Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/net/ipv4/fib_frontend.c
15109 views
1
/*
2
* INET An implementation of the TCP/IP protocol suite for the LINUX
3
* operating system. INET is implemented using the BSD Socket
4
* interface as the means of communication with the user level.
5
*
6
* IPv4 Forwarding Information Base: FIB frontend.
7
*
8
* Authors: Alexey Kuznetsov, <[email protected]>
9
*
10
* This program is free software; you can redistribute it and/or
11
* modify it under the terms of the GNU General Public License
12
* as published by the Free Software Foundation; either version
13
* 2 of the License, or (at your option) any later version.
14
*/
15
16
#include <linux/module.h>
17
#include <asm/uaccess.h>
18
#include <asm/system.h>
19
#include <linux/bitops.h>
20
#include <linux/capability.h>
21
#include <linux/types.h>
22
#include <linux/kernel.h>
23
#include <linux/mm.h>
24
#include <linux/string.h>
25
#include <linux/socket.h>
26
#include <linux/sockios.h>
27
#include <linux/errno.h>
28
#include <linux/in.h>
29
#include <linux/inet.h>
30
#include <linux/inetdevice.h>
31
#include <linux/netdevice.h>
32
#include <linux/if_addr.h>
33
#include <linux/if_arp.h>
34
#include <linux/skbuff.h>
35
#include <linux/init.h>
36
#include <linux/list.h>
37
#include <linux/slab.h>
38
39
#include <net/ip.h>
40
#include <net/protocol.h>
41
#include <net/route.h>
42
#include <net/tcp.h>
43
#include <net/sock.h>
44
#include <net/arp.h>
45
#include <net/ip_fib.h>
46
#include <net/rtnetlink.h>
47
#include <net/xfrm.h>
48
49
#ifndef CONFIG_IP_MULTIPLE_TABLES
50
51
static int __net_init fib4_rules_init(struct net *net)
52
{
53
struct fib_table *local_table, *main_table;
54
55
local_table = fib_trie_table(RT_TABLE_LOCAL);
56
if (local_table == NULL)
57
return -ENOMEM;
58
59
main_table = fib_trie_table(RT_TABLE_MAIN);
60
if (main_table == NULL)
61
goto fail;
62
63
hlist_add_head_rcu(&local_table->tb_hlist,
64
&net->ipv4.fib_table_hash[TABLE_LOCAL_INDEX]);
65
hlist_add_head_rcu(&main_table->tb_hlist,
66
&net->ipv4.fib_table_hash[TABLE_MAIN_INDEX]);
67
return 0;
68
69
fail:
70
kfree(local_table);
71
return -ENOMEM;
72
}
73
#else
74
75
struct fib_table *fib_new_table(struct net *net, u32 id)
76
{
77
struct fib_table *tb;
78
unsigned int h;
79
80
if (id == 0)
81
id = RT_TABLE_MAIN;
82
tb = fib_get_table(net, id);
83
if (tb)
84
return tb;
85
86
tb = fib_trie_table(id);
87
if (!tb)
88
return NULL;
89
h = id & (FIB_TABLE_HASHSZ - 1);
90
hlist_add_head_rcu(&tb->tb_hlist, &net->ipv4.fib_table_hash[h]);
91
return tb;
92
}
93
94
struct fib_table *fib_get_table(struct net *net, u32 id)
95
{
96
struct fib_table *tb;
97
struct hlist_node *node;
98
struct hlist_head *head;
99
unsigned int h;
100
101
if (id == 0)
102
id = RT_TABLE_MAIN;
103
h = id & (FIB_TABLE_HASHSZ - 1);
104
105
rcu_read_lock();
106
head = &net->ipv4.fib_table_hash[h];
107
hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
108
if (tb->tb_id == id) {
109
rcu_read_unlock();
110
return tb;
111
}
112
}
113
rcu_read_unlock();
114
return NULL;
115
}
116
#endif /* CONFIG_IP_MULTIPLE_TABLES */
117
118
static void fib_flush(struct net *net)
119
{
120
int flushed = 0;
121
struct fib_table *tb;
122
struct hlist_node *node;
123
struct hlist_head *head;
124
unsigned int h;
125
126
for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
127
head = &net->ipv4.fib_table_hash[h];
128
hlist_for_each_entry(tb, node, head, tb_hlist)
129
flushed += fib_table_flush(tb);
130
}
131
132
if (flushed)
133
rt_cache_flush(net, -1);
134
}
135
136
/*
137
* Find address type as if only "dev" was present in the system. If
138
* on_dev is NULL then all interfaces are taken into consideration.
139
*/
140
static inline unsigned __inet_dev_addr_type(struct net *net,
141
const struct net_device *dev,
142
__be32 addr)
143
{
144
struct flowi4 fl4 = { .daddr = addr };
145
struct fib_result res;
146
unsigned ret = RTN_BROADCAST;
147
struct fib_table *local_table;
148
149
if (ipv4_is_zeronet(addr) || ipv4_is_lbcast(addr))
150
return RTN_BROADCAST;
151
if (ipv4_is_multicast(addr))
152
return RTN_MULTICAST;
153
154
#ifdef CONFIG_IP_MULTIPLE_TABLES
155
res.r = NULL;
156
#endif
157
158
local_table = fib_get_table(net, RT_TABLE_LOCAL);
159
if (local_table) {
160
ret = RTN_UNICAST;
161
rcu_read_lock();
162
if (!fib_table_lookup(local_table, &fl4, &res, FIB_LOOKUP_NOREF)) {
163
if (!dev || dev == res.fi->fib_dev)
164
ret = res.type;
165
}
166
rcu_read_unlock();
167
}
168
return ret;
169
}
170
171
unsigned int inet_addr_type(struct net *net, __be32 addr)
172
{
173
return __inet_dev_addr_type(net, NULL, addr);
174
}
175
EXPORT_SYMBOL(inet_addr_type);
176
177
unsigned int inet_dev_addr_type(struct net *net, const struct net_device *dev,
178
__be32 addr)
179
{
180
return __inet_dev_addr_type(net, dev, addr);
181
}
182
EXPORT_SYMBOL(inet_dev_addr_type);
183
184
/* Given (packet source, input interface) and optional (dst, oif, tos):
185
* - (main) check, that source is valid i.e. not broadcast or our local
186
* address.
187
* - figure out what "logical" interface this packet arrived
188
* and calculate "specific destination" address.
189
* - check, that packet arrived from expected physical interface.
190
* called with rcu_read_lock()
191
*/
192
int fib_validate_source(struct sk_buff *skb, __be32 src, __be32 dst, u8 tos,
193
int oif, struct net_device *dev, __be32 *spec_dst,
194
u32 *itag)
195
{
196
struct in_device *in_dev;
197
struct flowi4 fl4;
198
struct fib_result res;
199
int no_addr, rpf, accept_local;
200
bool dev_match;
201
int ret;
202
struct net *net;
203
204
fl4.flowi4_oif = 0;
205
fl4.flowi4_iif = oif;
206
fl4.daddr = src;
207
fl4.saddr = dst;
208
fl4.flowi4_tos = tos;
209
fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
210
211
no_addr = rpf = accept_local = 0;
212
in_dev = __in_dev_get_rcu(dev);
213
if (in_dev) {
214
no_addr = in_dev->ifa_list == NULL;
215
216
/* Ignore rp_filter for packets protected by IPsec. */
217
rpf = secpath_exists(skb) ? 0 : IN_DEV_RPFILTER(in_dev);
218
219
accept_local = IN_DEV_ACCEPT_LOCAL(in_dev);
220
fl4.flowi4_mark = IN_DEV_SRC_VMARK(in_dev) ? skb->mark : 0;
221
}
222
223
if (in_dev == NULL)
224
goto e_inval;
225
226
net = dev_net(dev);
227
if (fib_lookup(net, &fl4, &res))
228
goto last_resort;
229
if (res.type != RTN_UNICAST) {
230
if (res.type != RTN_LOCAL || !accept_local)
231
goto e_inval;
232
}
233
*spec_dst = FIB_RES_PREFSRC(net, res);
234
fib_combine_itag(itag, &res);
235
dev_match = false;
236
237
#ifdef CONFIG_IP_ROUTE_MULTIPATH
238
for (ret = 0; ret < res.fi->fib_nhs; ret++) {
239
struct fib_nh *nh = &res.fi->fib_nh[ret];
240
241
if (nh->nh_dev == dev) {
242
dev_match = true;
243
break;
244
}
245
}
246
#else
247
if (FIB_RES_DEV(res) == dev)
248
dev_match = true;
249
#endif
250
if (dev_match) {
251
ret = FIB_RES_NH(res).nh_scope >= RT_SCOPE_HOST;
252
return ret;
253
}
254
if (no_addr)
255
goto last_resort;
256
if (rpf == 1)
257
goto e_rpf;
258
fl4.flowi4_oif = dev->ifindex;
259
260
ret = 0;
261
if (fib_lookup(net, &fl4, &res) == 0) {
262
if (res.type == RTN_UNICAST) {
263
*spec_dst = FIB_RES_PREFSRC(net, res);
264
ret = FIB_RES_NH(res).nh_scope >= RT_SCOPE_HOST;
265
}
266
}
267
return ret;
268
269
last_resort:
270
if (rpf)
271
goto e_rpf;
272
*spec_dst = inet_select_addr(dev, 0, RT_SCOPE_UNIVERSE);
273
*itag = 0;
274
return 0;
275
276
e_inval:
277
return -EINVAL;
278
e_rpf:
279
return -EXDEV;
280
}
281
282
static inline __be32 sk_extract_addr(struct sockaddr *addr)
283
{
284
return ((struct sockaddr_in *) addr)->sin_addr.s_addr;
285
}
286
287
static int put_rtax(struct nlattr *mx, int len, int type, u32 value)
288
{
289
struct nlattr *nla;
290
291
nla = (struct nlattr *) ((char *) mx + len);
292
nla->nla_type = type;
293
nla->nla_len = nla_attr_size(4);
294
*(u32 *) nla_data(nla) = value;
295
296
return len + nla_total_size(4);
297
}
298
299
static int rtentry_to_fib_config(struct net *net, int cmd, struct rtentry *rt,
300
struct fib_config *cfg)
301
{
302
__be32 addr;
303
int plen;
304
305
memset(cfg, 0, sizeof(*cfg));
306
cfg->fc_nlinfo.nl_net = net;
307
308
if (rt->rt_dst.sa_family != AF_INET)
309
return -EAFNOSUPPORT;
310
311
/*
312
* Check mask for validity:
313
* a) it must be contiguous.
314
* b) destination must have all host bits clear.
315
* c) if application forgot to set correct family (AF_INET),
316
* reject request unless it is absolutely clear i.e.
317
* both family and mask are zero.
318
*/
319
plen = 32;
320
addr = sk_extract_addr(&rt->rt_dst);
321
if (!(rt->rt_flags & RTF_HOST)) {
322
__be32 mask = sk_extract_addr(&rt->rt_genmask);
323
324
if (rt->rt_genmask.sa_family != AF_INET) {
325
if (mask || rt->rt_genmask.sa_family)
326
return -EAFNOSUPPORT;
327
}
328
329
if (bad_mask(mask, addr))
330
return -EINVAL;
331
332
plen = inet_mask_len(mask);
333
}
334
335
cfg->fc_dst_len = plen;
336
cfg->fc_dst = addr;
337
338
if (cmd != SIOCDELRT) {
339
cfg->fc_nlflags = NLM_F_CREATE;
340
cfg->fc_protocol = RTPROT_BOOT;
341
}
342
343
if (rt->rt_metric)
344
cfg->fc_priority = rt->rt_metric - 1;
345
346
if (rt->rt_flags & RTF_REJECT) {
347
cfg->fc_scope = RT_SCOPE_HOST;
348
cfg->fc_type = RTN_UNREACHABLE;
349
return 0;
350
}
351
352
cfg->fc_scope = RT_SCOPE_NOWHERE;
353
cfg->fc_type = RTN_UNICAST;
354
355
if (rt->rt_dev) {
356
char *colon;
357
struct net_device *dev;
358
char devname[IFNAMSIZ];
359
360
if (copy_from_user(devname, rt->rt_dev, IFNAMSIZ-1))
361
return -EFAULT;
362
363
devname[IFNAMSIZ-1] = 0;
364
colon = strchr(devname, ':');
365
if (colon)
366
*colon = 0;
367
dev = __dev_get_by_name(net, devname);
368
if (!dev)
369
return -ENODEV;
370
cfg->fc_oif = dev->ifindex;
371
if (colon) {
372
struct in_ifaddr *ifa;
373
struct in_device *in_dev = __in_dev_get_rtnl(dev);
374
if (!in_dev)
375
return -ENODEV;
376
*colon = ':';
377
for (ifa = in_dev->ifa_list; ifa; ifa = ifa->ifa_next)
378
if (strcmp(ifa->ifa_label, devname) == 0)
379
break;
380
if (ifa == NULL)
381
return -ENODEV;
382
cfg->fc_prefsrc = ifa->ifa_local;
383
}
384
}
385
386
addr = sk_extract_addr(&rt->rt_gateway);
387
if (rt->rt_gateway.sa_family == AF_INET && addr) {
388
cfg->fc_gw = addr;
389
if (rt->rt_flags & RTF_GATEWAY &&
390
inet_addr_type(net, addr) == RTN_UNICAST)
391
cfg->fc_scope = RT_SCOPE_UNIVERSE;
392
}
393
394
if (cmd == SIOCDELRT)
395
return 0;
396
397
if (rt->rt_flags & RTF_GATEWAY && !cfg->fc_gw)
398
return -EINVAL;
399
400
if (cfg->fc_scope == RT_SCOPE_NOWHERE)
401
cfg->fc_scope = RT_SCOPE_LINK;
402
403
if (rt->rt_flags & (RTF_MTU | RTF_WINDOW | RTF_IRTT)) {
404
struct nlattr *mx;
405
int len = 0;
406
407
mx = kzalloc(3 * nla_total_size(4), GFP_KERNEL);
408
if (mx == NULL)
409
return -ENOMEM;
410
411
if (rt->rt_flags & RTF_MTU)
412
len = put_rtax(mx, len, RTAX_ADVMSS, rt->rt_mtu - 40);
413
414
if (rt->rt_flags & RTF_WINDOW)
415
len = put_rtax(mx, len, RTAX_WINDOW, rt->rt_window);
416
417
if (rt->rt_flags & RTF_IRTT)
418
len = put_rtax(mx, len, RTAX_RTT, rt->rt_irtt << 3);
419
420
cfg->fc_mx = mx;
421
cfg->fc_mx_len = len;
422
}
423
424
return 0;
425
}
426
427
/*
428
* Handle IP routing ioctl calls.
429
* These are used to manipulate the routing tables
430
*/
431
int ip_rt_ioctl(struct net *net, unsigned int cmd, void __user *arg)
432
{
433
struct fib_config cfg;
434
struct rtentry rt;
435
int err;
436
437
switch (cmd) {
438
case SIOCADDRT: /* Add a route */
439
case SIOCDELRT: /* Delete a route */
440
if (!capable(CAP_NET_ADMIN))
441
return -EPERM;
442
443
if (copy_from_user(&rt, arg, sizeof(rt)))
444
return -EFAULT;
445
446
rtnl_lock();
447
err = rtentry_to_fib_config(net, cmd, &rt, &cfg);
448
if (err == 0) {
449
struct fib_table *tb;
450
451
if (cmd == SIOCDELRT) {
452
tb = fib_get_table(net, cfg.fc_table);
453
if (tb)
454
err = fib_table_delete(tb, &cfg);
455
else
456
err = -ESRCH;
457
} else {
458
tb = fib_new_table(net, cfg.fc_table);
459
if (tb)
460
err = fib_table_insert(tb, &cfg);
461
else
462
err = -ENOBUFS;
463
}
464
465
/* allocated by rtentry_to_fib_config() */
466
kfree(cfg.fc_mx);
467
}
468
rtnl_unlock();
469
return err;
470
}
471
return -EINVAL;
472
}
473
474
const struct nla_policy rtm_ipv4_policy[RTA_MAX + 1] = {
475
[RTA_DST] = { .type = NLA_U32 },
476
[RTA_SRC] = { .type = NLA_U32 },
477
[RTA_IIF] = { .type = NLA_U32 },
478
[RTA_OIF] = { .type = NLA_U32 },
479
[RTA_GATEWAY] = { .type = NLA_U32 },
480
[RTA_PRIORITY] = { .type = NLA_U32 },
481
[RTA_PREFSRC] = { .type = NLA_U32 },
482
[RTA_METRICS] = { .type = NLA_NESTED },
483
[RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
484
[RTA_FLOW] = { .type = NLA_U32 },
485
};
486
487
static int rtm_to_fib_config(struct net *net, struct sk_buff *skb,
488
struct nlmsghdr *nlh, struct fib_config *cfg)
489
{
490
struct nlattr *attr;
491
int err, remaining;
492
struct rtmsg *rtm;
493
494
err = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipv4_policy);
495
if (err < 0)
496
goto errout;
497
498
memset(cfg, 0, sizeof(*cfg));
499
500
rtm = nlmsg_data(nlh);
501
cfg->fc_dst_len = rtm->rtm_dst_len;
502
cfg->fc_tos = rtm->rtm_tos;
503
cfg->fc_table = rtm->rtm_table;
504
cfg->fc_protocol = rtm->rtm_protocol;
505
cfg->fc_scope = rtm->rtm_scope;
506
cfg->fc_type = rtm->rtm_type;
507
cfg->fc_flags = rtm->rtm_flags;
508
cfg->fc_nlflags = nlh->nlmsg_flags;
509
510
cfg->fc_nlinfo.pid = NETLINK_CB(skb).pid;
511
cfg->fc_nlinfo.nlh = nlh;
512
cfg->fc_nlinfo.nl_net = net;
513
514
if (cfg->fc_type > RTN_MAX) {
515
err = -EINVAL;
516
goto errout;
517
}
518
519
nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), remaining) {
520
switch (nla_type(attr)) {
521
case RTA_DST:
522
cfg->fc_dst = nla_get_be32(attr);
523
break;
524
case RTA_OIF:
525
cfg->fc_oif = nla_get_u32(attr);
526
break;
527
case RTA_GATEWAY:
528
cfg->fc_gw = nla_get_be32(attr);
529
break;
530
case RTA_PRIORITY:
531
cfg->fc_priority = nla_get_u32(attr);
532
break;
533
case RTA_PREFSRC:
534
cfg->fc_prefsrc = nla_get_be32(attr);
535
break;
536
case RTA_METRICS:
537
cfg->fc_mx = nla_data(attr);
538
cfg->fc_mx_len = nla_len(attr);
539
break;
540
case RTA_MULTIPATH:
541
cfg->fc_mp = nla_data(attr);
542
cfg->fc_mp_len = nla_len(attr);
543
break;
544
case RTA_FLOW:
545
cfg->fc_flow = nla_get_u32(attr);
546
break;
547
case RTA_TABLE:
548
cfg->fc_table = nla_get_u32(attr);
549
break;
550
}
551
}
552
553
return 0;
554
errout:
555
return err;
556
}
557
558
static int inet_rtm_delroute(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
559
{
560
struct net *net = sock_net(skb->sk);
561
struct fib_config cfg;
562
struct fib_table *tb;
563
int err;
564
565
err = rtm_to_fib_config(net, skb, nlh, &cfg);
566
if (err < 0)
567
goto errout;
568
569
tb = fib_get_table(net, cfg.fc_table);
570
if (tb == NULL) {
571
err = -ESRCH;
572
goto errout;
573
}
574
575
err = fib_table_delete(tb, &cfg);
576
errout:
577
return err;
578
}
579
580
static int inet_rtm_newroute(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
581
{
582
struct net *net = sock_net(skb->sk);
583
struct fib_config cfg;
584
struct fib_table *tb;
585
int err;
586
587
err = rtm_to_fib_config(net, skb, nlh, &cfg);
588
if (err < 0)
589
goto errout;
590
591
tb = fib_new_table(net, cfg.fc_table);
592
if (tb == NULL) {
593
err = -ENOBUFS;
594
goto errout;
595
}
596
597
err = fib_table_insert(tb, &cfg);
598
errout:
599
return err;
600
}
601
602
static int inet_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
603
{
604
struct net *net = sock_net(skb->sk);
605
unsigned int h, s_h;
606
unsigned int e = 0, s_e;
607
struct fib_table *tb;
608
struct hlist_node *node;
609
struct hlist_head *head;
610
int dumped = 0;
611
612
if (nlmsg_len(cb->nlh) >= sizeof(struct rtmsg) &&
613
((struct rtmsg *) nlmsg_data(cb->nlh))->rtm_flags & RTM_F_CLONED)
614
return ip_rt_dump(skb, cb);
615
616
s_h = cb->args[0];
617
s_e = cb->args[1];
618
619
for (h = s_h; h < FIB_TABLE_HASHSZ; h++, s_e = 0) {
620
e = 0;
621
head = &net->ipv4.fib_table_hash[h];
622
hlist_for_each_entry(tb, node, head, tb_hlist) {
623
if (e < s_e)
624
goto next;
625
if (dumped)
626
memset(&cb->args[2], 0, sizeof(cb->args) -
627
2 * sizeof(cb->args[0]));
628
if (fib_table_dump(tb, skb, cb) < 0)
629
goto out;
630
dumped = 1;
631
next:
632
e++;
633
}
634
}
635
out:
636
cb->args[1] = e;
637
cb->args[0] = h;
638
639
return skb->len;
640
}
641
642
/* Prepare and feed intra-kernel routing request.
643
* Really, it should be netlink message, but :-( netlink
644
* can be not configured, so that we feed it directly
645
* to fib engine. It is legal, because all events occur
646
* only when netlink is already locked.
647
*/
648
static void fib_magic(int cmd, int type, __be32 dst, int dst_len, struct in_ifaddr *ifa)
649
{
650
struct net *net = dev_net(ifa->ifa_dev->dev);
651
struct fib_table *tb;
652
struct fib_config cfg = {
653
.fc_protocol = RTPROT_KERNEL,
654
.fc_type = type,
655
.fc_dst = dst,
656
.fc_dst_len = dst_len,
657
.fc_prefsrc = ifa->ifa_local,
658
.fc_oif = ifa->ifa_dev->dev->ifindex,
659
.fc_nlflags = NLM_F_CREATE | NLM_F_APPEND,
660
.fc_nlinfo = {
661
.nl_net = net,
662
},
663
};
664
665
if (type == RTN_UNICAST)
666
tb = fib_new_table(net, RT_TABLE_MAIN);
667
else
668
tb = fib_new_table(net, RT_TABLE_LOCAL);
669
670
if (tb == NULL)
671
return;
672
673
cfg.fc_table = tb->tb_id;
674
675
if (type != RTN_LOCAL)
676
cfg.fc_scope = RT_SCOPE_LINK;
677
else
678
cfg.fc_scope = RT_SCOPE_HOST;
679
680
if (cmd == RTM_NEWROUTE)
681
fib_table_insert(tb, &cfg);
682
else
683
fib_table_delete(tb, &cfg);
684
}
685
686
void fib_add_ifaddr(struct in_ifaddr *ifa)
687
{
688
struct in_device *in_dev = ifa->ifa_dev;
689
struct net_device *dev = in_dev->dev;
690
struct in_ifaddr *prim = ifa;
691
__be32 mask = ifa->ifa_mask;
692
__be32 addr = ifa->ifa_local;
693
__be32 prefix = ifa->ifa_address & mask;
694
695
if (ifa->ifa_flags & IFA_F_SECONDARY) {
696
prim = inet_ifa_byprefix(in_dev, prefix, mask);
697
if (prim == NULL) {
698
printk(KERN_WARNING "fib_add_ifaddr: bug: prim == NULL\n");
699
return;
700
}
701
}
702
703
fib_magic(RTM_NEWROUTE, RTN_LOCAL, addr, 32, prim);
704
705
if (!(dev->flags & IFF_UP))
706
return;
707
708
/* Add broadcast address, if it is explicitly assigned. */
709
if (ifa->ifa_broadcast && ifa->ifa_broadcast != htonl(0xFFFFFFFF))
710
fib_magic(RTM_NEWROUTE, RTN_BROADCAST, ifa->ifa_broadcast, 32, prim);
711
712
if (!ipv4_is_zeronet(prefix) && !(ifa->ifa_flags & IFA_F_SECONDARY) &&
713
(prefix != addr || ifa->ifa_prefixlen < 32)) {
714
fib_magic(RTM_NEWROUTE,
715
dev->flags & IFF_LOOPBACK ? RTN_LOCAL : RTN_UNICAST,
716
prefix, ifa->ifa_prefixlen, prim);
717
718
/* Add network specific broadcasts, when it takes a sense */
719
if (ifa->ifa_prefixlen < 31) {
720
fib_magic(RTM_NEWROUTE, RTN_BROADCAST, prefix, 32, prim);
721
fib_magic(RTM_NEWROUTE, RTN_BROADCAST, prefix | ~mask,
722
32, prim);
723
}
724
}
725
}
726
727
/* Delete primary or secondary address.
728
* Optionally, on secondary address promotion consider the addresses
729
* from subnet iprim as deleted, even if they are in device list.
730
* In this case the secondary ifa can be in device list.
731
*/
732
void fib_del_ifaddr(struct in_ifaddr *ifa, struct in_ifaddr *iprim)
733
{
734
struct in_device *in_dev = ifa->ifa_dev;
735
struct net_device *dev = in_dev->dev;
736
struct in_ifaddr *ifa1;
737
struct in_ifaddr *prim = ifa, *prim1 = NULL;
738
__be32 brd = ifa->ifa_address | ~ifa->ifa_mask;
739
__be32 any = ifa->ifa_address & ifa->ifa_mask;
740
#define LOCAL_OK 1
741
#define BRD_OK 2
742
#define BRD0_OK 4
743
#define BRD1_OK 8
744
unsigned ok = 0;
745
int subnet = 0; /* Primary network */
746
int gone = 1; /* Address is missing */
747
int same_prefsrc = 0; /* Another primary with same IP */
748
749
if (ifa->ifa_flags & IFA_F_SECONDARY) {
750
prim = inet_ifa_byprefix(in_dev, any, ifa->ifa_mask);
751
if (prim == NULL) {
752
printk(KERN_WARNING "fib_del_ifaddr: bug: prim == NULL\n");
753
return;
754
}
755
if (iprim && iprim != prim) {
756
printk(KERN_WARNING "fib_del_ifaddr: bug: iprim != prim\n");
757
return;
758
}
759
} else if (!ipv4_is_zeronet(any) &&
760
(any != ifa->ifa_local || ifa->ifa_prefixlen < 32)) {
761
fib_magic(RTM_DELROUTE,
762
dev->flags & IFF_LOOPBACK ? RTN_LOCAL : RTN_UNICAST,
763
any, ifa->ifa_prefixlen, prim);
764
subnet = 1;
765
}
766
767
/* Deletion is more complicated than add.
768
* We should take care of not to delete too much :-)
769
*
770
* Scan address list to be sure that addresses are really gone.
771
*/
772
773
for (ifa1 = in_dev->ifa_list; ifa1; ifa1 = ifa1->ifa_next) {
774
if (ifa1 == ifa) {
775
/* promotion, keep the IP */
776
gone = 0;
777
continue;
778
}
779
/* Ignore IFAs from our subnet */
780
if (iprim && ifa1->ifa_mask == iprim->ifa_mask &&
781
inet_ifa_match(ifa1->ifa_address, iprim))
782
continue;
783
784
/* Ignore ifa1 if it uses different primary IP (prefsrc) */
785
if (ifa1->ifa_flags & IFA_F_SECONDARY) {
786
/* Another address from our subnet? */
787
if (ifa1->ifa_mask == prim->ifa_mask &&
788
inet_ifa_match(ifa1->ifa_address, prim))
789
prim1 = prim;
790
else {
791
/* We reached the secondaries, so
792
* same_prefsrc should be determined.
793
*/
794
if (!same_prefsrc)
795
continue;
796
/* Search new prim1 if ifa1 is not
797
* using the current prim1
798
*/
799
if (!prim1 ||
800
ifa1->ifa_mask != prim1->ifa_mask ||
801
!inet_ifa_match(ifa1->ifa_address, prim1))
802
prim1 = inet_ifa_byprefix(in_dev,
803
ifa1->ifa_address,
804
ifa1->ifa_mask);
805
if (!prim1)
806
continue;
807
if (prim1->ifa_local != prim->ifa_local)
808
continue;
809
}
810
} else {
811
if (prim->ifa_local != ifa1->ifa_local)
812
continue;
813
prim1 = ifa1;
814
if (prim != prim1)
815
same_prefsrc = 1;
816
}
817
if (ifa->ifa_local == ifa1->ifa_local)
818
ok |= LOCAL_OK;
819
if (ifa->ifa_broadcast == ifa1->ifa_broadcast)
820
ok |= BRD_OK;
821
if (brd == ifa1->ifa_broadcast)
822
ok |= BRD1_OK;
823
if (any == ifa1->ifa_broadcast)
824
ok |= BRD0_OK;
825
/* primary has network specific broadcasts */
826
if (prim1 == ifa1 && ifa1->ifa_prefixlen < 31) {
827
__be32 brd1 = ifa1->ifa_address | ~ifa1->ifa_mask;
828
__be32 any1 = ifa1->ifa_address & ifa1->ifa_mask;
829
830
if (!ipv4_is_zeronet(any1)) {
831
if (ifa->ifa_broadcast == brd1 ||
832
ifa->ifa_broadcast == any1)
833
ok |= BRD_OK;
834
if (brd == brd1 || brd == any1)
835
ok |= BRD1_OK;
836
if (any == brd1 || any == any1)
837
ok |= BRD0_OK;
838
}
839
}
840
}
841
842
if (!(ok & BRD_OK))
843
fib_magic(RTM_DELROUTE, RTN_BROADCAST, ifa->ifa_broadcast, 32, prim);
844
if (subnet && ifa->ifa_prefixlen < 31) {
845
if (!(ok & BRD1_OK))
846
fib_magic(RTM_DELROUTE, RTN_BROADCAST, brd, 32, prim);
847
if (!(ok & BRD0_OK))
848
fib_magic(RTM_DELROUTE, RTN_BROADCAST, any, 32, prim);
849
}
850
if (!(ok & LOCAL_OK)) {
851
fib_magic(RTM_DELROUTE, RTN_LOCAL, ifa->ifa_local, 32, prim);
852
853
/* Check, that this local address finally disappeared. */
854
if (gone &&
855
inet_addr_type(dev_net(dev), ifa->ifa_local) != RTN_LOCAL) {
856
/* And the last, but not the least thing.
857
* We must flush stray FIB entries.
858
*
859
* First of all, we scan fib_info list searching
860
* for stray nexthop entries, then ignite fib_flush.
861
*/
862
if (fib_sync_down_addr(dev_net(dev), ifa->ifa_local))
863
fib_flush(dev_net(dev));
864
}
865
}
866
#undef LOCAL_OK
867
#undef BRD_OK
868
#undef BRD0_OK
869
#undef BRD1_OK
870
}
871
872
static void nl_fib_lookup(struct fib_result_nl *frn, struct fib_table *tb)
873
{
874
875
struct fib_result res;
876
struct flowi4 fl4 = {
877
.flowi4_mark = frn->fl_mark,
878
.daddr = frn->fl_addr,
879
.flowi4_tos = frn->fl_tos,
880
.flowi4_scope = frn->fl_scope,
881
};
882
883
#ifdef CONFIG_IP_MULTIPLE_TABLES
884
res.r = NULL;
885
#endif
886
887
frn->err = -ENOENT;
888
if (tb) {
889
local_bh_disable();
890
891
frn->tb_id = tb->tb_id;
892
rcu_read_lock();
893
frn->err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
894
895
if (!frn->err) {
896
frn->prefixlen = res.prefixlen;
897
frn->nh_sel = res.nh_sel;
898
frn->type = res.type;
899
frn->scope = res.scope;
900
}
901
rcu_read_unlock();
902
local_bh_enable();
903
}
904
}
905
906
static void nl_fib_input(struct sk_buff *skb)
907
{
908
struct net *net;
909
struct fib_result_nl *frn;
910
struct nlmsghdr *nlh;
911
struct fib_table *tb;
912
u32 pid;
913
914
net = sock_net(skb->sk);
915
nlh = nlmsg_hdr(skb);
916
if (skb->len < NLMSG_SPACE(0) || skb->len < nlh->nlmsg_len ||
917
nlh->nlmsg_len < NLMSG_LENGTH(sizeof(*frn)))
918
return;
919
920
skb = skb_clone(skb, GFP_KERNEL);
921
if (skb == NULL)
922
return;
923
nlh = nlmsg_hdr(skb);
924
925
frn = (struct fib_result_nl *) NLMSG_DATA(nlh);
926
tb = fib_get_table(net, frn->tb_id_in);
927
928
nl_fib_lookup(frn, tb);
929
930
pid = NETLINK_CB(skb).pid; /* pid of sending process */
931
NETLINK_CB(skb).pid = 0; /* from kernel */
932
NETLINK_CB(skb).dst_group = 0; /* unicast */
933
netlink_unicast(net->ipv4.fibnl, skb, pid, MSG_DONTWAIT);
934
}
935
936
static int __net_init nl_fib_lookup_init(struct net *net)
937
{
938
struct sock *sk;
939
sk = netlink_kernel_create(net, NETLINK_FIB_LOOKUP, 0,
940
nl_fib_input, NULL, THIS_MODULE);
941
if (sk == NULL)
942
return -EAFNOSUPPORT;
943
net->ipv4.fibnl = sk;
944
return 0;
945
}
946
947
static void nl_fib_lookup_exit(struct net *net)
948
{
949
netlink_kernel_release(net->ipv4.fibnl);
950
net->ipv4.fibnl = NULL;
951
}
952
953
static void fib_disable_ip(struct net_device *dev, int force, int delay)
954
{
955
if (fib_sync_down_dev(dev, force))
956
fib_flush(dev_net(dev));
957
rt_cache_flush(dev_net(dev), delay);
958
arp_ifdown(dev);
959
}
960
961
static int fib_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr)
962
{
963
struct in_ifaddr *ifa = (struct in_ifaddr *)ptr;
964
struct net_device *dev = ifa->ifa_dev->dev;
965
struct net *net = dev_net(dev);
966
967
switch (event) {
968
case NETDEV_UP:
969
fib_add_ifaddr(ifa);
970
#ifdef CONFIG_IP_ROUTE_MULTIPATH
971
fib_sync_up(dev);
972
#endif
973
atomic_inc(&net->ipv4.dev_addr_genid);
974
rt_cache_flush(dev_net(dev), -1);
975
break;
976
case NETDEV_DOWN:
977
fib_del_ifaddr(ifa, NULL);
978
atomic_inc(&net->ipv4.dev_addr_genid);
979
if (ifa->ifa_dev->ifa_list == NULL) {
980
/* Last address was deleted from this interface.
981
* Disable IP.
982
*/
983
fib_disable_ip(dev, 1, 0);
984
} else {
985
rt_cache_flush(dev_net(dev), -1);
986
}
987
break;
988
}
989
return NOTIFY_DONE;
990
}
991
992
static int fib_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
993
{
994
struct net_device *dev = ptr;
995
struct in_device *in_dev = __in_dev_get_rtnl(dev);
996
struct net *net = dev_net(dev);
997
998
if (event == NETDEV_UNREGISTER) {
999
fib_disable_ip(dev, 2, -1);
1000
return NOTIFY_DONE;
1001
}
1002
1003
if (!in_dev)
1004
return NOTIFY_DONE;
1005
1006
switch (event) {
1007
case NETDEV_UP:
1008
for_ifa(in_dev) {
1009
fib_add_ifaddr(ifa);
1010
} endfor_ifa(in_dev);
1011
#ifdef CONFIG_IP_ROUTE_MULTIPATH
1012
fib_sync_up(dev);
1013
#endif
1014
atomic_inc(&net->ipv4.dev_addr_genid);
1015
rt_cache_flush(dev_net(dev), -1);
1016
break;
1017
case NETDEV_DOWN:
1018
fib_disable_ip(dev, 0, 0);
1019
break;
1020
case NETDEV_CHANGEMTU:
1021
case NETDEV_CHANGE:
1022
rt_cache_flush(dev_net(dev), 0);
1023
break;
1024
case NETDEV_UNREGISTER_BATCH:
1025
/* The batch unregister is only called on the first
1026
* device in the list of devices being unregistered.
1027
* Therefore we should not pass dev_net(dev) in here.
1028
*/
1029
rt_cache_flush_batch(NULL);
1030
break;
1031
}
1032
return NOTIFY_DONE;
1033
}
1034
1035
static struct notifier_block fib_inetaddr_notifier = {
1036
.notifier_call = fib_inetaddr_event,
1037
};
1038
1039
static struct notifier_block fib_netdev_notifier = {
1040
.notifier_call = fib_netdev_event,
1041
};
1042
1043
static int __net_init ip_fib_net_init(struct net *net)
1044
{
1045
int err;
1046
size_t size = sizeof(struct hlist_head) * FIB_TABLE_HASHSZ;
1047
1048
/* Avoid false sharing : Use at least a full cache line */
1049
size = max_t(size_t, size, L1_CACHE_BYTES);
1050
1051
net->ipv4.fib_table_hash = kzalloc(size, GFP_KERNEL);
1052
if (net->ipv4.fib_table_hash == NULL)
1053
return -ENOMEM;
1054
1055
err = fib4_rules_init(net);
1056
if (err < 0)
1057
goto fail;
1058
return 0;
1059
1060
fail:
1061
kfree(net->ipv4.fib_table_hash);
1062
return err;
1063
}
1064
1065
static void ip_fib_net_exit(struct net *net)
1066
{
1067
unsigned int i;
1068
1069
#ifdef CONFIG_IP_MULTIPLE_TABLES
1070
fib4_rules_exit(net);
1071
#endif
1072
1073
rtnl_lock();
1074
for (i = 0; i < FIB_TABLE_HASHSZ; i++) {
1075
struct fib_table *tb;
1076
struct hlist_head *head;
1077
struct hlist_node *node, *tmp;
1078
1079
head = &net->ipv4.fib_table_hash[i];
1080
hlist_for_each_entry_safe(tb, node, tmp, head, tb_hlist) {
1081
hlist_del(node);
1082
fib_table_flush(tb);
1083
fib_free_table(tb);
1084
}
1085
}
1086
rtnl_unlock();
1087
kfree(net->ipv4.fib_table_hash);
1088
}
1089
1090
static int __net_init fib_net_init(struct net *net)
1091
{
1092
int error;
1093
1094
error = ip_fib_net_init(net);
1095
if (error < 0)
1096
goto out;
1097
error = nl_fib_lookup_init(net);
1098
if (error < 0)
1099
goto out_nlfl;
1100
error = fib_proc_init(net);
1101
if (error < 0)
1102
goto out_proc;
1103
out:
1104
return error;
1105
1106
out_proc:
1107
nl_fib_lookup_exit(net);
1108
out_nlfl:
1109
ip_fib_net_exit(net);
1110
goto out;
1111
}
1112
1113
static void __net_exit fib_net_exit(struct net *net)
1114
{
1115
fib_proc_exit(net);
1116
nl_fib_lookup_exit(net);
1117
ip_fib_net_exit(net);
1118
}
1119
1120
static struct pernet_operations fib_net_ops = {
1121
.init = fib_net_init,
1122
.exit = fib_net_exit,
1123
};
1124
1125
void __init ip_fib_init(void)
1126
{
1127
rtnl_register(PF_INET, RTM_NEWROUTE, inet_rtm_newroute, NULL);
1128
rtnl_register(PF_INET, RTM_DELROUTE, inet_rtm_delroute, NULL);
1129
rtnl_register(PF_INET, RTM_GETROUTE, NULL, inet_dump_fib);
1130
1131
register_pernet_subsys(&fib_net_ops);
1132
register_netdevice_notifier(&fib_netdev_notifier);
1133
register_inetaddr_notifier(&fib_inetaddr_notifier);
1134
1135
fib_trie_init();
1136
}
1137
1138