Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/net/core/skbuff.c
15109 views
1
/*
2
* Routines having to do with the 'struct sk_buff' memory handlers.
3
*
4
* Authors: Alan Cox <[email protected]>
5
* Florian La Roche <[email protected]>
6
*
7
* Fixes:
8
* Alan Cox : Fixed the worst of the load
9
* balancer bugs.
10
* Dave Platt : Interrupt stacking fix.
11
* Richard Kooijman : Timestamp fixes.
12
* Alan Cox : Changed buffer format.
13
* Alan Cox : destructor hook for AF_UNIX etc.
14
* Linus Torvalds : Better skb_clone.
15
* Alan Cox : Added skb_copy.
16
* Alan Cox : Added all the changed routines Linus
17
* only put in the headers
18
* Ray VanTassle : Fixed --skb->lock in free
19
* Alan Cox : skb_copy copy arp field
20
* Andi Kleen : slabified it.
21
* Robert Olsson : Removed skb_head_pool
22
*
23
* NOTE:
24
* The __skb_ routines should be called with interrupts
25
* disabled, or you better be *real* sure that the operation is atomic
26
* with respect to whatever list is being frobbed (e.g. via lock_sock()
27
* or via disabling bottom half handlers, etc).
28
*
29
* This program is free software; you can redistribute it and/or
30
* modify it under the terms of the GNU General Public License
31
* as published by the Free Software Foundation; either version
32
* 2 of the License, or (at your option) any later version.
33
*/
34
35
/*
36
* The functions in this file will not compile correctly with gcc 2.4.x
37
*/
38
39
#include <linux/module.h>
40
#include <linux/types.h>
41
#include <linux/kernel.h>
42
#include <linux/kmemcheck.h>
43
#include <linux/mm.h>
44
#include <linux/interrupt.h>
45
#include <linux/in.h>
46
#include <linux/inet.h>
47
#include <linux/slab.h>
48
#include <linux/netdevice.h>
49
#ifdef CONFIG_NET_CLS_ACT
50
#include <net/pkt_sched.h>
51
#endif
52
#include <linux/string.h>
53
#include <linux/skbuff.h>
54
#include <linux/splice.h>
55
#include <linux/cache.h>
56
#include <linux/rtnetlink.h>
57
#include <linux/init.h>
58
#include <linux/scatterlist.h>
59
#include <linux/errqueue.h>
60
#include <linux/prefetch.h>
61
62
#include <net/protocol.h>
63
#include <net/dst.h>
64
#include <net/sock.h>
65
#include <net/checksum.h>
66
#include <net/xfrm.h>
67
68
#include <asm/uaccess.h>
69
#include <asm/system.h>
70
#include <trace/events/skb.h>
71
72
#include "kmap_skb.h"
73
74
static struct kmem_cache *skbuff_head_cache __read_mostly;
75
static struct kmem_cache *skbuff_fclone_cache __read_mostly;
76
77
static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
78
struct pipe_buffer *buf)
79
{
80
put_page(buf->page);
81
}
82
83
static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84
struct pipe_buffer *buf)
85
{
86
get_page(buf->page);
87
}
88
89
static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90
struct pipe_buffer *buf)
91
{
92
return 1;
93
}
94
95
96
/* Pipe buffer operations for a socket. */
97
static const struct pipe_buf_operations sock_pipe_buf_ops = {
98
.can_merge = 0,
99
.map = generic_pipe_buf_map,
100
.unmap = generic_pipe_buf_unmap,
101
.confirm = generic_pipe_buf_confirm,
102
.release = sock_pipe_buf_release,
103
.steal = sock_pipe_buf_steal,
104
.get = sock_pipe_buf_get,
105
};
106
107
/*
108
* Keep out-of-line to prevent kernel bloat.
109
* __builtin_return_address is not used because it is not always
110
* reliable.
111
*/
112
113
/**
114
* skb_over_panic - private function
115
* @skb: buffer
116
* @sz: size
117
* @here: address
118
*
119
* Out of line support code for skb_put(). Not user callable.
120
*/
121
static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
122
{
123
printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
124
"data:%p tail:%#lx end:%#lx dev:%s\n",
125
here, skb->len, sz, skb->head, skb->data,
126
(unsigned long)skb->tail, (unsigned long)skb->end,
127
skb->dev ? skb->dev->name : "<NULL>");
128
BUG();
129
}
130
131
/**
132
* skb_under_panic - private function
133
* @skb: buffer
134
* @sz: size
135
* @here: address
136
*
137
* Out of line support code for skb_push(). Not user callable.
138
*/
139
140
static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
141
{
142
printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
143
"data:%p tail:%#lx end:%#lx dev:%s\n",
144
here, skb->len, sz, skb->head, skb->data,
145
(unsigned long)skb->tail, (unsigned long)skb->end,
146
skb->dev ? skb->dev->name : "<NULL>");
147
BUG();
148
}
149
150
/* Allocate a new skbuff. We do this ourselves so we can fill in a few
151
* 'private' fields and also do memory statistics to find all the
152
* [BEEP] leaks.
153
*
154
*/
155
156
/**
157
* __alloc_skb - allocate a network buffer
158
* @size: size to allocate
159
* @gfp_mask: allocation mask
160
* @fclone: allocate from fclone cache instead of head cache
161
* and allocate a cloned (child) skb
162
* @node: numa node to allocate memory on
163
*
164
* Allocate a new &sk_buff. The returned buffer has no headroom and a
165
* tail room of size bytes. The object has a reference count of one.
166
* The return is the buffer. On a failure the return is %NULL.
167
*
168
* Buffers may only be allocated from interrupts using a @gfp_mask of
169
* %GFP_ATOMIC.
170
*/
171
struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
172
int fclone, int node)
173
{
174
struct kmem_cache *cache;
175
struct skb_shared_info *shinfo;
176
struct sk_buff *skb;
177
u8 *data;
178
179
cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
180
181
/* Get the HEAD */
182
skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
183
if (!skb)
184
goto out;
185
prefetchw(skb);
186
187
size = SKB_DATA_ALIGN(size);
188
data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
189
gfp_mask, node);
190
if (!data)
191
goto nodata;
192
prefetchw(data + size);
193
194
/*
195
* Only clear those fields we need to clear, not those that we will
196
* actually initialise below. Hence, don't put any more fields after
197
* the tail pointer in struct sk_buff!
198
*/
199
memset(skb, 0, offsetof(struct sk_buff, tail));
200
skb->truesize = size + sizeof(struct sk_buff);
201
atomic_set(&skb->users, 1);
202
skb->head = data;
203
skb->data = data;
204
skb_reset_tail_pointer(skb);
205
skb->end = skb->tail + size;
206
#ifdef NET_SKBUFF_DATA_USES_OFFSET
207
skb->mac_header = ~0U;
208
#endif
209
210
/* make sure we initialize shinfo sequentially */
211
shinfo = skb_shinfo(skb);
212
memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
213
atomic_set(&shinfo->dataref, 1);
214
kmemcheck_annotate_variable(shinfo->destructor_arg);
215
216
if (fclone) {
217
struct sk_buff *child = skb + 1;
218
atomic_t *fclone_ref = (atomic_t *) (child + 1);
219
220
kmemcheck_annotate_bitfield(child, flags1);
221
kmemcheck_annotate_bitfield(child, flags2);
222
skb->fclone = SKB_FCLONE_ORIG;
223
atomic_set(fclone_ref, 1);
224
225
child->fclone = SKB_FCLONE_UNAVAILABLE;
226
}
227
out:
228
return skb;
229
nodata:
230
kmem_cache_free(cache, skb);
231
skb = NULL;
232
goto out;
233
}
234
EXPORT_SYMBOL(__alloc_skb);
235
236
/**
237
* __netdev_alloc_skb - allocate an skbuff for rx on a specific device
238
* @dev: network device to receive on
239
* @length: length to allocate
240
* @gfp_mask: get_free_pages mask, passed to alloc_skb
241
*
242
* Allocate a new &sk_buff and assign it a usage count of one. The
243
* buffer has unspecified headroom built in. Users should allocate
244
* the headroom they think they need without accounting for the
245
* built in space. The built in space is used for optimisations.
246
*
247
* %NULL is returned if there is no free memory.
248
*/
249
struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
250
unsigned int length, gfp_t gfp_mask)
251
{
252
struct sk_buff *skb;
253
254
skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, NUMA_NO_NODE);
255
if (likely(skb)) {
256
skb_reserve(skb, NET_SKB_PAD);
257
skb->dev = dev;
258
}
259
return skb;
260
}
261
EXPORT_SYMBOL(__netdev_alloc_skb);
262
263
void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
264
int size)
265
{
266
skb_fill_page_desc(skb, i, page, off, size);
267
skb->len += size;
268
skb->data_len += size;
269
skb->truesize += size;
270
}
271
EXPORT_SYMBOL(skb_add_rx_frag);
272
273
/**
274
* dev_alloc_skb - allocate an skbuff for receiving
275
* @length: length to allocate
276
*
277
* Allocate a new &sk_buff and assign it a usage count of one. The
278
* buffer has unspecified headroom built in. Users should allocate
279
* the headroom they think they need without accounting for the
280
* built in space. The built in space is used for optimisations.
281
*
282
* %NULL is returned if there is no free memory. Although this function
283
* allocates memory it can be called from an interrupt.
284
*/
285
struct sk_buff *dev_alloc_skb(unsigned int length)
286
{
287
/*
288
* There is more code here than it seems:
289
* __dev_alloc_skb is an inline
290
*/
291
return __dev_alloc_skb(length, GFP_ATOMIC);
292
}
293
EXPORT_SYMBOL(dev_alloc_skb);
294
295
static void skb_drop_list(struct sk_buff **listp)
296
{
297
struct sk_buff *list = *listp;
298
299
*listp = NULL;
300
301
do {
302
struct sk_buff *this = list;
303
list = list->next;
304
kfree_skb(this);
305
} while (list);
306
}
307
308
static inline void skb_drop_fraglist(struct sk_buff *skb)
309
{
310
skb_drop_list(&skb_shinfo(skb)->frag_list);
311
}
312
313
static void skb_clone_fraglist(struct sk_buff *skb)
314
{
315
struct sk_buff *list;
316
317
skb_walk_frags(skb, list)
318
skb_get(list);
319
}
320
321
static void skb_release_data(struct sk_buff *skb)
322
{
323
if (!skb->cloned ||
324
!atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
325
&skb_shinfo(skb)->dataref)) {
326
if (skb_shinfo(skb)->nr_frags) {
327
int i;
328
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
329
put_page(skb_shinfo(skb)->frags[i].page);
330
}
331
332
if (skb_has_frag_list(skb))
333
skb_drop_fraglist(skb);
334
335
kfree(skb->head);
336
}
337
}
338
339
/*
340
* Free an skbuff by memory without cleaning the state.
341
*/
342
static void kfree_skbmem(struct sk_buff *skb)
343
{
344
struct sk_buff *other;
345
atomic_t *fclone_ref;
346
347
switch (skb->fclone) {
348
case SKB_FCLONE_UNAVAILABLE:
349
kmem_cache_free(skbuff_head_cache, skb);
350
break;
351
352
case SKB_FCLONE_ORIG:
353
fclone_ref = (atomic_t *) (skb + 2);
354
if (atomic_dec_and_test(fclone_ref))
355
kmem_cache_free(skbuff_fclone_cache, skb);
356
break;
357
358
case SKB_FCLONE_CLONE:
359
fclone_ref = (atomic_t *) (skb + 1);
360
other = skb - 1;
361
362
/* The clone portion is available for
363
* fast-cloning again.
364
*/
365
skb->fclone = SKB_FCLONE_UNAVAILABLE;
366
367
if (atomic_dec_and_test(fclone_ref))
368
kmem_cache_free(skbuff_fclone_cache, other);
369
break;
370
}
371
}
372
373
static void skb_release_head_state(struct sk_buff *skb)
374
{
375
skb_dst_drop(skb);
376
#ifdef CONFIG_XFRM
377
secpath_put(skb->sp);
378
#endif
379
if (skb->destructor) {
380
WARN_ON(in_irq());
381
skb->destructor(skb);
382
}
383
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
384
nf_conntrack_put(skb->nfct);
385
#endif
386
#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
387
nf_conntrack_put_reasm(skb->nfct_reasm);
388
#endif
389
#ifdef CONFIG_BRIDGE_NETFILTER
390
nf_bridge_put(skb->nf_bridge);
391
#endif
392
/* XXX: IS this still necessary? - JHS */
393
#ifdef CONFIG_NET_SCHED
394
skb->tc_index = 0;
395
#ifdef CONFIG_NET_CLS_ACT
396
skb->tc_verd = 0;
397
#endif
398
#endif
399
}
400
401
/* Free everything but the sk_buff shell. */
402
static void skb_release_all(struct sk_buff *skb)
403
{
404
skb_release_head_state(skb);
405
skb_release_data(skb);
406
}
407
408
/**
409
* __kfree_skb - private function
410
* @skb: buffer
411
*
412
* Free an sk_buff. Release anything attached to the buffer.
413
* Clean the state. This is an internal helper function. Users should
414
* always call kfree_skb
415
*/
416
417
void __kfree_skb(struct sk_buff *skb)
418
{
419
skb_release_all(skb);
420
kfree_skbmem(skb);
421
}
422
EXPORT_SYMBOL(__kfree_skb);
423
424
/**
425
* kfree_skb - free an sk_buff
426
* @skb: buffer to free
427
*
428
* Drop a reference to the buffer and free it if the usage count has
429
* hit zero.
430
*/
431
void kfree_skb(struct sk_buff *skb)
432
{
433
if (unlikely(!skb))
434
return;
435
if (likely(atomic_read(&skb->users) == 1))
436
smp_rmb();
437
else if (likely(!atomic_dec_and_test(&skb->users)))
438
return;
439
trace_kfree_skb(skb, __builtin_return_address(0));
440
__kfree_skb(skb);
441
}
442
EXPORT_SYMBOL(kfree_skb);
443
444
/**
445
* consume_skb - free an skbuff
446
* @skb: buffer to free
447
*
448
* Drop a ref to the buffer and free it if the usage count has hit zero
449
* Functions identically to kfree_skb, but kfree_skb assumes that the frame
450
* is being dropped after a failure and notes that
451
*/
452
void consume_skb(struct sk_buff *skb)
453
{
454
if (unlikely(!skb))
455
return;
456
if (likely(atomic_read(&skb->users) == 1))
457
smp_rmb();
458
else if (likely(!atomic_dec_and_test(&skb->users)))
459
return;
460
trace_consume_skb(skb);
461
__kfree_skb(skb);
462
}
463
EXPORT_SYMBOL(consume_skb);
464
465
/**
466
* skb_recycle_check - check if skb can be reused for receive
467
* @skb: buffer
468
* @skb_size: minimum receive buffer size
469
*
470
* Checks that the skb passed in is not shared or cloned, and
471
* that it is linear and its head portion at least as large as
472
* skb_size so that it can be recycled as a receive buffer.
473
* If these conditions are met, this function does any necessary
474
* reference count dropping and cleans up the skbuff as if it
475
* just came from __alloc_skb().
476
*/
477
bool skb_recycle_check(struct sk_buff *skb, int skb_size)
478
{
479
struct skb_shared_info *shinfo;
480
481
if (irqs_disabled())
482
return false;
483
484
if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
485
return false;
486
487
skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
488
if (skb_end_pointer(skb) - skb->head < skb_size)
489
return false;
490
491
if (skb_shared(skb) || skb_cloned(skb))
492
return false;
493
494
skb_release_head_state(skb);
495
496
shinfo = skb_shinfo(skb);
497
memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
498
atomic_set(&shinfo->dataref, 1);
499
500
memset(skb, 0, offsetof(struct sk_buff, tail));
501
skb->data = skb->head + NET_SKB_PAD;
502
skb_reset_tail_pointer(skb);
503
504
return true;
505
}
506
EXPORT_SYMBOL(skb_recycle_check);
507
508
static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
509
{
510
new->tstamp = old->tstamp;
511
new->dev = old->dev;
512
new->transport_header = old->transport_header;
513
new->network_header = old->network_header;
514
new->mac_header = old->mac_header;
515
skb_dst_copy(new, old);
516
new->rxhash = old->rxhash;
517
#ifdef CONFIG_XFRM
518
new->sp = secpath_get(old->sp);
519
#endif
520
memcpy(new->cb, old->cb, sizeof(old->cb));
521
new->csum = old->csum;
522
new->local_df = old->local_df;
523
new->pkt_type = old->pkt_type;
524
new->ip_summed = old->ip_summed;
525
skb_copy_queue_mapping(new, old);
526
new->priority = old->priority;
527
#if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
528
new->ipvs_property = old->ipvs_property;
529
#endif
530
new->protocol = old->protocol;
531
new->mark = old->mark;
532
new->skb_iif = old->skb_iif;
533
__nf_copy(new, old);
534
#if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
535
defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
536
new->nf_trace = old->nf_trace;
537
#endif
538
#ifdef CONFIG_NET_SCHED
539
new->tc_index = old->tc_index;
540
#ifdef CONFIG_NET_CLS_ACT
541
new->tc_verd = old->tc_verd;
542
#endif
543
#endif
544
new->vlan_tci = old->vlan_tci;
545
546
skb_copy_secmark(new, old);
547
}
548
549
/*
550
* You should not add any new code to this function. Add it to
551
* __copy_skb_header above instead.
552
*/
553
static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
554
{
555
#define C(x) n->x = skb->x
556
557
n->next = n->prev = NULL;
558
n->sk = NULL;
559
__copy_skb_header(n, skb);
560
561
C(len);
562
C(data_len);
563
C(mac_len);
564
n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
565
n->cloned = 1;
566
n->nohdr = 0;
567
n->destructor = NULL;
568
C(tail);
569
C(end);
570
C(head);
571
C(data);
572
C(truesize);
573
atomic_set(&n->users, 1);
574
575
atomic_inc(&(skb_shinfo(skb)->dataref));
576
skb->cloned = 1;
577
578
return n;
579
#undef C
580
}
581
582
/**
583
* skb_morph - morph one skb into another
584
* @dst: the skb to receive the contents
585
* @src: the skb to supply the contents
586
*
587
* This is identical to skb_clone except that the target skb is
588
* supplied by the user.
589
*
590
* The target skb is returned upon exit.
591
*/
592
struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
593
{
594
skb_release_all(dst);
595
return __skb_clone(dst, src);
596
}
597
EXPORT_SYMBOL_GPL(skb_morph);
598
599
/**
600
* skb_clone - duplicate an sk_buff
601
* @skb: buffer to clone
602
* @gfp_mask: allocation priority
603
*
604
* Duplicate an &sk_buff. The new one is not owned by a socket. Both
605
* copies share the same packet data but not structure. The new
606
* buffer has a reference count of 1. If the allocation fails the
607
* function returns %NULL otherwise the new buffer is returned.
608
*
609
* If this function is called from an interrupt gfp_mask() must be
610
* %GFP_ATOMIC.
611
*/
612
613
struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
614
{
615
struct sk_buff *n;
616
617
n = skb + 1;
618
if (skb->fclone == SKB_FCLONE_ORIG &&
619
n->fclone == SKB_FCLONE_UNAVAILABLE) {
620
atomic_t *fclone_ref = (atomic_t *) (n + 1);
621
n->fclone = SKB_FCLONE_CLONE;
622
atomic_inc(fclone_ref);
623
} else {
624
n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
625
if (!n)
626
return NULL;
627
628
kmemcheck_annotate_bitfield(n, flags1);
629
kmemcheck_annotate_bitfield(n, flags2);
630
n->fclone = SKB_FCLONE_UNAVAILABLE;
631
}
632
633
return __skb_clone(n, skb);
634
}
635
EXPORT_SYMBOL(skb_clone);
636
637
static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
638
{
639
#ifndef NET_SKBUFF_DATA_USES_OFFSET
640
/*
641
* Shift between the two data areas in bytes
642
*/
643
unsigned long offset = new->data - old->data;
644
#endif
645
646
__copy_skb_header(new, old);
647
648
#ifndef NET_SKBUFF_DATA_USES_OFFSET
649
/* {transport,network,mac}_header are relative to skb->head */
650
new->transport_header += offset;
651
new->network_header += offset;
652
if (skb_mac_header_was_set(new))
653
new->mac_header += offset;
654
#endif
655
skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
656
skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
657
skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
658
}
659
660
/**
661
* skb_copy - create private copy of an sk_buff
662
* @skb: buffer to copy
663
* @gfp_mask: allocation priority
664
*
665
* Make a copy of both an &sk_buff and its data. This is used when the
666
* caller wishes to modify the data and needs a private copy of the
667
* data to alter. Returns %NULL on failure or the pointer to the buffer
668
* on success. The returned buffer has a reference count of 1.
669
*
670
* As by-product this function converts non-linear &sk_buff to linear
671
* one, so that &sk_buff becomes completely private and caller is allowed
672
* to modify all the data of returned buffer. This means that this
673
* function is not recommended for use in circumstances when only
674
* header is going to be modified. Use pskb_copy() instead.
675
*/
676
677
struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
678
{
679
int headerlen = skb_headroom(skb);
680
unsigned int size = (skb_end_pointer(skb) - skb->head) + skb->data_len;
681
struct sk_buff *n = alloc_skb(size, gfp_mask);
682
683
if (!n)
684
return NULL;
685
686
/* Set the data pointer */
687
skb_reserve(n, headerlen);
688
/* Set the tail pointer and length */
689
skb_put(n, skb->len);
690
691
if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
692
BUG();
693
694
copy_skb_header(n, skb);
695
return n;
696
}
697
EXPORT_SYMBOL(skb_copy);
698
699
/**
700
* pskb_copy - create copy of an sk_buff with private head.
701
* @skb: buffer to copy
702
* @gfp_mask: allocation priority
703
*
704
* Make a copy of both an &sk_buff and part of its data, located
705
* in header. Fragmented data remain shared. This is used when
706
* the caller wishes to modify only header of &sk_buff and needs
707
* private copy of the header to alter. Returns %NULL on failure
708
* or the pointer to the buffer on success.
709
* The returned buffer has a reference count of 1.
710
*/
711
712
struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
713
{
714
unsigned int size = skb_end_pointer(skb) - skb->head;
715
struct sk_buff *n = alloc_skb(size, gfp_mask);
716
717
if (!n)
718
goto out;
719
720
/* Set the data pointer */
721
skb_reserve(n, skb_headroom(skb));
722
/* Set the tail pointer and length */
723
skb_put(n, skb_headlen(skb));
724
/* Copy the bytes */
725
skb_copy_from_linear_data(skb, n->data, n->len);
726
727
n->truesize += skb->data_len;
728
n->data_len = skb->data_len;
729
n->len = skb->len;
730
731
if (skb_shinfo(skb)->nr_frags) {
732
int i;
733
734
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
735
skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
736
get_page(skb_shinfo(n)->frags[i].page);
737
}
738
skb_shinfo(n)->nr_frags = i;
739
}
740
741
if (skb_has_frag_list(skb)) {
742
skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
743
skb_clone_fraglist(n);
744
}
745
746
copy_skb_header(n, skb);
747
out:
748
return n;
749
}
750
EXPORT_SYMBOL(pskb_copy);
751
752
/**
753
* pskb_expand_head - reallocate header of &sk_buff
754
* @skb: buffer to reallocate
755
* @nhead: room to add at head
756
* @ntail: room to add at tail
757
* @gfp_mask: allocation priority
758
*
759
* Expands (or creates identical copy, if &nhead and &ntail are zero)
760
* header of skb. &sk_buff itself is not changed. &sk_buff MUST have
761
* reference count of 1. Returns zero in the case of success or error,
762
* if expansion failed. In the last case, &sk_buff is not changed.
763
*
764
* All the pointers pointing into skb header may change and must be
765
* reloaded after call to this function.
766
*/
767
768
int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
769
gfp_t gfp_mask)
770
{
771
int i;
772
u8 *data;
773
int size = nhead + (skb_end_pointer(skb) - skb->head) + ntail;
774
long off;
775
bool fastpath;
776
777
BUG_ON(nhead < 0);
778
779
if (skb_shared(skb))
780
BUG();
781
782
size = SKB_DATA_ALIGN(size);
783
784
/* Check if we can avoid taking references on fragments if we own
785
* the last reference on skb->head. (see skb_release_data())
786
*/
787
if (!skb->cloned)
788
fastpath = true;
789
else {
790
int delta = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
791
792
fastpath = atomic_read(&skb_shinfo(skb)->dataref) == delta;
793
}
794
795
if (fastpath &&
796
size + sizeof(struct skb_shared_info) <= ksize(skb->head)) {
797
memmove(skb->head + size, skb_shinfo(skb),
798
offsetof(struct skb_shared_info,
799
frags[skb_shinfo(skb)->nr_frags]));
800
memmove(skb->head + nhead, skb->head,
801
skb_tail_pointer(skb) - skb->head);
802
off = nhead;
803
goto adjust_others;
804
}
805
806
data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
807
if (!data)
808
goto nodata;
809
810
/* Copy only real data... and, alas, header. This should be
811
* optimized for the cases when header is void.
812
*/
813
memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
814
815
memcpy((struct skb_shared_info *)(data + size),
816
skb_shinfo(skb),
817
offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
818
819
if (fastpath) {
820
kfree(skb->head);
821
} else {
822
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
823
get_page(skb_shinfo(skb)->frags[i].page);
824
825
if (skb_has_frag_list(skb))
826
skb_clone_fraglist(skb);
827
828
skb_release_data(skb);
829
}
830
off = (data + nhead) - skb->head;
831
832
skb->head = data;
833
adjust_others:
834
skb->data += off;
835
#ifdef NET_SKBUFF_DATA_USES_OFFSET
836
skb->end = size;
837
off = nhead;
838
#else
839
skb->end = skb->head + size;
840
#endif
841
/* {transport,network,mac}_header and tail are relative to skb->head */
842
skb->tail += off;
843
skb->transport_header += off;
844
skb->network_header += off;
845
if (skb_mac_header_was_set(skb))
846
skb->mac_header += off;
847
/* Only adjust this if it actually is csum_start rather than csum */
848
if (skb->ip_summed == CHECKSUM_PARTIAL)
849
skb->csum_start += nhead;
850
skb->cloned = 0;
851
skb->hdr_len = 0;
852
skb->nohdr = 0;
853
atomic_set(&skb_shinfo(skb)->dataref, 1);
854
return 0;
855
856
nodata:
857
return -ENOMEM;
858
}
859
EXPORT_SYMBOL(pskb_expand_head);
860
861
/* Make private copy of skb with writable head and some headroom */
862
863
struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
864
{
865
struct sk_buff *skb2;
866
int delta = headroom - skb_headroom(skb);
867
868
if (delta <= 0)
869
skb2 = pskb_copy(skb, GFP_ATOMIC);
870
else {
871
skb2 = skb_clone(skb, GFP_ATOMIC);
872
if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
873
GFP_ATOMIC)) {
874
kfree_skb(skb2);
875
skb2 = NULL;
876
}
877
}
878
return skb2;
879
}
880
EXPORT_SYMBOL(skb_realloc_headroom);
881
882
/**
883
* skb_copy_expand - copy and expand sk_buff
884
* @skb: buffer to copy
885
* @newheadroom: new free bytes at head
886
* @newtailroom: new free bytes at tail
887
* @gfp_mask: allocation priority
888
*
889
* Make a copy of both an &sk_buff and its data and while doing so
890
* allocate additional space.
891
*
892
* This is used when the caller wishes to modify the data and needs a
893
* private copy of the data to alter as well as more space for new fields.
894
* Returns %NULL on failure or the pointer to the buffer
895
* on success. The returned buffer has a reference count of 1.
896
*
897
* You must pass %GFP_ATOMIC as the allocation priority if this function
898
* is called from an interrupt.
899
*/
900
struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
901
int newheadroom, int newtailroom,
902
gfp_t gfp_mask)
903
{
904
/*
905
* Allocate the copy buffer
906
*/
907
struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
908
gfp_mask);
909
int oldheadroom = skb_headroom(skb);
910
int head_copy_len, head_copy_off;
911
int off;
912
913
if (!n)
914
return NULL;
915
916
skb_reserve(n, newheadroom);
917
918
/* Set the tail pointer and length */
919
skb_put(n, skb->len);
920
921
head_copy_len = oldheadroom;
922
head_copy_off = 0;
923
if (newheadroom <= head_copy_len)
924
head_copy_len = newheadroom;
925
else
926
head_copy_off = newheadroom - head_copy_len;
927
928
/* Copy the linear header and data. */
929
if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
930
skb->len + head_copy_len))
931
BUG();
932
933
copy_skb_header(n, skb);
934
935
off = newheadroom - oldheadroom;
936
if (n->ip_summed == CHECKSUM_PARTIAL)
937
n->csum_start += off;
938
#ifdef NET_SKBUFF_DATA_USES_OFFSET
939
n->transport_header += off;
940
n->network_header += off;
941
if (skb_mac_header_was_set(skb))
942
n->mac_header += off;
943
#endif
944
945
return n;
946
}
947
EXPORT_SYMBOL(skb_copy_expand);
948
949
/**
950
* skb_pad - zero pad the tail of an skb
951
* @skb: buffer to pad
952
* @pad: space to pad
953
*
954
* Ensure that a buffer is followed by a padding area that is zero
955
* filled. Used by network drivers which may DMA or transfer data
956
* beyond the buffer end onto the wire.
957
*
958
* May return error in out of memory cases. The skb is freed on error.
959
*/
960
961
int skb_pad(struct sk_buff *skb, int pad)
962
{
963
int err;
964
int ntail;
965
966
/* If the skbuff is non linear tailroom is always zero.. */
967
if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
968
memset(skb->data+skb->len, 0, pad);
969
return 0;
970
}
971
972
ntail = skb->data_len + pad - (skb->end - skb->tail);
973
if (likely(skb_cloned(skb) || ntail > 0)) {
974
err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
975
if (unlikely(err))
976
goto free_skb;
977
}
978
979
/* FIXME: The use of this function with non-linear skb's really needs
980
* to be audited.
981
*/
982
err = skb_linearize(skb);
983
if (unlikely(err))
984
goto free_skb;
985
986
memset(skb->data + skb->len, 0, pad);
987
return 0;
988
989
free_skb:
990
kfree_skb(skb);
991
return err;
992
}
993
EXPORT_SYMBOL(skb_pad);
994
995
/**
996
* skb_put - add data to a buffer
997
* @skb: buffer to use
998
* @len: amount of data to add
999
*
1000
* This function extends the used data area of the buffer. If this would
1001
* exceed the total buffer size the kernel will panic. A pointer to the
1002
* first byte of the extra data is returned.
1003
*/
1004
unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1005
{
1006
unsigned char *tmp = skb_tail_pointer(skb);
1007
SKB_LINEAR_ASSERT(skb);
1008
skb->tail += len;
1009
skb->len += len;
1010
if (unlikely(skb->tail > skb->end))
1011
skb_over_panic(skb, len, __builtin_return_address(0));
1012
return tmp;
1013
}
1014
EXPORT_SYMBOL(skb_put);
1015
1016
/**
1017
* skb_push - add data to the start of a buffer
1018
* @skb: buffer to use
1019
* @len: amount of data to add
1020
*
1021
* This function extends the used data area of the buffer at the buffer
1022
* start. If this would exceed the total buffer headroom the kernel will
1023
* panic. A pointer to the first byte of the extra data is returned.
1024
*/
1025
unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1026
{
1027
skb->data -= len;
1028
skb->len += len;
1029
if (unlikely(skb->data<skb->head))
1030
skb_under_panic(skb, len, __builtin_return_address(0));
1031
return skb->data;
1032
}
1033
EXPORT_SYMBOL(skb_push);
1034
1035
/**
1036
* skb_pull - remove data from the start of a buffer
1037
* @skb: buffer to use
1038
* @len: amount of data to remove
1039
*
1040
* This function removes data from the start of a buffer, returning
1041
* the memory to the headroom. A pointer to the next data in the buffer
1042
* is returned. Once the data has been pulled future pushes will overwrite
1043
* the old data.
1044
*/
1045
unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1046
{
1047
return skb_pull_inline(skb, len);
1048
}
1049
EXPORT_SYMBOL(skb_pull);
1050
1051
/**
1052
* skb_trim - remove end from a buffer
1053
* @skb: buffer to alter
1054
* @len: new length
1055
*
1056
* Cut the length of a buffer down by removing data from the tail. If
1057
* the buffer is already under the length specified it is not modified.
1058
* The skb must be linear.
1059
*/
1060
void skb_trim(struct sk_buff *skb, unsigned int len)
1061
{
1062
if (skb->len > len)
1063
__skb_trim(skb, len);
1064
}
1065
EXPORT_SYMBOL(skb_trim);
1066
1067
/* Trims skb to length len. It can change skb pointers.
1068
*/
1069
1070
int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1071
{
1072
struct sk_buff **fragp;
1073
struct sk_buff *frag;
1074
int offset = skb_headlen(skb);
1075
int nfrags = skb_shinfo(skb)->nr_frags;
1076
int i;
1077
int err;
1078
1079
if (skb_cloned(skb) &&
1080
unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1081
return err;
1082
1083
i = 0;
1084
if (offset >= len)
1085
goto drop_pages;
1086
1087
for (; i < nfrags; i++) {
1088
int end = offset + skb_shinfo(skb)->frags[i].size;
1089
1090
if (end < len) {
1091
offset = end;
1092
continue;
1093
}
1094
1095
skb_shinfo(skb)->frags[i++].size = len - offset;
1096
1097
drop_pages:
1098
skb_shinfo(skb)->nr_frags = i;
1099
1100
for (; i < nfrags; i++)
1101
put_page(skb_shinfo(skb)->frags[i].page);
1102
1103
if (skb_has_frag_list(skb))
1104
skb_drop_fraglist(skb);
1105
goto done;
1106
}
1107
1108
for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1109
fragp = &frag->next) {
1110
int end = offset + frag->len;
1111
1112
if (skb_shared(frag)) {
1113
struct sk_buff *nfrag;
1114
1115
nfrag = skb_clone(frag, GFP_ATOMIC);
1116
if (unlikely(!nfrag))
1117
return -ENOMEM;
1118
1119
nfrag->next = frag->next;
1120
kfree_skb(frag);
1121
frag = nfrag;
1122
*fragp = frag;
1123
}
1124
1125
if (end < len) {
1126
offset = end;
1127
continue;
1128
}
1129
1130
if (end > len &&
1131
unlikely((err = pskb_trim(frag, len - offset))))
1132
return err;
1133
1134
if (frag->next)
1135
skb_drop_list(&frag->next);
1136
break;
1137
}
1138
1139
done:
1140
if (len > skb_headlen(skb)) {
1141
skb->data_len -= skb->len - len;
1142
skb->len = len;
1143
} else {
1144
skb->len = len;
1145
skb->data_len = 0;
1146
skb_set_tail_pointer(skb, len);
1147
}
1148
1149
return 0;
1150
}
1151
EXPORT_SYMBOL(___pskb_trim);
1152
1153
/**
1154
* __pskb_pull_tail - advance tail of skb header
1155
* @skb: buffer to reallocate
1156
* @delta: number of bytes to advance tail
1157
*
1158
* The function makes a sense only on a fragmented &sk_buff,
1159
* it expands header moving its tail forward and copying necessary
1160
* data from fragmented part.
1161
*
1162
* &sk_buff MUST have reference count of 1.
1163
*
1164
* Returns %NULL (and &sk_buff does not change) if pull failed
1165
* or value of new tail of skb in the case of success.
1166
*
1167
* All the pointers pointing into skb header may change and must be
1168
* reloaded after call to this function.
1169
*/
1170
1171
/* Moves tail of skb head forward, copying data from fragmented part,
1172
* when it is necessary.
1173
* 1. It may fail due to malloc failure.
1174
* 2. It may change skb pointers.
1175
*
1176
* It is pretty complicated. Luckily, it is called only in exceptional cases.
1177
*/
1178
unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1179
{
1180
/* If skb has not enough free space at tail, get new one
1181
* plus 128 bytes for future expansions. If we have enough
1182
* room at tail, reallocate without expansion only if skb is cloned.
1183
*/
1184
int i, k, eat = (skb->tail + delta) - skb->end;
1185
1186
if (eat > 0 || skb_cloned(skb)) {
1187
if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1188
GFP_ATOMIC))
1189
return NULL;
1190
}
1191
1192
if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1193
BUG();
1194
1195
/* Optimization: no fragments, no reasons to preestimate
1196
* size of pulled pages. Superb.
1197
*/
1198
if (!skb_has_frag_list(skb))
1199
goto pull_pages;
1200
1201
/* Estimate size of pulled pages. */
1202
eat = delta;
1203
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1204
if (skb_shinfo(skb)->frags[i].size >= eat)
1205
goto pull_pages;
1206
eat -= skb_shinfo(skb)->frags[i].size;
1207
}
1208
1209
/* If we need update frag list, we are in troubles.
1210
* Certainly, it possible to add an offset to skb data,
1211
* but taking into account that pulling is expected to
1212
* be very rare operation, it is worth to fight against
1213
* further bloating skb head and crucify ourselves here instead.
1214
* Pure masohism, indeed. 8)8)
1215
*/
1216
if (eat) {
1217
struct sk_buff *list = skb_shinfo(skb)->frag_list;
1218
struct sk_buff *clone = NULL;
1219
struct sk_buff *insp = NULL;
1220
1221
do {
1222
BUG_ON(!list);
1223
1224
if (list->len <= eat) {
1225
/* Eaten as whole. */
1226
eat -= list->len;
1227
list = list->next;
1228
insp = list;
1229
} else {
1230
/* Eaten partially. */
1231
1232
if (skb_shared(list)) {
1233
/* Sucks! We need to fork list. :-( */
1234
clone = skb_clone(list, GFP_ATOMIC);
1235
if (!clone)
1236
return NULL;
1237
insp = list->next;
1238
list = clone;
1239
} else {
1240
/* This may be pulled without
1241
* problems. */
1242
insp = list;
1243
}
1244
if (!pskb_pull(list, eat)) {
1245
kfree_skb(clone);
1246
return NULL;
1247
}
1248
break;
1249
}
1250
} while (eat);
1251
1252
/* Free pulled out fragments. */
1253
while ((list = skb_shinfo(skb)->frag_list) != insp) {
1254
skb_shinfo(skb)->frag_list = list->next;
1255
kfree_skb(list);
1256
}
1257
/* And insert new clone at head. */
1258
if (clone) {
1259
clone->next = list;
1260
skb_shinfo(skb)->frag_list = clone;
1261
}
1262
}
1263
/* Success! Now we may commit changes to skb data. */
1264
1265
pull_pages:
1266
eat = delta;
1267
k = 0;
1268
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1269
if (skb_shinfo(skb)->frags[i].size <= eat) {
1270
put_page(skb_shinfo(skb)->frags[i].page);
1271
eat -= skb_shinfo(skb)->frags[i].size;
1272
} else {
1273
skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1274
if (eat) {
1275
skb_shinfo(skb)->frags[k].page_offset += eat;
1276
skb_shinfo(skb)->frags[k].size -= eat;
1277
eat = 0;
1278
}
1279
k++;
1280
}
1281
}
1282
skb_shinfo(skb)->nr_frags = k;
1283
1284
skb->tail += delta;
1285
skb->data_len -= delta;
1286
1287
return skb_tail_pointer(skb);
1288
}
1289
EXPORT_SYMBOL(__pskb_pull_tail);
1290
1291
/* Copy some data bits from skb to kernel buffer. */
1292
1293
int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1294
{
1295
int start = skb_headlen(skb);
1296
struct sk_buff *frag_iter;
1297
int i, copy;
1298
1299
if (offset > (int)skb->len - len)
1300
goto fault;
1301
1302
/* Copy header. */
1303
if ((copy = start - offset) > 0) {
1304
if (copy > len)
1305
copy = len;
1306
skb_copy_from_linear_data_offset(skb, offset, to, copy);
1307
if ((len -= copy) == 0)
1308
return 0;
1309
offset += copy;
1310
to += copy;
1311
}
1312
1313
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1314
int end;
1315
1316
WARN_ON(start > offset + len);
1317
1318
end = start + skb_shinfo(skb)->frags[i].size;
1319
if ((copy = end - offset) > 0) {
1320
u8 *vaddr;
1321
1322
if (copy > len)
1323
copy = len;
1324
1325
vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1326
memcpy(to,
1327
vaddr + skb_shinfo(skb)->frags[i].page_offset+
1328
offset - start, copy);
1329
kunmap_skb_frag(vaddr);
1330
1331
if ((len -= copy) == 0)
1332
return 0;
1333
offset += copy;
1334
to += copy;
1335
}
1336
start = end;
1337
}
1338
1339
skb_walk_frags(skb, frag_iter) {
1340
int end;
1341
1342
WARN_ON(start > offset + len);
1343
1344
end = start + frag_iter->len;
1345
if ((copy = end - offset) > 0) {
1346
if (copy > len)
1347
copy = len;
1348
if (skb_copy_bits(frag_iter, offset - start, to, copy))
1349
goto fault;
1350
if ((len -= copy) == 0)
1351
return 0;
1352
offset += copy;
1353
to += copy;
1354
}
1355
start = end;
1356
}
1357
if (!len)
1358
return 0;
1359
1360
fault:
1361
return -EFAULT;
1362
}
1363
EXPORT_SYMBOL(skb_copy_bits);
1364
1365
/*
1366
* Callback from splice_to_pipe(), if we need to release some pages
1367
* at the end of the spd in case we error'ed out in filling the pipe.
1368
*/
1369
static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1370
{
1371
put_page(spd->pages[i]);
1372
}
1373
1374
static inline struct page *linear_to_page(struct page *page, unsigned int *len,
1375
unsigned int *offset,
1376
struct sk_buff *skb, struct sock *sk)
1377
{
1378
struct page *p = sk->sk_sndmsg_page;
1379
unsigned int off;
1380
1381
if (!p) {
1382
new_page:
1383
p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1384
if (!p)
1385
return NULL;
1386
1387
off = sk->sk_sndmsg_off = 0;
1388
/* hold one ref to this page until it's full */
1389
} else {
1390
unsigned int mlen;
1391
1392
off = sk->sk_sndmsg_off;
1393
mlen = PAGE_SIZE - off;
1394
if (mlen < 64 && mlen < *len) {
1395
put_page(p);
1396
goto new_page;
1397
}
1398
1399
*len = min_t(unsigned int, *len, mlen);
1400
}
1401
1402
memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1403
sk->sk_sndmsg_off += *len;
1404
*offset = off;
1405
get_page(p);
1406
1407
return p;
1408
}
1409
1410
/*
1411
* Fill page/offset/length into spd, if it can hold more pages.
1412
*/
1413
static inline int spd_fill_page(struct splice_pipe_desc *spd,
1414
struct pipe_inode_info *pipe, struct page *page,
1415
unsigned int *len, unsigned int offset,
1416
struct sk_buff *skb, int linear,
1417
struct sock *sk)
1418
{
1419
if (unlikely(spd->nr_pages == pipe->buffers))
1420
return 1;
1421
1422
if (linear) {
1423
page = linear_to_page(page, len, &offset, skb, sk);
1424
if (!page)
1425
return 1;
1426
} else
1427
get_page(page);
1428
1429
spd->pages[spd->nr_pages] = page;
1430
spd->partial[spd->nr_pages].len = *len;
1431
spd->partial[spd->nr_pages].offset = offset;
1432
spd->nr_pages++;
1433
1434
return 0;
1435
}
1436
1437
static inline void __segment_seek(struct page **page, unsigned int *poff,
1438
unsigned int *plen, unsigned int off)
1439
{
1440
unsigned long n;
1441
1442
*poff += off;
1443
n = *poff / PAGE_SIZE;
1444
if (n)
1445
*page = nth_page(*page, n);
1446
1447
*poff = *poff % PAGE_SIZE;
1448
*plen -= off;
1449
}
1450
1451
static inline int __splice_segment(struct page *page, unsigned int poff,
1452
unsigned int plen, unsigned int *off,
1453
unsigned int *len, struct sk_buff *skb,
1454
struct splice_pipe_desc *spd, int linear,
1455
struct sock *sk,
1456
struct pipe_inode_info *pipe)
1457
{
1458
if (!*len)
1459
return 1;
1460
1461
/* skip this segment if already processed */
1462
if (*off >= plen) {
1463
*off -= plen;
1464
return 0;
1465
}
1466
1467
/* ignore any bits we already processed */
1468
if (*off) {
1469
__segment_seek(&page, &poff, &plen, *off);
1470
*off = 0;
1471
}
1472
1473
do {
1474
unsigned int flen = min(*len, plen);
1475
1476
/* the linear region may spread across several pages */
1477
flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1478
1479
if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
1480
return 1;
1481
1482
__segment_seek(&page, &poff, &plen, flen);
1483
*len -= flen;
1484
1485
} while (*len && plen);
1486
1487
return 0;
1488
}
1489
1490
/*
1491
* Map linear and fragment data from the skb to spd. It reports failure if the
1492
* pipe is full or if we already spliced the requested length.
1493
*/
1494
static int __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1495
unsigned int *offset, unsigned int *len,
1496
struct splice_pipe_desc *spd, struct sock *sk)
1497
{
1498
int seg;
1499
1500
/*
1501
* map the linear part
1502
*/
1503
if (__splice_segment(virt_to_page(skb->data),
1504
(unsigned long) skb->data & (PAGE_SIZE - 1),
1505
skb_headlen(skb),
1506
offset, len, skb, spd, 1, sk, pipe))
1507
return 1;
1508
1509
/*
1510
* then map the fragments
1511
*/
1512
for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1513
const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1514
1515
if (__splice_segment(f->page, f->page_offset, f->size,
1516
offset, len, skb, spd, 0, sk, pipe))
1517
return 1;
1518
}
1519
1520
return 0;
1521
}
1522
1523
/*
1524
* Map data from the skb to a pipe. Should handle both the linear part,
1525
* the fragments, and the frag list. It does NOT handle frag lists within
1526
* the frag list, if such a thing exists. We'd probably need to recurse to
1527
* handle that cleanly.
1528
*/
1529
int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1530
struct pipe_inode_info *pipe, unsigned int tlen,
1531
unsigned int flags)
1532
{
1533
struct partial_page partial[PIPE_DEF_BUFFERS];
1534
struct page *pages[PIPE_DEF_BUFFERS];
1535
struct splice_pipe_desc spd = {
1536
.pages = pages,
1537
.partial = partial,
1538
.flags = flags,
1539
.ops = &sock_pipe_buf_ops,
1540
.spd_release = sock_spd_release,
1541
};
1542
struct sk_buff *frag_iter;
1543
struct sock *sk = skb->sk;
1544
int ret = 0;
1545
1546
if (splice_grow_spd(pipe, &spd))
1547
return -ENOMEM;
1548
1549
/*
1550
* __skb_splice_bits() only fails if the output has no room left,
1551
* so no point in going over the frag_list for the error case.
1552
*/
1553
if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1554
goto done;
1555
else if (!tlen)
1556
goto done;
1557
1558
/*
1559
* now see if we have a frag_list to map
1560
*/
1561
skb_walk_frags(skb, frag_iter) {
1562
if (!tlen)
1563
break;
1564
if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1565
break;
1566
}
1567
1568
done:
1569
if (spd.nr_pages) {
1570
/*
1571
* Drop the socket lock, otherwise we have reverse
1572
* locking dependencies between sk_lock and i_mutex
1573
* here as compared to sendfile(). We enter here
1574
* with the socket lock held, and splice_to_pipe() will
1575
* grab the pipe inode lock. For sendfile() emulation,
1576
* we call into ->sendpage() with the i_mutex lock held
1577
* and networking will grab the socket lock.
1578
*/
1579
release_sock(sk);
1580
ret = splice_to_pipe(pipe, &spd);
1581
lock_sock(sk);
1582
}
1583
1584
splice_shrink_spd(pipe, &spd);
1585
return ret;
1586
}
1587
1588
/**
1589
* skb_store_bits - store bits from kernel buffer to skb
1590
* @skb: destination buffer
1591
* @offset: offset in destination
1592
* @from: source buffer
1593
* @len: number of bytes to copy
1594
*
1595
* Copy the specified number of bytes from the source buffer to the
1596
* destination skb. This function handles all the messy bits of
1597
* traversing fragment lists and such.
1598
*/
1599
1600
int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1601
{
1602
int start = skb_headlen(skb);
1603
struct sk_buff *frag_iter;
1604
int i, copy;
1605
1606
if (offset > (int)skb->len - len)
1607
goto fault;
1608
1609
if ((copy = start - offset) > 0) {
1610
if (copy > len)
1611
copy = len;
1612
skb_copy_to_linear_data_offset(skb, offset, from, copy);
1613
if ((len -= copy) == 0)
1614
return 0;
1615
offset += copy;
1616
from += copy;
1617
}
1618
1619
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1620
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1621
int end;
1622
1623
WARN_ON(start > offset + len);
1624
1625
end = start + frag->size;
1626
if ((copy = end - offset) > 0) {
1627
u8 *vaddr;
1628
1629
if (copy > len)
1630
copy = len;
1631
1632
vaddr = kmap_skb_frag(frag);
1633
memcpy(vaddr + frag->page_offset + offset - start,
1634
from, copy);
1635
kunmap_skb_frag(vaddr);
1636
1637
if ((len -= copy) == 0)
1638
return 0;
1639
offset += copy;
1640
from += copy;
1641
}
1642
start = end;
1643
}
1644
1645
skb_walk_frags(skb, frag_iter) {
1646
int end;
1647
1648
WARN_ON(start > offset + len);
1649
1650
end = start + frag_iter->len;
1651
if ((copy = end - offset) > 0) {
1652
if (copy > len)
1653
copy = len;
1654
if (skb_store_bits(frag_iter, offset - start,
1655
from, copy))
1656
goto fault;
1657
if ((len -= copy) == 0)
1658
return 0;
1659
offset += copy;
1660
from += copy;
1661
}
1662
start = end;
1663
}
1664
if (!len)
1665
return 0;
1666
1667
fault:
1668
return -EFAULT;
1669
}
1670
EXPORT_SYMBOL(skb_store_bits);
1671
1672
/* Checksum skb data. */
1673
1674
__wsum skb_checksum(const struct sk_buff *skb, int offset,
1675
int len, __wsum csum)
1676
{
1677
int start = skb_headlen(skb);
1678
int i, copy = start - offset;
1679
struct sk_buff *frag_iter;
1680
int pos = 0;
1681
1682
/* Checksum header. */
1683
if (copy > 0) {
1684
if (copy > len)
1685
copy = len;
1686
csum = csum_partial(skb->data + offset, copy, csum);
1687
if ((len -= copy) == 0)
1688
return csum;
1689
offset += copy;
1690
pos = copy;
1691
}
1692
1693
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1694
int end;
1695
1696
WARN_ON(start > offset + len);
1697
1698
end = start + skb_shinfo(skb)->frags[i].size;
1699
if ((copy = end - offset) > 0) {
1700
__wsum csum2;
1701
u8 *vaddr;
1702
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1703
1704
if (copy > len)
1705
copy = len;
1706
vaddr = kmap_skb_frag(frag);
1707
csum2 = csum_partial(vaddr + frag->page_offset +
1708
offset - start, copy, 0);
1709
kunmap_skb_frag(vaddr);
1710
csum = csum_block_add(csum, csum2, pos);
1711
if (!(len -= copy))
1712
return csum;
1713
offset += copy;
1714
pos += copy;
1715
}
1716
start = end;
1717
}
1718
1719
skb_walk_frags(skb, frag_iter) {
1720
int end;
1721
1722
WARN_ON(start > offset + len);
1723
1724
end = start + frag_iter->len;
1725
if ((copy = end - offset) > 0) {
1726
__wsum csum2;
1727
if (copy > len)
1728
copy = len;
1729
csum2 = skb_checksum(frag_iter, offset - start,
1730
copy, 0);
1731
csum = csum_block_add(csum, csum2, pos);
1732
if ((len -= copy) == 0)
1733
return csum;
1734
offset += copy;
1735
pos += copy;
1736
}
1737
start = end;
1738
}
1739
BUG_ON(len);
1740
1741
return csum;
1742
}
1743
EXPORT_SYMBOL(skb_checksum);
1744
1745
/* Both of above in one bottle. */
1746
1747
__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1748
u8 *to, int len, __wsum csum)
1749
{
1750
int start = skb_headlen(skb);
1751
int i, copy = start - offset;
1752
struct sk_buff *frag_iter;
1753
int pos = 0;
1754
1755
/* Copy header. */
1756
if (copy > 0) {
1757
if (copy > len)
1758
copy = len;
1759
csum = csum_partial_copy_nocheck(skb->data + offset, to,
1760
copy, csum);
1761
if ((len -= copy) == 0)
1762
return csum;
1763
offset += copy;
1764
to += copy;
1765
pos = copy;
1766
}
1767
1768
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1769
int end;
1770
1771
WARN_ON(start > offset + len);
1772
1773
end = start + skb_shinfo(skb)->frags[i].size;
1774
if ((copy = end - offset) > 0) {
1775
__wsum csum2;
1776
u8 *vaddr;
1777
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1778
1779
if (copy > len)
1780
copy = len;
1781
vaddr = kmap_skb_frag(frag);
1782
csum2 = csum_partial_copy_nocheck(vaddr +
1783
frag->page_offset +
1784
offset - start, to,
1785
copy, 0);
1786
kunmap_skb_frag(vaddr);
1787
csum = csum_block_add(csum, csum2, pos);
1788
if (!(len -= copy))
1789
return csum;
1790
offset += copy;
1791
to += copy;
1792
pos += copy;
1793
}
1794
start = end;
1795
}
1796
1797
skb_walk_frags(skb, frag_iter) {
1798
__wsum csum2;
1799
int end;
1800
1801
WARN_ON(start > offset + len);
1802
1803
end = start + frag_iter->len;
1804
if ((copy = end - offset) > 0) {
1805
if (copy > len)
1806
copy = len;
1807
csum2 = skb_copy_and_csum_bits(frag_iter,
1808
offset - start,
1809
to, copy, 0);
1810
csum = csum_block_add(csum, csum2, pos);
1811
if ((len -= copy) == 0)
1812
return csum;
1813
offset += copy;
1814
to += copy;
1815
pos += copy;
1816
}
1817
start = end;
1818
}
1819
BUG_ON(len);
1820
return csum;
1821
}
1822
EXPORT_SYMBOL(skb_copy_and_csum_bits);
1823
1824
void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1825
{
1826
__wsum csum;
1827
long csstart;
1828
1829
if (skb->ip_summed == CHECKSUM_PARTIAL)
1830
csstart = skb_checksum_start_offset(skb);
1831
else
1832
csstart = skb_headlen(skb);
1833
1834
BUG_ON(csstart > skb_headlen(skb));
1835
1836
skb_copy_from_linear_data(skb, to, csstart);
1837
1838
csum = 0;
1839
if (csstart != skb->len)
1840
csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1841
skb->len - csstart, 0);
1842
1843
if (skb->ip_summed == CHECKSUM_PARTIAL) {
1844
long csstuff = csstart + skb->csum_offset;
1845
1846
*((__sum16 *)(to + csstuff)) = csum_fold(csum);
1847
}
1848
}
1849
EXPORT_SYMBOL(skb_copy_and_csum_dev);
1850
1851
/**
1852
* skb_dequeue - remove from the head of the queue
1853
* @list: list to dequeue from
1854
*
1855
* Remove the head of the list. The list lock is taken so the function
1856
* may be used safely with other locking list functions. The head item is
1857
* returned or %NULL if the list is empty.
1858
*/
1859
1860
struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1861
{
1862
unsigned long flags;
1863
struct sk_buff *result;
1864
1865
spin_lock_irqsave(&list->lock, flags);
1866
result = __skb_dequeue(list);
1867
spin_unlock_irqrestore(&list->lock, flags);
1868
return result;
1869
}
1870
EXPORT_SYMBOL(skb_dequeue);
1871
1872
/**
1873
* skb_dequeue_tail - remove from the tail of the queue
1874
* @list: list to dequeue from
1875
*
1876
* Remove the tail of the list. The list lock is taken so the function
1877
* may be used safely with other locking list functions. The tail item is
1878
* returned or %NULL if the list is empty.
1879
*/
1880
struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1881
{
1882
unsigned long flags;
1883
struct sk_buff *result;
1884
1885
spin_lock_irqsave(&list->lock, flags);
1886
result = __skb_dequeue_tail(list);
1887
spin_unlock_irqrestore(&list->lock, flags);
1888
return result;
1889
}
1890
EXPORT_SYMBOL(skb_dequeue_tail);
1891
1892
/**
1893
* skb_queue_purge - empty a list
1894
* @list: list to empty
1895
*
1896
* Delete all buffers on an &sk_buff list. Each buffer is removed from
1897
* the list and one reference dropped. This function takes the list
1898
* lock and is atomic with respect to other list locking functions.
1899
*/
1900
void skb_queue_purge(struct sk_buff_head *list)
1901
{
1902
struct sk_buff *skb;
1903
while ((skb = skb_dequeue(list)) != NULL)
1904
kfree_skb(skb);
1905
}
1906
EXPORT_SYMBOL(skb_queue_purge);
1907
1908
/**
1909
* skb_queue_head - queue a buffer at the list head
1910
* @list: list to use
1911
* @newsk: buffer to queue
1912
*
1913
* Queue a buffer at the start of the list. This function takes the
1914
* list lock and can be used safely with other locking &sk_buff functions
1915
* safely.
1916
*
1917
* A buffer cannot be placed on two lists at the same time.
1918
*/
1919
void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1920
{
1921
unsigned long flags;
1922
1923
spin_lock_irqsave(&list->lock, flags);
1924
__skb_queue_head(list, newsk);
1925
spin_unlock_irqrestore(&list->lock, flags);
1926
}
1927
EXPORT_SYMBOL(skb_queue_head);
1928
1929
/**
1930
* skb_queue_tail - queue a buffer at the list tail
1931
* @list: list to use
1932
* @newsk: buffer to queue
1933
*
1934
* Queue a buffer at the tail of the list. This function takes the
1935
* list lock and can be used safely with other locking &sk_buff functions
1936
* safely.
1937
*
1938
* A buffer cannot be placed on two lists at the same time.
1939
*/
1940
void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1941
{
1942
unsigned long flags;
1943
1944
spin_lock_irqsave(&list->lock, flags);
1945
__skb_queue_tail(list, newsk);
1946
spin_unlock_irqrestore(&list->lock, flags);
1947
}
1948
EXPORT_SYMBOL(skb_queue_tail);
1949
1950
/**
1951
* skb_unlink - remove a buffer from a list
1952
* @skb: buffer to remove
1953
* @list: list to use
1954
*
1955
* Remove a packet from a list. The list locks are taken and this
1956
* function is atomic with respect to other list locked calls
1957
*
1958
* You must know what list the SKB is on.
1959
*/
1960
void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1961
{
1962
unsigned long flags;
1963
1964
spin_lock_irqsave(&list->lock, flags);
1965
__skb_unlink(skb, list);
1966
spin_unlock_irqrestore(&list->lock, flags);
1967
}
1968
EXPORT_SYMBOL(skb_unlink);
1969
1970
/**
1971
* skb_append - append a buffer
1972
* @old: buffer to insert after
1973
* @newsk: buffer to insert
1974
* @list: list to use
1975
*
1976
* Place a packet after a given packet in a list. The list locks are taken
1977
* and this function is atomic with respect to other list locked calls.
1978
* A buffer cannot be placed on two lists at the same time.
1979
*/
1980
void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1981
{
1982
unsigned long flags;
1983
1984
spin_lock_irqsave(&list->lock, flags);
1985
__skb_queue_after(list, old, newsk);
1986
spin_unlock_irqrestore(&list->lock, flags);
1987
}
1988
EXPORT_SYMBOL(skb_append);
1989
1990
/**
1991
* skb_insert - insert a buffer
1992
* @old: buffer to insert before
1993
* @newsk: buffer to insert
1994
* @list: list to use
1995
*
1996
* Place a packet before a given packet in a list. The list locks are
1997
* taken and this function is atomic with respect to other list locked
1998
* calls.
1999
*
2000
* A buffer cannot be placed on two lists at the same time.
2001
*/
2002
void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2003
{
2004
unsigned long flags;
2005
2006
spin_lock_irqsave(&list->lock, flags);
2007
__skb_insert(newsk, old->prev, old, list);
2008
spin_unlock_irqrestore(&list->lock, flags);
2009
}
2010
EXPORT_SYMBOL(skb_insert);
2011
2012
static inline void skb_split_inside_header(struct sk_buff *skb,
2013
struct sk_buff* skb1,
2014
const u32 len, const int pos)
2015
{
2016
int i;
2017
2018
skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2019
pos - len);
2020
/* And move data appendix as is. */
2021
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2022
skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2023
2024
skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2025
skb_shinfo(skb)->nr_frags = 0;
2026
skb1->data_len = skb->data_len;
2027
skb1->len += skb1->data_len;
2028
skb->data_len = 0;
2029
skb->len = len;
2030
skb_set_tail_pointer(skb, len);
2031
}
2032
2033
static inline void skb_split_no_header(struct sk_buff *skb,
2034
struct sk_buff* skb1,
2035
const u32 len, int pos)
2036
{
2037
int i, k = 0;
2038
const int nfrags = skb_shinfo(skb)->nr_frags;
2039
2040
skb_shinfo(skb)->nr_frags = 0;
2041
skb1->len = skb1->data_len = skb->len - len;
2042
skb->len = len;
2043
skb->data_len = len - pos;
2044
2045
for (i = 0; i < nfrags; i++) {
2046
int size = skb_shinfo(skb)->frags[i].size;
2047
2048
if (pos + size > len) {
2049
skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2050
2051
if (pos < len) {
2052
/* Split frag.
2053
* We have two variants in this case:
2054
* 1. Move all the frag to the second
2055
* part, if it is possible. F.e.
2056
* this approach is mandatory for TUX,
2057
* where splitting is expensive.
2058
* 2. Split is accurately. We make this.
2059
*/
2060
get_page(skb_shinfo(skb)->frags[i].page);
2061
skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2062
skb_shinfo(skb1)->frags[0].size -= len - pos;
2063
skb_shinfo(skb)->frags[i].size = len - pos;
2064
skb_shinfo(skb)->nr_frags++;
2065
}
2066
k++;
2067
} else
2068
skb_shinfo(skb)->nr_frags++;
2069
pos += size;
2070
}
2071
skb_shinfo(skb1)->nr_frags = k;
2072
}
2073
2074
/**
2075
* skb_split - Split fragmented skb to two parts at length len.
2076
* @skb: the buffer to split
2077
* @skb1: the buffer to receive the second part
2078
* @len: new length for skb
2079
*/
2080
void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2081
{
2082
int pos = skb_headlen(skb);
2083
2084
if (len < pos) /* Split line is inside header. */
2085
skb_split_inside_header(skb, skb1, len, pos);
2086
else /* Second chunk has no header, nothing to copy. */
2087
skb_split_no_header(skb, skb1, len, pos);
2088
}
2089
EXPORT_SYMBOL(skb_split);
2090
2091
/* Shifting from/to a cloned skb is a no-go.
2092
*
2093
* Caller cannot keep skb_shinfo related pointers past calling here!
2094
*/
2095
static int skb_prepare_for_shift(struct sk_buff *skb)
2096
{
2097
return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2098
}
2099
2100
/**
2101
* skb_shift - Shifts paged data partially from skb to another
2102
* @tgt: buffer into which tail data gets added
2103
* @skb: buffer from which the paged data comes from
2104
* @shiftlen: shift up to this many bytes
2105
*
2106
* Attempts to shift up to shiftlen worth of bytes, which may be less than
2107
* the length of the skb, from tgt to skb. Returns number bytes shifted.
2108
* It's up to caller to free skb if everything was shifted.
2109
*
2110
* If @tgt runs out of frags, the whole operation is aborted.
2111
*
2112
* Skb cannot include anything else but paged data while tgt is allowed
2113
* to have non-paged data as well.
2114
*
2115
* TODO: full sized shift could be optimized but that would need
2116
* specialized skb free'er to handle frags without up-to-date nr_frags.
2117
*/
2118
int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2119
{
2120
int from, to, merge, todo;
2121
struct skb_frag_struct *fragfrom, *fragto;
2122
2123
BUG_ON(shiftlen > skb->len);
2124
BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2125
2126
todo = shiftlen;
2127
from = 0;
2128
to = skb_shinfo(tgt)->nr_frags;
2129
fragfrom = &skb_shinfo(skb)->frags[from];
2130
2131
/* Actual merge is delayed until the point when we know we can
2132
* commit all, so that we don't have to undo partial changes
2133
*/
2134
if (!to ||
2135
!skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) {
2136
merge = -1;
2137
} else {
2138
merge = to - 1;
2139
2140
todo -= fragfrom->size;
2141
if (todo < 0) {
2142
if (skb_prepare_for_shift(skb) ||
2143
skb_prepare_for_shift(tgt))
2144
return 0;
2145
2146
/* All previous frag pointers might be stale! */
2147
fragfrom = &skb_shinfo(skb)->frags[from];
2148
fragto = &skb_shinfo(tgt)->frags[merge];
2149
2150
fragto->size += shiftlen;
2151
fragfrom->size -= shiftlen;
2152
fragfrom->page_offset += shiftlen;
2153
2154
goto onlymerged;
2155
}
2156
2157
from++;
2158
}
2159
2160
/* Skip full, not-fitting skb to avoid expensive operations */
2161
if ((shiftlen == skb->len) &&
2162
(skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2163
return 0;
2164
2165
if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2166
return 0;
2167
2168
while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2169
if (to == MAX_SKB_FRAGS)
2170
return 0;
2171
2172
fragfrom = &skb_shinfo(skb)->frags[from];
2173
fragto = &skb_shinfo(tgt)->frags[to];
2174
2175
if (todo >= fragfrom->size) {
2176
*fragto = *fragfrom;
2177
todo -= fragfrom->size;
2178
from++;
2179
to++;
2180
2181
} else {
2182
get_page(fragfrom->page);
2183
fragto->page = fragfrom->page;
2184
fragto->page_offset = fragfrom->page_offset;
2185
fragto->size = todo;
2186
2187
fragfrom->page_offset += todo;
2188
fragfrom->size -= todo;
2189
todo = 0;
2190
2191
to++;
2192
break;
2193
}
2194
}
2195
2196
/* Ready to "commit" this state change to tgt */
2197
skb_shinfo(tgt)->nr_frags = to;
2198
2199
if (merge >= 0) {
2200
fragfrom = &skb_shinfo(skb)->frags[0];
2201
fragto = &skb_shinfo(tgt)->frags[merge];
2202
2203
fragto->size += fragfrom->size;
2204
put_page(fragfrom->page);
2205
}
2206
2207
/* Reposition in the original skb */
2208
to = 0;
2209
while (from < skb_shinfo(skb)->nr_frags)
2210
skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2211
skb_shinfo(skb)->nr_frags = to;
2212
2213
BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2214
2215
onlymerged:
2216
/* Most likely the tgt won't ever need its checksum anymore, skb on
2217
* the other hand might need it if it needs to be resent
2218
*/
2219
tgt->ip_summed = CHECKSUM_PARTIAL;
2220
skb->ip_summed = CHECKSUM_PARTIAL;
2221
2222
/* Yak, is it really working this way? Some helper please? */
2223
skb->len -= shiftlen;
2224
skb->data_len -= shiftlen;
2225
skb->truesize -= shiftlen;
2226
tgt->len += shiftlen;
2227
tgt->data_len += shiftlen;
2228
tgt->truesize += shiftlen;
2229
2230
return shiftlen;
2231
}
2232
2233
/**
2234
* skb_prepare_seq_read - Prepare a sequential read of skb data
2235
* @skb: the buffer to read
2236
* @from: lower offset of data to be read
2237
* @to: upper offset of data to be read
2238
* @st: state variable
2239
*
2240
* Initializes the specified state variable. Must be called before
2241
* invoking skb_seq_read() for the first time.
2242
*/
2243
void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2244
unsigned int to, struct skb_seq_state *st)
2245
{
2246
st->lower_offset = from;
2247
st->upper_offset = to;
2248
st->root_skb = st->cur_skb = skb;
2249
st->frag_idx = st->stepped_offset = 0;
2250
st->frag_data = NULL;
2251
}
2252
EXPORT_SYMBOL(skb_prepare_seq_read);
2253
2254
/**
2255
* skb_seq_read - Sequentially read skb data
2256
* @consumed: number of bytes consumed by the caller so far
2257
* @data: destination pointer for data to be returned
2258
* @st: state variable
2259
*
2260
* Reads a block of skb data at &consumed relative to the
2261
* lower offset specified to skb_prepare_seq_read(). Assigns
2262
* the head of the data block to &data and returns the length
2263
* of the block or 0 if the end of the skb data or the upper
2264
* offset has been reached.
2265
*
2266
* The caller is not required to consume all of the data
2267
* returned, i.e. &consumed is typically set to the number
2268
* of bytes already consumed and the next call to
2269
* skb_seq_read() will return the remaining part of the block.
2270
*
2271
* Note 1: The size of each block of data returned can be arbitrary,
2272
* this limitation is the cost for zerocopy seqeuental
2273
* reads of potentially non linear data.
2274
*
2275
* Note 2: Fragment lists within fragments are not implemented
2276
* at the moment, state->root_skb could be replaced with
2277
* a stack for this purpose.
2278
*/
2279
unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2280
struct skb_seq_state *st)
2281
{
2282
unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2283
skb_frag_t *frag;
2284
2285
if (unlikely(abs_offset >= st->upper_offset))
2286
return 0;
2287
2288
next_skb:
2289
block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2290
2291
if (abs_offset < block_limit && !st->frag_data) {
2292
*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2293
return block_limit - abs_offset;
2294
}
2295
2296
if (st->frag_idx == 0 && !st->frag_data)
2297
st->stepped_offset += skb_headlen(st->cur_skb);
2298
2299
while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2300
frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2301
block_limit = frag->size + st->stepped_offset;
2302
2303
if (abs_offset < block_limit) {
2304
if (!st->frag_data)
2305
st->frag_data = kmap_skb_frag(frag);
2306
2307
*data = (u8 *) st->frag_data + frag->page_offset +
2308
(abs_offset - st->stepped_offset);
2309
2310
return block_limit - abs_offset;
2311
}
2312
2313
if (st->frag_data) {
2314
kunmap_skb_frag(st->frag_data);
2315
st->frag_data = NULL;
2316
}
2317
2318
st->frag_idx++;
2319
st->stepped_offset += frag->size;
2320
}
2321
2322
if (st->frag_data) {
2323
kunmap_skb_frag(st->frag_data);
2324
st->frag_data = NULL;
2325
}
2326
2327
if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2328
st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2329
st->frag_idx = 0;
2330
goto next_skb;
2331
} else if (st->cur_skb->next) {
2332
st->cur_skb = st->cur_skb->next;
2333
st->frag_idx = 0;
2334
goto next_skb;
2335
}
2336
2337
return 0;
2338
}
2339
EXPORT_SYMBOL(skb_seq_read);
2340
2341
/**
2342
* skb_abort_seq_read - Abort a sequential read of skb data
2343
* @st: state variable
2344
*
2345
* Must be called if skb_seq_read() was not called until it
2346
* returned 0.
2347
*/
2348
void skb_abort_seq_read(struct skb_seq_state *st)
2349
{
2350
if (st->frag_data)
2351
kunmap_skb_frag(st->frag_data);
2352
}
2353
EXPORT_SYMBOL(skb_abort_seq_read);
2354
2355
#define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2356
2357
static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2358
struct ts_config *conf,
2359
struct ts_state *state)
2360
{
2361
return skb_seq_read(offset, text, TS_SKB_CB(state));
2362
}
2363
2364
static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2365
{
2366
skb_abort_seq_read(TS_SKB_CB(state));
2367
}
2368
2369
/**
2370
* skb_find_text - Find a text pattern in skb data
2371
* @skb: the buffer to look in
2372
* @from: search offset
2373
* @to: search limit
2374
* @config: textsearch configuration
2375
* @state: uninitialized textsearch state variable
2376
*
2377
* Finds a pattern in the skb data according to the specified
2378
* textsearch configuration. Use textsearch_next() to retrieve
2379
* subsequent occurrences of the pattern. Returns the offset
2380
* to the first occurrence or UINT_MAX if no match was found.
2381
*/
2382
unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2383
unsigned int to, struct ts_config *config,
2384
struct ts_state *state)
2385
{
2386
unsigned int ret;
2387
2388
config->get_next_block = skb_ts_get_next_block;
2389
config->finish = skb_ts_finish;
2390
2391
skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2392
2393
ret = textsearch_find(config, state);
2394
return (ret <= to - from ? ret : UINT_MAX);
2395
}
2396
EXPORT_SYMBOL(skb_find_text);
2397
2398
/**
2399
* skb_append_datato_frags: - append the user data to a skb
2400
* @sk: sock structure
2401
* @skb: skb structure to be appened with user data.
2402
* @getfrag: call back function to be used for getting the user data
2403
* @from: pointer to user message iov
2404
* @length: length of the iov message
2405
*
2406
* Description: This procedure append the user data in the fragment part
2407
* of the skb if any page alloc fails user this procedure returns -ENOMEM
2408
*/
2409
int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2410
int (*getfrag)(void *from, char *to, int offset,
2411
int len, int odd, struct sk_buff *skb),
2412
void *from, int length)
2413
{
2414
int frg_cnt = 0;
2415
skb_frag_t *frag = NULL;
2416
struct page *page = NULL;
2417
int copy, left;
2418
int offset = 0;
2419
int ret;
2420
2421
do {
2422
/* Return error if we don't have space for new frag */
2423
frg_cnt = skb_shinfo(skb)->nr_frags;
2424
if (frg_cnt >= MAX_SKB_FRAGS)
2425
return -EFAULT;
2426
2427
/* allocate a new page for next frag */
2428
page = alloc_pages(sk->sk_allocation, 0);
2429
2430
/* If alloc_page fails just return failure and caller will
2431
* free previous allocated pages by doing kfree_skb()
2432
*/
2433
if (page == NULL)
2434
return -ENOMEM;
2435
2436
/* initialize the next frag */
2437
skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2438
skb->truesize += PAGE_SIZE;
2439
atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2440
2441
/* get the new initialized frag */
2442
frg_cnt = skb_shinfo(skb)->nr_frags;
2443
frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2444
2445
/* copy the user data to page */
2446
left = PAGE_SIZE - frag->page_offset;
2447
copy = (length > left)? left : length;
2448
2449
ret = getfrag(from, (page_address(frag->page) +
2450
frag->page_offset + frag->size),
2451
offset, copy, 0, skb);
2452
if (ret < 0)
2453
return -EFAULT;
2454
2455
/* copy was successful so update the size parameters */
2456
frag->size += copy;
2457
skb->len += copy;
2458
skb->data_len += copy;
2459
offset += copy;
2460
length -= copy;
2461
2462
} while (length > 0);
2463
2464
return 0;
2465
}
2466
EXPORT_SYMBOL(skb_append_datato_frags);
2467
2468
/**
2469
* skb_pull_rcsum - pull skb and update receive checksum
2470
* @skb: buffer to update
2471
* @len: length of data pulled
2472
*
2473
* This function performs an skb_pull on the packet and updates
2474
* the CHECKSUM_COMPLETE checksum. It should be used on
2475
* receive path processing instead of skb_pull unless you know
2476
* that the checksum difference is zero (e.g., a valid IP header)
2477
* or you are setting ip_summed to CHECKSUM_NONE.
2478
*/
2479
unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2480
{
2481
BUG_ON(len > skb->len);
2482
skb->len -= len;
2483
BUG_ON(skb->len < skb->data_len);
2484
skb_postpull_rcsum(skb, skb->data, len);
2485
return skb->data += len;
2486
}
2487
EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2488
2489
/**
2490
* skb_segment - Perform protocol segmentation on skb.
2491
* @skb: buffer to segment
2492
* @features: features for the output path (see dev->features)
2493
*
2494
* This function performs segmentation on the given skb. It returns
2495
* a pointer to the first in a list of new skbs for the segments.
2496
* In case of error it returns ERR_PTR(err).
2497
*/
2498
struct sk_buff *skb_segment(struct sk_buff *skb, u32 features)
2499
{
2500
struct sk_buff *segs = NULL;
2501
struct sk_buff *tail = NULL;
2502
struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2503
unsigned int mss = skb_shinfo(skb)->gso_size;
2504
unsigned int doffset = skb->data - skb_mac_header(skb);
2505
unsigned int offset = doffset;
2506
unsigned int headroom;
2507
unsigned int len;
2508
int sg = !!(features & NETIF_F_SG);
2509
int nfrags = skb_shinfo(skb)->nr_frags;
2510
int err = -ENOMEM;
2511
int i = 0;
2512
int pos;
2513
2514
__skb_push(skb, doffset);
2515
headroom = skb_headroom(skb);
2516
pos = skb_headlen(skb);
2517
2518
do {
2519
struct sk_buff *nskb;
2520
skb_frag_t *frag;
2521
int hsize;
2522
int size;
2523
2524
len = skb->len - offset;
2525
if (len > mss)
2526
len = mss;
2527
2528
hsize = skb_headlen(skb) - offset;
2529
if (hsize < 0)
2530
hsize = 0;
2531
if (hsize > len || !sg)
2532
hsize = len;
2533
2534
if (!hsize && i >= nfrags) {
2535
BUG_ON(fskb->len != len);
2536
2537
pos += len;
2538
nskb = skb_clone(fskb, GFP_ATOMIC);
2539
fskb = fskb->next;
2540
2541
if (unlikely(!nskb))
2542
goto err;
2543
2544
hsize = skb_end_pointer(nskb) - nskb->head;
2545
if (skb_cow_head(nskb, doffset + headroom)) {
2546
kfree_skb(nskb);
2547
goto err;
2548
}
2549
2550
nskb->truesize += skb_end_pointer(nskb) - nskb->head -
2551
hsize;
2552
skb_release_head_state(nskb);
2553
__skb_push(nskb, doffset);
2554
} else {
2555
nskb = alloc_skb(hsize + doffset + headroom,
2556
GFP_ATOMIC);
2557
2558
if (unlikely(!nskb))
2559
goto err;
2560
2561
skb_reserve(nskb, headroom);
2562
__skb_put(nskb, doffset);
2563
}
2564
2565
if (segs)
2566
tail->next = nskb;
2567
else
2568
segs = nskb;
2569
tail = nskb;
2570
2571
__copy_skb_header(nskb, skb);
2572
nskb->mac_len = skb->mac_len;
2573
2574
/* nskb and skb might have different headroom */
2575
if (nskb->ip_summed == CHECKSUM_PARTIAL)
2576
nskb->csum_start += skb_headroom(nskb) - headroom;
2577
2578
skb_reset_mac_header(nskb);
2579
skb_set_network_header(nskb, skb->mac_len);
2580
nskb->transport_header = (nskb->network_header +
2581
skb_network_header_len(skb));
2582
skb_copy_from_linear_data(skb, nskb->data, doffset);
2583
2584
if (fskb != skb_shinfo(skb)->frag_list)
2585
continue;
2586
2587
if (!sg) {
2588
nskb->ip_summed = CHECKSUM_NONE;
2589
nskb->csum = skb_copy_and_csum_bits(skb, offset,
2590
skb_put(nskb, len),
2591
len, 0);
2592
continue;
2593
}
2594
2595
frag = skb_shinfo(nskb)->frags;
2596
2597
skb_copy_from_linear_data_offset(skb, offset,
2598
skb_put(nskb, hsize), hsize);
2599
2600
while (pos < offset + len && i < nfrags) {
2601
*frag = skb_shinfo(skb)->frags[i];
2602
get_page(frag->page);
2603
size = frag->size;
2604
2605
if (pos < offset) {
2606
frag->page_offset += offset - pos;
2607
frag->size -= offset - pos;
2608
}
2609
2610
skb_shinfo(nskb)->nr_frags++;
2611
2612
if (pos + size <= offset + len) {
2613
i++;
2614
pos += size;
2615
} else {
2616
frag->size -= pos + size - (offset + len);
2617
goto skip_fraglist;
2618
}
2619
2620
frag++;
2621
}
2622
2623
if (pos < offset + len) {
2624
struct sk_buff *fskb2 = fskb;
2625
2626
BUG_ON(pos + fskb->len != offset + len);
2627
2628
pos += fskb->len;
2629
fskb = fskb->next;
2630
2631
if (fskb2->next) {
2632
fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2633
if (!fskb2)
2634
goto err;
2635
} else
2636
skb_get(fskb2);
2637
2638
SKB_FRAG_ASSERT(nskb);
2639
skb_shinfo(nskb)->frag_list = fskb2;
2640
}
2641
2642
skip_fraglist:
2643
nskb->data_len = len - hsize;
2644
nskb->len += nskb->data_len;
2645
nskb->truesize += nskb->data_len;
2646
} while ((offset += len) < skb->len);
2647
2648
return segs;
2649
2650
err:
2651
while ((skb = segs)) {
2652
segs = skb->next;
2653
kfree_skb(skb);
2654
}
2655
return ERR_PTR(err);
2656
}
2657
EXPORT_SYMBOL_GPL(skb_segment);
2658
2659
int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2660
{
2661
struct sk_buff *p = *head;
2662
struct sk_buff *nskb;
2663
struct skb_shared_info *skbinfo = skb_shinfo(skb);
2664
struct skb_shared_info *pinfo = skb_shinfo(p);
2665
unsigned int headroom;
2666
unsigned int len = skb_gro_len(skb);
2667
unsigned int offset = skb_gro_offset(skb);
2668
unsigned int headlen = skb_headlen(skb);
2669
2670
if (p->len + len >= 65536)
2671
return -E2BIG;
2672
2673
if (pinfo->frag_list)
2674
goto merge;
2675
else if (headlen <= offset) {
2676
skb_frag_t *frag;
2677
skb_frag_t *frag2;
2678
int i = skbinfo->nr_frags;
2679
int nr_frags = pinfo->nr_frags + i;
2680
2681
offset -= headlen;
2682
2683
if (nr_frags > MAX_SKB_FRAGS)
2684
return -E2BIG;
2685
2686
pinfo->nr_frags = nr_frags;
2687
skbinfo->nr_frags = 0;
2688
2689
frag = pinfo->frags + nr_frags;
2690
frag2 = skbinfo->frags + i;
2691
do {
2692
*--frag = *--frag2;
2693
} while (--i);
2694
2695
frag->page_offset += offset;
2696
frag->size -= offset;
2697
2698
skb->truesize -= skb->data_len;
2699
skb->len -= skb->data_len;
2700
skb->data_len = 0;
2701
2702
NAPI_GRO_CB(skb)->free = 1;
2703
goto done;
2704
} else if (skb_gro_len(p) != pinfo->gso_size)
2705
return -E2BIG;
2706
2707
headroom = skb_headroom(p);
2708
nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
2709
if (unlikely(!nskb))
2710
return -ENOMEM;
2711
2712
__copy_skb_header(nskb, p);
2713
nskb->mac_len = p->mac_len;
2714
2715
skb_reserve(nskb, headroom);
2716
__skb_put(nskb, skb_gro_offset(p));
2717
2718
skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2719
skb_set_network_header(nskb, skb_network_offset(p));
2720
skb_set_transport_header(nskb, skb_transport_offset(p));
2721
2722
__skb_pull(p, skb_gro_offset(p));
2723
memcpy(skb_mac_header(nskb), skb_mac_header(p),
2724
p->data - skb_mac_header(p));
2725
2726
*NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2727
skb_shinfo(nskb)->frag_list = p;
2728
skb_shinfo(nskb)->gso_size = pinfo->gso_size;
2729
pinfo->gso_size = 0;
2730
skb_header_release(p);
2731
nskb->prev = p;
2732
2733
nskb->data_len += p->len;
2734
nskb->truesize += p->len;
2735
nskb->len += p->len;
2736
2737
*head = nskb;
2738
nskb->next = p->next;
2739
p->next = NULL;
2740
2741
p = nskb;
2742
2743
merge:
2744
if (offset > headlen) {
2745
unsigned int eat = offset - headlen;
2746
2747
skbinfo->frags[0].page_offset += eat;
2748
skbinfo->frags[0].size -= eat;
2749
skb->data_len -= eat;
2750
skb->len -= eat;
2751
offset = headlen;
2752
}
2753
2754
__skb_pull(skb, offset);
2755
2756
p->prev->next = skb;
2757
p->prev = skb;
2758
skb_header_release(skb);
2759
2760
done:
2761
NAPI_GRO_CB(p)->count++;
2762
p->data_len += len;
2763
p->truesize += len;
2764
p->len += len;
2765
2766
NAPI_GRO_CB(skb)->same_flow = 1;
2767
return 0;
2768
}
2769
EXPORT_SYMBOL_GPL(skb_gro_receive);
2770
2771
void __init skb_init(void)
2772
{
2773
skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2774
sizeof(struct sk_buff),
2775
0,
2776
SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2777
NULL);
2778
skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2779
(2*sizeof(struct sk_buff)) +
2780
sizeof(atomic_t),
2781
0,
2782
SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2783
NULL);
2784
}
2785
2786
/**
2787
* skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2788
* @skb: Socket buffer containing the buffers to be mapped
2789
* @sg: The scatter-gather list to map into
2790
* @offset: The offset into the buffer's contents to start mapping
2791
* @len: Length of buffer space to be mapped
2792
*
2793
* Fill the specified scatter-gather list with mappings/pointers into a
2794
* region of the buffer space attached to a socket buffer.
2795
*/
2796
static int
2797
__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2798
{
2799
int start = skb_headlen(skb);
2800
int i, copy = start - offset;
2801
struct sk_buff *frag_iter;
2802
int elt = 0;
2803
2804
if (copy > 0) {
2805
if (copy > len)
2806
copy = len;
2807
sg_set_buf(sg, skb->data + offset, copy);
2808
elt++;
2809
if ((len -= copy) == 0)
2810
return elt;
2811
offset += copy;
2812
}
2813
2814
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2815
int end;
2816
2817
WARN_ON(start > offset + len);
2818
2819
end = start + skb_shinfo(skb)->frags[i].size;
2820
if ((copy = end - offset) > 0) {
2821
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2822
2823
if (copy > len)
2824
copy = len;
2825
sg_set_page(&sg[elt], frag->page, copy,
2826
frag->page_offset+offset-start);
2827
elt++;
2828
if (!(len -= copy))
2829
return elt;
2830
offset += copy;
2831
}
2832
start = end;
2833
}
2834
2835
skb_walk_frags(skb, frag_iter) {
2836
int end;
2837
2838
WARN_ON(start > offset + len);
2839
2840
end = start + frag_iter->len;
2841
if ((copy = end - offset) > 0) {
2842
if (copy > len)
2843
copy = len;
2844
elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
2845
copy);
2846
if ((len -= copy) == 0)
2847
return elt;
2848
offset += copy;
2849
}
2850
start = end;
2851
}
2852
BUG_ON(len);
2853
return elt;
2854
}
2855
2856
int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2857
{
2858
int nsg = __skb_to_sgvec(skb, sg, offset, len);
2859
2860
sg_mark_end(&sg[nsg - 1]);
2861
2862
return nsg;
2863
}
2864
EXPORT_SYMBOL_GPL(skb_to_sgvec);
2865
2866
/**
2867
* skb_cow_data - Check that a socket buffer's data buffers are writable
2868
* @skb: The socket buffer to check.
2869
* @tailbits: Amount of trailing space to be added
2870
* @trailer: Returned pointer to the skb where the @tailbits space begins
2871
*
2872
* Make sure that the data buffers attached to a socket buffer are
2873
* writable. If they are not, private copies are made of the data buffers
2874
* and the socket buffer is set to use these instead.
2875
*
2876
* If @tailbits is given, make sure that there is space to write @tailbits
2877
* bytes of data beyond current end of socket buffer. @trailer will be
2878
* set to point to the skb in which this space begins.
2879
*
2880
* The number of scatterlist elements required to completely map the
2881
* COW'd and extended socket buffer will be returned.
2882
*/
2883
int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2884
{
2885
int copyflag;
2886
int elt;
2887
struct sk_buff *skb1, **skb_p;
2888
2889
/* If skb is cloned or its head is paged, reallocate
2890
* head pulling out all the pages (pages are considered not writable
2891
* at the moment even if they are anonymous).
2892
*/
2893
if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2894
__pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2895
return -ENOMEM;
2896
2897
/* Easy case. Most of packets will go this way. */
2898
if (!skb_has_frag_list(skb)) {
2899
/* A little of trouble, not enough of space for trailer.
2900
* This should not happen, when stack is tuned to generate
2901
* good frames. OK, on miss we reallocate and reserve even more
2902
* space, 128 bytes is fair. */
2903
2904
if (skb_tailroom(skb) < tailbits &&
2905
pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2906
return -ENOMEM;
2907
2908
/* Voila! */
2909
*trailer = skb;
2910
return 1;
2911
}
2912
2913
/* Misery. We are in troubles, going to mincer fragments... */
2914
2915
elt = 1;
2916
skb_p = &skb_shinfo(skb)->frag_list;
2917
copyflag = 0;
2918
2919
while ((skb1 = *skb_p) != NULL) {
2920
int ntail = 0;
2921
2922
/* The fragment is partially pulled by someone,
2923
* this can happen on input. Copy it and everything
2924
* after it. */
2925
2926
if (skb_shared(skb1))
2927
copyflag = 1;
2928
2929
/* If the skb is the last, worry about trailer. */
2930
2931
if (skb1->next == NULL && tailbits) {
2932
if (skb_shinfo(skb1)->nr_frags ||
2933
skb_has_frag_list(skb1) ||
2934
skb_tailroom(skb1) < tailbits)
2935
ntail = tailbits + 128;
2936
}
2937
2938
if (copyflag ||
2939
skb_cloned(skb1) ||
2940
ntail ||
2941
skb_shinfo(skb1)->nr_frags ||
2942
skb_has_frag_list(skb1)) {
2943
struct sk_buff *skb2;
2944
2945
/* Fuck, we are miserable poor guys... */
2946
if (ntail == 0)
2947
skb2 = skb_copy(skb1, GFP_ATOMIC);
2948
else
2949
skb2 = skb_copy_expand(skb1,
2950
skb_headroom(skb1),
2951
ntail,
2952
GFP_ATOMIC);
2953
if (unlikely(skb2 == NULL))
2954
return -ENOMEM;
2955
2956
if (skb1->sk)
2957
skb_set_owner_w(skb2, skb1->sk);
2958
2959
/* Looking around. Are we still alive?
2960
* OK, link new skb, drop old one */
2961
2962
skb2->next = skb1->next;
2963
*skb_p = skb2;
2964
kfree_skb(skb1);
2965
skb1 = skb2;
2966
}
2967
elt++;
2968
*trailer = skb1;
2969
skb_p = &skb1->next;
2970
}
2971
2972
return elt;
2973
}
2974
EXPORT_SYMBOL_GPL(skb_cow_data);
2975
2976
static void sock_rmem_free(struct sk_buff *skb)
2977
{
2978
struct sock *sk = skb->sk;
2979
2980
atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
2981
}
2982
2983
/*
2984
* Note: We dont mem charge error packets (no sk_forward_alloc changes)
2985
*/
2986
int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
2987
{
2988
if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
2989
(unsigned)sk->sk_rcvbuf)
2990
return -ENOMEM;
2991
2992
skb_orphan(skb);
2993
skb->sk = sk;
2994
skb->destructor = sock_rmem_free;
2995
atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2996
2997
/* before exiting rcu section, make sure dst is refcounted */
2998
skb_dst_force(skb);
2999
3000
skb_queue_tail(&sk->sk_error_queue, skb);
3001
if (!sock_flag(sk, SOCK_DEAD))
3002
sk->sk_data_ready(sk, skb->len);
3003
return 0;
3004
}
3005
EXPORT_SYMBOL(sock_queue_err_skb);
3006
3007
void skb_tstamp_tx(struct sk_buff *orig_skb,
3008
struct skb_shared_hwtstamps *hwtstamps)
3009
{
3010
struct sock *sk = orig_skb->sk;
3011
struct sock_exterr_skb *serr;
3012
struct sk_buff *skb;
3013
int err;
3014
3015
if (!sk)
3016
return;
3017
3018
skb = skb_clone(orig_skb, GFP_ATOMIC);
3019
if (!skb)
3020
return;
3021
3022
if (hwtstamps) {
3023
*skb_hwtstamps(skb) =
3024
*hwtstamps;
3025
} else {
3026
/*
3027
* no hardware time stamps available,
3028
* so keep the shared tx_flags and only
3029
* store software time stamp
3030
*/
3031
skb->tstamp = ktime_get_real();
3032
}
3033
3034
serr = SKB_EXT_ERR(skb);
3035
memset(serr, 0, sizeof(*serr));
3036
serr->ee.ee_errno = ENOMSG;
3037
serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3038
3039
err = sock_queue_err_skb(sk, skb);
3040
3041
if (err)
3042
kfree_skb(skb);
3043
}
3044
EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3045
3046
3047
/**
3048
* skb_partial_csum_set - set up and verify partial csum values for packet
3049
* @skb: the skb to set
3050
* @start: the number of bytes after skb->data to start checksumming.
3051
* @off: the offset from start to place the checksum.
3052
*
3053
* For untrusted partially-checksummed packets, we need to make sure the values
3054
* for skb->csum_start and skb->csum_offset are valid so we don't oops.
3055
*
3056
* This function checks and sets those values and skb->ip_summed: if this
3057
* returns false you should drop the packet.
3058
*/
3059
bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3060
{
3061
if (unlikely(start > skb_headlen(skb)) ||
3062
unlikely((int)start + off > skb_headlen(skb) - 2)) {
3063
if (net_ratelimit())
3064
printk(KERN_WARNING
3065
"bad partial csum: csum=%u/%u len=%u\n",
3066
start, off, skb_headlen(skb));
3067
return false;
3068
}
3069
skb->ip_summed = CHECKSUM_PARTIAL;
3070
skb->csum_start = skb_headroom(skb) + start;
3071
skb->csum_offset = off;
3072
return true;
3073
}
3074
EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3075
3076
void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3077
{
3078
if (net_ratelimit())
3079
pr_warning("%s: received packets cannot be forwarded"
3080
" while LRO is enabled\n", skb->dev->name);
3081
}
3082
EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3083
3084