Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/net/decnet/dn_neigh.c
15109 views
1
/*
2
* DECnet An implementation of the DECnet protocol suite for the LINUX
3
* operating system. DECnet is implemented using the BSD Socket
4
* interface as the means of communication with the user level.
5
*
6
* DECnet Neighbour Functions (Adjacency Database and
7
* On-Ethernet Cache)
8
*
9
* Author: Steve Whitehouse <[email protected]>
10
*
11
*
12
* Changes:
13
* Steve Whitehouse : Fixed router listing routine
14
* Steve Whitehouse : Added error_report functions
15
* Steve Whitehouse : Added default router detection
16
* Steve Whitehouse : Hop counts in outgoing messages
17
* Steve Whitehouse : Fixed src/dst in outgoing messages so
18
* forwarding now stands a good chance of
19
* working.
20
* Steve Whitehouse : Fixed neighbour states (for now anyway).
21
* Steve Whitehouse : Made error_report functions dummies. This
22
* is not the right place to return skbs.
23
* Steve Whitehouse : Convert to seq_file
24
*
25
*/
26
27
#include <linux/net.h>
28
#include <linux/module.h>
29
#include <linux/socket.h>
30
#include <linux/if_arp.h>
31
#include <linux/slab.h>
32
#include <linux/if_ether.h>
33
#include <linux/init.h>
34
#include <linux/proc_fs.h>
35
#include <linux/string.h>
36
#include <linux/netfilter_decnet.h>
37
#include <linux/spinlock.h>
38
#include <linux/seq_file.h>
39
#include <linux/rcupdate.h>
40
#include <linux/jhash.h>
41
#include <asm/atomic.h>
42
#include <net/net_namespace.h>
43
#include <net/neighbour.h>
44
#include <net/dst.h>
45
#include <net/flow.h>
46
#include <net/dn.h>
47
#include <net/dn_dev.h>
48
#include <net/dn_neigh.h>
49
#include <net/dn_route.h>
50
51
static int dn_neigh_construct(struct neighbour *);
52
static void dn_long_error_report(struct neighbour *, struct sk_buff *);
53
static void dn_short_error_report(struct neighbour *, struct sk_buff *);
54
static int dn_long_output(struct sk_buff *);
55
static int dn_short_output(struct sk_buff *);
56
static int dn_phase3_output(struct sk_buff *);
57
58
59
/*
60
* For talking to broadcast devices: Ethernet & PPP
61
*/
62
static const struct neigh_ops dn_long_ops = {
63
.family = AF_DECnet,
64
.error_report = dn_long_error_report,
65
.output = dn_long_output,
66
.connected_output = dn_long_output,
67
.hh_output = dev_queue_xmit,
68
.queue_xmit = dev_queue_xmit,
69
};
70
71
/*
72
* For talking to pointopoint and multidrop devices: DDCMP and X.25
73
*/
74
static const struct neigh_ops dn_short_ops = {
75
.family = AF_DECnet,
76
.error_report = dn_short_error_report,
77
.output = dn_short_output,
78
.connected_output = dn_short_output,
79
.hh_output = dev_queue_xmit,
80
.queue_xmit = dev_queue_xmit,
81
};
82
83
/*
84
* For talking to DECnet phase III nodes
85
*/
86
static const struct neigh_ops dn_phase3_ops = {
87
.family = AF_DECnet,
88
.error_report = dn_short_error_report, /* Can use short version here */
89
.output = dn_phase3_output,
90
.connected_output = dn_phase3_output,
91
.hh_output = dev_queue_xmit,
92
.queue_xmit = dev_queue_xmit
93
};
94
95
static u32 dn_neigh_hash(const void *pkey,
96
const struct net_device *dev,
97
__u32 hash_rnd)
98
{
99
return jhash_2words(*(__u16 *)pkey, 0, hash_rnd);
100
}
101
102
struct neigh_table dn_neigh_table = {
103
.family = PF_DECnet,
104
.entry_size = sizeof(struct dn_neigh),
105
.key_len = sizeof(__le16),
106
.hash = dn_neigh_hash,
107
.constructor = dn_neigh_construct,
108
.id = "dn_neigh_cache",
109
.parms ={
110
.tbl = &dn_neigh_table,
111
.base_reachable_time = 30 * HZ,
112
.retrans_time = 1 * HZ,
113
.gc_staletime = 60 * HZ,
114
.reachable_time = 30 * HZ,
115
.delay_probe_time = 5 * HZ,
116
.queue_len = 3,
117
.ucast_probes = 0,
118
.app_probes = 0,
119
.mcast_probes = 0,
120
.anycast_delay = 0,
121
.proxy_delay = 0,
122
.proxy_qlen = 0,
123
.locktime = 1 * HZ,
124
},
125
.gc_interval = 30 * HZ,
126
.gc_thresh1 = 128,
127
.gc_thresh2 = 512,
128
.gc_thresh3 = 1024,
129
};
130
131
static int dn_neigh_construct(struct neighbour *neigh)
132
{
133
struct net_device *dev = neigh->dev;
134
struct dn_neigh *dn = (struct dn_neigh *)neigh;
135
struct dn_dev *dn_db;
136
struct neigh_parms *parms;
137
138
rcu_read_lock();
139
dn_db = rcu_dereference(dev->dn_ptr);
140
if (dn_db == NULL) {
141
rcu_read_unlock();
142
return -EINVAL;
143
}
144
145
parms = dn_db->neigh_parms;
146
if (!parms) {
147
rcu_read_unlock();
148
return -EINVAL;
149
}
150
151
__neigh_parms_put(neigh->parms);
152
neigh->parms = neigh_parms_clone(parms);
153
154
if (dn_db->use_long)
155
neigh->ops = &dn_long_ops;
156
else
157
neigh->ops = &dn_short_ops;
158
rcu_read_unlock();
159
160
if (dn->flags & DN_NDFLAG_P3)
161
neigh->ops = &dn_phase3_ops;
162
163
neigh->nud_state = NUD_NOARP;
164
neigh->output = neigh->ops->connected_output;
165
166
if ((dev->type == ARPHRD_IPGRE) || (dev->flags & IFF_POINTOPOINT))
167
memcpy(neigh->ha, dev->broadcast, dev->addr_len);
168
else if ((dev->type == ARPHRD_ETHER) || (dev->type == ARPHRD_LOOPBACK))
169
dn_dn2eth(neigh->ha, dn->addr);
170
else {
171
if (net_ratelimit())
172
printk(KERN_DEBUG "Trying to create neigh for hw %d\n", dev->type);
173
return -EINVAL;
174
}
175
176
/*
177
* Make an estimate of the remote block size by assuming that its
178
* two less then the device mtu, which it true for ethernet (and
179
* other things which support long format headers) since there is
180
* an extra length field (of 16 bits) which isn't part of the
181
* ethernet headers and which the DECnet specs won't admit is part
182
* of the DECnet routing headers either.
183
*
184
* If we over estimate here its no big deal, the NSP negotiations
185
* will prevent us from sending packets which are too large for the
186
* remote node to handle. In any case this figure is normally updated
187
* by a hello message in most cases.
188
*/
189
dn->blksize = dev->mtu - 2;
190
191
return 0;
192
}
193
194
static void dn_long_error_report(struct neighbour *neigh, struct sk_buff *skb)
195
{
196
printk(KERN_DEBUG "dn_long_error_report: called\n");
197
kfree_skb(skb);
198
}
199
200
201
static void dn_short_error_report(struct neighbour *neigh, struct sk_buff *skb)
202
{
203
printk(KERN_DEBUG "dn_short_error_report: called\n");
204
kfree_skb(skb);
205
}
206
207
static int dn_neigh_output_packet(struct sk_buff *skb)
208
{
209
struct dst_entry *dst = skb_dst(skb);
210
struct dn_route *rt = (struct dn_route *)dst;
211
struct neighbour *neigh = dst->neighbour;
212
struct net_device *dev = neigh->dev;
213
char mac_addr[ETH_ALEN];
214
215
dn_dn2eth(mac_addr, rt->rt_local_src);
216
if (dev_hard_header(skb, dev, ntohs(skb->protocol), neigh->ha,
217
mac_addr, skb->len) >= 0)
218
return neigh->ops->queue_xmit(skb);
219
220
if (net_ratelimit())
221
printk(KERN_DEBUG "dn_neigh_output_packet: oops, can't send packet\n");
222
223
kfree_skb(skb);
224
return -EINVAL;
225
}
226
227
static int dn_long_output(struct sk_buff *skb)
228
{
229
struct dst_entry *dst = skb_dst(skb);
230
struct neighbour *neigh = dst->neighbour;
231
struct net_device *dev = neigh->dev;
232
int headroom = dev->hard_header_len + sizeof(struct dn_long_packet) + 3;
233
unsigned char *data;
234
struct dn_long_packet *lp;
235
struct dn_skb_cb *cb = DN_SKB_CB(skb);
236
237
238
if (skb_headroom(skb) < headroom) {
239
struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
240
if (skb2 == NULL) {
241
if (net_ratelimit())
242
printk(KERN_CRIT "dn_long_output: no memory\n");
243
kfree_skb(skb);
244
return -ENOBUFS;
245
}
246
kfree_skb(skb);
247
skb = skb2;
248
if (net_ratelimit())
249
printk(KERN_INFO "dn_long_output: Increasing headroom\n");
250
}
251
252
data = skb_push(skb, sizeof(struct dn_long_packet) + 3);
253
lp = (struct dn_long_packet *)(data+3);
254
255
*((__le16 *)data) = cpu_to_le16(skb->len - 2);
256
*(data + 2) = 1 | DN_RT_F_PF; /* Padding */
257
258
lp->msgflg = DN_RT_PKT_LONG|(cb->rt_flags&(DN_RT_F_IE|DN_RT_F_RQR|DN_RT_F_RTS));
259
lp->d_area = lp->d_subarea = 0;
260
dn_dn2eth(lp->d_id, cb->dst);
261
lp->s_area = lp->s_subarea = 0;
262
dn_dn2eth(lp->s_id, cb->src);
263
lp->nl2 = 0;
264
lp->visit_ct = cb->hops & 0x3f;
265
lp->s_class = 0;
266
lp->pt = 0;
267
268
skb_reset_network_header(skb);
269
270
return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, skb, NULL,
271
neigh->dev, dn_neigh_output_packet);
272
}
273
274
static int dn_short_output(struct sk_buff *skb)
275
{
276
struct dst_entry *dst = skb_dst(skb);
277
struct neighbour *neigh = dst->neighbour;
278
struct net_device *dev = neigh->dev;
279
int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
280
struct dn_short_packet *sp;
281
unsigned char *data;
282
struct dn_skb_cb *cb = DN_SKB_CB(skb);
283
284
285
if (skb_headroom(skb) < headroom) {
286
struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
287
if (skb2 == NULL) {
288
if (net_ratelimit())
289
printk(KERN_CRIT "dn_short_output: no memory\n");
290
kfree_skb(skb);
291
return -ENOBUFS;
292
}
293
kfree_skb(skb);
294
skb = skb2;
295
if (net_ratelimit())
296
printk(KERN_INFO "dn_short_output: Increasing headroom\n");
297
}
298
299
data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
300
*((__le16 *)data) = cpu_to_le16(skb->len - 2);
301
sp = (struct dn_short_packet *)(data+2);
302
303
sp->msgflg = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
304
sp->dstnode = cb->dst;
305
sp->srcnode = cb->src;
306
sp->forward = cb->hops & 0x3f;
307
308
skb_reset_network_header(skb);
309
310
return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, skb, NULL,
311
neigh->dev, dn_neigh_output_packet);
312
}
313
314
/*
315
* Phase 3 output is the same is short output, execpt that
316
* it clears the area bits before transmission.
317
*/
318
static int dn_phase3_output(struct sk_buff *skb)
319
{
320
struct dst_entry *dst = skb_dst(skb);
321
struct neighbour *neigh = dst->neighbour;
322
struct net_device *dev = neigh->dev;
323
int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
324
struct dn_short_packet *sp;
325
unsigned char *data;
326
struct dn_skb_cb *cb = DN_SKB_CB(skb);
327
328
if (skb_headroom(skb) < headroom) {
329
struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
330
if (skb2 == NULL) {
331
if (net_ratelimit())
332
printk(KERN_CRIT "dn_phase3_output: no memory\n");
333
kfree_skb(skb);
334
return -ENOBUFS;
335
}
336
kfree_skb(skb);
337
skb = skb2;
338
if (net_ratelimit())
339
printk(KERN_INFO "dn_phase3_output: Increasing headroom\n");
340
}
341
342
data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
343
*((__le16 *)data) = cpu_to_le16(skb->len - 2);
344
sp = (struct dn_short_packet *)(data + 2);
345
346
sp->msgflg = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
347
sp->dstnode = cb->dst & cpu_to_le16(0x03ff);
348
sp->srcnode = cb->src & cpu_to_le16(0x03ff);
349
sp->forward = cb->hops & 0x3f;
350
351
skb_reset_network_header(skb);
352
353
return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, skb, NULL,
354
neigh->dev, dn_neigh_output_packet);
355
}
356
357
/*
358
* Unfortunately, the neighbour code uses the device in its hash
359
* function, so we don't get any advantage from it. This function
360
* basically does a neigh_lookup(), but without comparing the device
361
* field. This is required for the On-Ethernet cache
362
*/
363
364
/*
365
* Pointopoint link receives a hello message
366
*/
367
void dn_neigh_pointopoint_hello(struct sk_buff *skb)
368
{
369
kfree_skb(skb);
370
}
371
372
/*
373
* Ethernet router hello message received
374
*/
375
int dn_neigh_router_hello(struct sk_buff *skb)
376
{
377
struct rtnode_hello_message *msg = (struct rtnode_hello_message *)skb->data;
378
379
struct neighbour *neigh;
380
struct dn_neigh *dn;
381
struct dn_dev *dn_db;
382
__le16 src;
383
384
src = dn_eth2dn(msg->id);
385
386
neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
387
388
dn = (struct dn_neigh *)neigh;
389
390
if (neigh) {
391
write_lock(&neigh->lock);
392
393
neigh->used = jiffies;
394
dn_db = rcu_dereference(neigh->dev->dn_ptr);
395
396
if (!(neigh->nud_state & NUD_PERMANENT)) {
397
neigh->updated = jiffies;
398
399
if (neigh->dev->type == ARPHRD_ETHER)
400
memcpy(neigh->ha, &eth_hdr(skb)->h_source, ETH_ALEN);
401
402
dn->blksize = le16_to_cpu(msg->blksize);
403
dn->priority = msg->priority;
404
405
dn->flags &= ~DN_NDFLAG_P3;
406
407
switch(msg->iinfo & DN_RT_INFO_TYPE) {
408
case DN_RT_INFO_L1RT:
409
dn->flags &=~DN_NDFLAG_R2;
410
dn->flags |= DN_NDFLAG_R1;
411
break;
412
case DN_RT_INFO_L2RT:
413
dn->flags |= DN_NDFLAG_R2;
414
}
415
}
416
417
/* Only use routers in our area */
418
if ((le16_to_cpu(src)>>10) == (le16_to_cpu((decnet_address))>>10)) {
419
if (!dn_db->router) {
420
dn_db->router = neigh_clone(neigh);
421
} else {
422
if (msg->priority > ((struct dn_neigh *)dn_db->router)->priority)
423
neigh_release(xchg(&dn_db->router, neigh_clone(neigh)));
424
}
425
}
426
write_unlock(&neigh->lock);
427
neigh_release(neigh);
428
}
429
430
kfree_skb(skb);
431
return 0;
432
}
433
434
/*
435
* Endnode hello message received
436
*/
437
int dn_neigh_endnode_hello(struct sk_buff *skb)
438
{
439
struct endnode_hello_message *msg = (struct endnode_hello_message *)skb->data;
440
struct neighbour *neigh;
441
struct dn_neigh *dn;
442
__le16 src;
443
444
src = dn_eth2dn(msg->id);
445
446
neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
447
448
dn = (struct dn_neigh *)neigh;
449
450
if (neigh) {
451
write_lock(&neigh->lock);
452
453
neigh->used = jiffies;
454
455
if (!(neigh->nud_state & NUD_PERMANENT)) {
456
neigh->updated = jiffies;
457
458
if (neigh->dev->type == ARPHRD_ETHER)
459
memcpy(neigh->ha, &eth_hdr(skb)->h_source, ETH_ALEN);
460
dn->flags &= ~(DN_NDFLAG_R1 | DN_NDFLAG_R2);
461
dn->blksize = le16_to_cpu(msg->blksize);
462
dn->priority = 0;
463
}
464
465
write_unlock(&neigh->lock);
466
neigh_release(neigh);
467
}
468
469
kfree_skb(skb);
470
return 0;
471
}
472
473
static char *dn_find_slot(char *base, int max, int priority)
474
{
475
int i;
476
unsigned char *min = NULL;
477
478
base += 6; /* skip first id */
479
480
for(i = 0; i < max; i++) {
481
if (!min || (*base < *min))
482
min = base;
483
base += 7; /* find next priority */
484
}
485
486
if (!min)
487
return NULL;
488
489
return (*min < priority) ? (min - 6) : NULL;
490
}
491
492
struct elist_cb_state {
493
struct net_device *dev;
494
unsigned char *ptr;
495
unsigned char *rs;
496
int t, n;
497
};
498
499
static void neigh_elist_cb(struct neighbour *neigh, void *_info)
500
{
501
struct elist_cb_state *s = _info;
502
struct dn_neigh *dn;
503
504
if (neigh->dev != s->dev)
505
return;
506
507
dn = (struct dn_neigh *) neigh;
508
if (!(dn->flags & (DN_NDFLAG_R1|DN_NDFLAG_R2)))
509
return;
510
511
if (s->t == s->n)
512
s->rs = dn_find_slot(s->ptr, s->n, dn->priority);
513
else
514
s->t++;
515
if (s->rs == NULL)
516
return;
517
518
dn_dn2eth(s->rs, dn->addr);
519
s->rs += 6;
520
*(s->rs) = neigh->nud_state & NUD_CONNECTED ? 0x80 : 0x0;
521
*(s->rs) |= dn->priority;
522
s->rs++;
523
}
524
525
int dn_neigh_elist(struct net_device *dev, unsigned char *ptr, int n)
526
{
527
struct elist_cb_state state;
528
529
state.dev = dev;
530
state.t = 0;
531
state.n = n;
532
state.ptr = ptr;
533
state.rs = ptr;
534
535
neigh_for_each(&dn_neigh_table, neigh_elist_cb, &state);
536
537
return state.t;
538
}
539
540
541
#ifdef CONFIG_PROC_FS
542
543
static inline void dn_neigh_format_entry(struct seq_file *seq,
544
struct neighbour *n)
545
{
546
struct dn_neigh *dn = (struct dn_neigh *) n;
547
char buf[DN_ASCBUF_LEN];
548
549
read_lock(&n->lock);
550
seq_printf(seq, "%-7s %s%s%s %02x %02d %07ld %-8s\n",
551
dn_addr2asc(le16_to_cpu(dn->addr), buf),
552
(dn->flags&DN_NDFLAG_R1) ? "1" : "-",
553
(dn->flags&DN_NDFLAG_R2) ? "2" : "-",
554
(dn->flags&DN_NDFLAG_P3) ? "3" : "-",
555
dn->n.nud_state,
556
atomic_read(&dn->n.refcnt),
557
dn->blksize,
558
(dn->n.dev) ? dn->n.dev->name : "?");
559
read_unlock(&n->lock);
560
}
561
562
static int dn_neigh_seq_show(struct seq_file *seq, void *v)
563
{
564
if (v == SEQ_START_TOKEN) {
565
seq_puts(seq, "Addr Flags State Use Blksize Dev\n");
566
} else {
567
dn_neigh_format_entry(seq, v);
568
}
569
570
return 0;
571
}
572
573
static void *dn_neigh_seq_start(struct seq_file *seq, loff_t *pos)
574
{
575
return neigh_seq_start(seq, pos, &dn_neigh_table,
576
NEIGH_SEQ_NEIGH_ONLY);
577
}
578
579
static const struct seq_operations dn_neigh_seq_ops = {
580
.start = dn_neigh_seq_start,
581
.next = neigh_seq_next,
582
.stop = neigh_seq_stop,
583
.show = dn_neigh_seq_show,
584
};
585
586
static int dn_neigh_seq_open(struct inode *inode, struct file *file)
587
{
588
return seq_open_net(inode, file, &dn_neigh_seq_ops,
589
sizeof(struct neigh_seq_state));
590
}
591
592
static const struct file_operations dn_neigh_seq_fops = {
593
.owner = THIS_MODULE,
594
.open = dn_neigh_seq_open,
595
.read = seq_read,
596
.llseek = seq_lseek,
597
.release = seq_release_net,
598
};
599
600
#endif
601
602
void __init dn_neigh_init(void)
603
{
604
neigh_table_init(&dn_neigh_table);
605
proc_net_fops_create(&init_net, "decnet_neigh", S_IRUGO, &dn_neigh_seq_fops);
606
}
607
608
void __exit dn_neigh_cleanup(void)
609
{
610
proc_net_remove(&init_net, "decnet_neigh");
611
neigh_table_clear(&dn_neigh_table);
612
}
613
614