Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/net/dsa/mv88e6xxx.c
15109 views
1
/*
2
* net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support
3
* Copyright (c) 2008 Marvell Semiconductor
4
*
5
* This program is free software; you can redistribute it and/or modify
6
* it under the terms of the GNU General Public License as published by
7
* the Free Software Foundation; either version 2 of the License, or
8
* (at your option) any later version.
9
*/
10
11
#include <linux/list.h>
12
#include <linux/netdevice.h>
13
#include <linux/phy.h>
14
#include "dsa_priv.h"
15
#include "mv88e6xxx.h"
16
17
/*
18
* If the switch's ADDR[4:0] strap pins are strapped to zero, it will
19
* use all 32 SMI bus addresses on its SMI bus, and all switch registers
20
* will be directly accessible on some {device address,register address}
21
* pair. If the ADDR[4:0] pins are not strapped to zero, the switch
22
* will only respond to SMI transactions to that specific address, and
23
* an indirect addressing mechanism needs to be used to access its
24
* registers.
25
*/
26
static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr)
27
{
28
int ret;
29
int i;
30
31
for (i = 0; i < 16; i++) {
32
ret = mdiobus_read(bus, sw_addr, 0);
33
if (ret < 0)
34
return ret;
35
36
if ((ret & 0x8000) == 0)
37
return 0;
38
}
39
40
return -ETIMEDOUT;
41
}
42
43
int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr, int reg)
44
{
45
int ret;
46
47
if (sw_addr == 0)
48
return mdiobus_read(bus, addr, reg);
49
50
/*
51
* Wait for the bus to become free.
52
*/
53
ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
54
if (ret < 0)
55
return ret;
56
57
/*
58
* Transmit the read command.
59
*/
60
ret = mdiobus_write(bus, sw_addr, 0, 0x9800 | (addr << 5) | reg);
61
if (ret < 0)
62
return ret;
63
64
/*
65
* Wait for the read command to complete.
66
*/
67
ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
68
if (ret < 0)
69
return ret;
70
71
/*
72
* Read the data.
73
*/
74
ret = mdiobus_read(bus, sw_addr, 1);
75
if (ret < 0)
76
return ret;
77
78
return ret & 0xffff;
79
}
80
81
int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
82
{
83
struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
84
int ret;
85
86
mutex_lock(&ps->smi_mutex);
87
ret = __mv88e6xxx_reg_read(ds->master_mii_bus,
88
ds->pd->sw_addr, addr, reg);
89
mutex_unlock(&ps->smi_mutex);
90
91
return ret;
92
}
93
94
int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr,
95
int reg, u16 val)
96
{
97
int ret;
98
99
if (sw_addr == 0)
100
return mdiobus_write(bus, addr, reg, val);
101
102
/*
103
* Wait for the bus to become free.
104
*/
105
ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
106
if (ret < 0)
107
return ret;
108
109
/*
110
* Transmit the data to write.
111
*/
112
ret = mdiobus_write(bus, sw_addr, 1, val);
113
if (ret < 0)
114
return ret;
115
116
/*
117
* Transmit the write command.
118
*/
119
ret = mdiobus_write(bus, sw_addr, 0, 0x9400 | (addr << 5) | reg);
120
if (ret < 0)
121
return ret;
122
123
/*
124
* Wait for the write command to complete.
125
*/
126
ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
127
if (ret < 0)
128
return ret;
129
130
return 0;
131
}
132
133
int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val)
134
{
135
struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
136
int ret;
137
138
mutex_lock(&ps->smi_mutex);
139
ret = __mv88e6xxx_reg_write(ds->master_mii_bus,
140
ds->pd->sw_addr, addr, reg, val);
141
mutex_unlock(&ps->smi_mutex);
142
143
return ret;
144
}
145
146
int mv88e6xxx_config_prio(struct dsa_switch *ds)
147
{
148
/*
149
* Configure the IP ToS mapping registers.
150
*/
151
REG_WRITE(REG_GLOBAL, 0x10, 0x0000);
152
REG_WRITE(REG_GLOBAL, 0x11, 0x0000);
153
REG_WRITE(REG_GLOBAL, 0x12, 0x5555);
154
REG_WRITE(REG_GLOBAL, 0x13, 0x5555);
155
REG_WRITE(REG_GLOBAL, 0x14, 0xaaaa);
156
REG_WRITE(REG_GLOBAL, 0x15, 0xaaaa);
157
REG_WRITE(REG_GLOBAL, 0x16, 0xffff);
158
REG_WRITE(REG_GLOBAL, 0x17, 0xffff);
159
160
/*
161
* Configure the IEEE 802.1p priority mapping register.
162
*/
163
REG_WRITE(REG_GLOBAL, 0x18, 0xfa41);
164
165
return 0;
166
}
167
168
int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr)
169
{
170
REG_WRITE(REG_GLOBAL, 0x01, (addr[0] << 8) | addr[1]);
171
REG_WRITE(REG_GLOBAL, 0x02, (addr[2] << 8) | addr[3]);
172
REG_WRITE(REG_GLOBAL, 0x03, (addr[4] << 8) | addr[5]);
173
174
return 0;
175
}
176
177
int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr)
178
{
179
int i;
180
int ret;
181
182
for (i = 0; i < 6; i++) {
183
int j;
184
185
/*
186
* Write the MAC address byte.
187
*/
188
REG_WRITE(REG_GLOBAL2, 0x0d, 0x8000 | (i << 8) | addr[i]);
189
190
/*
191
* Wait for the write to complete.
192
*/
193
for (j = 0; j < 16; j++) {
194
ret = REG_READ(REG_GLOBAL2, 0x0d);
195
if ((ret & 0x8000) == 0)
196
break;
197
}
198
if (j == 16)
199
return -ETIMEDOUT;
200
}
201
202
return 0;
203
}
204
205
int mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum)
206
{
207
if (addr >= 0)
208
return mv88e6xxx_reg_read(ds, addr, regnum);
209
return 0xffff;
210
}
211
212
int mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum, u16 val)
213
{
214
if (addr >= 0)
215
return mv88e6xxx_reg_write(ds, addr, regnum, val);
216
return 0;
217
}
218
219
#ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU
220
static int mv88e6xxx_ppu_disable(struct dsa_switch *ds)
221
{
222
int ret;
223
int i;
224
225
ret = REG_READ(REG_GLOBAL, 0x04);
226
REG_WRITE(REG_GLOBAL, 0x04, ret & ~0x4000);
227
228
for (i = 0; i < 1000; i++) {
229
ret = REG_READ(REG_GLOBAL, 0x00);
230
msleep(1);
231
if ((ret & 0xc000) != 0xc000)
232
return 0;
233
}
234
235
return -ETIMEDOUT;
236
}
237
238
static int mv88e6xxx_ppu_enable(struct dsa_switch *ds)
239
{
240
int ret;
241
int i;
242
243
ret = REG_READ(REG_GLOBAL, 0x04);
244
REG_WRITE(REG_GLOBAL, 0x04, ret | 0x4000);
245
246
for (i = 0; i < 1000; i++) {
247
ret = REG_READ(REG_GLOBAL, 0x00);
248
msleep(1);
249
if ((ret & 0xc000) == 0xc000)
250
return 0;
251
}
252
253
return -ETIMEDOUT;
254
}
255
256
static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
257
{
258
struct mv88e6xxx_priv_state *ps;
259
260
ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work);
261
if (mutex_trylock(&ps->ppu_mutex)) {
262
struct dsa_switch *ds = ((struct dsa_switch *)ps) - 1;
263
264
if (mv88e6xxx_ppu_enable(ds) == 0)
265
ps->ppu_disabled = 0;
266
mutex_unlock(&ps->ppu_mutex);
267
}
268
}
269
270
static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
271
{
272
struct mv88e6xxx_priv_state *ps = (void *)_ps;
273
274
schedule_work(&ps->ppu_work);
275
}
276
277
static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds)
278
{
279
struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
280
int ret;
281
282
mutex_lock(&ps->ppu_mutex);
283
284
/*
285
* If the PHY polling unit is enabled, disable it so that
286
* we can access the PHY registers. If it was already
287
* disabled, cancel the timer that is going to re-enable
288
* it.
289
*/
290
if (!ps->ppu_disabled) {
291
ret = mv88e6xxx_ppu_disable(ds);
292
if (ret < 0) {
293
mutex_unlock(&ps->ppu_mutex);
294
return ret;
295
}
296
ps->ppu_disabled = 1;
297
} else {
298
del_timer(&ps->ppu_timer);
299
ret = 0;
300
}
301
302
return ret;
303
}
304
305
static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds)
306
{
307
struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
308
309
/*
310
* Schedule a timer to re-enable the PHY polling unit.
311
*/
312
mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10));
313
mutex_unlock(&ps->ppu_mutex);
314
}
315
316
void mv88e6xxx_ppu_state_init(struct dsa_switch *ds)
317
{
318
struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
319
320
mutex_init(&ps->ppu_mutex);
321
INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work);
322
init_timer(&ps->ppu_timer);
323
ps->ppu_timer.data = (unsigned long)ps;
324
ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
325
}
326
327
int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum)
328
{
329
int ret;
330
331
ret = mv88e6xxx_ppu_access_get(ds);
332
if (ret >= 0) {
333
ret = mv88e6xxx_reg_read(ds, addr, regnum);
334
mv88e6xxx_ppu_access_put(ds);
335
}
336
337
return ret;
338
}
339
340
int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr,
341
int regnum, u16 val)
342
{
343
int ret;
344
345
ret = mv88e6xxx_ppu_access_get(ds);
346
if (ret >= 0) {
347
ret = mv88e6xxx_reg_write(ds, addr, regnum, val);
348
mv88e6xxx_ppu_access_put(ds);
349
}
350
351
return ret;
352
}
353
#endif
354
355
void mv88e6xxx_poll_link(struct dsa_switch *ds)
356
{
357
int i;
358
359
for (i = 0; i < DSA_MAX_PORTS; i++) {
360
struct net_device *dev;
361
int uninitialized_var(port_status);
362
int link;
363
int speed;
364
int duplex;
365
int fc;
366
367
dev = ds->ports[i];
368
if (dev == NULL)
369
continue;
370
371
link = 0;
372
if (dev->flags & IFF_UP) {
373
port_status = mv88e6xxx_reg_read(ds, REG_PORT(i), 0x00);
374
if (port_status < 0)
375
continue;
376
377
link = !!(port_status & 0x0800);
378
}
379
380
if (!link) {
381
if (netif_carrier_ok(dev)) {
382
printk(KERN_INFO "%s: link down\n", dev->name);
383
netif_carrier_off(dev);
384
}
385
continue;
386
}
387
388
switch (port_status & 0x0300) {
389
case 0x0000:
390
speed = 10;
391
break;
392
case 0x0100:
393
speed = 100;
394
break;
395
case 0x0200:
396
speed = 1000;
397
break;
398
default:
399
speed = -1;
400
break;
401
}
402
duplex = (port_status & 0x0400) ? 1 : 0;
403
fc = (port_status & 0x8000) ? 1 : 0;
404
405
if (!netif_carrier_ok(dev)) {
406
printk(KERN_INFO "%s: link up, %d Mb/s, %s duplex, "
407
"flow control %sabled\n", dev->name,
408
speed, duplex ? "full" : "half",
409
fc ? "en" : "dis");
410
netif_carrier_on(dev);
411
}
412
}
413
}
414
415
static int mv88e6xxx_stats_wait(struct dsa_switch *ds)
416
{
417
int ret;
418
int i;
419
420
for (i = 0; i < 10; i++) {
421
ret = REG_READ(REG_GLOBAL, 0x1d);
422
if ((ret & 0x8000) == 0)
423
return 0;
424
}
425
426
return -ETIMEDOUT;
427
}
428
429
static int mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port)
430
{
431
int ret;
432
433
/*
434
* Snapshot the hardware statistics counters for this port.
435
*/
436
REG_WRITE(REG_GLOBAL, 0x1d, 0xdc00 | port);
437
438
/*
439
* Wait for the snapshotting to complete.
440
*/
441
ret = mv88e6xxx_stats_wait(ds);
442
if (ret < 0)
443
return ret;
444
445
return 0;
446
}
447
448
static void mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val)
449
{
450
u32 _val;
451
int ret;
452
453
*val = 0;
454
455
ret = mv88e6xxx_reg_write(ds, REG_GLOBAL, 0x1d, 0xcc00 | stat);
456
if (ret < 0)
457
return;
458
459
ret = mv88e6xxx_stats_wait(ds);
460
if (ret < 0)
461
return;
462
463
ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x1e);
464
if (ret < 0)
465
return;
466
467
_val = ret << 16;
468
469
ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x1f);
470
if (ret < 0)
471
return;
472
473
*val = _val | ret;
474
}
475
476
void mv88e6xxx_get_strings(struct dsa_switch *ds,
477
int nr_stats, struct mv88e6xxx_hw_stat *stats,
478
int port, uint8_t *data)
479
{
480
int i;
481
482
for (i = 0; i < nr_stats; i++) {
483
memcpy(data + i * ETH_GSTRING_LEN,
484
stats[i].string, ETH_GSTRING_LEN);
485
}
486
}
487
488
void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
489
int nr_stats, struct mv88e6xxx_hw_stat *stats,
490
int port, uint64_t *data)
491
{
492
struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
493
int ret;
494
int i;
495
496
mutex_lock(&ps->stats_mutex);
497
498
ret = mv88e6xxx_stats_snapshot(ds, port);
499
if (ret < 0) {
500
mutex_unlock(&ps->stats_mutex);
501
return;
502
}
503
504
/*
505
* Read each of the counters.
506
*/
507
for (i = 0; i < nr_stats; i++) {
508
struct mv88e6xxx_hw_stat *s = stats + i;
509
u32 low;
510
u32 high;
511
512
mv88e6xxx_stats_read(ds, s->reg, &low);
513
if (s->sizeof_stat == 8)
514
mv88e6xxx_stats_read(ds, s->reg + 1, &high);
515
else
516
high = 0;
517
518
data[i] = (((u64)high) << 32) | low;
519
}
520
521
mutex_unlock(&ps->stats_mutex);
522
}
523
524