ret;
1610
1611
/* middle */
1612
if (m->middle) {
1613
ret = read_partial_message_section(con, &m->middle->vec,
1614
middle_len,
1615
&con->in_middle_crc);
1616
if (ret <= 0)
1617
return ret;
1618
}
1619
#ifdef CONFIG_BLOCK
1620
if (m->bio && !m->bio_iter)
1621
init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1622
#endif
1623
1624
/* (page) data */
1625
while (con->in_msg_pos.data_pos < data_len) {
1626
if (m->pages) {
1627
ret = read_partial_message_pages(con, m->pages,
1628
data_len, datacrc);
1629
if (ret <= 0)
1630
return ret;
1631
#ifdef CONFIG_BLOCK
1632
} else if (m->bio) {
1633
1634
ret = read_partial_message_bio(con,
1635
&m->bio_iter, &m->bio_seg,
1636
data_len, datacrc);
1637
if (ret <= 0)
1638
return ret;
1639
#endif
1640
} else {
1641
BUG_ON(1);
1642
}
1643
}
1644
1645
/* footer */
1646
to = sizeof(m->hdr) + sizeof(m->footer);
1647
while (con->in_base_pos < to) {
1648
left = to - con->in_base_pos;
1649
ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
1650
(con->in_base_pos - sizeof(m->hdr)),
1651
left);
1652
if (ret <= 0)
1653
return ret;
1654
con->in_base_pos += ret;
1655
}
1656
dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1657
m, front_len, m->footer.front_crc, middle_len,
1658
m->footer.middle_crc, data_len, m->footer.data_crc);
1659
1660
/* crc ok? */
1661
if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1662
pr_err("read_partial_message %p front crc %u != exp. %u\n",
1663
m, con->in_front_crc, m->footer.front_crc);
1664
return -EBADMSG;
1665
}
1666
if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1667
pr_err("read_partial_message %p middle crc %u != exp %u\n",
1668
m, con->in_middle_crc, m->footer.middle_crc);
1669
return -EBADMSG;
1670
}
1671
if (datacrc &&
1672
(m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1673
con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1674
pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1675
con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1676
return -EBADMSG;
1677
}
1678
1679
return 1; /* done! */
1680
}
1681
1682
/*
1683
* Process message. This happens in the worker thread. The callback should
1684
* be careful not to do anything that waits on other incoming messages or it
1685
* may deadlock.
1686
*/
1687
static void process_message(struct ceph_connection *con)
1688
{
1689
struct ceph_msg *msg;
1690
1691
msg = con->in_msg;
1692
con->in_msg = NULL;
1693
1694
/* if first message, set peer_name */
1695
if (con->peer_name.type == 0)
1696
con->peer_name = msg->hdr.src;
1697
1698
con->in_seq++;
1699
mutex_unlock(&con->mutex);
1700
1701
dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1702
msg, le64_to_cpu(msg->hdr.seq),
1703
ENTITY_NAME(msg->hdr.src),
1704
le16_to_cpu(msg->hdr.type),
1705
ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1706
le32_to_cpu(msg->hdr.front_len),
1707
le32_to_cpu(msg->hdr.data_len),
1708
con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1709
con->ops->dispatch(con, msg);
1710
1711
mutex_lock(&con->mutex);
1712
prepare_read_tag(con);
1713
}
1714
1715
1716
/*
1717
* Write something to the socket. Called in a worker thread when the
1718
* socket appears to be writeable and we have something ready to send.
1719
*/
1720
static int try_write(struct ceph_connection *con)
1721
{
1722
struct ceph_messenger *msgr = con->msgr;
1723
int ret = 1;
1724
1725
dout("try_write start %p state %lu nref %d\n", con, con->state,
1726
atomic_read(&con->nref));
1727
1728
more:
1729
dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1730
1731
/* open the socket first? */
1732
if (con->sock == NULL) {
1733
prepare_write_banner(msgr, con);
1734
prepare_write_connect(msgr, con, 1);
1735
prepare_read_banner(con);
1736
set_bit(CONNECTING, &con->state);
1737
clear_bit(NEGOTIATING, &con->state);
1738
1739
BUG_ON(con->in_msg);
1740
con->in_tag = CEPH_MSGR_TAG_READY;
1741
dout("try_write initiating connect on %p new state %lu\n",
1742
con, con->state);
1743
con->sock = ceph_tcp_connect(con);
1744
if (IS_ERR(con->sock)) {
1745
con->sock = NULL;
1746
con->error_msg = "connect error";
1747
ret = -1;
1748
goto out;
1749
}
1750
}
1751
1752
more_kvec:
1753
/* kvec data queued? */
1754
if (con->out_skip) {
1755
ret = write_partial_skip(con);
1756
if (ret <= 0)
1757
goto out;
1758
}
1759
if (con->out_kvec_left) {
1760
ret = write_partial_kvec(con);
1761
if (ret <= 0)
1762
goto out;
1763
}
1764
1765
/* msg pages? */
1766
if (con->out_msg) {
1767
if (con->out_msg_done) {
1768
ceph_msg_put(con->out_msg);
1769
con->out_msg = NULL; /* we're done with this one */
1770
goto do_next;
1771
}
1772
1773
ret = write_partial_msg_pages(con);
1774
if (ret == 1)
1775
goto more_kvec; /* we need to send the footer, too! */
1776
if (ret == 0)
1777
goto out;
1778
if (ret < 0) {
1779
dout("try_write write_partial_msg_pages err %d\n",
1780
ret);
1781
goto out;
1782
}
1783
}
1784
1785
do_next:
1786
if (!test_bit(CONNECTING, &con->state)) {
1787
/* is anything else pending? */
1788
if (!list_empty(&con->out_queue)) {
1789
prepare_write_message(con);
1790
goto more;
1791
}
1792
if (con->in_seq > con->in_seq_acked) {
1793
prepare_write_ack(con);
1794
goto more;
1795
}
1796
if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1797
prepare_write_keepalive(con);
1798
goto more;
1799
}
1800
}
1801
1802
/* Nothing to do! */
1803
clear_bit(WRITE_PENDING, &con->state);
1804
dout("try_write nothing else to write.\n");
1805
ret = 0;
1806
out:
1807
dout("try_write done on %p ret %d\n", con, ret);
1808
return ret;
1809
}
1810
1811
1812
1813
/*
1814
* Read what we can from the socket.
1815
*/
1816
static int try_read(struct ceph_connection *con)
1817
{
1818
int ret = -1;
1819
1820
if (!con->sock)
1821
return 0;
1822
1823
if (test_bit(STANDBY, &con->state))
1824
return 0;
1825
1826
dout("try_read start on %p\n", con);
1827
1828
more:
1829
dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1830
con->in_base_pos);
1831
1832
/*
1833
* process_connect and process_message drop and re-take
1834
* con->mutex. make sure we handle a racing close or reopen.
1835
*/
1836
if (test_bit(CLOSED, &con->state) ||
1837
test_bit(OPENING, &con->state)) {
1838
ret = -EAGAIN;
1839
goto out;
1840
}
1841
1842
if (test_bit(CONNECTING, &con->state)) {
1843
if (!test_bit(NEGOTIATING, &con->state)) {
1844
dout("try_read connecting\n");
1845
ret = read_partial_banner(con);
1846
if (ret <= 0)
1847
goto out;
1848
ret = process_banner(con);
1849
if (ret < 0)
1850
goto out;
1851
}
1852
ret = read_partial_connect(con);
1853
if (ret <= 0)
1854
goto out;
1855
ret = process_connect(con);
1856
if (ret < 0)
1857
goto out;
1858
goto more;
1859
}
1860
1861
if (con->in_base_pos < 0) {
1862
/*
1863
* skipping + discarding content.
1864
*
1865
* FIXME: there must be a better way to do this!
1866
*/
1867
static char buf[1024];
1868
int skip = min(1024, -con->in_base_pos);
1869
dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
1870
ret = ceph_tcp_recvmsg(con->sock, buf, skip);
1871
if (ret <= 0)
1872
goto out;
1873
con->in_base_pos += ret;
1874
if (con->in_base_pos)
1875
goto more;
1876
}
1877
if (con->in_tag == CEPH_MSGR_TAG_READY) {
1878
/*
1879
* what's next?
1880
*/
1881
ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
1882
if (ret <= 0)
1883
goto out;
1884
dout("try_read got tag %d\n", (int)con->in_tag);
1885
switch (con->in_tag) {
1886
case CEPH_MSGR_TAG_MSG:
1887
prepare_read_message(con);
1888
break;
1889
case CEPH_MSGR_TAG_ACK:
1890
prepare_read_ack(con);
1891
break;
1892
case CEPH_MSGR_TAG_CLOSE:
1893
set_bit(CLOSED, &con->state); /* fixme */
1894
goto out;
1895
default:
1896
goto bad_tag;
1897
}
1898
}
1899
if (con->in_tag == CEPH_MSGR_TAG_MSG) {
1900
ret = read_partial_message(con);
1901
if (ret <= 0) {
1902
switch (ret) {
1903
case -EBADMSG:
1904
con->error_msg = "bad crc";
1905
ret = -EIO;
1906
break;
1907
case -EIO:
1908
con->error_msg = "io error";
1909
break;
1910
}
1911
goto out;
1912
}
1913
if (con->in_tag == CEPH_MSGR_TAG_READY)
1914
goto more;
1915
process_message(con);
1916
goto more;
1917
}
1918
if (con->in_tag == CEPH_MSGR_TAG_ACK) {
1919
ret = read_partial_ack(con);
1920
if (ret <= 0)
1921
goto out;
1922
process_ack(con);
1923
goto more;
1924
}
1925
1926
out:
1927
dout("try_read done on %p ret %d\n", con, ret);
1928
return ret;
1929
1930
bad_tag:
1931
pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
1932
con->error_msg = "protocol error, garbage tag";
1933
ret = -1;
1934
goto out;
1935
}
1936
1937
1938
/*
1939
* Atomically queue work on a connection. Bump @con reference to
1940
* avoid races with connection teardown.
1941
*/
1942
static void queue_con(struct ceph_connection *con)
1943
{
1944
if (test_bit(DEAD, &con->state)) {
1945
dout("queue_con %p ignoring: DEAD\n",
1946
con);
1947
return;
1948
}
1949
1950
if (!con->ops->get(con)) {
1951
dout("queue_con %p ref count 0\n", con);
1952
return;
1953
}
1954
1955
if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
1956
dout("queue_con %p - already queued\n", con);
1957
con->ops->put(con);
1958
} else {
1959
dout("queue_con %p\n", con);
1960
}
1961
}
1962
1963
/*
1964
* Do some work on a connection. Drop a connection ref when we're done.
1965
*/
1966
static void con_work(struct work_struct *work)
1967
{
1968
struct ceph_connection *con = container_of(work, struct ceph_connection,
1969
work.work);
1970
int ret;
1971
1972
mutex_lock(&con->mutex);
1973
restart:
1974
if (test_and_clear_bit(BACKOFF, &con->state)) {
1975
dout("con_work %p backing off\n", con);
1976
if (queue_delayed_work(ceph_msgr_wq, &con->work,
1977
round_jiffies_relative(con->delay))) {
1978
dout("con_work %p backoff %lu\n", con, con->delay);
1979
mutex_unlock(&con->mutex);
1980
return;
1981
} else {
1982
con->ops->put(con);
1983
dout("con_work %p FAILED to back off %lu\n", con,
1984
con->delay);
1985
}
1986
}
1987
1988
if (test_bit(STANDBY, &con->state)) {
1989
dout("con_work %p STANDBY\n", con);
1990
goto done;
1991
}
1992
if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
1993
dout("con_work CLOSED\n");
1994
con_close_socket(con);
1995
goto done;
1996
}
1997
if (test_and_clear_bit(OPENING, &con->state)) {
1998
/* reopen w/ new peer */
1999
dout("con_work OPENING\n");
2000
con_close_socket(con);
2001
}
2002
2003
if (test_and_clear_bit(SOCK_CLOSED, &con->state))
2004
goto fault;
2005
2006
ret = try_read(con);
2007
if (ret == -EAGAIN)
2008
goto restart;
2009
if (ret < 0)
2010
goto fault;
2011
2012
ret = try_write(con);
2013
if (ret == -EAGAIN)
2014
goto restart;
2015
if (ret < 0)
2016
goto fault;
2017
2018
done:
2019
mutex_unlock(&con->mutex);
2020
done_unlocked:
2021
con->ops->put(con);
2022
return;
2023
2024
fault:
2025
mutex_unlock(&con->mutex);
2026
ceph_fault(con); /* error/fault path */
2027
goto done_unlocked;
2028
}
2029
2030
2031
/*
2032
* Generic error/fault handler. A retry mechanism is used with
2033
* exponential backoff
2034
*/
2035
static void ceph_fault(struct ceph_connection *con)
2036
{
2037
pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2038
ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2039
dout("fault %p state %lu to peer %s\n",
2040
con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2041
2042
if (test_bit(LOSSYTX, &con->state)) {
2043
dout("fault on LOSSYTX channel\n");
2044
goto out;
2045
}
2046
2047
mutex_lock(&con->mutex);
2048
if (test_bit(CLOSED, &con->state))
2049
goto out_unlock;
2050
2051
con_close_socket(con);
2052
2053
if (con->in_msg) {
2054
ceph_msg_put(con->in_msg);
2055
con->in_msg = NULL;
2056
}
2057
2058
/* Requeue anything that hasn't been acked */
2059
list_splice_init(&con->out_sent, &con->out_queue);
2060
2061
/* If there are no messages queued or keepalive pending, place
2062
* the connection in a STANDBY state */
2063
if (list_empty(&con->out_queue) &&
2064
!test_bit(KEEPALIVE_PENDING, &con->state)) {
2065
dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2066
clear_bit(WRITE_PENDING, &con->state);
2067
set_bit(STANDBY, &con->state);
2068
} else {
2069
/* retry after a delay. */
2070
if (con->delay == 0)
2071
con->delay = BASE_DELAY_INTERVAL;
2072
else if (con->delay < MAX_DELAY_INTERVAL)
2073
con->delay *= 2;
2074
con->ops->get(con);
2075
if (queue_delayed_work(ceph_msgr_wq, &con->work,
2076
round_jiffies_relative(con->delay))) {
2077
dout("fault queued %p delay %lu\n", con, con->delay);
2078
} else {
2079
con->ops->put(con);
2080
dout("fault failed to queue %p delay %lu, backoff\n",
2081
con, con->delay);
2082
/*
2083
* In many cases we see a socket state change
2084
* while con_work is running and end up
2085
* queuing (non-delayed) work, such that we
2086
* can't backoff with a delay. Set a flag so
2087
* that when con_work restarts we schedule the
2088
* delay then.
2089
*/
2090
set_bit(BACKOFF, &con->state);
2091
}
2092
}
2093
2094
out_unlock:
2095
mutex_unlock(&con->mutex);
2096
out:
2097
/*
2098
* in case we faulted due to authentication, invalidate our
2099
* current tickets so that we can get new ones.
2100
*/
2101
if (con->auth_retry && con->ops->invalidate_authorizer) {
2102
dout("calling invalidate_authorizer()\n");
2103
con->ops->invalidate_authorizer(con);
2104
}
2105
2106
if (con->ops->fault)
2107
con->ops->fault(con);
2108
}
2109
2110
2111
2112
/*
2113
* create a new messenger instance
2114
*/
2115
struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
2116
u32 supported_features,
2117
u32 required_features)
2118
{
2119
struct ceph_messenger *msgr;
2120
2121
msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
2122
if (msgr == NULL)
2123
return ERR_PTR(-ENOMEM);
2124
2125
msgr->supported_features = supported_features;
2126
msgr->required_features = required_features;
2127
2128
spin_lock_init(&msgr->global_seq_lock);
2129
2130
/* the zero page is needed if a request is "canceled" while the message
2131
* is being written over the socket */
2132
msgr->zero_page = __page_cache_alloc(GFP_KERNEL | __GFP_ZERO);
2133
if (!msgr->zero_page) {
2134
kfree(msgr);
2135
return ERR_PTR(-ENOMEM);
2136
}
2137
kmap(msgr->zero_page);
2138
2139
if (myaddr)
2140
msgr->inst.addr = *myaddr;
2141
2142
/* select a random nonce */
2143
msgr->inst.addr.type = 0;
2144
get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2145
encode_my_addr(msgr);
2146
2147
dout("messenger_create %p\n", msgr);
2148
return msgr;
2149
}
2150
EXPORT_SYMBOL(ceph_messenger_create);
2151
2152
void ceph_messenger_destroy(struct ceph_messenger *msgr)
2153
{
2154
dout("destroy %p\n", msgr);
2155
kunmap(msgr->zero_page);
2156
__free_page(msgr->zero_page);
2157
kfree(msgr);
2158
dout("destroyed messenger %p\n", msgr);
2159
}
2160
EXPORT_SYMBOL(ceph_messenger_destroy);
2161
2162
static void clear_standby(struct ceph_connection *con)
2163
{
2164
/* come back from STANDBY? */
2165
if (test_and_clear_bit(STANDBY, &con->state)) {
2166
mutex_lock(&con->mutex);
2167
dout("clear_standby %p and ++connect_seq\n", con);
2168
con->connect_seq++;
2169
WARN_ON(test_bit(WRITE_PENDING, &con->state));
2170
WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
2171
mutex_unlock(&con->mutex);
2172
}
2173
}
2174
2175
/*
2176
* Queue up an outgoing message on the given connection.
2177
*/
2178
void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2179
{
2180
if (test_bit(CLOSED, &con->state)) {
2181
dout("con_send %p closed, dropping %p\n", con, msg);
2182
ceph_msg_put(msg);
2183
return;
2184
}
2185
2186
/* set src+dst */
2187
msg->hdr.src = con->msgr->inst.name;
2188
2189
BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2190
2191
msg->needs_out_seq = true;
2192
2193
/* queue */
2194
mutex_lock(&con->mutex);
2195
BUG_ON(!list_empty(&msg->list_head));
2196
list_add_tail(&msg->list_head, &con->out_queue);
2197
dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2198
ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2199
ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2200
le32_to_cpu(msg->hdr.front_len),
2201
le32_to_cpu(msg->hdr.middle_len),
2202
le32_to_cpu(msg->hdr.data_len));
2203
mutex_unlock(&con->mutex);
2204
2205
/* if there wasn't anything waiting to send before, queue
2206
* new work */
2207
clear_standby(con);
2208
if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2209
queue_con(con);
2210
}
2211
EXPORT_SYMBOL(ceph_con_send);
2212
2213
/*
2214
* Revoke a message that was previously queued for send
2215
*/
2216
void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2217
{
2218
mutex_lock(&con->mutex);
2219
if (!list_empty(&msg->list_head)) {
2220
dout("con_revoke %p msg %p - was on queue\n", con, msg);
2221
list_del_init(&msg->list_head);
2222
ceph_msg_put(msg);
2223
msg->hdr.seq = 0;
2224
}
2225
if (con->out_msg == msg) {
2226
dout("con_revoke %p msg %p - was sending\n", con, msg);
2227
con->out_msg = NULL;
2228
if (con->out_kvec_is_msg) {
2229
con->out_skip = con->out_kvec_bytes;
2230
con->out_kvec_is_msg = false;
2231
}
2232
ceph_msg_put(msg);
2233
msg->hdr.seq = 0;
2234
}
2235
mutex_unlock(&con->mutex);
2236
}
2237
2238
/*
2239
* Revoke a message that we may be reading data into
2240
*/
2241
void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2242
{
2243
mutex_lock(&con->mutex);
2244
if (con->in_msg && con->in_msg == msg) {
2245
unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
2246
unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
2247
unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2248
2249
/* skip rest of message */
2250
dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2251
con->in_base_pos = con->in_base_pos -
2252
sizeof(struct ceph_msg_header) -
2253
front_len -
2254
middle_len -
2255
data_len -
2256
sizeof(struct ceph_msg_footer);
2257
ceph_msg_put(con->in_msg);
2258
con->in_msg = NULL;
2259
con->in_tag = CEPH_MSGR_TAG_READY;
2260
con->in_seq++;
2261
} else {
2262
dout("con_revoke_pages %p msg %p pages %p no-op\n",
2263
con, con->in_msg, msg);
2264
}
2265
mutex_unlock(&con->mutex);
2266
}
2267
2268
/*
2269
* Queue a keepalive byte to ensure the tcp connection is alive.
2270
*/
2271
void ceph_con_keepalive(struct ceph_connection *con)
2272
{
2273
dout("con_keepalive %p\n", con);
2274
clear_standby(con);
2275
if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2276
test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2277
queue_con(con);
2278
}
2279
EXPORT_SYMBOL(ceph_con_keepalive);
2280
2281
2282
/*
2283
* construct a new message with given type, size
2284
* the new msg has a ref count of 1.
2285
*/
2286
struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags)
2287
{
2288
struct ceph_msg *m;
2289
2290
m = kmalloc(sizeof(*m), flags);
2291
if (m == NULL)
2292
goto out;
2293
kref_init(&m->kref);
2294
INIT_LIST_HEAD(&m->list_head);
2295
2296
m->hdr.tid = 0;
2297
m->hdr.type = cpu_to_le16(type);
2298
m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2299
m->hdr.version = 0;
2300
m->hdr.front_len = cpu_to_le32(front_len);
2301
m->hdr.middle_len = 0;
2302
m->hdr.data_len = 0;
2303
m->hdr.data_off = 0;
2304
m->hdr.reserved = 0;
2305
m->footer.front_crc = 0;
2306
m->footer.middle_crc = 0;
2307
m->footer.data_crc = 0;
2308
m->footer.flags = 0;
2309
m->front_max = front_len;
2310
m->front_is_vmalloc = false;
2311
m->more_to_follow = false;
2312
m->pool = NULL;
2313
2314
/* middle */
2315
m->middle = NULL;
2316
2317
/* data */
2318
m->nr_pages = 0;
2319
m->page_alignment = 0;
2320
m->pages = NULL;
2321
m->pagelist = NULL;
2322
m->bio = NULL;
2323
m->bio_iter = NULL;
2324
m->bio_seg = 0;
2325
m->trail = NULL;
2326
2327
/* front */
2328
if (front_len) {
2329
if (front_len > PAGE_CACHE_SIZE) {
2330
m->front.iov_base = __vmalloc(front_len, flags,
2331
PAGE_KERNEL);
2332
m->front_is_vmalloc = true;
2333
} else {
2334
m->front.iov_base = kmalloc(front_len, flags);
2335
}
2336
if (m->front.iov_base == NULL) {
2337
pr_err("msg_new can't allocate %d bytes\n",
2338
front_len);
2339
goto out2;
2340
}
2341
} else {
2342
m->front.iov_base = NULL;
2343
}
2344
m->front.iov_len = front_len;
2345
2346
dout("ceph_msg_new %p front %d\n", m, front_len);
2347
return m;
2348
2349
out2:
2350
ceph_msg_put(m);
2351
out:
2352
pr_err("msg_new can't create type %d front %d\n", type, front_len);
2353
return NULL;
2354
}
2355
EXPORT_SYMBOL(ceph_msg_new);
2356
2357
/*
2358
* Allocate "middle" portion of a message, if it is needed and wasn't
2359
* allocated by alloc_msg. This allows us to read a small fixed-size
2360
* per-type header in the front and then gracefully fail (i.e.,
2361
* propagate the error to the caller based on info in the front) when
2362
* the middle is too large.
2363
*/
2364
static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2365
{
2366
int type = le16_to_cpu(msg->hdr.type);
2367
int middle_len = le32_to_cpu(msg->hdr.middle_len);
2368
2369
dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2370
ceph_msg_type_name(type), middle_len);
2371
BUG_ON(!middle_len);
2372
BUG_ON(msg->middle);
2373
2374
msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2375
if (!msg->middle)
2376
return -ENOMEM;
2377
return 0;
2378
}
2379
2380
/*
2381
* Generic message allocator, for incoming messages.
2382
*/
2383
static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2384
struct ceph_msg_header *hdr,
2385
int *skip)
2386
{
2387
int type = le16_to_cpu(hdr->type);
2388
int front_len = le32_to_cpu(hdr->front_len);
2389
int middle_len = le32_to_cpu(hdr->middle_len);
2390
struct ceph_msg *msg = NULL;
2391
int ret;
2392
2393
if (con->ops->alloc_msg) {
2394
mutex_unlock(&con->mutex);
2395
msg = con->ops->alloc_msg(con, hdr, skip);
2396
mutex_lock(&con->mutex);
2397
if (!msg || *skip)
2398
return NULL;
2399
}
2400
if (!msg) {
2401
*skip = 0;
2402
msg = ceph_msg_new(type, front_len, GFP_NOFS);
2403
if (!msg) {
2404
pr_err("unable to allocate msg type %d len %d\n",
2405
type, front_len);
2406
return NULL;
2407
}
2408
msg->page_alignment = le16_to_cpu(hdr->data_off);
2409
}
2410
memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2411
2412
if (middle_len && !msg->middle) {
2413
ret = ceph_alloc_middle(con, msg);
2414
if (ret < 0) {
2415
ceph_msg_put(msg);
2416
return NULL;
2417
}
2418
}
2419
2420
return msg;
2421
}
2422
2423
2424
/*
2425
* Free a generically kmalloc'd message.
2426
*/
2427
void ceph_msg_kfree(struct ceph_msg *m)
2428
{
2429
dout("msg_kfree %p\n", m);
2430
if (m->front_is_vmalloc)
2431
vfree(m->front.iov_base);
2432
else
2433
kfree(m->front.iov_base);
2434
kfree(m);
2435
}
2436
2437
/*
2438
* Drop a msg ref. Destroy as needed.
2439
*/
2440
void ceph_msg_last_put(struct kref *kref)
2441
{
2442
struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2443
2444
dout("ceph_msg_put last one on %p\n", m);
2445
WARN_ON(!list_empty(&m->list_head));
2446
2447
/* drop middle, data, if any */
2448
if (m->middle) {
2449
ceph_buffer_put(m->middle);
2450
m->middle = NULL;
2451
}
2452
m->nr_pages = 0;
2453
m->pages = NULL;
2454
2455
if (m->pagelist) {
2456
ceph_pagelist_release(m->pagelist);
2457
kfree(m->pagelist);
2458
m->pagelist = NULL;
2459
}
2460
2461
m->trail = NULL;
2462
2463
if (m->pool)
2464
ceph_msgpool_put(m->pool, m);
2465
else
2466
ceph_msg_kfree(m);
2467
}
2468
EXPORT_SYMBOL(ceph_msg_last_put);
2469
2470
void ceph_msg_dump(struct ceph_msg *msg)
2471
{
2472
pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2473
msg->front_max, msg->nr_pages);
2474
print_hex_dump(KERN_DEBUG, "header: ",
2475
DUMP_PREFIX_OFFSET, 16, 1,
2476
&msg->hdr, sizeof(msg->hdr), true);
2477
print_hex_dump(KERN_DEBUG, " front: ",
2478
DUMP_PREFIX_OFFSET, 16, 1,
2479
msg->front.iov_base, msg->front.iov_len, true);
2480
if (msg->middle)
2481
print_hex_dump(KERN_DEBUG, "middle: ",
2482
DUMP_PREFIX_OFFSET, 16, 1,
2483
msg->middle->vec.iov_base,
2484
msg->middle->vec.iov_len, true);
2485
print_hex_dump(KERN_DEBUG, "footer: ",
2486
DUMP_PREFIX_OFFSET, 16, 1,
2487
&msg->footer, sizeof(msg->footer), true);
2488
}
2489
EXPORT_SYMBOL(ceph_msg_dump);
2490
2491