Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/net/core/sock.c
15109 views
1
/*
2
* INET An implementation of the TCP/IP protocol suite for the LINUX
3
* operating system. INET is implemented using the BSD Socket
4
* interface as the means of communication with the user level.
5
*
6
* Generic socket support routines. Memory allocators, socket lock/release
7
* handler for protocols to use and generic option handler.
8
*
9
*
10
* Authors: Ross Biro
11
* Fred N. van Kempen, <[email protected]>
12
* Florian La Roche, <[email protected]>
13
* Alan Cox, <[email protected]>
14
*
15
* Fixes:
16
* Alan Cox : Numerous verify_area() problems
17
* Alan Cox : Connecting on a connecting socket
18
* now returns an error for tcp.
19
* Alan Cox : sock->protocol is set correctly.
20
* and is not sometimes left as 0.
21
* Alan Cox : connect handles icmp errors on a
22
* connect properly. Unfortunately there
23
* is a restart syscall nasty there. I
24
* can't match BSD without hacking the C
25
* library. Ideas urgently sought!
26
* Alan Cox : Disallow bind() to addresses that are
27
* not ours - especially broadcast ones!!
28
* Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29
* Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30
* instead they leave that for the DESTROY timer.
31
* Alan Cox : Clean up error flag in accept
32
* Alan Cox : TCP ack handling is buggy, the DESTROY timer
33
* was buggy. Put a remove_sock() in the handler
34
* for memory when we hit 0. Also altered the timer
35
* code. The ACK stuff can wait and needs major
36
* TCP layer surgery.
37
* Alan Cox : Fixed TCP ack bug, removed remove sock
38
* and fixed timer/inet_bh race.
39
* Alan Cox : Added zapped flag for TCP
40
* Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41
* Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42
* Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43
* Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44
* Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45
* Rick Sladkey : Relaxed UDP rules for matching packets.
46
* C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47
* Pauline Middelink : identd support
48
* Alan Cox : Fixed connect() taking signals I think.
49
* Alan Cox : SO_LINGER supported
50
* Alan Cox : Error reporting fixes
51
* Anonymous : inet_create tidied up (sk->reuse setting)
52
* Alan Cox : inet sockets don't set sk->type!
53
* Alan Cox : Split socket option code
54
* Alan Cox : Callbacks
55
* Alan Cox : Nagle flag for Charles & Johannes stuff
56
* Alex : Removed restriction on inet fioctl
57
* Alan Cox : Splitting INET from NET core
58
* Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59
* Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60
* Alan Cox : Split IP from generic code
61
* Alan Cox : New kfree_skbmem()
62
* Alan Cox : Make SO_DEBUG superuser only.
63
* Alan Cox : Allow anyone to clear SO_DEBUG
64
* (compatibility fix)
65
* Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66
* Alan Cox : Allocator for a socket is settable.
67
* Alan Cox : SO_ERROR includes soft errors.
68
* Alan Cox : Allow NULL arguments on some SO_ opts
69
* Alan Cox : Generic socket allocation to make hooks
70
* easier (suggested by Craig Metz).
71
* Michael Pall : SO_ERROR returns positive errno again
72
* Steve Whitehouse: Added default destructor to free
73
* protocol private data.
74
* Steve Whitehouse: Added various other default routines
75
* common to several socket families.
76
* Chris Evans : Call suser() check last on F_SETOWN
77
* Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78
* Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79
* Andi Kleen : Fix write_space callback
80
* Chris Evans : Security fixes - signedness again
81
* Arnaldo C. Melo : cleanups, use skb_queue_purge
82
*
83
* To Fix:
84
*
85
*
86
* This program is free software; you can redistribute it and/or
87
* modify it under the terms of the GNU General Public License
88
* as published by the Free Software Foundation; either version
89
* 2 of the License, or (at your option) any later version.
90
*/
91
92
#include <linux/capability.h>
93
#include <linux/errno.h>
94
#include <linux/types.h>
95
#include <linux/socket.h>
96
#include <linux/in.h>
97
#include <linux/kernel.h>
98
#include <linux/module.h>
99
#include <linux/proc_fs.h>
100
#include <linux/seq_file.h>
101
#include <linux/sched.h>
102
#include <linux/timer.h>
103
#include <linux/string.h>
104
#include <linux/sockios.h>
105
#include <linux/net.h>
106
#include <linux/mm.h>
107
#include <linux/slab.h>
108
#include <linux/interrupt.h>
109
#include <linux/poll.h>
110
#include <linux/tcp.h>
111
#include <linux/init.h>
112
#include <linux/highmem.h>
113
#include <linux/user_namespace.h>
114
115
#include <asm/uaccess.h>
116
#include <asm/system.h>
117
118
#include <linux/netdevice.h>
119
#include <net/protocol.h>
120
#include <linux/skbuff.h>
121
#include <net/net_namespace.h>
122
#include <net/request_sock.h>
123
#include <net/sock.h>
124
#include <linux/net_tstamp.h>
125
#include <net/xfrm.h>
126
#include <linux/ipsec.h>
127
#include <net/cls_cgroup.h>
128
129
#include <linux/filter.h>
130
131
#ifdef CONFIG_INET
132
#include <net/tcp.h>
133
#endif
134
135
/*
136
* Each address family might have different locking rules, so we have
137
* one slock key per address family:
138
*/
139
static struct lock_class_key af_family_keys[AF_MAX];
140
static struct lock_class_key af_family_slock_keys[AF_MAX];
141
142
/*
143
* Make lock validator output more readable. (we pre-construct these
144
* strings build-time, so that runtime initialization of socket
145
* locks is fast):
146
*/
147
static const char *const af_family_key_strings[AF_MAX+1] = {
148
"sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
149
"sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
150
"sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
151
"sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
152
"sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
153
"sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
154
"sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
155
"sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
156
"sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
157
"sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
158
"sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
159
"sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
160
"sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
161
"sk_lock-AF_MAX"
162
};
163
static const char *const af_family_slock_key_strings[AF_MAX+1] = {
164
"slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
165
"slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
166
"slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
167
"slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
168
"slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
169
"slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
170
"slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
171
"slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
172
"slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
173
"slock-27" , "slock-28" , "slock-AF_CAN" ,
174
"slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
175
"slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
176
"slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
177
"slock-AF_MAX"
178
};
179
static const char *const af_family_clock_key_strings[AF_MAX+1] = {
180
"clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
181
"clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
182
"clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
183
"clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
184
"clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
185
"clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
186
"clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
187
"clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
188
"clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
189
"clock-27" , "clock-28" , "clock-AF_CAN" ,
190
"clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
191
"clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
192
"clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
193
"clock-AF_MAX"
194
};
195
196
/*
197
* sk_callback_lock locking rules are per-address-family,
198
* so split the lock classes by using a per-AF key:
199
*/
200
static struct lock_class_key af_callback_keys[AF_MAX];
201
202
/* Take into consideration the size of the struct sk_buff overhead in the
203
* determination of these values, since that is non-constant across
204
* platforms. This makes socket queueing behavior and performance
205
* not depend upon such differences.
206
*/
207
#define _SK_MEM_PACKETS 256
208
#define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
209
#define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
210
#define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
211
212
/* Run time adjustable parameters. */
213
__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
214
__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
215
__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
216
__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
217
218
/* Maximal space eaten by iovec or ancillary data plus some space */
219
int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
220
EXPORT_SYMBOL(sysctl_optmem_max);
221
222
#if defined(CONFIG_CGROUPS) && !defined(CONFIG_NET_CLS_CGROUP)
223
int net_cls_subsys_id = -1;
224
EXPORT_SYMBOL_GPL(net_cls_subsys_id);
225
#endif
226
227
static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
228
{
229
struct timeval tv;
230
231
if (optlen < sizeof(tv))
232
return -EINVAL;
233
if (copy_from_user(&tv, optval, sizeof(tv)))
234
return -EFAULT;
235
if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
236
return -EDOM;
237
238
if (tv.tv_sec < 0) {
239
static int warned __read_mostly;
240
241
*timeo_p = 0;
242
if (warned < 10 && net_ratelimit()) {
243
warned++;
244
printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
245
"tries to set negative timeout\n",
246
current->comm, task_pid_nr(current));
247
}
248
return 0;
249
}
250
*timeo_p = MAX_SCHEDULE_TIMEOUT;
251
if (tv.tv_sec == 0 && tv.tv_usec == 0)
252
return 0;
253
if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
254
*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
255
return 0;
256
}
257
258
static void sock_warn_obsolete_bsdism(const char *name)
259
{
260
static int warned;
261
static char warncomm[TASK_COMM_LEN];
262
if (strcmp(warncomm, current->comm) && warned < 5) {
263
strcpy(warncomm, current->comm);
264
printk(KERN_WARNING "process `%s' is using obsolete "
265
"%s SO_BSDCOMPAT\n", warncomm, name);
266
warned++;
267
}
268
}
269
270
static void sock_disable_timestamp(struct sock *sk, int flag)
271
{
272
if (sock_flag(sk, flag)) {
273
sock_reset_flag(sk, flag);
274
if (!sock_flag(sk, SOCK_TIMESTAMP) &&
275
!sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
276
net_disable_timestamp();
277
}
278
}
279
}
280
281
282
int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
283
{
284
int err;
285
int skb_len;
286
unsigned long flags;
287
struct sk_buff_head *list = &sk->sk_receive_queue;
288
289
/* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
290
number of warnings when compiling with -W --ANK
291
*/
292
if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
293
(unsigned)sk->sk_rcvbuf) {
294
atomic_inc(&sk->sk_drops);
295
return -ENOMEM;
296
}
297
298
err = sk_filter(sk, skb);
299
if (err)
300
return err;
301
302
if (!sk_rmem_schedule(sk, skb->truesize)) {
303
atomic_inc(&sk->sk_drops);
304
return -ENOBUFS;
305
}
306
307
skb->dev = NULL;
308
skb_set_owner_r(skb, sk);
309
310
/* Cache the SKB length before we tack it onto the receive
311
* queue. Once it is added it no longer belongs to us and
312
* may be freed by other threads of control pulling packets
313
* from the queue.
314
*/
315
skb_len = skb->len;
316
317
/* we escape from rcu protected region, make sure we dont leak
318
* a norefcounted dst
319
*/
320
skb_dst_force(skb);
321
322
spin_lock_irqsave(&list->lock, flags);
323
skb->dropcount = atomic_read(&sk->sk_drops);
324
__skb_queue_tail(list, skb);
325
spin_unlock_irqrestore(&list->lock, flags);
326
327
if (!sock_flag(sk, SOCK_DEAD))
328
sk->sk_data_ready(sk, skb_len);
329
return 0;
330
}
331
EXPORT_SYMBOL(sock_queue_rcv_skb);
332
333
int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
334
{
335
int rc = NET_RX_SUCCESS;
336
337
if (sk_filter(sk, skb))
338
goto discard_and_relse;
339
340
skb->dev = NULL;
341
342
if (sk_rcvqueues_full(sk, skb)) {
343
atomic_inc(&sk->sk_drops);
344
goto discard_and_relse;
345
}
346
if (nested)
347
bh_lock_sock_nested(sk);
348
else
349
bh_lock_sock(sk);
350
if (!sock_owned_by_user(sk)) {
351
/*
352
* trylock + unlock semantics:
353
*/
354
mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
355
356
rc = sk_backlog_rcv(sk, skb);
357
358
mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
359
} else if (sk_add_backlog(sk, skb)) {
360
bh_unlock_sock(sk);
361
atomic_inc(&sk->sk_drops);
362
goto discard_and_relse;
363
}
364
365
bh_unlock_sock(sk);
366
out:
367
sock_put(sk);
368
return rc;
369
discard_and_relse:
370
kfree_skb(skb);
371
goto out;
372
}
373
EXPORT_SYMBOL(sk_receive_skb);
374
375
void sk_reset_txq(struct sock *sk)
376
{
377
sk_tx_queue_clear(sk);
378
}
379
EXPORT_SYMBOL(sk_reset_txq);
380
381
struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
382
{
383
struct dst_entry *dst = __sk_dst_get(sk);
384
385
if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
386
sk_tx_queue_clear(sk);
387
rcu_assign_pointer(sk->sk_dst_cache, NULL);
388
dst_release(dst);
389
return NULL;
390
}
391
392
return dst;
393
}
394
EXPORT_SYMBOL(__sk_dst_check);
395
396
struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
397
{
398
struct dst_entry *dst = sk_dst_get(sk);
399
400
if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
401
sk_dst_reset(sk);
402
dst_release(dst);
403
return NULL;
404
}
405
406
return dst;
407
}
408
EXPORT_SYMBOL(sk_dst_check);
409
410
static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
411
{
412
int ret = -ENOPROTOOPT;
413
#ifdef CONFIG_NETDEVICES
414
struct net *net = sock_net(sk);
415
char devname[IFNAMSIZ];
416
int index;
417
418
/* Sorry... */
419
ret = -EPERM;
420
if (!capable(CAP_NET_RAW))
421
goto out;
422
423
ret = -EINVAL;
424
if (optlen < 0)
425
goto out;
426
427
/* Bind this socket to a particular device like "eth0",
428
* as specified in the passed interface name. If the
429
* name is "" or the option length is zero the socket
430
* is not bound.
431
*/
432
if (optlen > IFNAMSIZ - 1)
433
optlen = IFNAMSIZ - 1;
434
memset(devname, 0, sizeof(devname));
435
436
ret = -EFAULT;
437
if (copy_from_user(devname, optval, optlen))
438
goto out;
439
440
index = 0;
441
if (devname[0] != '\0') {
442
struct net_device *dev;
443
444
rcu_read_lock();
445
dev = dev_get_by_name_rcu(net, devname);
446
if (dev)
447
index = dev->ifindex;
448
rcu_read_unlock();
449
ret = -ENODEV;
450
if (!dev)
451
goto out;
452
}
453
454
lock_sock(sk);
455
sk->sk_bound_dev_if = index;
456
sk_dst_reset(sk);
457
release_sock(sk);
458
459
ret = 0;
460
461
out:
462
#endif
463
464
return ret;
465
}
466
467
static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
468
{
469
if (valbool)
470
sock_set_flag(sk, bit);
471
else
472
sock_reset_flag(sk, bit);
473
}
474
475
/*
476
* This is meant for all protocols to use and covers goings on
477
* at the socket level. Everything here is generic.
478
*/
479
480
int sock_setsockopt(struct socket *sock, int level, int optname,
481
char __user *optval, unsigned int optlen)
482
{
483
struct sock *sk = sock->sk;
484
int val;
485
int valbool;
486
struct linger ling;
487
int ret = 0;
488
489
/*
490
* Options without arguments
491
*/
492
493
if (optname == SO_BINDTODEVICE)
494
return sock_bindtodevice(sk, optval, optlen);
495
496
if (optlen < sizeof(int))
497
return -EINVAL;
498
499
if (get_user(val, (int __user *)optval))
500
return -EFAULT;
501
502
valbool = val ? 1 : 0;
503
504
lock_sock(sk);
505
506
switch (optname) {
507
case SO_DEBUG:
508
if (val && !capable(CAP_NET_ADMIN))
509
ret = -EACCES;
510
else
511
sock_valbool_flag(sk, SOCK_DBG, valbool);
512
break;
513
case SO_REUSEADDR:
514
sk->sk_reuse = valbool;
515
break;
516
case SO_TYPE:
517
case SO_PROTOCOL:
518
case SO_DOMAIN:
519
case SO_ERROR:
520
ret = -ENOPROTOOPT;
521
break;
522
case SO_DONTROUTE:
523
sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
524
break;
525
case SO_BROADCAST:
526
sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
527
break;
528
case SO_SNDBUF:
529
/* Don't error on this BSD doesn't and if you think
530
about it this is right. Otherwise apps have to
531
play 'guess the biggest size' games. RCVBUF/SNDBUF
532
are treated in BSD as hints */
533
534
if (val > sysctl_wmem_max)
535
val = sysctl_wmem_max;
536
set_sndbuf:
537
sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
538
if ((val * 2) < SOCK_MIN_SNDBUF)
539
sk->sk_sndbuf = SOCK_MIN_SNDBUF;
540
else
541
sk->sk_sndbuf = val * 2;
542
543
/*
544
* Wake up sending tasks if we
545
* upped the value.
546
*/
547
sk->sk_write_space(sk);
548
break;
549
550
case SO_SNDBUFFORCE:
551
if (!capable(CAP_NET_ADMIN)) {
552
ret = -EPERM;
553
break;
554
}
555
goto set_sndbuf;
556
557
case SO_RCVBUF:
558
/* Don't error on this BSD doesn't and if you think
559
about it this is right. Otherwise apps have to
560
play 'guess the biggest size' games. RCVBUF/SNDBUF
561
are treated in BSD as hints */
562
563
if (val > sysctl_rmem_max)
564
val = sysctl_rmem_max;
565
set_rcvbuf:
566
sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
567
/*
568
* We double it on the way in to account for
569
* "struct sk_buff" etc. overhead. Applications
570
* assume that the SO_RCVBUF setting they make will
571
* allow that much actual data to be received on that
572
* socket.
573
*
574
* Applications are unaware that "struct sk_buff" and
575
* other overheads allocate from the receive buffer
576
* during socket buffer allocation.
577
*
578
* And after considering the possible alternatives,
579
* returning the value we actually used in getsockopt
580
* is the most desirable behavior.
581
*/
582
if ((val * 2) < SOCK_MIN_RCVBUF)
583
sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
584
else
585
sk->sk_rcvbuf = val * 2;
586
break;
587
588
case SO_RCVBUFFORCE:
589
if (!capable(CAP_NET_ADMIN)) {
590
ret = -EPERM;
591
break;
592
}
593
goto set_rcvbuf;
594
595
case SO_KEEPALIVE:
596
#ifdef CONFIG_INET
597
if (sk->sk_protocol == IPPROTO_TCP)
598
tcp_set_keepalive(sk, valbool);
599
#endif
600
sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
601
break;
602
603
case SO_OOBINLINE:
604
sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
605
break;
606
607
case SO_NO_CHECK:
608
sk->sk_no_check = valbool;
609
break;
610
611
case SO_PRIORITY:
612
if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
613
sk->sk_priority = val;
614
else
615
ret = -EPERM;
616
break;
617
618
case SO_LINGER:
619
if (optlen < sizeof(ling)) {
620
ret = -EINVAL; /* 1003.1g */
621
break;
622
}
623
if (copy_from_user(&ling, optval, sizeof(ling))) {
624
ret = -EFAULT;
625
break;
626
}
627
if (!ling.l_onoff)
628
sock_reset_flag(sk, SOCK_LINGER);
629
else {
630
#if (BITS_PER_LONG == 32)
631
if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
632
sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
633
else
634
#endif
635
sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
636
sock_set_flag(sk, SOCK_LINGER);
637
}
638
break;
639
640
case SO_BSDCOMPAT:
641
sock_warn_obsolete_bsdism("setsockopt");
642
break;
643
644
case SO_PASSCRED:
645
if (valbool)
646
set_bit(SOCK_PASSCRED, &sock->flags);
647
else
648
clear_bit(SOCK_PASSCRED, &sock->flags);
649
break;
650
651
case SO_TIMESTAMP:
652
case SO_TIMESTAMPNS:
653
if (valbool) {
654
if (optname == SO_TIMESTAMP)
655
sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
656
else
657
sock_set_flag(sk, SOCK_RCVTSTAMPNS);
658
sock_set_flag(sk, SOCK_RCVTSTAMP);
659
sock_enable_timestamp(sk, SOCK_TIMESTAMP);
660
} else {
661
sock_reset_flag(sk, SOCK_RCVTSTAMP);
662
sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
663
}
664
break;
665
666
case SO_TIMESTAMPING:
667
if (val & ~SOF_TIMESTAMPING_MASK) {
668
ret = -EINVAL;
669
break;
670
}
671
sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
672
val & SOF_TIMESTAMPING_TX_HARDWARE);
673
sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
674
val & SOF_TIMESTAMPING_TX_SOFTWARE);
675
sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
676
val & SOF_TIMESTAMPING_RX_HARDWARE);
677
if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
678
sock_enable_timestamp(sk,
679
SOCK_TIMESTAMPING_RX_SOFTWARE);
680
else
681
sock_disable_timestamp(sk,
682
SOCK_TIMESTAMPING_RX_SOFTWARE);
683
sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
684
val & SOF_TIMESTAMPING_SOFTWARE);
685
sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
686
val & SOF_TIMESTAMPING_SYS_HARDWARE);
687
sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
688
val & SOF_TIMESTAMPING_RAW_HARDWARE);
689
break;
690
691
case SO_RCVLOWAT:
692
if (val < 0)
693
val = INT_MAX;
694
sk->sk_rcvlowat = val ? : 1;
695
break;
696
697
case SO_RCVTIMEO:
698
ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
699
break;
700
701
case SO_SNDTIMEO:
702
ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
703
break;
704
705
case SO_ATTACH_FILTER:
706
ret = -EINVAL;
707
if (optlen == sizeof(struct sock_fprog)) {
708
struct sock_fprog fprog;
709
710
ret = -EFAULT;
711
if (copy_from_user(&fprog, optval, sizeof(fprog)))
712
break;
713
714
ret = sk_attach_filter(&fprog, sk);
715
}
716
break;
717
718
case SO_DETACH_FILTER:
719
ret = sk_detach_filter(sk);
720
break;
721
722
case SO_PASSSEC:
723
if (valbool)
724
set_bit(SOCK_PASSSEC, &sock->flags);
725
else
726
clear_bit(SOCK_PASSSEC, &sock->flags);
727
break;
728
case SO_MARK:
729
if (!capable(CAP_NET_ADMIN))
730
ret = -EPERM;
731
else
732
sk->sk_mark = val;
733
break;
734
735
/* We implement the SO_SNDLOWAT etc to
736
not be settable (1003.1g 5.3) */
737
case SO_RXQ_OVFL:
738
if (valbool)
739
sock_set_flag(sk, SOCK_RXQ_OVFL);
740
else
741
sock_reset_flag(sk, SOCK_RXQ_OVFL);
742
break;
743
default:
744
ret = -ENOPROTOOPT;
745
break;
746
}
747
release_sock(sk);
748
return ret;
749
}
750
EXPORT_SYMBOL(sock_setsockopt);
751
752
753
void cred_to_ucred(struct pid *pid, const struct cred *cred,
754
struct ucred *ucred)
755
{
756
ucred->pid = pid_vnr(pid);
757
ucred->uid = ucred->gid = -1;
758
if (cred) {
759
struct user_namespace *current_ns = current_user_ns();
760
761
ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
762
ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
763
}
764
}
765
EXPORT_SYMBOL_GPL(cred_to_ucred);
766
767
int sock_getsockopt(struct socket *sock, int level, int optname,
768
char __user *optval, int __user *optlen)
769
{
770
struct sock *sk = sock->sk;
771
772
union {
773
int val;
774
struct linger ling;
775
struct timeval tm;
776
} v;
777
778
int lv = sizeof(int);
779
int len;
780
781
if (get_user(len, optlen))
782
return -EFAULT;
783
if (len < 0)
784
return -EINVAL;
785
786
memset(&v, 0, sizeof(v));
787
788
switch (optname) {
789
case SO_DEBUG:
790
v.val = sock_flag(sk, SOCK_DBG);
791
break;
792
793
case SO_DONTROUTE:
794
v.val = sock_flag(sk, SOCK_LOCALROUTE);
795
break;
796
797
case SO_BROADCAST:
798
v.val = !!sock_flag(sk, SOCK_BROADCAST);
799
break;
800
801
case SO_SNDBUF:
802
v.val = sk->sk_sndbuf;
803
break;
804
805
case SO_RCVBUF:
806
v.val = sk->sk_rcvbuf;
807
break;
808
809
case SO_REUSEADDR:
810
v.val = sk->sk_reuse;
811
break;
812
813
case SO_KEEPALIVE:
814
v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
815
break;
816
817
case SO_TYPE:
818
v.val = sk->sk_type;
819
break;
820
821
case SO_PROTOCOL:
822
v.val = sk->sk_protocol;
823
break;
824
825
case SO_DOMAIN:
826
v.val = sk->sk_family;
827
break;
828
829
case SO_ERROR:
830
v.val = -sock_error(sk);
831
if (v.val == 0)
832
v.val = xchg(&sk->sk_err_soft, 0);
833
break;
834
835
case SO_OOBINLINE:
836
v.val = !!sock_flag(sk, SOCK_URGINLINE);
837
break;
838
839
case SO_NO_CHECK:
840
v.val = sk->sk_no_check;
841
break;
842
843
case SO_PRIORITY:
844
v.val = sk->sk_priority;
845
break;
846
847
case SO_LINGER:
848
lv = sizeof(v.ling);
849
v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
850
v.ling.l_linger = sk->sk_lingertime / HZ;
851
break;
852
853
case SO_BSDCOMPAT:
854
sock_warn_obsolete_bsdism("getsockopt");
855
break;
856
857
case SO_TIMESTAMP:
858
v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
859
!sock_flag(sk, SOCK_RCVTSTAMPNS);
860
break;
861
862
case SO_TIMESTAMPNS:
863
v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
864
break;
865
866
case SO_TIMESTAMPING:
867
v.val = 0;
868
if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
869
v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
870
if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
871
v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
872
if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
873
v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
874
if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
875
v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
876
if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
877
v.val |= SOF_TIMESTAMPING_SOFTWARE;
878
if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
879
v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
880
if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
881
v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
882
break;
883
884
case SO_RCVTIMEO:
885
lv = sizeof(struct timeval);
886
if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
887
v.tm.tv_sec = 0;
888
v.tm.tv_usec = 0;
889
} else {
890
v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
891
v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
892
}
893
break;
894
895
case SO_SNDTIMEO:
896
lv = sizeof(struct timeval);
897
if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
898
v.tm.tv_sec = 0;
899
v.tm.tv_usec = 0;
900
} else {
901
v.tm.tv_sec = sk->sk_sndtimeo / HZ;
902
v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
903
}
904
break;
905
906
case SO_RCVLOWAT:
907
v.val = sk->sk_rcvlowat;
908
break;
909
910
case SO_SNDLOWAT:
911
v.val = 1;
912
break;
913
914
case SO_PASSCRED:
915
v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
916
break;
917
918
case SO_PEERCRED:
919
{
920
struct ucred peercred;
921
if (len > sizeof(peercred))
922
len = sizeof(peercred);
923
cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
924
if (copy_to_user(optval, &peercred, len))
925
return -EFAULT;
926
goto lenout;
927
}
928
929
case SO_PEERNAME:
930
{
931
char address[128];
932
933
if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
934
return -ENOTCONN;
935
if (lv < len)
936
return -EINVAL;
937
if (copy_to_user(optval, address, len))
938
return -EFAULT;
939
goto lenout;
940
}
941
942
/* Dubious BSD thing... Probably nobody even uses it, but
943
* the UNIX standard wants it for whatever reason... -DaveM
944
*/
945
case SO_ACCEPTCONN:
946
v.val = sk->sk_state == TCP_LISTEN;
947
break;
948
949
case SO_PASSSEC:
950
v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
951
break;
952
953
case SO_PEERSEC:
954
return security_socket_getpeersec_stream(sock, optval, optlen, len);
955
956
case SO_MARK:
957
v.val = sk->sk_mark;
958
break;
959
960
case SO_RXQ_OVFL:
961
v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
962
break;
963
964
default:
965
return -ENOPROTOOPT;
966
}
967
968
if (len > lv)
969
len = lv;
970
if (copy_to_user(optval, &v, len))
971
return -EFAULT;
972
lenout:
973
if (put_user(len, optlen))
974
return -EFAULT;
975
return 0;
976
}
977
978
/*
979
* Initialize an sk_lock.
980
*
981
* (We also register the sk_lock with the lock validator.)
982
*/
983
static inline void sock_lock_init(struct sock *sk)
984
{
985
sock_lock_init_class_and_name(sk,
986
af_family_slock_key_strings[sk->sk_family],
987
af_family_slock_keys + sk->sk_family,
988
af_family_key_strings[sk->sk_family],
989
af_family_keys + sk->sk_family);
990
}
991
992
/*
993
* Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
994
* even temporarly, because of RCU lookups. sk_node should also be left as is.
995
* We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
996
*/
997
static void sock_copy(struct sock *nsk, const struct sock *osk)
998
{
999
#ifdef CONFIG_SECURITY_NETWORK
1000
void *sptr = nsk->sk_security;
1001
#endif
1002
memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1003
1004
memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1005
osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1006
1007
#ifdef CONFIG_SECURITY_NETWORK
1008
nsk->sk_security = sptr;
1009
security_sk_clone(osk, nsk);
1010
#endif
1011
}
1012
1013
/*
1014
* caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1015
* un-modified. Special care is taken when initializing object to zero.
1016
*/
1017
static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1018
{
1019
if (offsetof(struct sock, sk_node.next) != 0)
1020
memset(sk, 0, offsetof(struct sock, sk_node.next));
1021
memset(&sk->sk_node.pprev, 0,
1022
size - offsetof(struct sock, sk_node.pprev));
1023
}
1024
1025
void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1026
{
1027
unsigned long nulls1, nulls2;
1028
1029
nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1030
nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1031
if (nulls1 > nulls2)
1032
swap(nulls1, nulls2);
1033
1034
if (nulls1 != 0)
1035
memset((char *)sk, 0, nulls1);
1036
memset((char *)sk + nulls1 + sizeof(void *), 0,
1037
nulls2 - nulls1 - sizeof(void *));
1038
memset((char *)sk + nulls2 + sizeof(void *), 0,
1039
size - nulls2 - sizeof(void *));
1040
}
1041
EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1042
1043
static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1044
int family)
1045
{
1046
struct sock *sk;
1047
struct kmem_cache *slab;
1048
1049
slab = prot->slab;
1050
if (slab != NULL) {
1051
sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1052
if (!sk)
1053
return sk;
1054
if (priority & __GFP_ZERO) {
1055
if (prot->clear_sk)
1056
prot->clear_sk(sk, prot->obj_size);
1057
else
1058
sk_prot_clear_nulls(sk, prot->obj_size);
1059
}
1060
} else
1061
sk = kmalloc(prot->obj_size, priority);
1062
1063
if (sk != NULL) {
1064
kmemcheck_annotate_bitfield(sk, flags);
1065
1066
if (security_sk_alloc(sk, family, priority))
1067
goto out_free;
1068
1069
if (!try_module_get(prot->owner))
1070
goto out_free_sec;
1071
sk_tx_queue_clear(sk);
1072
}
1073
1074
return sk;
1075
1076
out_free_sec:
1077
security_sk_free(sk);
1078
out_free:
1079
if (slab != NULL)
1080
kmem_cache_free(slab, sk);
1081
else
1082
kfree(sk);
1083
return NULL;
1084
}
1085
1086
static void sk_prot_free(struct proto *prot, struct sock *sk)
1087
{
1088
struct kmem_cache *slab;
1089
struct module *owner;
1090
1091
owner = prot->owner;
1092
slab = prot->slab;
1093
1094
security_sk_free(sk);
1095
if (slab != NULL)
1096
kmem_cache_free(slab, sk);
1097
else
1098
kfree(sk);
1099
module_put(owner);
1100
}
1101
1102
#ifdef CONFIG_CGROUPS
1103
void sock_update_classid(struct sock *sk)
1104
{
1105
u32 classid;
1106
1107
rcu_read_lock(); /* doing current task, which cannot vanish. */
1108
classid = task_cls_classid(current);
1109
rcu_read_unlock();
1110
if (classid && classid != sk->sk_classid)
1111
sk->sk_classid = classid;
1112
}
1113
EXPORT_SYMBOL(sock_update_classid);
1114
#endif
1115
1116
/**
1117
* sk_alloc - All socket objects are allocated here
1118
* @net: the applicable net namespace
1119
* @family: protocol family
1120
* @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1121
* @prot: struct proto associated with this new sock instance
1122
*/
1123
struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1124
struct proto *prot)
1125
{
1126
struct sock *sk;
1127
1128
sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1129
if (sk) {
1130
sk->sk_family = family;
1131
/*
1132
* See comment in struct sock definition to understand
1133
* why we need sk_prot_creator -acme
1134
*/
1135
sk->sk_prot = sk->sk_prot_creator = prot;
1136
sock_lock_init(sk);
1137
sock_net_set(sk, get_net(net));
1138
atomic_set(&sk->sk_wmem_alloc, 1);
1139
1140
sock_update_classid(sk);
1141
}
1142
1143
return sk;
1144
}
1145
EXPORT_SYMBOL(sk_alloc);
1146
1147
static void __sk_free(struct sock *sk)
1148
{
1149
struct sk_filter *filter;
1150
1151
if (sk->sk_destruct)
1152
sk->sk_destruct(sk);
1153
1154
filter = rcu_dereference_check(sk->sk_filter,
1155
atomic_read(&sk->sk_wmem_alloc) == 0);
1156
if (filter) {
1157
sk_filter_uncharge(sk, filter);
1158
rcu_assign_pointer(sk->sk_filter, NULL);
1159
}
1160
1161
sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1162
sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1163
1164
if (atomic_read(&sk->sk_omem_alloc))
1165
printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1166
__func__, atomic_read(&sk->sk_omem_alloc));
1167
1168
if (sk->sk_peer_cred)
1169
put_cred(sk->sk_peer_cred);
1170
put_pid(sk->sk_peer_pid);
1171
put_net(sock_net(sk));
1172
sk_prot_free(sk->sk_prot_creator, sk);
1173
}
1174
1175
void sk_free(struct sock *sk)
1176
{
1177
/*
1178
* We subtract one from sk_wmem_alloc and can know if
1179
* some packets are still in some tx queue.
1180
* If not null, sock_wfree() will call __sk_free(sk) later
1181
*/
1182
if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1183
__sk_free(sk);
1184
}
1185
EXPORT_SYMBOL(sk_free);
1186
1187
/*
1188
* Last sock_put should drop reference to sk->sk_net. It has already
1189
* been dropped in sk_change_net. Taking reference to stopping namespace
1190
* is not an option.
1191
* Take reference to a socket to remove it from hash _alive_ and after that
1192
* destroy it in the context of init_net.
1193
*/
1194
void sk_release_kernel(struct sock *sk)
1195
{
1196
if (sk == NULL || sk->sk_socket == NULL)
1197
return;
1198
1199
sock_hold(sk);
1200
sock_release(sk->sk_socket);
1201
release_net(sock_net(sk));
1202
sock_net_set(sk, get_net(&init_net));
1203
sock_put(sk);
1204
}
1205
EXPORT_SYMBOL(sk_release_kernel);
1206
1207
struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1208
{
1209
struct sock *newsk;
1210
1211
newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1212
if (newsk != NULL) {
1213
struct sk_filter *filter;
1214
1215
sock_copy(newsk, sk);
1216
1217
/* SANITY */
1218
get_net(sock_net(newsk));
1219
sk_node_init(&newsk->sk_node);
1220
sock_lock_init(newsk);
1221
bh_lock_sock(newsk);
1222
newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1223
newsk->sk_backlog.len = 0;
1224
1225
atomic_set(&newsk->sk_rmem_alloc, 0);
1226
/*
1227
* sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1228
*/
1229
atomic_set(&newsk->sk_wmem_alloc, 1);
1230
atomic_set(&newsk->sk_omem_alloc, 0);
1231
skb_queue_head_init(&newsk->sk_receive_queue);
1232
skb_queue_head_init(&newsk->sk_write_queue);
1233
#ifdef CONFIG_NET_DMA
1234
skb_queue_head_init(&newsk->sk_async_wait_queue);
1235
#endif
1236
1237
spin_lock_init(&newsk->sk_dst_lock);
1238
rwlock_init(&newsk->sk_callback_lock);
1239
lockdep_set_class_and_name(&newsk->sk_callback_lock,
1240
af_callback_keys + newsk->sk_family,
1241
af_family_clock_key_strings[newsk->sk_family]);
1242
1243
newsk->sk_dst_cache = NULL;
1244
newsk->sk_wmem_queued = 0;
1245
newsk->sk_forward_alloc = 0;
1246
newsk->sk_send_head = NULL;
1247
newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1248
1249
sock_reset_flag(newsk, SOCK_DONE);
1250
skb_queue_head_init(&newsk->sk_error_queue);
1251
1252
filter = rcu_dereference_protected(newsk->sk_filter, 1);
1253
if (filter != NULL)
1254
sk_filter_charge(newsk, filter);
1255
1256
if (unlikely(xfrm_sk_clone_policy(newsk))) {
1257
/* It is still raw copy of parent, so invalidate
1258
* destructor and make plain sk_free() */
1259
newsk->sk_destruct = NULL;
1260
sk_free(newsk);
1261
newsk = NULL;
1262
goto out;
1263
}
1264
1265
newsk->sk_err = 0;
1266
newsk->sk_priority = 0;
1267
/*
1268
* Before updating sk_refcnt, we must commit prior changes to memory
1269
* (Documentation/RCU/rculist_nulls.txt for details)
1270
*/
1271
smp_wmb();
1272
atomic_set(&newsk->sk_refcnt, 2);
1273
1274
/*
1275
* Increment the counter in the same struct proto as the master
1276
* sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1277
* is the same as sk->sk_prot->socks, as this field was copied
1278
* with memcpy).
1279
*
1280
* This _changes_ the previous behaviour, where
1281
* tcp_create_openreq_child always was incrementing the
1282
* equivalent to tcp_prot->socks (inet_sock_nr), so this have
1283
* to be taken into account in all callers. -acme
1284
*/
1285
sk_refcnt_debug_inc(newsk);
1286
sk_set_socket(newsk, NULL);
1287
newsk->sk_wq = NULL;
1288
1289
if (newsk->sk_prot->sockets_allocated)
1290
percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1291
1292
if (sock_flag(newsk, SOCK_TIMESTAMP) ||
1293
sock_flag(newsk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1294
net_enable_timestamp();
1295
}
1296
out:
1297
return newsk;
1298
}
1299
EXPORT_SYMBOL_GPL(sk_clone);
1300
1301
void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1302
{
1303
__sk_dst_set(sk, dst);
1304
sk->sk_route_caps = dst->dev->features;
1305
if (sk->sk_route_caps & NETIF_F_GSO)
1306
sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1307
sk->sk_route_caps &= ~sk->sk_route_nocaps;
1308
if (sk_can_gso(sk)) {
1309
if (dst->header_len) {
1310
sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1311
} else {
1312
sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1313
sk->sk_gso_max_size = dst->dev->gso_max_size;
1314
}
1315
}
1316
}
1317
EXPORT_SYMBOL_GPL(sk_setup_caps);
1318
1319
void __init sk_init(void)
1320
{
1321
if (totalram_pages <= 4096) {
1322
sysctl_wmem_max = 32767;
1323
sysctl_rmem_max = 32767;
1324
sysctl_wmem_default = 32767;
1325
sysctl_rmem_default = 32767;
1326
} else if (totalram_pages >= 131072) {
1327
sysctl_wmem_max = 131071;
1328
sysctl_rmem_max = 131071;
1329
}
1330
}
1331
1332
/*
1333
* Simple resource managers for sockets.
1334
*/
1335
1336
1337
/*
1338
* Write buffer destructor automatically called from kfree_skb.
1339
*/
1340
void sock_wfree(struct sk_buff *skb)
1341
{
1342
struct sock *sk = skb->sk;
1343
unsigned int len = skb->truesize;
1344
1345
if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1346
/*
1347
* Keep a reference on sk_wmem_alloc, this will be released
1348
* after sk_write_space() call
1349
*/
1350
atomic_sub(len - 1, &sk->sk_wmem_alloc);
1351
sk->sk_write_space(sk);
1352
len = 1;
1353
}
1354
/*
1355
* if sk_wmem_alloc reaches 0, we must finish what sk_free()
1356
* could not do because of in-flight packets
1357
*/
1358
if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1359
__sk_free(sk);
1360
}
1361
EXPORT_SYMBOL(sock_wfree);
1362
1363
/*
1364
* Read buffer destructor automatically called from kfree_skb.
1365
*/
1366
void sock_rfree(struct sk_buff *skb)
1367
{
1368
struct sock *sk = skb->sk;
1369
unsigned int len = skb->truesize;
1370
1371
atomic_sub(len, &sk->sk_rmem_alloc);
1372
sk_mem_uncharge(sk, len);
1373
}
1374
EXPORT_SYMBOL(sock_rfree);
1375
1376
1377
int sock_i_uid(struct sock *sk)
1378
{
1379
int uid;
1380
1381
read_lock_bh(&sk->sk_callback_lock);
1382
uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1383
read_unlock_bh(&sk->sk_callback_lock);
1384
return uid;
1385
}
1386
EXPORT_SYMBOL(sock_i_uid);
1387
1388
unsigned long sock_i_ino(struct sock *sk)
1389
{
1390
unsigned long ino;
1391
1392
read_lock_bh(&sk->sk_callback_lock);
1393
ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1394
read_unlock_bh(&sk->sk_callback_lock);
1395
return ino;
1396
}
1397
EXPORT_SYMBOL(sock_i_ino);
1398
1399
/*
1400
* Allocate a skb from the socket's send buffer.
1401
*/
1402
struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1403
gfp_t priority)
1404
{
1405
if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1406
struct sk_buff *skb = alloc_skb(size, priority);
1407
if (skb) {
1408
skb_set_owner_w(skb, sk);
1409
return skb;
1410
}
1411
}
1412
return NULL;
1413
}
1414
EXPORT_SYMBOL(sock_wmalloc);
1415
1416
/*
1417
* Allocate a skb from the socket's receive buffer.
1418
*/
1419
struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1420
gfp_t priority)
1421
{
1422
if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1423
struct sk_buff *skb = alloc_skb(size, priority);
1424
if (skb) {
1425
skb_set_owner_r(skb, sk);
1426
return skb;
1427
}
1428
}
1429
return NULL;
1430
}
1431
1432
/*
1433
* Allocate a memory block from the socket's option memory buffer.
1434
*/
1435
void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1436
{
1437
if ((unsigned)size <= sysctl_optmem_max &&
1438
atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1439
void *mem;
1440
/* First do the add, to avoid the race if kmalloc
1441
* might sleep.
1442
*/
1443
atomic_add(size, &sk->sk_omem_alloc);
1444
mem = kmalloc(size, priority);
1445
if (mem)
1446
return mem;
1447
atomic_sub(size, &sk->sk_omem_alloc);
1448
}
1449
return NULL;
1450
}
1451
EXPORT_SYMBOL(sock_kmalloc);
1452
1453
/*
1454
* Free an option memory block.
1455
*/
1456
void sock_kfree_s(struct sock *sk, void *mem, int size)
1457
{
1458
kfree(mem);
1459
atomic_sub(size, &sk->sk_omem_alloc);
1460
}
1461
EXPORT_SYMBOL(sock_kfree_s);
1462
1463
/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1464
I think, these locks should be removed for datagram sockets.
1465
*/
1466
static long sock_wait_for_wmem(struct sock *sk, long timeo)
1467
{
1468
DEFINE_WAIT(wait);
1469
1470
clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1471
for (;;) {
1472
if (!timeo)
1473
break;
1474
if (signal_pending(current))
1475
break;
1476
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1477
prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1478
if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1479
break;
1480
if (sk->sk_shutdown & SEND_SHUTDOWN)
1481
break;
1482
if (sk->sk_err)
1483
break;
1484
timeo = schedule_timeout(timeo);
1485
}
1486
finish_wait(sk_sleep(sk), &wait);
1487
return timeo;
1488
}
1489
1490
1491
/*
1492
* Generic send/receive buffer handlers
1493
*/
1494
1495
struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1496
unsigned long data_len, int noblock,
1497
int *errcode)
1498
{
1499
struct sk_buff *skb;
1500
gfp_t gfp_mask;
1501
long timeo;
1502
int err;
1503
1504
gfp_mask = sk->sk_allocation;
1505
if (gfp_mask & __GFP_WAIT)
1506
gfp_mask |= __GFP_REPEAT;
1507
1508
timeo = sock_sndtimeo(sk, noblock);
1509
while (1) {
1510
err = sock_error(sk);
1511
if (err != 0)
1512
goto failure;
1513
1514
err = -EPIPE;
1515
if (sk->sk_shutdown & SEND_SHUTDOWN)
1516
goto failure;
1517
1518
if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1519
skb = alloc_skb(header_len, gfp_mask);
1520
if (skb) {
1521
int npages;
1522
int i;
1523
1524
/* No pages, we're done... */
1525
if (!data_len)
1526
break;
1527
1528
npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1529
skb->truesize += data_len;
1530
skb_shinfo(skb)->nr_frags = npages;
1531
for (i = 0; i < npages; i++) {
1532
struct page *page;
1533
skb_frag_t *frag;
1534
1535
page = alloc_pages(sk->sk_allocation, 0);
1536
if (!page) {
1537
err = -ENOBUFS;
1538
skb_shinfo(skb)->nr_frags = i;
1539
kfree_skb(skb);
1540
goto failure;
1541
}
1542
1543
frag = &skb_shinfo(skb)->frags[i];
1544
frag->page = page;
1545
frag->page_offset = 0;
1546
frag->size = (data_len >= PAGE_SIZE ?
1547
PAGE_SIZE :
1548
data_len);
1549
data_len -= PAGE_SIZE;
1550
}
1551
1552
/* Full success... */
1553
break;
1554
}
1555
err = -ENOBUFS;
1556
goto failure;
1557
}
1558
set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1559
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1560
err = -EAGAIN;
1561
if (!timeo)
1562
goto failure;
1563
if (signal_pending(current))
1564
goto interrupted;
1565
timeo = sock_wait_for_wmem(sk, timeo);
1566
}
1567
1568
skb_set_owner_w(skb, sk);
1569
return skb;
1570
1571
interrupted:
1572
err = sock_intr_errno(timeo);
1573
failure:
1574
*errcode = err;
1575
return NULL;
1576
}
1577
EXPORT_SYMBOL(sock_alloc_send_pskb);
1578
1579
struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1580
int noblock, int *errcode)
1581
{
1582
return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1583
}
1584
EXPORT_SYMBOL(sock_alloc_send_skb);
1585
1586
static void __lock_sock(struct sock *sk)
1587
__releases(&sk->sk_lock.slock)
1588
__acquires(&sk->sk_lock.slock)
1589
{
1590
DEFINE_WAIT(wait);
1591
1592
for (;;) {
1593
prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1594
TASK_UNINTERRUPTIBLE);
1595
spin_unlock_bh(&sk->sk_lock.slock);
1596
schedule();
1597
spin_lock_bh(&sk->sk_lock.slock);
1598
if (!sock_owned_by_user(sk))
1599
break;
1600
}
1601
finish_wait(&sk->sk_lock.wq, &wait);
1602
}
1603
1604
static void __release_sock(struct sock *sk)
1605
__releases(&sk->sk_lock.slock)
1606
__acquires(&sk->sk_lock.slock)
1607
{
1608
struct sk_buff *skb = sk->sk_backlog.head;
1609
1610
do {
1611
sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1612
bh_unlock_sock(sk);
1613
1614
do {
1615
struct sk_buff *next = skb->next;
1616
1617
WARN_ON_ONCE(skb_dst_is_noref(skb));
1618
skb->next = NULL;
1619
sk_backlog_rcv(sk, skb);
1620
1621
/*
1622
* We are in process context here with softirqs
1623
* disabled, use cond_resched_softirq() to preempt.
1624
* This is safe to do because we've taken the backlog
1625
* queue private:
1626
*/
1627
cond_resched_softirq();
1628
1629
skb = next;
1630
} while (skb != NULL);
1631
1632
bh_lock_sock(sk);
1633
} while ((skb = sk->sk_backlog.head) != NULL);
1634
1635
/*
1636
* Doing the zeroing here guarantee we can not loop forever
1637
* while a wild producer attempts to flood us.
1638
*/
1639
sk->sk_backlog.len = 0;
1640
}
1641
1642
/**
1643
* sk_wait_data - wait for data to arrive at sk_receive_queue
1644
* @sk: sock to wait on
1645
* @timeo: for how long
1646
*
1647
* Now socket state including sk->sk_err is changed only under lock,
1648
* hence we may omit checks after joining wait queue.
1649
* We check receive queue before schedule() only as optimization;
1650
* it is very likely that release_sock() added new data.
1651
*/
1652
int sk_wait_data(struct sock *sk, long *timeo)
1653
{
1654
int rc;
1655
DEFINE_WAIT(wait);
1656
1657
prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1658
set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1659
rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1660
clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1661
finish_wait(sk_sleep(sk), &wait);
1662
return rc;
1663
}
1664
EXPORT_SYMBOL(sk_wait_data);
1665
1666
/**
1667
* __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1668
* @sk: socket
1669
* @size: memory size to allocate
1670
* @kind: allocation type
1671
*
1672
* If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1673
* rmem allocation. This function assumes that protocols which have
1674
* memory_pressure use sk_wmem_queued as write buffer accounting.
1675
*/
1676
int __sk_mem_schedule(struct sock *sk, int size, int kind)
1677
{
1678
struct proto *prot = sk->sk_prot;
1679
int amt = sk_mem_pages(size);
1680
long allocated;
1681
1682
sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1683
allocated = atomic_long_add_return(amt, prot->memory_allocated);
1684
1685
/* Under limit. */
1686
if (allocated <= prot->sysctl_mem[0]) {
1687
if (prot->memory_pressure && *prot->memory_pressure)
1688
*prot->memory_pressure = 0;
1689
return 1;
1690
}
1691
1692
/* Under pressure. */
1693
if (allocated > prot->sysctl_mem[1])
1694
if (prot->enter_memory_pressure)
1695
prot->enter_memory_pressure(sk);
1696
1697
/* Over hard limit. */
1698
if (allocated > prot->sysctl_mem[2])
1699
goto suppress_allocation;
1700
1701
/* guarantee minimum buffer size under pressure */
1702
if (kind == SK_MEM_RECV) {
1703
if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1704
return 1;
1705
} else { /* SK_MEM_SEND */
1706
if (sk->sk_type == SOCK_STREAM) {
1707
if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1708
return 1;
1709
} else if (atomic_read(&sk->sk_wmem_alloc) <
1710
prot->sysctl_wmem[0])
1711
return 1;
1712
}
1713
1714
if (prot->memory_pressure) {
1715
int alloc;
1716
1717
if (!*prot->memory_pressure)
1718
return 1;
1719
alloc = percpu_counter_read_positive(prot->sockets_allocated);
1720
if (prot->sysctl_mem[2] > alloc *
1721
sk_mem_pages(sk->sk_wmem_queued +
1722
atomic_read(&sk->sk_rmem_alloc) +
1723
sk->sk_forward_alloc))
1724
return 1;
1725
}
1726
1727
suppress_allocation:
1728
1729
if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1730
sk_stream_moderate_sndbuf(sk);
1731
1732
/* Fail only if socket is _under_ its sndbuf.
1733
* In this case we cannot block, so that we have to fail.
1734
*/
1735
if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1736
return 1;
1737
}
1738
1739
/* Alas. Undo changes. */
1740
sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1741
atomic_long_sub(amt, prot->memory_allocated);
1742
return 0;
1743
}
1744
EXPORT_SYMBOL(__sk_mem_schedule);
1745
1746
/**
1747
* __sk_reclaim - reclaim memory_allocated
1748
* @sk: socket
1749
*/
1750
void __sk_mem_reclaim(struct sock *sk)
1751
{
1752
struct proto *prot = sk->sk_prot;
1753
1754
atomic_long_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1755
prot->memory_allocated);
1756
sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1757
1758
if (prot->memory_pressure && *prot->memory_pressure &&
1759
(atomic_long_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1760
*prot->memory_pressure = 0;
1761
}
1762
EXPORT_SYMBOL(__sk_mem_reclaim);
1763
1764
1765
/*
1766
* Set of default routines for initialising struct proto_ops when
1767
* the protocol does not support a particular function. In certain
1768
* cases where it makes no sense for a protocol to have a "do nothing"
1769
* function, some default processing is provided.
1770
*/
1771
1772
int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1773
{
1774
return -EOPNOTSUPP;
1775
}
1776
EXPORT_SYMBOL(sock_no_bind);
1777
1778
int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1779
int len, int flags)
1780
{
1781
return -EOPNOTSUPP;
1782
}
1783
EXPORT_SYMBOL(sock_no_connect);
1784
1785
int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1786
{
1787
return -EOPNOTSUPP;
1788
}
1789
EXPORT_SYMBOL(sock_no_socketpair);
1790
1791
int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1792
{
1793
return -EOPNOTSUPP;
1794
}
1795
EXPORT_SYMBOL(sock_no_accept);
1796
1797
int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1798
int *len, int peer)
1799
{
1800
return -EOPNOTSUPP;
1801
}
1802
EXPORT_SYMBOL(sock_no_getname);
1803
1804
unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1805
{
1806
return 0;
1807
}
1808
EXPORT_SYMBOL(sock_no_poll);
1809
1810
int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1811
{
1812
return -EOPNOTSUPP;
1813
}
1814
EXPORT_SYMBOL(sock_no_ioctl);
1815
1816
int sock_no_listen(struct socket *sock, int backlog)
1817
{
1818
return -EOPNOTSUPP;
1819
}
1820
EXPORT_SYMBOL(sock_no_listen);
1821
1822
int sock_no_shutdown(struct socket *sock, int how)
1823
{
1824
return -EOPNOTSUPP;
1825
}
1826
EXPORT_SYMBOL(sock_no_shutdown);
1827
1828
int sock_no_setsockopt(struct socket *sock, int level, int optname,
1829
char __user *optval, unsigned int optlen)
1830
{
1831
return -EOPNOTSUPP;
1832
}
1833
EXPORT_SYMBOL(sock_no_setsockopt);
1834
1835
int sock_no_getsockopt(struct socket *sock, int level, int optname,
1836
char __user *optval, int __user *optlen)
1837
{
1838
return -EOPNOTSUPP;
1839
}
1840
EXPORT_SYMBOL(sock_no_getsockopt);
1841
1842
int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1843
size_t len)
1844
{
1845
return -EOPNOTSUPP;
1846
}
1847
EXPORT_SYMBOL(sock_no_sendmsg);
1848
1849
int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1850
size_t len, int flags)
1851
{
1852
return -EOPNOTSUPP;
1853
}
1854
EXPORT_SYMBOL(sock_no_recvmsg);
1855
1856
int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1857
{
1858
/* Mirror missing mmap method error code */
1859
return -ENODEV;
1860
}
1861
EXPORT_SYMBOL(sock_no_mmap);
1862
1863
ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1864
{
1865
ssize_t res;
1866
struct msghdr msg = {.msg_flags = flags};
1867
struct kvec iov;
1868
char *kaddr = kmap(page);
1869
iov.iov_base = kaddr + offset;
1870
iov.iov_len = size;
1871
res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1872
kunmap(page);
1873
return res;
1874
}
1875
EXPORT_SYMBOL(sock_no_sendpage);
1876
1877
/*
1878
* Default Socket Callbacks
1879
*/
1880
1881
static void sock_def_wakeup(struct sock *sk)
1882
{
1883
struct socket_wq *wq;
1884
1885
rcu_read_lock();
1886
wq = rcu_dereference(sk->sk_wq);
1887
if (wq_has_sleeper(wq))
1888
wake_up_interruptible_all(&wq->wait);
1889
rcu_read_unlock();
1890
}
1891
1892
static void sock_def_error_report(struct sock *sk)
1893
{
1894
struct socket_wq *wq;
1895
1896
rcu_read_lock();
1897
wq = rcu_dereference(sk->sk_wq);
1898
if (wq_has_sleeper(wq))
1899
wake_up_interruptible_poll(&wq->wait, POLLERR);
1900
sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1901
rcu_read_unlock();
1902
}
1903
1904
static void sock_def_readable(struct sock *sk, int len)
1905
{
1906
struct socket_wq *wq;
1907
1908
rcu_read_lock();
1909
wq = rcu_dereference(sk->sk_wq);
1910
if (wq_has_sleeper(wq))
1911
wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
1912
POLLRDNORM | POLLRDBAND);
1913
sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1914
rcu_read_unlock();
1915
}
1916
1917
static void sock_def_write_space(struct sock *sk)
1918
{
1919
struct socket_wq *wq;
1920
1921
rcu_read_lock();
1922
1923
/* Do not wake up a writer until he can make "significant"
1924
* progress. --DaveM
1925
*/
1926
if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1927
wq = rcu_dereference(sk->sk_wq);
1928
if (wq_has_sleeper(wq))
1929
wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
1930
POLLWRNORM | POLLWRBAND);
1931
1932
/* Should agree with poll, otherwise some programs break */
1933
if (sock_writeable(sk))
1934
sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1935
}
1936
1937
rcu_read_unlock();
1938
}
1939
1940
static void sock_def_destruct(struct sock *sk)
1941
{
1942
kfree(sk->sk_protinfo);
1943
}
1944
1945
void sk_send_sigurg(struct sock *sk)
1946
{
1947
if (sk->sk_socket && sk->sk_socket->file)
1948
if (send_sigurg(&sk->sk_socket->file->f_owner))
1949
sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1950
}
1951
EXPORT_SYMBOL(sk_send_sigurg);
1952
1953
void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1954
unsigned long expires)
1955
{
1956
if (!mod_timer(timer, expires))
1957
sock_hold(sk);
1958
}
1959
EXPORT_SYMBOL(sk_reset_timer);
1960
1961
void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1962
{
1963
if (timer_pending(timer) && del_timer(timer))
1964
__sock_put(sk);
1965
}
1966
EXPORT_SYMBOL(sk_stop_timer);
1967
1968
void sock_init_data(struct socket *sock, struct sock *sk)
1969
{
1970
skb_queue_head_init(&sk->sk_receive_queue);
1971
skb_queue_head_init(&sk->sk_write_queue);
1972
skb_queue_head_init(&sk->sk_error_queue);
1973
#ifdef CONFIG_NET_DMA
1974
skb_queue_head_init(&sk->sk_async_wait_queue);
1975
#endif
1976
1977
sk->sk_send_head = NULL;
1978
1979
init_timer(&sk->sk_timer);
1980
1981
sk->sk_allocation = GFP_KERNEL;
1982
sk->sk_rcvbuf = sysctl_rmem_default;
1983
sk->sk_sndbuf = sysctl_wmem_default;
1984
sk->sk_state = TCP_CLOSE;
1985
sk_set_socket(sk, sock);
1986
1987
sock_set_flag(sk, SOCK_ZAPPED);
1988
1989
if (sock) {
1990
sk->sk_type = sock->type;
1991
sk->sk_wq = sock->wq;
1992
sock->sk = sk;
1993
} else
1994
sk->sk_wq = NULL;
1995
1996
spin_lock_init(&sk->sk_dst_lock);
1997
rwlock_init(&sk->sk_callback_lock);
1998
lockdep_set_class_and_name(&sk->sk_callback_lock,
1999
af_callback_keys + sk->sk_family,
2000
af_family_clock_key_strings[sk->sk_family]);
2001
2002
sk->sk_state_change = sock_def_wakeup;
2003
sk->sk_data_ready = sock_def_readable;
2004
sk->sk_write_space = sock_def_write_space;
2005
sk->sk_error_report = sock_def_error_report;
2006
sk->sk_destruct = sock_def_destruct;
2007
2008
sk->sk_sndmsg_page = NULL;
2009
sk->sk_sndmsg_off = 0;
2010
2011
sk->sk_peer_pid = NULL;
2012
sk->sk_peer_cred = NULL;
2013
sk->sk_write_pending = 0;
2014
sk->sk_rcvlowat = 1;
2015
sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2016
sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2017
2018
sk->sk_stamp = ktime_set(-1L, 0);
2019
2020
/*
2021
* Before updating sk_refcnt, we must commit prior changes to memory
2022
* (Documentation/RCU/rculist_nulls.txt for details)
2023
*/
2024
smp_wmb();
2025
atomic_set(&sk->sk_refcnt, 1);
2026
atomic_set(&sk->sk_drops, 0);
2027
}
2028
EXPORT_SYMBOL(sock_init_data);
2029
2030
void lock_sock_nested(struct sock *sk, int subclass)
2031
{
2032
might_sleep();
2033
spin_lock_bh(&sk->sk_lock.slock);
2034
if (sk->sk_lock.owned)
2035
__lock_sock(sk);
2036
sk->sk_lock.owned = 1;
2037
spin_unlock(&sk->sk_lock.slock);
2038
/*
2039
* The sk_lock has mutex_lock() semantics here:
2040
*/
2041
mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2042
local_bh_enable();
2043
}
2044
EXPORT_SYMBOL(lock_sock_nested);
2045
2046
void release_sock(struct sock *sk)
2047
{
2048
/*
2049
* The sk_lock has mutex_unlock() semantics:
2050
*/
2051
mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2052
2053
spin_lock_bh(&sk->sk_lock.slock);
2054
if (sk->sk_backlog.tail)
2055
__release_sock(sk);
2056
sk->sk_lock.owned = 0;
2057
if (waitqueue_active(&sk->sk_lock.wq))
2058
wake_up(&sk->sk_lock.wq);
2059
spin_unlock_bh(&sk->sk_lock.slock);
2060
}
2061
EXPORT_SYMBOL(release_sock);
2062
2063
/**
2064
* lock_sock_fast - fast version of lock_sock
2065
* @sk: socket
2066
*
2067
* This version should be used for very small section, where process wont block
2068
* return false if fast path is taken
2069
* sk_lock.slock locked, owned = 0, BH disabled
2070
* return true if slow path is taken
2071
* sk_lock.slock unlocked, owned = 1, BH enabled
2072
*/
2073
bool lock_sock_fast(struct sock *sk)
2074
{
2075
might_sleep();
2076
spin_lock_bh(&sk->sk_lock.slock);
2077
2078
if (!sk->sk_lock.owned)
2079
/*
2080
* Note : We must disable BH
2081
*/
2082
return false;
2083
2084
__lock_sock(sk);
2085
sk->sk_lock.owned = 1;
2086
spin_unlock(&sk->sk_lock.slock);
2087
/*
2088
* The sk_lock has mutex_lock() semantics here:
2089
*/
2090
mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2091
local_bh_enable();
2092
return true;
2093
}
2094
EXPORT_SYMBOL(lock_sock_fast);
2095
2096
int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2097
{
2098
struct timeval tv;
2099
if (!sock_flag(sk, SOCK_TIMESTAMP))
2100
sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2101
tv = ktime_to_timeval(sk->sk_stamp);
2102
if (tv.tv_sec == -1)
2103
return -ENOENT;
2104
if (tv.tv_sec == 0) {
2105
sk->sk_stamp = ktime_get_real();
2106
tv = ktime_to_timeval(sk->sk_stamp);
2107
}
2108
return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2109
}
2110
EXPORT_SYMBOL(sock_get_timestamp);
2111
2112
int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2113
{
2114
struct timespec ts;
2115
if (!sock_flag(sk, SOCK_TIMESTAMP))
2116
sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2117
ts = ktime_to_timespec(sk->sk_stamp);
2118
if (ts.tv_sec == -1)
2119
return -ENOENT;
2120
if (ts.tv_sec == 0) {
2121
sk->sk_stamp = ktime_get_real();
2122
ts = ktime_to_timespec(sk->sk_stamp);
2123
}
2124
return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2125
}
2126
EXPORT_SYMBOL(sock_get_timestampns);
2127
2128
void sock_enable_timestamp(struct sock *sk, int flag)
2129
{
2130
if (!sock_flag(sk, flag)) {
2131
sock_set_flag(sk, flag);
2132
/*
2133
* we just set one of the two flags which require net
2134
* time stamping, but time stamping might have been on
2135
* already because of the other one
2136
*/
2137
if (!sock_flag(sk,
2138
flag == SOCK_TIMESTAMP ?
2139
SOCK_TIMESTAMPING_RX_SOFTWARE :
2140
SOCK_TIMESTAMP))
2141
net_enable_timestamp();
2142
}
2143
}
2144
2145
/*
2146
* Get a socket option on an socket.
2147
*
2148
* FIX: POSIX 1003.1g is very ambiguous here. It states that
2149
* asynchronous errors should be reported by getsockopt. We assume
2150
* this means if you specify SO_ERROR (otherwise whats the point of it).
2151
*/
2152
int sock_common_getsockopt(struct socket *sock, int level, int optname,
2153
char __user *optval, int __user *optlen)
2154
{
2155
struct sock *sk = sock->sk;
2156
2157
return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2158
}
2159
EXPORT_SYMBOL(sock_common_getsockopt);
2160
2161
#ifdef CONFIG_COMPAT
2162
int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2163
char __user *optval, int __user *optlen)
2164
{
2165
struct sock *sk = sock->sk;
2166
2167
if (sk->sk_prot->compat_getsockopt != NULL)
2168
return sk->sk_prot->compat_getsockopt(sk, level, optname,
2169
optval, optlen);
2170
return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2171
}
2172
EXPORT_SYMBOL(compat_sock_common_getsockopt);
2173
#endif
2174
2175
int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2176
struct msghdr *msg, size_t size, int flags)
2177
{
2178
struct sock *sk = sock->sk;
2179
int addr_len = 0;
2180
int err;
2181
2182
err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2183
flags & ~MSG_DONTWAIT, &addr_len);
2184
if (err >= 0)
2185
msg->msg_namelen = addr_len;
2186
return err;
2187
}
2188
EXPORT_SYMBOL(sock_common_recvmsg);
2189
2190
/*
2191
* Set socket options on an inet socket.
2192
*/
2193
int sock_common_setsockopt(struct socket *sock, int level, int optname,
2194
char __user *optval, unsigned int optlen)
2195
{
2196
struct sock *sk = sock->sk;
2197
2198
return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2199
}
2200
EXPORT_SYMBOL(sock_common_setsockopt);
2201
2202
#ifdef CONFIG_COMPAT
2203
int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2204
char __user *optval, unsigned int optlen)
2205
{
2206
struct sock *sk = sock->sk;
2207
2208
if (sk->sk_prot->compat_setsockopt != NULL)
2209
return sk->sk_prot->compat_setsockopt(sk, level, optname,
2210
optval, optlen);
2211
return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2212
}
2213
EXPORT_SYMBOL(compat_sock_common_setsockopt);
2214
#endif
2215
2216
void sk_common_release(struct sock *sk)
2217
{
2218
if (sk->sk_prot->destroy)
2219
sk->sk_prot->destroy(sk);
2220
2221
/*
2222
* Observation: when sock_common_release is called, processes have
2223
* no access to socket. But net still has.
2224
* Step one, detach it from networking:
2225
*
2226
* A. Remove from hash tables.
2227
*/
2228
2229
sk->sk_prot->unhash(sk);
2230
2231
/*
2232
* In this point socket cannot receive new packets, but it is possible
2233
* that some packets are in flight because some CPU runs receiver and
2234
* did hash table lookup before we unhashed socket. They will achieve
2235
* receive queue and will be purged by socket destructor.
2236
*
2237
* Also we still have packets pending on receive queue and probably,
2238
* our own packets waiting in device queues. sock_destroy will drain
2239
* receive queue, but transmitted packets will delay socket destruction
2240
* until the last reference will be released.
2241
*/
2242
2243
sock_orphan(sk);
2244
2245
xfrm_sk_free_policy(sk);
2246
2247
sk_refcnt_debug_release(sk);
2248
sock_put(sk);
2249
}
2250
EXPORT_SYMBOL(sk_common_release);
2251
2252
static DEFINE_RWLOCK(proto_list_lock);
2253
static LIST_HEAD(proto_list);
2254
2255
#ifdef CONFIG_PROC_FS
2256
#define PROTO_INUSE_NR 64 /* should be enough for the first time */
2257
struct prot_inuse {
2258
int val[PROTO_INUSE_NR];
2259
};
2260
2261
static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2262
2263
#ifdef CONFIG_NET_NS
2264
void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2265
{
2266
__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2267
}
2268
EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2269
2270
int sock_prot_inuse_get(struct net *net, struct proto *prot)
2271
{
2272
int cpu, idx = prot->inuse_idx;
2273
int res = 0;
2274
2275
for_each_possible_cpu(cpu)
2276
res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2277
2278
return res >= 0 ? res : 0;
2279
}
2280
EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2281
2282
static int __net_init sock_inuse_init_net(struct net *net)
2283
{
2284
net->core.inuse = alloc_percpu(struct prot_inuse);
2285
return net->core.inuse ? 0 : -ENOMEM;
2286
}
2287
2288
static void __net_exit sock_inuse_exit_net(struct net *net)
2289
{
2290
free_percpu(net->core.inuse);
2291
}
2292
2293
static struct pernet_operations net_inuse_ops = {
2294
.init = sock_inuse_init_net,
2295
.exit = sock_inuse_exit_net,
2296
};
2297
2298
static __init int net_inuse_init(void)
2299
{
2300
if (register_pernet_subsys(&net_inuse_ops))
2301
panic("Cannot initialize net inuse counters");
2302
2303
return 0;
2304
}
2305
2306
core_initcall(net_inuse_init);
2307
#else
2308
static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2309
2310
void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2311
{
2312
__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2313
}
2314
EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2315
2316
int sock_prot_inuse_get(struct net *net, struct proto *prot)
2317
{
2318
int cpu, idx = prot->inuse_idx;
2319
int res = 0;
2320
2321
for_each_possible_cpu(cpu)
2322
res += per_cpu(prot_inuse, cpu).val[idx];
2323
2324
return res >= 0 ? res : 0;
2325
}
2326
EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2327
#endif
2328
2329
static void assign_proto_idx(struct proto *prot)
2330
{
2331
prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2332
2333
if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2334
printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2335
return;
2336
}
2337
2338
set_bit(prot->inuse_idx, proto_inuse_idx);
2339
}
2340
2341
static void release_proto_idx(struct proto *prot)
2342
{
2343
if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2344
clear_bit(prot->inuse_idx, proto_inuse_idx);
2345
}
2346
#else
2347
static inline void assign_proto_idx(struct proto *prot)
2348
{
2349
}
2350
2351
static inline void release_proto_idx(struct proto *prot)
2352
{
2353
}
2354
#endif
2355
2356
int proto_register(struct proto *prot, int alloc_slab)
2357
{
2358
if (alloc_slab) {
2359
prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2360
SLAB_HWCACHE_ALIGN | prot->slab_flags,
2361
NULL);
2362
2363
if (prot->slab == NULL) {
2364
printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2365
prot->name);
2366
goto out;
2367
}
2368
2369
if (prot->rsk_prot != NULL) {
2370
prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2371
if (prot->rsk_prot->slab_name == NULL)
2372
goto out_free_sock_slab;
2373
2374
prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2375
prot->rsk_prot->obj_size, 0,
2376
SLAB_HWCACHE_ALIGN, NULL);
2377
2378
if (prot->rsk_prot->slab == NULL) {
2379
printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2380
prot->name);
2381
goto out_free_request_sock_slab_name;
2382
}
2383
}
2384
2385
if (prot->twsk_prot != NULL) {
2386
prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2387
2388
if (prot->twsk_prot->twsk_slab_name == NULL)
2389
goto out_free_request_sock_slab;
2390
2391
prot->twsk_prot->twsk_slab =
2392
kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2393
prot->twsk_prot->twsk_obj_size,
2394
0,
2395
SLAB_HWCACHE_ALIGN |
2396
prot->slab_flags,
2397
NULL);
2398
if (prot->twsk_prot->twsk_slab == NULL)
2399
goto out_free_timewait_sock_slab_name;
2400
}
2401
}
2402
2403
write_lock(&proto_list_lock);
2404
list_add(&prot->node, &proto_list);
2405
assign_proto_idx(prot);
2406
write_unlock(&proto_list_lock);
2407
return 0;
2408
2409
out_free_timewait_sock_slab_name:
2410
kfree(prot->twsk_prot->twsk_slab_name);
2411
out_free_request_sock_slab:
2412
if (prot->rsk_prot && prot->rsk_prot->slab) {
2413
kmem_cache_destroy(prot->rsk_prot->slab);
2414
prot->rsk_prot->slab = NULL;
2415
}
2416
out_free_request_sock_slab_name:
2417
if (prot->rsk_prot)
2418
kfree(prot->rsk_prot->slab_name);
2419
out_free_sock_slab:
2420
kmem_cache_destroy(prot->slab);
2421
prot->slab = NULL;
2422
out:
2423
return -ENOBUFS;
2424
}
2425
EXPORT_SYMBOL(proto_register);
2426
2427
void proto_unregister(struct proto *prot)
2428
{
2429
write_lock(&proto_list_lock);
2430
release_proto_idx(prot);
2431
list_del(&prot->node);
2432
write_unlock(&proto_list_lock);
2433
2434
if (prot->slab != NULL) {
2435
kmem_cache_destroy(prot->slab);
2436
prot->slab = NULL;
2437
}
2438
2439
if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2440
kmem_cache_destroy(prot->rsk_prot->slab);
2441
kfree(prot->rsk_prot->slab_name);
2442
prot->rsk_prot->slab = NULL;
2443
}
2444
2445
if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2446
kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2447
kfree(prot->twsk_prot->twsk_slab_name);
2448
prot->twsk_prot->twsk_slab = NULL;
2449
}
2450
}
2451
EXPORT_SYMBOL(proto_unregister);
2452
2453
#ifdef CONFIG_PROC_FS
2454
static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2455
__acquires(proto_list_lock)
2456
{
2457
read_lock(&proto_list_lock);
2458
return seq_list_start_head(&proto_list, *pos);
2459
}
2460
2461
static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2462
{
2463
return seq_list_next(v, &proto_list, pos);
2464
}
2465
2466
static void proto_seq_stop(struct seq_file *seq, void *v)
2467
__releases(proto_list_lock)
2468
{
2469
read_unlock(&proto_list_lock);
2470
}
2471
2472
static char proto_method_implemented(const void *method)
2473
{
2474
return method == NULL ? 'n' : 'y';
2475
}
2476
2477
static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2478
{
2479
seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2480
"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2481
proto->name,
2482
proto->obj_size,
2483
sock_prot_inuse_get(seq_file_net(seq), proto),
2484
proto->memory_allocated != NULL ? atomic_long_read(proto->memory_allocated) : -1L,
2485
proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2486
proto->max_header,
2487
proto->slab == NULL ? "no" : "yes",
2488
module_name(proto->owner),
2489
proto_method_implemented(proto->close),
2490
proto_method_implemented(proto->connect),
2491
proto_method_implemented(proto->disconnect),
2492
proto_method_implemented(proto->accept),
2493
proto_method_implemented(proto->ioctl),
2494
proto_method_implemented(proto->init),
2495
proto_method_implemented(proto->destroy),
2496
proto_method_implemented(proto->shutdown),
2497
proto_method_implemented(proto->setsockopt),
2498
proto_method_implemented(proto->getsockopt),
2499
proto_method_implemented(proto->sendmsg),
2500
proto_method_implemented(proto->recvmsg),
2501
proto_method_implemented(proto->sendpage),
2502
proto_method_implemented(proto->bind),
2503
proto_method_implemented(proto->backlog_rcv),
2504
proto_method_implemented(proto->hash),
2505
proto_method_implemented(proto->unhash),
2506
proto_method_implemented(proto->get_port),
2507
proto_method_implemented(proto->enter_memory_pressure));
2508
}
2509
2510
static int proto_seq_show(struct seq_file *seq, void *v)
2511
{
2512
if (v == &proto_list)
2513
seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2514
"protocol",
2515
"size",
2516
"sockets",
2517
"memory",
2518
"press",
2519
"maxhdr",
2520
"slab",
2521
"module",
2522
"cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2523
else
2524
proto_seq_printf(seq, list_entry(v, struct proto, node));
2525
return 0;
2526
}
2527
2528
static const struct seq_operations proto_seq_ops = {
2529
.start = proto_seq_start,
2530
.next = proto_seq_next,
2531
.stop = proto_seq_stop,
2532
.show = proto_seq_show,
2533
};
2534
2535
static int proto_seq_open(struct inode *inode, struct file *file)
2536
{
2537
return seq_open_net(inode, file, &proto_seq_ops,
2538
sizeof(struct seq_net_private));
2539
}
2540
2541
static const struct file_operations proto_seq_fops = {
2542
.owner = THIS_MODULE,
2543
.open = proto_seq_open,
2544
.read = seq_read,
2545
.llseek = seq_lseek,
2546
.release = seq_release_net,
2547
};
2548
2549
static __net_init int proto_init_net(struct net *net)
2550
{
2551
if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2552
return -ENOMEM;
2553
2554
return 0;
2555
}
2556
2557
static __net_exit void proto_exit_net(struct net *net)
2558
{
2559
proc_net_remove(net, "protocols");
2560
}
2561
2562
2563
static __net_initdata struct pernet_operations proto_net_ops = {
2564
.init = proto_init_net,
2565
.exit = proto_exit_net,
2566
};
2567
2568
static int __init proto_init(void)
2569
{
2570
return register_pernet_subsys(&proto_net_ops);
2571
}
2572
2573
subsys_initcall(proto_init);
2574
2575
#endif /* PROC_FS */
2576
2577