Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/net/dccp/ccids/lib/packet_history.c
15112 views
1
/*
2
* Copyright (c) 2007 The University of Aberdeen, Scotland, UK
3
* Copyright (c) 2005-7 The University of Waikato, Hamilton, New Zealand.
4
*
5
* An implementation of the DCCP protocol
6
*
7
* This code has been developed by the University of Waikato WAND
8
* research group. For further information please see http://www.wand.net.nz/
9
* or e-mail Ian McDonald - [email protected]
10
*
11
* This code also uses code from Lulea University, rereleased as GPL by its
12
* authors:
13
* Copyright (c) 2003 Nils-Erik Mattsson, Joacim Haggmark, Magnus Erixzon
14
*
15
* Changes to meet Linux coding standards, to make it meet latest ccid3 draft
16
* and to make it work as a loadable module in the DCCP stack written by
17
* Arnaldo Carvalho de Melo <[email protected]>.
18
*
19
* Copyright (c) 2005 Arnaldo Carvalho de Melo <[email protected]>
20
*
21
* This program is free software; you can redistribute it and/or modify
22
* it under the terms of the GNU General Public License as published by
23
* the Free Software Foundation; either version 2 of the License, or
24
* (at your option) any later version.
25
*
26
* This program is distributed in the hope that it will be useful,
27
* but WITHOUT ANY WARRANTY; without even the implied warranty of
28
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
29
* GNU General Public License for more details.
30
*
31
* You should have received a copy of the GNU General Public License
32
* along with this program; if not, write to the Free Software
33
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34
*/
35
36
#include <linux/string.h>
37
#include <linux/slab.h>
38
#include "packet_history.h"
39
#include "../../dccp.h"
40
41
/*
42
* Transmitter History Routines
43
*/
44
static struct kmem_cache *tfrc_tx_hist_slab;
45
46
int __init tfrc_tx_packet_history_init(void)
47
{
48
tfrc_tx_hist_slab = kmem_cache_create("tfrc_tx_hist",
49
sizeof(struct tfrc_tx_hist_entry),
50
0, SLAB_HWCACHE_ALIGN, NULL);
51
return tfrc_tx_hist_slab == NULL ? -ENOBUFS : 0;
52
}
53
54
void tfrc_tx_packet_history_exit(void)
55
{
56
if (tfrc_tx_hist_slab != NULL) {
57
kmem_cache_destroy(tfrc_tx_hist_slab);
58
tfrc_tx_hist_slab = NULL;
59
}
60
}
61
62
int tfrc_tx_hist_add(struct tfrc_tx_hist_entry **headp, u64 seqno)
63
{
64
struct tfrc_tx_hist_entry *entry = kmem_cache_alloc(tfrc_tx_hist_slab, gfp_any());
65
66
if (entry == NULL)
67
return -ENOBUFS;
68
entry->seqno = seqno;
69
entry->stamp = ktime_get_real();
70
entry->next = *headp;
71
*headp = entry;
72
return 0;
73
}
74
75
void tfrc_tx_hist_purge(struct tfrc_tx_hist_entry **headp)
76
{
77
struct tfrc_tx_hist_entry *head = *headp;
78
79
while (head != NULL) {
80
struct tfrc_tx_hist_entry *next = head->next;
81
82
kmem_cache_free(tfrc_tx_hist_slab, head);
83
head = next;
84
}
85
86
*headp = NULL;
87
}
88
89
/*
90
* Receiver History Routines
91
*/
92
static struct kmem_cache *tfrc_rx_hist_slab;
93
94
int __init tfrc_rx_packet_history_init(void)
95
{
96
tfrc_rx_hist_slab = kmem_cache_create("tfrc_rxh_cache",
97
sizeof(struct tfrc_rx_hist_entry),
98
0, SLAB_HWCACHE_ALIGN, NULL);
99
return tfrc_rx_hist_slab == NULL ? -ENOBUFS : 0;
100
}
101
102
void tfrc_rx_packet_history_exit(void)
103
{
104
if (tfrc_rx_hist_slab != NULL) {
105
kmem_cache_destroy(tfrc_rx_hist_slab);
106
tfrc_rx_hist_slab = NULL;
107
}
108
}
109
110
static inline void tfrc_rx_hist_entry_from_skb(struct tfrc_rx_hist_entry *entry,
111
const struct sk_buff *skb,
112
const u64 ndp)
113
{
114
const struct dccp_hdr *dh = dccp_hdr(skb);
115
116
entry->tfrchrx_seqno = DCCP_SKB_CB(skb)->dccpd_seq;
117
entry->tfrchrx_ccval = dh->dccph_ccval;
118
entry->tfrchrx_type = dh->dccph_type;
119
entry->tfrchrx_ndp = ndp;
120
entry->tfrchrx_tstamp = ktime_get_real();
121
}
122
123
void tfrc_rx_hist_add_packet(struct tfrc_rx_hist *h,
124
const struct sk_buff *skb,
125
const u64 ndp)
126
{
127
struct tfrc_rx_hist_entry *entry = tfrc_rx_hist_last_rcv(h);
128
129
tfrc_rx_hist_entry_from_skb(entry, skb, ndp);
130
}
131
132
/* has the packet contained in skb been seen before? */
133
int tfrc_rx_hist_duplicate(struct tfrc_rx_hist *h, struct sk_buff *skb)
134
{
135
const u64 seq = DCCP_SKB_CB(skb)->dccpd_seq;
136
int i;
137
138
if (dccp_delta_seqno(tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno, seq) <= 0)
139
return 1;
140
141
for (i = 1; i <= h->loss_count; i++)
142
if (tfrc_rx_hist_entry(h, i)->tfrchrx_seqno == seq)
143
return 1;
144
145
return 0;
146
}
147
148
static void tfrc_rx_hist_swap(struct tfrc_rx_hist *h, const u8 a, const u8 b)
149
{
150
const u8 idx_a = tfrc_rx_hist_index(h, a),
151
idx_b = tfrc_rx_hist_index(h, b);
152
struct tfrc_rx_hist_entry *tmp = h->ring[idx_a];
153
154
h->ring[idx_a] = h->ring[idx_b];
155
h->ring[idx_b] = tmp;
156
}
157
158
/*
159
* Private helper functions for loss detection.
160
*
161
* In the descriptions, `Si' refers to the sequence number of entry number i,
162
* whose NDP count is `Ni' (lower case is used for variables).
163
* Note: All __xxx_loss functions expect that a test against duplicates has been
164
* performed already: the seqno of the skb must not be less than the seqno
165
* of loss_prev; and it must not equal that of any valid history entry.
166
*/
167
static void __do_track_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u64 n1)
168
{
169
u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
170
s1 = DCCP_SKB_CB(skb)->dccpd_seq;
171
172
if (!dccp_loss_free(s0, s1, n1)) { /* gap between S0 and S1 */
173
h->loss_count = 1;
174
tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n1);
175
}
176
}
177
178
static void __one_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n2)
179
{
180
u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
181
s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
182
s2 = DCCP_SKB_CB(skb)->dccpd_seq;
183
184
if (likely(dccp_delta_seqno(s1, s2) > 0)) { /* S1 < S2 */
185
h->loss_count = 2;
186
tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n2);
187
return;
188
}
189
190
/* S0 < S2 < S1 */
191
192
if (dccp_loss_free(s0, s2, n2)) {
193
u64 n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp;
194
195
if (dccp_loss_free(s2, s1, n1)) {
196
/* hole is filled: S0, S2, and S1 are consecutive */
197
h->loss_count = 0;
198
h->loss_start = tfrc_rx_hist_index(h, 1);
199
} else
200
/* gap between S2 and S1: just update loss_prev */
201
tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n2);
202
203
} else { /* gap between S0 and S2 */
204
/*
205
* Reorder history to insert S2 between S0 and S1
206
*/
207
tfrc_rx_hist_swap(h, 0, 3);
208
h->loss_start = tfrc_rx_hist_index(h, 3);
209
tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n2);
210
h->loss_count = 2;
211
}
212
}
213
214
/* return 1 if a new loss event has been identified */
215
static int __two_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n3)
216
{
217
u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
218
s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
219
s2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_seqno,
220
s3 = DCCP_SKB_CB(skb)->dccpd_seq;
221
222
if (likely(dccp_delta_seqno(s2, s3) > 0)) { /* S2 < S3 */
223
h->loss_count = 3;
224
tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 3), skb, n3);
225
return 1;
226
}
227
228
/* S3 < S2 */
229
230
if (dccp_delta_seqno(s1, s3) > 0) { /* S1 < S3 < S2 */
231
/*
232
* Reorder history to insert S3 between S1 and S2
233
*/
234
tfrc_rx_hist_swap(h, 2, 3);
235
tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n3);
236
h->loss_count = 3;
237
return 1;
238
}
239
240
/* S0 < S3 < S1 */
241
242
if (dccp_loss_free(s0, s3, n3)) {
243
u64 n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp;
244
245
if (dccp_loss_free(s3, s1, n1)) {
246
/* hole between S0 and S1 filled by S3 */
247
u64 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp;
248
249
if (dccp_loss_free(s1, s2, n2)) {
250
/* entire hole filled by S0, S3, S1, S2 */
251
h->loss_start = tfrc_rx_hist_index(h, 2);
252
h->loss_count = 0;
253
} else {
254
/* gap remains between S1 and S2 */
255
h->loss_start = tfrc_rx_hist_index(h, 1);
256
h->loss_count = 1;
257
}
258
259
} else /* gap exists between S3 and S1, loss_count stays at 2 */
260
tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n3);
261
262
return 0;
263
}
264
265
/*
266
* The remaining case: S0 < S3 < S1 < S2; gap between S0 and S3
267
* Reorder history to insert S3 between S0 and S1.
268
*/
269
tfrc_rx_hist_swap(h, 0, 3);
270
h->loss_start = tfrc_rx_hist_index(h, 3);
271
tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n3);
272
h->loss_count = 3;
273
274
return 1;
275
}
276
277
/* recycle RX history records to continue loss detection if necessary */
278
static void __three_after_loss(struct tfrc_rx_hist *h)
279
{
280
/*
281
* At this stage we know already that there is a gap between S0 and S1
282
* (since S0 was the highest sequence number received before detecting
283
* the loss). To recycle the loss record, it is thus only necessary to
284
* check for other possible gaps between S1/S2 and between S2/S3.
285
*/
286
u64 s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
287
s2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_seqno,
288
s3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_seqno;
289
u64 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp,
290
n3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_ndp;
291
292
if (dccp_loss_free(s1, s2, n2)) {
293
294
if (dccp_loss_free(s2, s3, n3)) {
295
/* no gap between S2 and S3: entire hole is filled */
296
h->loss_start = tfrc_rx_hist_index(h, 3);
297
h->loss_count = 0;
298
} else {
299
/* gap between S2 and S3 */
300
h->loss_start = tfrc_rx_hist_index(h, 2);
301
h->loss_count = 1;
302
}
303
304
} else { /* gap between S1 and S2 */
305
h->loss_start = tfrc_rx_hist_index(h, 1);
306
h->loss_count = 2;
307
}
308
}
309
310
/**
311
* tfrc_rx_handle_loss - Loss detection and further processing
312
* @h: The non-empty RX history object
313
* @lh: Loss Intervals database to update
314
* @skb: Currently received packet
315
* @ndp: The NDP count belonging to @skb
316
* @calc_first_li: Caller-dependent computation of first loss interval in @lh
317
* @sk: Used by @calc_first_li (see tfrc_lh_interval_add)
318
* Chooses action according to pending loss, updates LI database when a new
319
* loss was detected, and does required post-processing. Returns 1 when caller
320
* should send feedback, 0 otherwise.
321
* Since it also takes care of reordering during loss detection and updates the
322
* records accordingly, the caller should not perform any more RX history
323
* operations when loss_count is greater than 0 after calling this function.
324
*/
325
int tfrc_rx_handle_loss(struct tfrc_rx_hist *h,
326
struct tfrc_loss_hist *lh,
327
struct sk_buff *skb, const u64 ndp,
328
u32 (*calc_first_li)(struct sock *), struct sock *sk)
329
{
330
int is_new_loss = 0;
331
332
if (h->loss_count == 0) {
333
__do_track_loss(h, skb, ndp);
334
} else if (h->loss_count == 1) {
335
__one_after_loss(h, skb, ndp);
336
} else if (h->loss_count != 2) {
337
DCCP_BUG("invalid loss_count %d", h->loss_count);
338
} else if (__two_after_loss(h, skb, ndp)) {
339
/*
340
* Update Loss Interval database and recycle RX records
341
*/
342
is_new_loss = tfrc_lh_interval_add(lh, h, calc_first_li, sk);
343
__three_after_loss(h);
344
}
345
return is_new_loss;
346
}
347
348
int tfrc_rx_hist_alloc(struct tfrc_rx_hist *h)
349
{
350
int i;
351
352
for (i = 0; i <= TFRC_NDUPACK; i++) {
353
h->ring[i] = kmem_cache_alloc(tfrc_rx_hist_slab, GFP_ATOMIC);
354
if (h->ring[i] == NULL)
355
goto out_free;
356
}
357
358
h->loss_count = h->loss_start = 0;
359
return 0;
360
361
out_free:
362
while (i-- != 0) {
363
kmem_cache_free(tfrc_rx_hist_slab, h->ring[i]);
364
h->ring[i] = NULL;
365
}
366
return -ENOBUFS;
367
}
368
369
void tfrc_rx_hist_purge(struct tfrc_rx_hist *h)
370
{
371
int i;
372
373
for (i = 0; i <= TFRC_NDUPACK; ++i)
374
if (h->ring[i] != NULL) {
375
kmem_cache_free(tfrc_rx_hist_slab, h->ring[i]);
376
h->ring[i] = NULL;
377
}
378
}
379
380
/**
381
* tfrc_rx_hist_rtt_last_s - reference entry to compute RTT samples against
382
*/
383
static inline struct tfrc_rx_hist_entry *
384
tfrc_rx_hist_rtt_last_s(const struct tfrc_rx_hist *h)
385
{
386
return h->ring[0];
387
}
388
389
/**
390
* tfrc_rx_hist_rtt_prev_s: previously suitable (wrt rtt_last_s) RTT-sampling entry
391
*/
392
static inline struct tfrc_rx_hist_entry *
393
tfrc_rx_hist_rtt_prev_s(const struct tfrc_rx_hist *h)
394
{
395
return h->ring[h->rtt_sample_prev];
396
}
397
398
/**
399
* tfrc_rx_hist_sample_rtt - Sample RTT from timestamp / CCVal
400
* Based on ideas presented in RFC 4342, 8.1. Returns 0 if it was not able
401
* to compute a sample with given data - calling function should check this.
402
*/
403
u32 tfrc_rx_hist_sample_rtt(struct tfrc_rx_hist *h, const struct sk_buff *skb)
404
{
405
u32 sample = 0,
406
delta_v = SUB16(dccp_hdr(skb)->dccph_ccval,
407
tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
408
409
if (delta_v < 1 || delta_v > 4) { /* unsuitable CCVal delta */
410
if (h->rtt_sample_prev == 2) { /* previous candidate stored */
411
sample = SUB16(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
412
tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
413
if (sample)
414
sample = 4 / sample *
415
ktime_us_delta(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_tstamp,
416
tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp);
417
else /*
418
* FIXME: This condition is in principle not
419
* possible but occurs when CCID is used for
420
* two-way data traffic. I have tried to trace
421
* it, but the cause does not seem to be here.
422
*/
423
DCCP_BUG("please report to [email protected]"
424
" => prev = %u, last = %u",
425
tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
426
tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
427
} else if (delta_v < 1) {
428
h->rtt_sample_prev = 1;
429
goto keep_ref_for_next_time;
430
}
431
432
} else if (delta_v == 4) /* optimal match */
433
sample = ktime_to_us(net_timedelta(tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp));
434
else { /* suboptimal match */
435
h->rtt_sample_prev = 2;
436
goto keep_ref_for_next_time;
437
}
438
439
if (unlikely(sample > DCCP_SANE_RTT_MAX)) {
440
DCCP_WARN("RTT sample %u too large, using max\n", sample);
441
sample = DCCP_SANE_RTT_MAX;
442
}
443
444
h->rtt_sample_prev = 0; /* use current entry as next reference */
445
keep_ref_for_next_time:
446
447
return sample;
448
}
449
450