Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/net/ipv4/fib_trie.c
15109 views
1
/*
2
* This program is free software; you can redistribute it and/or
3
* modify it under the terms of the GNU General Public License
4
* as published by the Free Software Foundation; either version
5
* 2 of the License, or (at your option) any later version.
6
*
7
* Robert Olsson <[email protected]> Uppsala Universitet
8
* & Swedish University of Agricultural Sciences.
9
*
10
* Jens Laas <[email protected]> Swedish University of
11
* Agricultural Sciences.
12
*
13
* Hans Liss <[email protected]> Uppsala Universitet
14
*
15
* This work is based on the LPC-trie which is originally described in:
16
*
17
* An experimental study of compression methods for dynamic tries
18
* Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19
* http://www.csc.kth.se/~snilsson/software/dyntrie2/
20
*
21
*
22
* IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23
* IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24
*
25
*
26
* Code from fib_hash has been reused which includes the following header:
27
*
28
*
29
* INET An implementation of the TCP/IP protocol suite for the LINUX
30
* operating system. INET is implemented using the BSD Socket
31
* interface as the means of communication with the user level.
32
*
33
* IPv4 FIB: lookup engine and maintenance routines.
34
*
35
*
36
* Authors: Alexey Kuznetsov, <[email protected]>
37
*
38
* This program is free software; you can redistribute it and/or
39
* modify it under the terms of the GNU General Public License
40
* as published by the Free Software Foundation; either version
41
* 2 of the License, or (at your option) any later version.
42
*
43
* Substantial contributions to this work comes from:
44
*
45
* David S. Miller, <[email protected]>
46
* Stephen Hemminger <[email protected]>
47
* Paul E. McKenney <[email protected]>
48
* Patrick McHardy <[email protected]>
49
*/
50
51
#define VERSION "0.409"
52
53
#include <asm/uaccess.h>
54
#include <asm/system.h>
55
#include <linux/bitops.h>
56
#include <linux/types.h>
57
#include <linux/kernel.h>
58
#include <linux/mm.h>
59
#include <linux/string.h>
60
#include <linux/socket.h>
61
#include <linux/sockios.h>
62
#include <linux/errno.h>
63
#include <linux/in.h>
64
#include <linux/inet.h>
65
#include <linux/inetdevice.h>
66
#include <linux/netdevice.h>
67
#include <linux/if_arp.h>
68
#include <linux/proc_fs.h>
69
#include <linux/rcupdate.h>
70
#include <linux/skbuff.h>
71
#include <linux/netlink.h>
72
#include <linux/init.h>
73
#include <linux/list.h>
74
#include <linux/slab.h>
75
#include <linux/prefetch.h>
76
#include <net/net_namespace.h>
77
#include <net/ip.h>
78
#include <net/protocol.h>
79
#include <net/route.h>
80
#include <net/tcp.h>
81
#include <net/sock.h>
82
#include <net/ip_fib.h>
83
#include "fib_lookup.h"
84
85
#define MAX_STAT_DEPTH 32
86
87
#define KEYLENGTH (8*sizeof(t_key))
88
89
typedef unsigned int t_key;
90
91
#define T_TNODE 0
92
#define T_LEAF 1
93
#define NODE_TYPE_MASK 0x1UL
94
#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
95
96
#define IS_TNODE(n) (!(n->parent & T_LEAF))
97
#define IS_LEAF(n) (n->parent & T_LEAF)
98
99
struct rt_trie_node {
100
unsigned long parent;
101
t_key key;
102
};
103
104
struct leaf {
105
unsigned long parent;
106
t_key key;
107
struct hlist_head list;
108
struct rcu_head rcu;
109
};
110
111
struct leaf_info {
112
struct hlist_node hlist;
113
struct rcu_head rcu;
114
int plen;
115
struct list_head falh;
116
};
117
118
struct tnode {
119
unsigned long parent;
120
t_key key;
121
unsigned char pos; /* 2log(KEYLENGTH) bits needed */
122
unsigned char bits; /* 2log(KEYLENGTH) bits needed */
123
unsigned int full_children; /* KEYLENGTH bits needed */
124
unsigned int empty_children; /* KEYLENGTH bits needed */
125
union {
126
struct rcu_head rcu;
127
struct work_struct work;
128
struct tnode *tnode_free;
129
};
130
struct rt_trie_node __rcu *child[0];
131
};
132
133
#ifdef CONFIG_IP_FIB_TRIE_STATS
134
struct trie_use_stats {
135
unsigned int gets;
136
unsigned int backtrack;
137
unsigned int semantic_match_passed;
138
unsigned int semantic_match_miss;
139
unsigned int null_node_hit;
140
unsigned int resize_node_skipped;
141
};
142
#endif
143
144
struct trie_stat {
145
unsigned int totdepth;
146
unsigned int maxdepth;
147
unsigned int tnodes;
148
unsigned int leaves;
149
unsigned int nullpointers;
150
unsigned int prefixes;
151
unsigned int nodesizes[MAX_STAT_DEPTH];
152
};
153
154
struct trie {
155
struct rt_trie_node __rcu *trie;
156
#ifdef CONFIG_IP_FIB_TRIE_STATS
157
struct trie_use_stats stats;
158
#endif
159
};
160
161
static void put_child(struct trie *t, struct tnode *tn, int i, struct rt_trie_node *n);
162
static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
163
int wasfull);
164
static struct rt_trie_node *resize(struct trie *t, struct tnode *tn);
165
static struct tnode *inflate(struct trie *t, struct tnode *tn);
166
static struct tnode *halve(struct trie *t, struct tnode *tn);
167
/* tnodes to free after resize(); protected by RTNL */
168
static struct tnode *tnode_free_head;
169
static size_t tnode_free_size;
170
171
/*
172
* synchronize_rcu after call_rcu for that many pages; it should be especially
173
* useful before resizing the root node with PREEMPT_NONE configs; the value was
174
* obtained experimentally, aiming to avoid visible slowdown.
175
*/
176
static const int sync_pages = 128;
177
178
static struct kmem_cache *fn_alias_kmem __read_mostly;
179
static struct kmem_cache *trie_leaf_kmem __read_mostly;
180
181
/*
182
* caller must hold RTNL
183
*/
184
static inline struct tnode *node_parent(const struct rt_trie_node *node)
185
{
186
unsigned long parent;
187
188
parent = rcu_dereference_index_check(node->parent, lockdep_rtnl_is_held());
189
190
return (struct tnode *)(parent & ~NODE_TYPE_MASK);
191
}
192
193
/*
194
* caller must hold RCU read lock or RTNL
195
*/
196
static inline struct tnode *node_parent_rcu(const struct rt_trie_node *node)
197
{
198
unsigned long parent;
199
200
parent = rcu_dereference_index_check(node->parent, rcu_read_lock_held() ||
201
lockdep_rtnl_is_held());
202
203
return (struct tnode *)(parent & ~NODE_TYPE_MASK);
204
}
205
206
/* Same as rcu_assign_pointer
207
* but that macro() assumes that value is a pointer.
208
*/
209
static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr)
210
{
211
smp_wmb();
212
node->parent = (unsigned long)ptr | NODE_TYPE(node);
213
}
214
215
/*
216
* caller must hold RTNL
217
*/
218
static inline struct rt_trie_node *tnode_get_child(const struct tnode *tn, unsigned int i)
219
{
220
BUG_ON(i >= 1U << tn->bits);
221
222
return rtnl_dereference(tn->child[i]);
223
}
224
225
/*
226
* caller must hold RCU read lock or RTNL
227
*/
228
static inline struct rt_trie_node *tnode_get_child_rcu(const struct tnode *tn, unsigned int i)
229
{
230
BUG_ON(i >= 1U << tn->bits);
231
232
return rcu_dereference_rtnl(tn->child[i]);
233
}
234
235
static inline int tnode_child_length(const struct tnode *tn)
236
{
237
return 1 << tn->bits;
238
}
239
240
static inline t_key mask_pfx(t_key k, unsigned int l)
241
{
242
return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
243
}
244
245
static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits)
246
{
247
if (offset < KEYLENGTH)
248
return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
249
else
250
return 0;
251
}
252
253
static inline int tkey_equals(t_key a, t_key b)
254
{
255
return a == b;
256
}
257
258
static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
259
{
260
if (bits == 0 || offset >= KEYLENGTH)
261
return 1;
262
bits = bits > KEYLENGTH ? KEYLENGTH : bits;
263
return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
264
}
265
266
static inline int tkey_mismatch(t_key a, int offset, t_key b)
267
{
268
t_key diff = a ^ b;
269
int i = offset;
270
271
if (!diff)
272
return 0;
273
while ((diff << i) >> (KEYLENGTH-1) == 0)
274
i++;
275
return i;
276
}
277
278
/*
279
To understand this stuff, an understanding of keys and all their bits is
280
necessary. Every node in the trie has a key associated with it, but not
281
all of the bits in that key are significant.
282
283
Consider a node 'n' and its parent 'tp'.
284
285
If n is a leaf, every bit in its key is significant. Its presence is
286
necessitated by path compression, since during a tree traversal (when
287
searching for a leaf - unless we are doing an insertion) we will completely
288
ignore all skipped bits we encounter. Thus we need to verify, at the end of
289
a potentially successful search, that we have indeed been walking the
290
correct key path.
291
292
Note that we can never "miss" the correct key in the tree if present by
293
following the wrong path. Path compression ensures that segments of the key
294
that are the same for all keys with a given prefix are skipped, but the
295
skipped part *is* identical for each node in the subtrie below the skipped
296
bit! trie_insert() in this implementation takes care of that - note the
297
call to tkey_sub_equals() in trie_insert().
298
299
if n is an internal node - a 'tnode' here, the various parts of its key
300
have many different meanings.
301
302
Example:
303
_________________________________________________________________
304
| i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
305
-----------------------------------------------------------------
306
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
307
308
_________________________________________________________________
309
| C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
310
-----------------------------------------------------------------
311
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
312
313
tp->pos = 7
314
tp->bits = 3
315
n->pos = 15
316
n->bits = 4
317
318
First, let's just ignore the bits that come before the parent tp, that is
319
the bits from 0 to (tp->pos-1). They are *known* but at this point we do
320
not use them for anything.
321
322
The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
323
index into the parent's child array. That is, they will be used to find
324
'n' among tp's children.
325
326
The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
327
for the node n.
328
329
All the bits we have seen so far are significant to the node n. The rest
330
of the bits are really not needed or indeed known in n->key.
331
332
The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
333
n's child array, and will of course be different for each child.
334
335
336
The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
337
at this point.
338
339
*/
340
341
static inline void check_tnode(const struct tnode *tn)
342
{
343
WARN_ON(tn && tn->pos+tn->bits > 32);
344
}
345
346
static const int halve_threshold = 25;
347
static const int inflate_threshold = 50;
348
static const int halve_threshold_root = 15;
349
static const int inflate_threshold_root = 30;
350
351
static void __alias_free_mem(struct rcu_head *head)
352
{
353
struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
354
kmem_cache_free(fn_alias_kmem, fa);
355
}
356
357
static inline void alias_free_mem_rcu(struct fib_alias *fa)
358
{
359
call_rcu(&fa->rcu, __alias_free_mem);
360
}
361
362
static void __leaf_free_rcu(struct rcu_head *head)
363
{
364
struct leaf *l = container_of(head, struct leaf, rcu);
365
kmem_cache_free(trie_leaf_kmem, l);
366
}
367
368
static inline void free_leaf(struct leaf *l)
369
{
370
call_rcu_bh(&l->rcu, __leaf_free_rcu);
371
}
372
373
static inline void free_leaf_info(struct leaf_info *leaf)
374
{
375
kfree_rcu(leaf, rcu);
376
}
377
378
static struct tnode *tnode_alloc(size_t size)
379
{
380
if (size <= PAGE_SIZE)
381
return kzalloc(size, GFP_KERNEL);
382
else
383
return vzalloc(size);
384
}
385
386
static void __tnode_vfree(struct work_struct *arg)
387
{
388
struct tnode *tn = container_of(arg, struct tnode, work);
389
vfree(tn);
390
}
391
392
static void __tnode_free_rcu(struct rcu_head *head)
393
{
394
struct tnode *tn = container_of(head, struct tnode, rcu);
395
size_t size = sizeof(struct tnode) +
396
(sizeof(struct rt_trie_node *) << tn->bits);
397
398
if (size <= PAGE_SIZE)
399
kfree(tn);
400
else {
401
INIT_WORK(&tn->work, __tnode_vfree);
402
schedule_work(&tn->work);
403
}
404
}
405
406
static inline void tnode_free(struct tnode *tn)
407
{
408
if (IS_LEAF(tn))
409
free_leaf((struct leaf *) tn);
410
else
411
call_rcu(&tn->rcu, __tnode_free_rcu);
412
}
413
414
static void tnode_free_safe(struct tnode *tn)
415
{
416
BUG_ON(IS_LEAF(tn));
417
tn->tnode_free = tnode_free_head;
418
tnode_free_head = tn;
419
tnode_free_size += sizeof(struct tnode) +
420
(sizeof(struct rt_trie_node *) << tn->bits);
421
}
422
423
static void tnode_free_flush(void)
424
{
425
struct tnode *tn;
426
427
while ((tn = tnode_free_head)) {
428
tnode_free_head = tn->tnode_free;
429
tn->tnode_free = NULL;
430
tnode_free(tn);
431
}
432
433
if (tnode_free_size >= PAGE_SIZE * sync_pages) {
434
tnode_free_size = 0;
435
synchronize_rcu();
436
}
437
}
438
439
static struct leaf *leaf_new(void)
440
{
441
struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
442
if (l) {
443
l->parent = T_LEAF;
444
INIT_HLIST_HEAD(&l->list);
445
}
446
return l;
447
}
448
449
static struct leaf_info *leaf_info_new(int plen)
450
{
451
struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
452
if (li) {
453
li->plen = plen;
454
INIT_LIST_HEAD(&li->falh);
455
}
456
return li;
457
}
458
459
static struct tnode *tnode_new(t_key key, int pos, int bits)
460
{
461
size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits);
462
struct tnode *tn = tnode_alloc(sz);
463
464
if (tn) {
465
tn->parent = T_TNODE;
466
tn->pos = pos;
467
tn->bits = bits;
468
tn->key = key;
469
tn->full_children = 0;
470
tn->empty_children = 1<<bits;
471
}
472
473
pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
474
sizeof(struct rt_trie_node) << bits);
475
return tn;
476
}
477
478
/*
479
* Check whether a tnode 'n' is "full", i.e. it is an internal node
480
* and no bits are skipped. See discussion in dyntree paper p. 6
481
*/
482
483
static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n)
484
{
485
if (n == NULL || IS_LEAF(n))
486
return 0;
487
488
return ((struct tnode *) n)->pos == tn->pos + tn->bits;
489
}
490
491
static inline void put_child(struct trie *t, struct tnode *tn, int i,
492
struct rt_trie_node *n)
493
{
494
tnode_put_child_reorg(tn, i, n, -1);
495
}
496
497
/*
498
* Add a child at position i overwriting the old value.
499
* Update the value of full_children and empty_children.
500
*/
501
502
static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
503
int wasfull)
504
{
505
struct rt_trie_node *chi = rtnl_dereference(tn->child[i]);
506
int isfull;
507
508
BUG_ON(i >= 1<<tn->bits);
509
510
/* update emptyChildren */
511
if (n == NULL && chi != NULL)
512
tn->empty_children++;
513
else if (n != NULL && chi == NULL)
514
tn->empty_children--;
515
516
/* update fullChildren */
517
if (wasfull == -1)
518
wasfull = tnode_full(tn, chi);
519
520
isfull = tnode_full(tn, n);
521
if (wasfull && !isfull)
522
tn->full_children--;
523
else if (!wasfull && isfull)
524
tn->full_children++;
525
526
if (n)
527
node_set_parent(n, tn);
528
529
rcu_assign_pointer(tn->child[i], n);
530
}
531
532
#define MAX_WORK 10
533
static struct rt_trie_node *resize(struct trie *t, struct tnode *tn)
534
{
535
int i;
536
struct tnode *old_tn;
537
int inflate_threshold_use;
538
int halve_threshold_use;
539
int max_work;
540
541
if (!tn)
542
return NULL;
543
544
pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
545
tn, inflate_threshold, halve_threshold);
546
547
/* No children */
548
if (tn->empty_children == tnode_child_length(tn)) {
549
tnode_free_safe(tn);
550
return NULL;
551
}
552
/* One child */
553
if (tn->empty_children == tnode_child_length(tn) - 1)
554
goto one_child;
555
/*
556
* Double as long as the resulting node has a number of
557
* nonempty nodes that are above the threshold.
558
*/
559
560
/*
561
* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
562
* the Helsinki University of Technology and Matti Tikkanen of Nokia
563
* Telecommunications, page 6:
564
* "A node is doubled if the ratio of non-empty children to all
565
* children in the *doubled* node is at least 'high'."
566
*
567
* 'high' in this instance is the variable 'inflate_threshold'. It
568
* is expressed as a percentage, so we multiply it with
569
* tnode_child_length() and instead of multiplying by 2 (since the
570
* child array will be doubled by inflate()) and multiplying
571
* the left-hand side by 100 (to handle the percentage thing) we
572
* multiply the left-hand side by 50.
573
*
574
* The left-hand side may look a bit weird: tnode_child_length(tn)
575
* - tn->empty_children is of course the number of non-null children
576
* in the current node. tn->full_children is the number of "full"
577
* children, that is non-null tnodes with a skip value of 0.
578
* All of those will be doubled in the resulting inflated tnode, so
579
* we just count them one extra time here.
580
*
581
* A clearer way to write this would be:
582
*
583
* to_be_doubled = tn->full_children;
584
* not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
585
* tn->full_children;
586
*
587
* new_child_length = tnode_child_length(tn) * 2;
588
*
589
* new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
590
* new_child_length;
591
* if (new_fill_factor >= inflate_threshold)
592
*
593
* ...and so on, tho it would mess up the while () loop.
594
*
595
* anyway,
596
* 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
597
* inflate_threshold
598
*
599
* avoid a division:
600
* 100 * (not_to_be_doubled + 2*to_be_doubled) >=
601
* inflate_threshold * new_child_length
602
*
603
* expand not_to_be_doubled and to_be_doubled, and shorten:
604
* 100 * (tnode_child_length(tn) - tn->empty_children +
605
* tn->full_children) >= inflate_threshold * new_child_length
606
*
607
* expand new_child_length:
608
* 100 * (tnode_child_length(tn) - tn->empty_children +
609
* tn->full_children) >=
610
* inflate_threshold * tnode_child_length(tn) * 2
611
*
612
* shorten again:
613
* 50 * (tn->full_children + tnode_child_length(tn) -
614
* tn->empty_children) >= inflate_threshold *
615
* tnode_child_length(tn)
616
*
617
*/
618
619
check_tnode(tn);
620
621
/* Keep root node larger */
622
623
if (!node_parent((struct rt_trie_node *)tn)) {
624
inflate_threshold_use = inflate_threshold_root;
625
halve_threshold_use = halve_threshold_root;
626
} else {
627
inflate_threshold_use = inflate_threshold;
628
halve_threshold_use = halve_threshold;
629
}
630
631
max_work = MAX_WORK;
632
while ((tn->full_children > 0 && max_work-- &&
633
50 * (tn->full_children + tnode_child_length(tn)
634
- tn->empty_children)
635
>= inflate_threshold_use * tnode_child_length(tn))) {
636
637
old_tn = tn;
638
tn = inflate(t, tn);
639
640
if (IS_ERR(tn)) {
641
tn = old_tn;
642
#ifdef CONFIG_IP_FIB_TRIE_STATS
643
t->stats.resize_node_skipped++;
644
#endif
645
break;
646
}
647
}
648
649
check_tnode(tn);
650
651
/* Return if at least one inflate is run */
652
if (max_work != MAX_WORK)
653
return (struct rt_trie_node *) tn;
654
655
/*
656
* Halve as long as the number of empty children in this
657
* node is above threshold.
658
*/
659
660
max_work = MAX_WORK;
661
while (tn->bits > 1 && max_work-- &&
662
100 * (tnode_child_length(tn) - tn->empty_children) <
663
halve_threshold_use * tnode_child_length(tn)) {
664
665
old_tn = tn;
666
tn = halve(t, tn);
667
if (IS_ERR(tn)) {
668
tn = old_tn;
669
#ifdef CONFIG_IP_FIB_TRIE_STATS
670
t->stats.resize_node_skipped++;
671
#endif
672
break;
673
}
674
}
675
676
677
/* Only one child remains */
678
if (tn->empty_children == tnode_child_length(tn) - 1) {
679
one_child:
680
for (i = 0; i < tnode_child_length(tn); i++) {
681
struct rt_trie_node *n;
682
683
n = rtnl_dereference(tn->child[i]);
684
if (!n)
685
continue;
686
687
/* compress one level */
688
689
node_set_parent(n, NULL);
690
tnode_free_safe(tn);
691
return n;
692
}
693
}
694
return (struct rt_trie_node *) tn;
695
}
696
697
698
static void tnode_clean_free(struct tnode *tn)
699
{
700
int i;
701
struct tnode *tofree;
702
703
for (i = 0; i < tnode_child_length(tn); i++) {
704
tofree = (struct tnode *)rtnl_dereference(tn->child[i]);
705
if (tofree)
706
tnode_free(tofree);
707
}
708
tnode_free(tn);
709
}
710
711
static struct tnode *inflate(struct trie *t, struct tnode *tn)
712
{
713
struct tnode *oldtnode = tn;
714
int olen = tnode_child_length(tn);
715
int i;
716
717
pr_debug("In inflate\n");
718
719
tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
720
721
if (!tn)
722
return ERR_PTR(-ENOMEM);
723
724
/*
725
* Preallocate and store tnodes before the actual work so we
726
* don't get into an inconsistent state if memory allocation
727
* fails. In case of failure we return the oldnode and inflate
728
* of tnode is ignored.
729
*/
730
731
for (i = 0; i < olen; i++) {
732
struct tnode *inode;
733
734
inode = (struct tnode *) tnode_get_child(oldtnode, i);
735
if (inode &&
736
IS_TNODE(inode) &&
737
inode->pos == oldtnode->pos + oldtnode->bits &&
738
inode->bits > 1) {
739
struct tnode *left, *right;
740
t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
741
742
left = tnode_new(inode->key&(~m), inode->pos + 1,
743
inode->bits - 1);
744
if (!left)
745
goto nomem;
746
747
right = tnode_new(inode->key|m, inode->pos + 1,
748
inode->bits - 1);
749
750
if (!right) {
751
tnode_free(left);
752
goto nomem;
753
}
754
755
put_child(t, tn, 2*i, (struct rt_trie_node *) left);
756
put_child(t, tn, 2*i+1, (struct rt_trie_node *) right);
757
}
758
}
759
760
for (i = 0; i < olen; i++) {
761
struct tnode *inode;
762
struct rt_trie_node *node = tnode_get_child(oldtnode, i);
763
struct tnode *left, *right;
764
int size, j;
765
766
/* An empty child */
767
if (node == NULL)
768
continue;
769
770
/* A leaf or an internal node with skipped bits */
771
772
if (IS_LEAF(node) || ((struct tnode *) node)->pos >
773
tn->pos + tn->bits - 1) {
774
if (tkey_extract_bits(node->key,
775
oldtnode->pos + oldtnode->bits,
776
1) == 0)
777
put_child(t, tn, 2*i, node);
778
else
779
put_child(t, tn, 2*i+1, node);
780
continue;
781
}
782
783
/* An internal node with two children */
784
inode = (struct tnode *) node;
785
786
if (inode->bits == 1) {
787
put_child(t, tn, 2*i, rtnl_dereference(inode->child[0]));
788
put_child(t, tn, 2*i+1, rtnl_dereference(inode->child[1]));
789
790
tnode_free_safe(inode);
791
continue;
792
}
793
794
/* An internal node with more than two children */
795
796
/* We will replace this node 'inode' with two new
797
* ones, 'left' and 'right', each with half of the
798
* original children. The two new nodes will have
799
* a position one bit further down the key and this
800
* means that the "significant" part of their keys
801
* (see the discussion near the top of this file)
802
* will differ by one bit, which will be "0" in
803
* left's key and "1" in right's key. Since we are
804
* moving the key position by one step, the bit that
805
* we are moving away from - the bit at position
806
* (inode->pos) - is the one that will differ between
807
* left and right. So... we synthesize that bit in the
808
* two new keys.
809
* The mask 'm' below will be a single "one" bit at
810
* the position (inode->pos)
811
*/
812
813
/* Use the old key, but set the new significant
814
* bit to zero.
815
*/
816
817
left = (struct tnode *) tnode_get_child(tn, 2*i);
818
put_child(t, tn, 2*i, NULL);
819
820
BUG_ON(!left);
821
822
right = (struct tnode *) tnode_get_child(tn, 2*i+1);
823
put_child(t, tn, 2*i+1, NULL);
824
825
BUG_ON(!right);
826
827
size = tnode_child_length(left);
828
for (j = 0; j < size; j++) {
829
put_child(t, left, j, rtnl_dereference(inode->child[j]));
830
put_child(t, right, j, rtnl_dereference(inode->child[j + size]));
831
}
832
put_child(t, tn, 2*i, resize(t, left));
833
put_child(t, tn, 2*i+1, resize(t, right));
834
835
tnode_free_safe(inode);
836
}
837
tnode_free_safe(oldtnode);
838
return tn;
839
nomem:
840
tnode_clean_free(tn);
841
return ERR_PTR(-ENOMEM);
842
}
843
844
static struct tnode *halve(struct trie *t, struct tnode *tn)
845
{
846
struct tnode *oldtnode = tn;
847
struct rt_trie_node *left, *right;
848
int i;
849
int olen = tnode_child_length(tn);
850
851
pr_debug("In halve\n");
852
853
tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
854
855
if (!tn)
856
return ERR_PTR(-ENOMEM);
857
858
/*
859
* Preallocate and store tnodes before the actual work so we
860
* don't get into an inconsistent state if memory allocation
861
* fails. In case of failure we return the oldnode and halve
862
* of tnode is ignored.
863
*/
864
865
for (i = 0; i < olen; i += 2) {
866
left = tnode_get_child(oldtnode, i);
867
right = tnode_get_child(oldtnode, i+1);
868
869
/* Two nonempty children */
870
if (left && right) {
871
struct tnode *newn;
872
873
newn = tnode_new(left->key, tn->pos + tn->bits, 1);
874
875
if (!newn)
876
goto nomem;
877
878
put_child(t, tn, i/2, (struct rt_trie_node *)newn);
879
}
880
881
}
882
883
for (i = 0; i < olen; i += 2) {
884
struct tnode *newBinNode;
885
886
left = tnode_get_child(oldtnode, i);
887
right = tnode_get_child(oldtnode, i+1);
888
889
/* At least one of the children is empty */
890
if (left == NULL) {
891
if (right == NULL) /* Both are empty */
892
continue;
893
put_child(t, tn, i/2, right);
894
continue;
895
}
896
897
if (right == NULL) {
898
put_child(t, tn, i/2, left);
899
continue;
900
}
901
902
/* Two nonempty children */
903
newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
904
put_child(t, tn, i/2, NULL);
905
put_child(t, newBinNode, 0, left);
906
put_child(t, newBinNode, 1, right);
907
put_child(t, tn, i/2, resize(t, newBinNode));
908
}
909
tnode_free_safe(oldtnode);
910
return tn;
911
nomem:
912
tnode_clean_free(tn);
913
return ERR_PTR(-ENOMEM);
914
}
915
916
/* readside must use rcu_read_lock currently dump routines
917
via get_fa_head and dump */
918
919
static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
920
{
921
struct hlist_head *head = &l->list;
922
struct hlist_node *node;
923
struct leaf_info *li;
924
925
hlist_for_each_entry_rcu(li, node, head, hlist)
926
if (li->plen == plen)
927
return li;
928
929
return NULL;
930
}
931
932
static inline struct list_head *get_fa_head(struct leaf *l, int plen)
933
{
934
struct leaf_info *li = find_leaf_info(l, plen);
935
936
if (!li)
937
return NULL;
938
939
return &li->falh;
940
}
941
942
static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
943
{
944
struct leaf_info *li = NULL, *last = NULL;
945
struct hlist_node *node;
946
947
if (hlist_empty(head)) {
948
hlist_add_head_rcu(&new->hlist, head);
949
} else {
950
hlist_for_each_entry(li, node, head, hlist) {
951
if (new->plen > li->plen)
952
break;
953
954
last = li;
955
}
956
if (last)
957
hlist_add_after_rcu(&last->hlist, &new->hlist);
958
else
959
hlist_add_before_rcu(&new->hlist, &li->hlist);
960
}
961
}
962
963
/* rcu_read_lock needs to be hold by caller from readside */
964
965
static struct leaf *
966
fib_find_node(struct trie *t, u32 key)
967
{
968
int pos;
969
struct tnode *tn;
970
struct rt_trie_node *n;
971
972
pos = 0;
973
n = rcu_dereference_rtnl(t->trie);
974
975
while (n != NULL && NODE_TYPE(n) == T_TNODE) {
976
tn = (struct tnode *) n;
977
978
check_tnode(tn);
979
980
if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
981
pos = tn->pos + tn->bits;
982
n = tnode_get_child_rcu(tn,
983
tkey_extract_bits(key,
984
tn->pos,
985
tn->bits));
986
} else
987
break;
988
}
989
/* Case we have found a leaf. Compare prefixes */
990
991
if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
992
return (struct leaf *)n;
993
994
return NULL;
995
}
996
997
static void trie_rebalance(struct trie *t, struct tnode *tn)
998
{
999
int wasfull;
1000
t_key cindex, key;
1001
struct tnode *tp;
1002
1003
key = tn->key;
1004
1005
while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) {
1006
cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1007
wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
1008
tn = (struct tnode *) resize(t, (struct tnode *)tn);
1009
1010
tnode_put_child_reorg((struct tnode *)tp, cindex,
1011
(struct rt_trie_node *)tn, wasfull);
1012
1013
tp = node_parent((struct rt_trie_node *) tn);
1014
if (!tp)
1015
rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1016
1017
tnode_free_flush();
1018
if (!tp)
1019
break;
1020
tn = tp;
1021
}
1022
1023
/* Handle last (top) tnode */
1024
if (IS_TNODE(tn))
1025
tn = (struct tnode *)resize(t, (struct tnode *)tn);
1026
1027
rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1028
tnode_free_flush();
1029
}
1030
1031
/* only used from updater-side */
1032
1033
static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1034
{
1035
int pos, newpos;
1036
struct tnode *tp = NULL, *tn = NULL;
1037
struct rt_trie_node *n;
1038
struct leaf *l;
1039
int missbit;
1040
struct list_head *fa_head = NULL;
1041
struct leaf_info *li;
1042
t_key cindex;
1043
1044
pos = 0;
1045
n = rtnl_dereference(t->trie);
1046
1047
/* If we point to NULL, stop. Either the tree is empty and we should
1048
* just put a new leaf in if, or we have reached an empty child slot,
1049
* and we should just put our new leaf in that.
1050
* If we point to a T_TNODE, check if it matches our key. Note that
1051
* a T_TNODE might be skipping any number of bits - its 'pos' need
1052
* not be the parent's 'pos'+'bits'!
1053
*
1054
* If it does match the current key, get pos/bits from it, extract
1055
* the index from our key, push the T_TNODE and walk the tree.
1056
*
1057
* If it doesn't, we have to replace it with a new T_TNODE.
1058
*
1059
* If we point to a T_LEAF, it might or might not have the same key
1060
* as we do. If it does, just change the value, update the T_LEAF's
1061
* value, and return it.
1062
* If it doesn't, we need to replace it with a T_TNODE.
1063
*/
1064
1065
while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1066
tn = (struct tnode *) n;
1067
1068
check_tnode(tn);
1069
1070
if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1071
tp = tn;
1072
pos = tn->pos + tn->bits;
1073
n = tnode_get_child(tn,
1074
tkey_extract_bits(key,
1075
tn->pos,
1076
tn->bits));
1077
1078
BUG_ON(n && node_parent(n) != tn);
1079
} else
1080
break;
1081
}
1082
1083
/*
1084
* n ----> NULL, LEAF or TNODE
1085
*
1086
* tp is n's (parent) ----> NULL or TNODE
1087
*/
1088
1089
BUG_ON(tp && IS_LEAF(tp));
1090
1091
/* Case 1: n is a leaf. Compare prefixes */
1092
1093
if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1094
l = (struct leaf *) n;
1095
li = leaf_info_new(plen);
1096
1097
if (!li)
1098
return NULL;
1099
1100
fa_head = &li->falh;
1101
insert_leaf_info(&l->list, li);
1102
goto done;
1103
}
1104
l = leaf_new();
1105
1106
if (!l)
1107
return NULL;
1108
1109
l->key = key;
1110
li = leaf_info_new(plen);
1111
1112
if (!li) {
1113
free_leaf(l);
1114
return NULL;
1115
}
1116
1117
fa_head = &li->falh;
1118
insert_leaf_info(&l->list, li);
1119
1120
if (t->trie && n == NULL) {
1121
/* Case 2: n is NULL, and will just insert a new leaf */
1122
1123
node_set_parent((struct rt_trie_node *)l, tp);
1124
1125
cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1126
put_child(t, (struct tnode *)tp, cindex, (struct rt_trie_node *)l);
1127
} else {
1128
/* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1129
/*
1130
* Add a new tnode here
1131
* first tnode need some special handling
1132
*/
1133
1134
if (tp)
1135
pos = tp->pos+tp->bits;
1136
else
1137
pos = 0;
1138
1139
if (n) {
1140
newpos = tkey_mismatch(key, pos, n->key);
1141
tn = tnode_new(n->key, newpos, 1);
1142
} else {
1143
newpos = 0;
1144
tn = tnode_new(key, newpos, 1); /* First tnode */
1145
}
1146
1147
if (!tn) {
1148
free_leaf_info(li);
1149
free_leaf(l);
1150
return NULL;
1151
}
1152
1153
node_set_parent((struct rt_trie_node *)tn, tp);
1154
1155
missbit = tkey_extract_bits(key, newpos, 1);
1156
put_child(t, tn, missbit, (struct rt_trie_node *)l);
1157
put_child(t, tn, 1-missbit, n);
1158
1159
if (tp) {
1160
cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1161
put_child(t, (struct tnode *)tp, cindex,
1162
(struct rt_trie_node *)tn);
1163
} else {
1164
rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1165
tp = tn;
1166
}
1167
}
1168
1169
if (tp && tp->pos + tp->bits > 32)
1170
pr_warning("fib_trie"
1171
" tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1172
tp, tp->pos, tp->bits, key, plen);
1173
1174
/* Rebalance the trie */
1175
1176
trie_rebalance(t, tp);
1177
done:
1178
return fa_head;
1179
}
1180
1181
/*
1182
* Caller must hold RTNL.
1183
*/
1184
int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1185
{
1186
struct trie *t = (struct trie *) tb->tb_data;
1187
struct fib_alias *fa, *new_fa;
1188
struct list_head *fa_head = NULL;
1189
struct fib_info *fi;
1190
int plen = cfg->fc_dst_len;
1191
u8 tos = cfg->fc_tos;
1192
u32 key, mask;
1193
int err;
1194
struct leaf *l;
1195
1196
if (plen > 32)
1197
return -EINVAL;
1198
1199
key = ntohl(cfg->fc_dst);
1200
1201
pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1202
1203
mask = ntohl(inet_make_mask(plen));
1204
1205
if (key & ~mask)
1206
return -EINVAL;
1207
1208
key = key & mask;
1209
1210
fi = fib_create_info(cfg);
1211
if (IS_ERR(fi)) {
1212
err = PTR_ERR(fi);
1213
goto err;
1214
}
1215
1216
l = fib_find_node(t, key);
1217
fa = NULL;
1218
1219
if (l) {
1220
fa_head = get_fa_head(l, plen);
1221
fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1222
}
1223
1224
/* Now fa, if non-NULL, points to the first fib alias
1225
* with the same keys [prefix,tos,priority], if such key already
1226
* exists or to the node before which we will insert new one.
1227
*
1228
* If fa is NULL, we will need to allocate a new one and
1229
* insert to the head of f.
1230
*
1231
* If f is NULL, no fib node matched the destination key
1232
* and we need to allocate a new one of those as well.
1233
*/
1234
1235
if (fa && fa->fa_tos == tos &&
1236
fa->fa_info->fib_priority == fi->fib_priority) {
1237
struct fib_alias *fa_first, *fa_match;
1238
1239
err = -EEXIST;
1240
if (cfg->fc_nlflags & NLM_F_EXCL)
1241
goto out;
1242
1243
/* We have 2 goals:
1244
* 1. Find exact match for type, scope, fib_info to avoid
1245
* duplicate routes
1246
* 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1247
*/
1248
fa_match = NULL;
1249
fa_first = fa;
1250
fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1251
list_for_each_entry_continue(fa, fa_head, fa_list) {
1252
if (fa->fa_tos != tos)
1253
break;
1254
if (fa->fa_info->fib_priority != fi->fib_priority)
1255
break;
1256
if (fa->fa_type == cfg->fc_type &&
1257
fa->fa_info == fi) {
1258
fa_match = fa;
1259
break;
1260
}
1261
}
1262
1263
if (cfg->fc_nlflags & NLM_F_REPLACE) {
1264
struct fib_info *fi_drop;
1265
u8 state;
1266
1267
fa = fa_first;
1268
if (fa_match) {
1269
if (fa == fa_match)
1270
err = 0;
1271
goto out;
1272
}
1273
err = -ENOBUFS;
1274
new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1275
if (new_fa == NULL)
1276
goto out;
1277
1278
fi_drop = fa->fa_info;
1279
new_fa->fa_tos = fa->fa_tos;
1280
new_fa->fa_info = fi;
1281
new_fa->fa_type = cfg->fc_type;
1282
state = fa->fa_state;
1283
new_fa->fa_state = state & ~FA_S_ACCESSED;
1284
1285
list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1286
alias_free_mem_rcu(fa);
1287
1288
fib_release_info(fi_drop);
1289
if (state & FA_S_ACCESSED)
1290
rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1291
rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1292
tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1293
1294
goto succeeded;
1295
}
1296
/* Error if we find a perfect match which
1297
* uses the same scope, type, and nexthop
1298
* information.
1299
*/
1300
if (fa_match)
1301
goto out;
1302
1303
if (!(cfg->fc_nlflags & NLM_F_APPEND))
1304
fa = fa_first;
1305
}
1306
err = -ENOENT;
1307
if (!(cfg->fc_nlflags & NLM_F_CREATE))
1308
goto out;
1309
1310
err = -ENOBUFS;
1311
new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1312
if (new_fa == NULL)
1313
goto out;
1314
1315
new_fa->fa_info = fi;
1316
new_fa->fa_tos = tos;
1317
new_fa->fa_type = cfg->fc_type;
1318
new_fa->fa_state = 0;
1319
/*
1320
* Insert new entry to the list.
1321
*/
1322
1323
if (!fa_head) {
1324
fa_head = fib_insert_node(t, key, plen);
1325
if (unlikely(!fa_head)) {
1326
err = -ENOMEM;
1327
goto out_free_new_fa;
1328
}
1329
}
1330
1331
if (!plen)
1332
tb->tb_num_default++;
1333
1334
list_add_tail_rcu(&new_fa->fa_list,
1335
(fa ? &fa->fa_list : fa_head));
1336
1337
rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1338
rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1339
&cfg->fc_nlinfo, 0);
1340
succeeded:
1341
return 0;
1342
1343
out_free_new_fa:
1344
kmem_cache_free(fn_alias_kmem, new_fa);
1345
out:
1346
fib_release_info(fi);
1347
err:
1348
return err;
1349
}
1350
1351
/* should be called with rcu_read_lock */
1352
static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l,
1353
t_key key, const struct flowi4 *flp,
1354
struct fib_result *res, int fib_flags)
1355
{
1356
struct leaf_info *li;
1357
struct hlist_head *hhead = &l->list;
1358
struct hlist_node *node;
1359
1360
hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1361
struct fib_alias *fa;
1362
int plen = li->plen;
1363
__be32 mask = inet_make_mask(plen);
1364
1365
if (l->key != (key & ntohl(mask)))
1366
continue;
1367
1368
list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1369
struct fib_info *fi = fa->fa_info;
1370
int nhsel, err;
1371
1372
if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1373
continue;
1374
if (fa->fa_info->fib_scope < flp->flowi4_scope)
1375
continue;
1376
fib_alias_accessed(fa);
1377
err = fib_props[fa->fa_type].error;
1378
if (err) {
1379
#ifdef CONFIG_IP_FIB_TRIE_STATS
1380
t->stats.semantic_match_passed++;
1381
#endif
1382
return err;
1383
}
1384
if (fi->fib_flags & RTNH_F_DEAD)
1385
continue;
1386
for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1387
const struct fib_nh *nh = &fi->fib_nh[nhsel];
1388
1389
if (nh->nh_flags & RTNH_F_DEAD)
1390
continue;
1391
if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1392
continue;
1393
1394
#ifdef CONFIG_IP_FIB_TRIE_STATS
1395
t->stats.semantic_match_passed++;
1396
#endif
1397
res->prefixlen = plen;
1398
res->nh_sel = nhsel;
1399
res->type = fa->fa_type;
1400
res->scope = fa->fa_info->fib_scope;
1401
res->fi = fi;
1402
res->table = tb;
1403
res->fa_head = &li->falh;
1404
if (!(fib_flags & FIB_LOOKUP_NOREF))
1405
atomic_inc(&res->fi->fib_clntref);
1406
return 0;
1407
}
1408
}
1409
1410
#ifdef CONFIG_IP_FIB_TRIE_STATS
1411
t->stats.semantic_match_miss++;
1412
#endif
1413
}
1414
1415
return 1;
1416
}
1417
1418
int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1419
struct fib_result *res, int fib_flags)
1420
{
1421
struct trie *t = (struct trie *) tb->tb_data;
1422
int ret;
1423
struct rt_trie_node *n;
1424
struct tnode *pn;
1425
unsigned int pos, bits;
1426
t_key key = ntohl(flp->daddr);
1427
unsigned int chopped_off;
1428
t_key cindex = 0;
1429
unsigned int current_prefix_length = KEYLENGTH;
1430
struct tnode *cn;
1431
t_key pref_mismatch;
1432
1433
rcu_read_lock();
1434
1435
n = rcu_dereference(t->trie);
1436
if (!n)
1437
goto failed;
1438
1439
#ifdef CONFIG_IP_FIB_TRIE_STATS
1440
t->stats.gets++;
1441
#endif
1442
1443
/* Just a leaf? */
1444
if (IS_LEAF(n)) {
1445
ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1446
goto found;
1447
}
1448
1449
pn = (struct tnode *) n;
1450
chopped_off = 0;
1451
1452
while (pn) {
1453
pos = pn->pos;
1454
bits = pn->bits;
1455
1456
if (!chopped_off)
1457
cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1458
pos, bits);
1459
1460
n = tnode_get_child_rcu(pn, cindex);
1461
1462
if (n == NULL) {
1463
#ifdef CONFIG_IP_FIB_TRIE_STATS
1464
t->stats.null_node_hit++;
1465
#endif
1466
goto backtrace;
1467
}
1468
1469
if (IS_LEAF(n)) {
1470
ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1471
if (ret > 0)
1472
goto backtrace;
1473
goto found;
1474
}
1475
1476
cn = (struct tnode *)n;
1477
1478
/*
1479
* It's a tnode, and we can do some extra checks here if we
1480
* like, to avoid descending into a dead-end branch.
1481
* This tnode is in the parent's child array at index
1482
* key[p_pos..p_pos+p_bits] but potentially with some bits
1483
* chopped off, so in reality the index may be just a
1484
* subprefix, padded with zero at the end.
1485
* We can also take a look at any skipped bits in this
1486
* tnode - everything up to p_pos is supposed to be ok,
1487
* and the non-chopped bits of the index (se previous
1488
* paragraph) are also guaranteed ok, but the rest is
1489
* considered unknown.
1490
*
1491
* The skipped bits are key[pos+bits..cn->pos].
1492
*/
1493
1494
/* If current_prefix_length < pos+bits, we are already doing
1495
* actual prefix matching, which means everything from
1496
* pos+(bits-chopped_off) onward must be zero along some
1497
* branch of this subtree - otherwise there is *no* valid
1498
* prefix present. Here we can only check the skipped
1499
* bits. Remember, since we have already indexed into the
1500
* parent's child array, we know that the bits we chopped of
1501
* *are* zero.
1502
*/
1503
1504
/* NOTA BENE: Checking only skipped bits
1505
for the new node here */
1506
1507
if (current_prefix_length < pos+bits) {
1508
if (tkey_extract_bits(cn->key, current_prefix_length,
1509
cn->pos - current_prefix_length)
1510
|| !(cn->child[0]))
1511
goto backtrace;
1512
}
1513
1514
/*
1515
* If chopped_off=0, the index is fully validated and we
1516
* only need to look at the skipped bits for this, the new,
1517
* tnode. What we actually want to do is to find out if
1518
* these skipped bits match our key perfectly, or if we will
1519
* have to count on finding a matching prefix further down,
1520
* because if we do, we would like to have some way of
1521
* verifying the existence of such a prefix at this point.
1522
*/
1523
1524
/* The only thing we can do at this point is to verify that
1525
* any such matching prefix can indeed be a prefix to our
1526
* key, and if the bits in the node we are inspecting that
1527
* do not match our key are not ZERO, this cannot be true.
1528
* Thus, find out where there is a mismatch (before cn->pos)
1529
* and verify that all the mismatching bits are zero in the
1530
* new tnode's key.
1531
*/
1532
1533
/*
1534
* Note: We aren't very concerned about the piece of
1535
* the key that precede pn->pos+pn->bits, since these
1536
* have already been checked. The bits after cn->pos
1537
* aren't checked since these are by definition
1538
* "unknown" at this point. Thus, what we want to see
1539
* is if we are about to enter the "prefix matching"
1540
* state, and in that case verify that the skipped
1541
* bits that will prevail throughout this subtree are
1542
* zero, as they have to be if we are to find a
1543
* matching prefix.
1544
*/
1545
1546
pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
1547
1548
/*
1549
* In short: If skipped bits in this node do not match
1550
* the search key, enter the "prefix matching"
1551
* state.directly.
1552
*/
1553
if (pref_mismatch) {
1554
int mp = KEYLENGTH - fls(pref_mismatch);
1555
1556
if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
1557
goto backtrace;
1558
1559
if (current_prefix_length >= cn->pos)
1560
current_prefix_length = mp;
1561
}
1562
1563
pn = (struct tnode *)n; /* Descend */
1564
chopped_off = 0;
1565
continue;
1566
1567
backtrace:
1568
chopped_off++;
1569
1570
/* As zero don't change the child key (cindex) */
1571
while ((chopped_off <= pn->bits)
1572
&& !(cindex & (1<<(chopped_off-1))))
1573
chopped_off++;
1574
1575
/* Decrease current_... with bits chopped off */
1576
if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1577
current_prefix_length = pn->pos + pn->bits
1578
- chopped_off;
1579
1580
/*
1581
* Either we do the actual chop off according or if we have
1582
* chopped off all bits in this tnode walk up to our parent.
1583
*/
1584
1585
if (chopped_off <= pn->bits) {
1586
cindex &= ~(1 << (chopped_off-1));
1587
} else {
1588
struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn);
1589
if (!parent)
1590
goto failed;
1591
1592
/* Get Child's index */
1593
cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1594
pn = parent;
1595
chopped_off = 0;
1596
1597
#ifdef CONFIG_IP_FIB_TRIE_STATS
1598
t->stats.backtrack++;
1599
#endif
1600
goto backtrace;
1601
}
1602
}
1603
failed:
1604
ret = 1;
1605
found:
1606
rcu_read_unlock();
1607
return ret;
1608
}
1609
1610
/*
1611
* Remove the leaf and return parent.
1612
*/
1613
static void trie_leaf_remove(struct trie *t, struct leaf *l)
1614
{
1615
struct tnode *tp = node_parent((struct rt_trie_node *) l);
1616
1617
pr_debug("entering trie_leaf_remove(%p)\n", l);
1618
1619
if (tp) {
1620
t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1621
put_child(t, (struct tnode *)tp, cindex, NULL);
1622
trie_rebalance(t, tp);
1623
} else
1624
rcu_assign_pointer(t->trie, NULL);
1625
1626
free_leaf(l);
1627
}
1628
1629
/*
1630
* Caller must hold RTNL.
1631
*/
1632
int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1633
{
1634
struct trie *t = (struct trie *) tb->tb_data;
1635
u32 key, mask;
1636
int plen = cfg->fc_dst_len;
1637
u8 tos = cfg->fc_tos;
1638
struct fib_alias *fa, *fa_to_delete;
1639
struct list_head *fa_head;
1640
struct leaf *l;
1641
struct leaf_info *li;
1642
1643
if (plen > 32)
1644
return -EINVAL;
1645
1646
key = ntohl(cfg->fc_dst);
1647
mask = ntohl(inet_make_mask(plen));
1648
1649
if (key & ~mask)
1650
return -EINVAL;
1651
1652
key = key & mask;
1653
l = fib_find_node(t, key);
1654
1655
if (!l)
1656
return -ESRCH;
1657
1658
fa_head = get_fa_head(l, plen);
1659
fa = fib_find_alias(fa_head, tos, 0);
1660
1661
if (!fa)
1662
return -ESRCH;
1663
1664
pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1665
1666
fa_to_delete = NULL;
1667
fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1668
list_for_each_entry_continue(fa, fa_head, fa_list) {
1669
struct fib_info *fi = fa->fa_info;
1670
1671
if (fa->fa_tos != tos)
1672
break;
1673
1674
if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1675
(cfg->fc_scope == RT_SCOPE_NOWHERE ||
1676
fa->fa_info->fib_scope == cfg->fc_scope) &&
1677
(!cfg->fc_prefsrc ||
1678
fi->fib_prefsrc == cfg->fc_prefsrc) &&
1679
(!cfg->fc_protocol ||
1680
fi->fib_protocol == cfg->fc_protocol) &&
1681
fib_nh_match(cfg, fi) == 0) {
1682
fa_to_delete = fa;
1683
break;
1684
}
1685
}
1686
1687
if (!fa_to_delete)
1688
return -ESRCH;
1689
1690
fa = fa_to_delete;
1691
rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1692
&cfg->fc_nlinfo, 0);
1693
1694
l = fib_find_node(t, key);
1695
li = find_leaf_info(l, plen);
1696
1697
list_del_rcu(&fa->fa_list);
1698
1699
if (!plen)
1700
tb->tb_num_default--;
1701
1702
if (list_empty(fa_head)) {
1703
hlist_del_rcu(&li->hlist);
1704
free_leaf_info(li);
1705
}
1706
1707
if (hlist_empty(&l->list))
1708
trie_leaf_remove(t, l);
1709
1710
if (fa->fa_state & FA_S_ACCESSED)
1711
rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1712
1713
fib_release_info(fa->fa_info);
1714
alias_free_mem_rcu(fa);
1715
return 0;
1716
}
1717
1718
static int trie_flush_list(struct list_head *head)
1719
{
1720
struct fib_alias *fa, *fa_node;
1721
int found = 0;
1722
1723
list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1724
struct fib_info *fi = fa->fa_info;
1725
1726
if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1727
list_del_rcu(&fa->fa_list);
1728
fib_release_info(fa->fa_info);
1729
alias_free_mem_rcu(fa);
1730
found++;
1731
}
1732
}
1733
return found;
1734
}
1735
1736
static int trie_flush_leaf(struct leaf *l)
1737
{
1738
int found = 0;
1739
struct hlist_head *lih = &l->list;
1740
struct hlist_node *node, *tmp;
1741
struct leaf_info *li = NULL;
1742
1743
hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1744
found += trie_flush_list(&li->falh);
1745
1746
if (list_empty(&li->falh)) {
1747
hlist_del_rcu(&li->hlist);
1748
free_leaf_info(li);
1749
}
1750
}
1751
return found;
1752
}
1753
1754
/*
1755
* Scan for the next right leaf starting at node p->child[idx]
1756
* Since we have back pointer, no recursion necessary.
1757
*/
1758
static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c)
1759
{
1760
do {
1761
t_key idx;
1762
1763
if (c)
1764
idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1765
else
1766
idx = 0;
1767
1768
while (idx < 1u << p->bits) {
1769
c = tnode_get_child_rcu(p, idx++);
1770
if (!c)
1771
continue;
1772
1773
if (IS_LEAF(c)) {
1774
prefetch(rcu_dereference_rtnl(p->child[idx]));
1775
return (struct leaf *) c;
1776
}
1777
1778
/* Rescan start scanning in new node */
1779
p = (struct tnode *) c;
1780
idx = 0;
1781
}
1782
1783
/* Node empty, walk back up to parent */
1784
c = (struct rt_trie_node *) p;
1785
} while ((p = node_parent_rcu(c)) != NULL);
1786
1787
return NULL; /* Root of trie */
1788
}
1789
1790
static struct leaf *trie_firstleaf(struct trie *t)
1791
{
1792
struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie);
1793
1794
if (!n)
1795
return NULL;
1796
1797
if (IS_LEAF(n)) /* trie is just a leaf */
1798
return (struct leaf *) n;
1799
1800
return leaf_walk_rcu(n, NULL);
1801
}
1802
1803
static struct leaf *trie_nextleaf(struct leaf *l)
1804
{
1805
struct rt_trie_node *c = (struct rt_trie_node *) l;
1806
struct tnode *p = node_parent_rcu(c);
1807
1808
if (!p)
1809
return NULL; /* trie with just one leaf */
1810
1811
return leaf_walk_rcu(p, c);
1812
}
1813
1814
static struct leaf *trie_leafindex(struct trie *t, int index)
1815
{
1816
struct leaf *l = trie_firstleaf(t);
1817
1818
while (l && index-- > 0)
1819
l = trie_nextleaf(l);
1820
1821
return l;
1822
}
1823
1824
1825
/*
1826
* Caller must hold RTNL.
1827
*/
1828
int fib_table_flush(struct fib_table *tb)
1829
{
1830
struct trie *t = (struct trie *) tb->tb_data;
1831
struct leaf *l, *ll = NULL;
1832
int found = 0;
1833
1834
for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1835
found += trie_flush_leaf(l);
1836
1837
if (ll && hlist_empty(&ll->list))
1838
trie_leaf_remove(t, ll);
1839
ll = l;
1840
}
1841
1842
if (ll && hlist_empty(&ll->list))
1843
trie_leaf_remove(t, ll);
1844
1845
pr_debug("trie_flush found=%d\n", found);
1846
return found;
1847
}
1848
1849
void fib_free_table(struct fib_table *tb)
1850
{
1851
kfree(tb);
1852
}
1853
1854
static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1855
struct fib_table *tb,
1856
struct sk_buff *skb, struct netlink_callback *cb)
1857
{
1858
int i, s_i;
1859
struct fib_alias *fa;
1860
__be32 xkey = htonl(key);
1861
1862
s_i = cb->args[5];
1863
i = 0;
1864
1865
/* rcu_read_lock is hold by caller */
1866
1867
list_for_each_entry_rcu(fa, fah, fa_list) {
1868
if (i < s_i) {
1869
i++;
1870
continue;
1871
}
1872
1873
if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1874
cb->nlh->nlmsg_seq,
1875
RTM_NEWROUTE,
1876
tb->tb_id,
1877
fa->fa_type,
1878
xkey,
1879
plen,
1880
fa->fa_tos,
1881
fa->fa_info, NLM_F_MULTI) < 0) {
1882
cb->args[5] = i;
1883
return -1;
1884
}
1885
i++;
1886
}
1887
cb->args[5] = i;
1888
return skb->len;
1889
}
1890
1891
static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1892
struct sk_buff *skb, struct netlink_callback *cb)
1893
{
1894
struct leaf_info *li;
1895
struct hlist_node *node;
1896
int i, s_i;
1897
1898
s_i = cb->args[4];
1899
i = 0;
1900
1901
/* rcu_read_lock is hold by caller */
1902
hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1903
if (i < s_i) {
1904
i++;
1905
continue;
1906
}
1907
1908
if (i > s_i)
1909
cb->args[5] = 0;
1910
1911
if (list_empty(&li->falh))
1912
continue;
1913
1914
if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1915
cb->args[4] = i;
1916
return -1;
1917
}
1918
i++;
1919
}
1920
1921
cb->args[4] = i;
1922
return skb->len;
1923
}
1924
1925
int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1926
struct netlink_callback *cb)
1927
{
1928
struct leaf *l;
1929
struct trie *t = (struct trie *) tb->tb_data;
1930
t_key key = cb->args[2];
1931
int count = cb->args[3];
1932
1933
rcu_read_lock();
1934
/* Dump starting at last key.
1935
* Note: 0.0.0.0/0 (ie default) is first key.
1936
*/
1937
if (count == 0)
1938
l = trie_firstleaf(t);
1939
else {
1940
/* Normally, continue from last key, but if that is missing
1941
* fallback to using slow rescan
1942
*/
1943
l = fib_find_node(t, key);
1944
if (!l)
1945
l = trie_leafindex(t, count);
1946
}
1947
1948
while (l) {
1949
cb->args[2] = l->key;
1950
if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1951
cb->args[3] = count;
1952
rcu_read_unlock();
1953
return -1;
1954
}
1955
1956
++count;
1957
l = trie_nextleaf(l);
1958
memset(&cb->args[4], 0,
1959
sizeof(cb->args) - 4*sizeof(cb->args[0]));
1960
}
1961
cb->args[3] = count;
1962
rcu_read_unlock();
1963
1964
return skb->len;
1965
}
1966
1967
void __init fib_trie_init(void)
1968
{
1969
fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1970
sizeof(struct fib_alias),
1971
0, SLAB_PANIC, NULL);
1972
1973
trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1974
max(sizeof(struct leaf),
1975
sizeof(struct leaf_info)),
1976
0, SLAB_PANIC, NULL);
1977
}
1978
1979
1980
struct fib_table *fib_trie_table(u32 id)
1981
{
1982
struct fib_table *tb;
1983
struct trie *t;
1984
1985
tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1986
GFP_KERNEL);
1987
if (tb == NULL)
1988
return NULL;
1989
1990
tb->tb_id = id;
1991
tb->tb_default = -1;
1992
tb->tb_num_default = 0;
1993
1994
t = (struct trie *) tb->tb_data;
1995
memset(t, 0, sizeof(*t));
1996
1997
return tb;
1998
}
1999
2000
#ifdef CONFIG_PROC_FS
2001
/* Depth first Trie walk iterator */
2002
struct fib_trie_iter {
2003
struct seq_net_private p;
2004
struct fib_table *tb;
2005
struct tnode *tnode;
2006
unsigned int index;
2007
unsigned int depth;
2008
};
2009
2010
static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter)
2011
{
2012
struct tnode *tn = iter->tnode;
2013
unsigned int cindex = iter->index;
2014
struct tnode *p;
2015
2016
/* A single entry routing table */
2017
if (!tn)
2018
return NULL;
2019
2020
pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2021
iter->tnode, iter->index, iter->depth);
2022
rescan:
2023
while (cindex < (1<<tn->bits)) {
2024
struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex);
2025
2026
if (n) {
2027
if (IS_LEAF(n)) {
2028
iter->tnode = tn;
2029
iter->index = cindex + 1;
2030
} else {
2031
/* push down one level */
2032
iter->tnode = (struct tnode *) n;
2033
iter->index = 0;
2034
++iter->depth;
2035
}
2036
return n;
2037
}
2038
2039
++cindex;
2040
}
2041
2042
/* Current node exhausted, pop back up */
2043
p = node_parent_rcu((struct rt_trie_node *)tn);
2044
if (p) {
2045
cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2046
tn = p;
2047
--iter->depth;
2048
goto rescan;
2049
}
2050
2051
/* got root? */
2052
return NULL;
2053
}
2054
2055
static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter,
2056
struct trie *t)
2057
{
2058
struct rt_trie_node *n;
2059
2060
if (!t)
2061
return NULL;
2062
2063
n = rcu_dereference(t->trie);
2064
if (!n)
2065
return NULL;
2066
2067
if (IS_TNODE(n)) {
2068
iter->tnode = (struct tnode *) n;
2069
iter->index = 0;
2070
iter->depth = 1;
2071
} else {
2072
iter->tnode = NULL;
2073
iter->index = 0;
2074
iter->depth = 0;
2075
}
2076
2077
return n;
2078
}
2079
2080
static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2081
{
2082
struct rt_trie_node *n;
2083
struct fib_trie_iter iter;
2084
2085
memset(s, 0, sizeof(*s));
2086
2087
rcu_read_lock();
2088
for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2089
if (IS_LEAF(n)) {
2090
struct leaf *l = (struct leaf *)n;
2091
struct leaf_info *li;
2092
struct hlist_node *tmp;
2093
2094
s->leaves++;
2095
s->totdepth += iter.depth;
2096
if (iter.depth > s->maxdepth)
2097
s->maxdepth = iter.depth;
2098
2099
hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2100
++s->prefixes;
2101
} else {
2102
const struct tnode *tn = (const struct tnode *) n;
2103
int i;
2104
2105
s->tnodes++;
2106
if (tn->bits < MAX_STAT_DEPTH)
2107
s->nodesizes[tn->bits]++;
2108
2109
for (i = 0; i < (1<<tn->bits); i++)
2110
if (!tn->child[i])
2111
s->nullpointers++;
2112
}
2113
}
2114
rcu_read_unlock();
2115
}
2116
2117
/*
2118
* This outputs /proc/net/fib_triestats
2119
*/
2120
static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2121
{
2122
unsigned int i, max, pointers, bytes, avdepth;
2123
2124
if (stat->leaves)
2125
avdepth = stat->totdepth*100 / stat->leaves;
2126
else
2127
avdepth = 0;
2128
2129
seq_printf(seq, "\tAver depth: %u.%02d\n",
2130
avdepth / 100, avdepth % 100);
2131
seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2132
2133
seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2134
bytes = sizeof(struct leaf) * stat->leaves;
2135
2136
seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2137
bytes += sizeof(struct leaf_info) * stat->prefixes;
2138
2139
seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2140
bytes += sizeof(struct tnode) * stat->tnodes;
2141
2142
max = MAX_STAT_DEPTH;
2143
while (max > 0 && stat->nodesizes[max-1] == 0)
2144
max--;
2145
2146
pointers = 0;
2147
for (i = 1; i <= max; i++)
2148
if (stat->nodesizes[i] != 0) {
2149
seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2150
pointers += (1<<i) * stat->nodesizes[i];
2151
}
2152
seq_putc(seq, '\n');
2153
seq_printf(seq, "\tPointers: %u\n", pointers);
2154
2155
bytes += sizeof(struct rt_trie_node *) * pointers;
2156
seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2157
seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2158
}
2159
2160
#ifdef CONFIG_IP_FIB_TRIE_STATS
2161
static void trie_show_usage(struct seq_file *seq,
2162
const struct trie_use_stats *stats)
2163
{
2164
seq_printf(seq, "\nCounters:\n---------\n");
2165
seq_printf(seq, "gets = %u\n", stats->gets);
2166
seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2167
seq_printf(seq, "semantic match passed = %u\n",
2168
stats->semantic_match_passed);
2169
seq_printf(seq, "semantic match miss = %u\n",
2170
stats->semantic_match_miss);
2171
seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2172
seq_printf(seq, "skipped node resize = %u\n\n",
2173
stats->resize_node_skipped);
2174
}
2175
#endif /* CONFIG_IP_FIB_TRIE_STATS */
2176
2177
static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2178
{
2179
if (tb->tb_id == RT_TABLE_LOCAL)
2180
seq_puts(seq, "Local:\n");
2181
else if (tb->tb_id == RT_TABLE_MAIN)
2182
seq_puts(seq, "Main:\n");
2183
else
2184
seq_printf(seq, "Id %d:\n", tb->tb_id);
2185
}
2186
2187
2188
static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2189
{
2190
struct net *net = (struct net *)seq->private;
2191
unsigned int h;
2192
2193
seq_printf(seq,
2194
"Basic info: size of leaf:"
2195
" %Zd bytes, size of tnode: %Zd bytes.\n",
2196
sizeof(struct leaf), sizeof(struct tnode));
2197
2198
for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2199
struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2200
struct hlist_node *node;
2201
struct fib_table *tb;
2202
2203
hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2204
struct trie *t = (struct trie *) tb->tb_data;
2205
struct trie_stat stat;
2206
2207
if (!t)
2208
continue;
2209
2210
fib_table_print(seq, tb);
2211
2212
trie_collect_stats(t, &stat);
2213
trie_show_stats(seq, &stat);
2214
#ifdef CONFIG_IP_FIB_TRIE_STATS
2215
trie_show_usage(seq, &t->stats);
2216
#endif
2217
}
2218
}
2219
2220
return 0;
2221
}
2222
2223
static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2224
{
2225
return single_open_net(inode, file, fib_triestat_seq_show);
2226
}
2227
2228
static const struct file_operations fib_triestat_fops = {
2229
.owner = THIS_MODULE,
2230
.open = fib_triestat_seq_open,
2231
.read = seq_read,
2232
.llseek = seq_lseek,
2233
.release = single_release_net,
2234
};
2235
2236
static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2237
{
2238
struct fib_trie_iter *iter = seq->private;
2239
struct net *net = seq_file_net(seq);
2240
loff_t idx = 0;
2241
unsigned int h;
2242
2243
for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2244
struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2245
struct hlist_node *node;
2246
struct fib_table *tb;
2247
2248
hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2249
struct rt_trie_node *n;
2250
2251
for (n = fib_trie_get_first(iter,
2252
(struct trie *) tb->tb_data);
2253
n; n = fib_trie_get_next(iter))
2254
if (pos == idx++) {
2255
iter->tb = tb;
2256
return n;
2257
}
2258
}
2259
}
2260
2261
return NULL;
2262
}
2263
2264
static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2265
__acquires(RCU)
2266
{
2267
rcu_read_lock();
2268
return fib_trie_get_idx(seq, *pos);
2269
}
2270
2271
static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2272
{
2273
struct fib_trie_iter *iter = seq->private;
2274
struct net *net = seq_file_net(seq);
2275
struct fib_table *tb = iter->tb;
2276
struct hlist_node *tb_node;
2277
unsigned int h;
2278
struct rt_trie_node *n;
2279
2280
++*pos;
2281
/* next node in same table */
2282
n = fib_trie_get_next(iter);
2283
if (n)
2284
return n;
2285
2286
/* walk rest of this hash chain */
2287
h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2288
while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2289
tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2290
n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2291
if (n)
2292
goto found;
2293
}
2294
2295
/* new hash chain */
2296
while (++h < FIB_TABLE_HASHSZ) {
2297
struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2298
hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2299
n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2300
if (n)
2301
goto found;
2302
}
2303
}
2304
return NULL;
2305
2306
found:
2307
iter->tb = tb;
2308
return n;
2309
}
2310
2311
static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2312
__releases(RCU)
2313
{
2314
rcu_read_unlock();
2315
}
2316
2317
static void seq_indent(struct seq_file *seq, int n)
2318
{
2319
while (n-- > 0)
2320
seq_puts(seq, " ");
2321
}
2322
2323
static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2324
{
2325
switch (s) {
2326
case RT_SCOPE_UNIVERSE: return "universe";
2327
case RT_SCOPE_SITE: return "site";
2328
case RT_SCOPE_LINK: return "link";
2329
case RT_SCOPE_HOST: return "host";
2330
case RT_SCOPE_NOWHERE: return "nowhere";
2331
default:
2332
snprintf(buf, len, "scope=%d", s);
2333
return buf;
2334
}
2335
}
2336
2337
static const char *const rtn_type_names[__RTN_MAX] = {
2338
[RTN_UNSPEC] = "UNSPEC",
2339
[RTN_UNICAST] = "UNICAST",
2340
[RTN_LOCAL] = "LOCAL",
2341
[RTN_BROADCAST] = "BROADCAST",
2342
[RTN_ANYCAST] = "ANYCAST",
2343
[RTN_MULTICAST] = "MULTICAST",
2344
[RTN_BLACKHOLE] = "BLACKHOLE",
2345
[RTN_UNREACHABLE] = "UNREACHABLE",
2346
[RTN_PROHIBIT] = "PROHIBIT",
2347
[RTN_THROW] = "THROW",
2348
[RTN_NAT] = "NAT",
2349
[RTN_XRESOLVE] = "XRESOLVE",
2350
};
2351
2352
static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2353
{
2354
if (t < __RTN_MAX && rtn_type_names[t])
2355
return rtn_type_names[t];
2356
snprintf(buf, len, "type %u", t);
2357
return buf;
2358
}
2359
2360
/* Pretty print the trie */
2361
static int fib_trie_seq_show(struct seq_file *seq, void *v)
2362
{
2363
const struct fib_trie_iter *iter = seq->private;
2364
struct rt_trie_node *n = v;
2365
2366
if (!node_parent_rcu(n))
2367
fib_table_print(seq, iter->tb);
2368
2369
if (IS_TNODE(n)) {
2370
struct tnode *tn = (struct tnode *) n;
2371
__be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2372
2373
seq_indent(seq, iter->depth-1);
2374
seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2375
&prf, tn->pos, tn->bits, tn->full_children,
2376
tn->empty_children);
2377
2378
} else {
2379
struct leaf *l = (struct leaf *) n;
2380
struct leaf_info *li;
2381
struct hlist_node *node;
2382
__be32 val = htonl(l->key);
2383
2384
seq_indent(seq, iter->depth);
2385
seq_printf(seq, " |-- %pI4\n", &val);
2386
2387
hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2388
struct fib_alias *fa;
2389
2390
list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2391
char buf1[32], buf2[32];
2392
2393
seq_indent(seq, iter->depth+1);
2394
seq_printf(seq, " /%d %s %s", li->plen,
2395
rtn_scope(buf1, sizeof(buf1),
2396
fa->fa_info->fib_scope),
2397
rtn_type(buf2, sizeof(buf2),
2398
fa->fa_type));
2399
if (fa->fa_tos)
2400
seq_printf(seq, " tos=%d", fa->fa_tos);
2401
seq_putc(seq, '\n');
2402
}
2403
}
2404
}
2405
2406
return 0;
2407
}
2408
2409
static const struct seq_operations fib_trie_seq_ops = {
2410
.start = fib_trie_seq_start,
2411
.next = fib_trie_seq_next,
2412
.stop = fib_trie_seq_stop,
2413
.show = fib_trie_seq_show,
2414
};
2415
2416
static int fib_trie_seq_open(struct inode *inode, struct file *file)
2417
{
2418
return seq_open_net(inode, file, &fib_trie_seq_ops,
2419
sizeof(struct fib_trie_iter));
2420
}
2421
2422
static const struct file_operations fib_trie_fops = {
2423
.owner = THIS_MODULE,
2424
.open = fib_trie_seq_open,
2425
.read = seq_read,
2426
.llseek = seq_lseek,
2427
.release = seq_release_net,
2428
};
2429
2430
struct fib_route_iter {
2431
struct seq_net_private p;
2432
struct trie *main_trie;
2433
loff_t pos;
2434
t_key key;
2435
};
2436
2437
static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2438
{
2439
struct leaf *l = NULL;
2440
struct trie *t = iter->main_trie;
2441
2442
/* use cache location of last found key */
2443
if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2444
pos -= iter->pos;
2445
else {
2446
iter->pos = 0;
2447
l = trie_firstleaf(t);
2448
}
2449
2450
while (l && pos-- > 0) {
2451
iter->pos++;
2452
l = trie_nextleaf(l);
2453
}
2454
2455
if (l)
2456
iter->key = pos; /* remember it */
2457
else
2458
iter->pos = 0; /* forget it */
2459
2460
return l;
2461
}
2462
2463
static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2464
__acquires(RCU)
2465
{
2466
struct fib_route_iter *iter = seq->private;
2467
struct fib_table *tb;
2468
2469
rcu_read_lock();
2470
tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2471
if (!tb)
2472
return NULL;
2473
2474
iter->main_trie = (struct trie *) tb->tb_data;
2475
if (*pos == 0)
2476
return SEQ_START_TOKEN;
2477
else
2478
return fib_route_get_idx(iter, *pos - 1);
2479
}
2480
2481
static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2482
{
2483
struct fib_route_iter *iter = seq->private;
2484
struct leaf *l = v;
2485
2486
++*pos;
2487
if (v == SEQ_START_TOKEN) {
2488
iter->pos = 0;
2489
l = trie_firstleaf(iter->main_trie);
2490
} else {
2491
iter->pos++;
2492
l = trie_nextleaf(l);
2493
}
2494
2495
if (l)
2496
iter->key = l->key;
2497
else
2498
iter->pos = 0;
2499
return l;
2500
}
2501
2502
static void fib_route_seq_stop(struct seq_file *seq, void *v)
2503
__releases(RCU)
2504
{
2505
rcu_read_unlock();
2506
}
2507
2508
static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2509
{
2510
unsigned int flags = 0;
2511
2512
if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2513
flags = RTF_REJECT;
2514
if (fi && fi->fib_nh->nh_gw)
2515
flags |= RTF_GATEWAY;
2516
if (mask == htonl(0xFFFFFFFF))
2517
flags |= RTF_HOST;
2518
flags |= RTF_UP;
2519
return flags;
2520
}
2521
2522
/*
2523
* This outputs /proc/net/route.
2524
* The format of the file is not supposed to be changed
2525
* and needs to be same as fib_hash output to avoid breaking
2526
* legacy utilities
2527
*/
2528
static int fib_route_seq_show(struct seq_file *seq, void *v)
2529
{
2530
struct leaf *l = v;
2531
struct leaf_info *li;
2532
struct hlist_node *node;
2533
2534
if (v == SEQ_START_TOKEN) {
2535
seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2536
"\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2537
"\tWindow\tIRTT");
2538
return 0;
2539
}
2540
2541
hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2542
struct fib_alias *fa;
2543
__be32 mask, prefix;
2544
2545
mask = inet_make_mask(li->plen);
2546
prefix = htonl(l->key);
2547
2548
list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2549
const struct fib_info *fi = fa->fa_info;
2550
unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2551
int len;
2552
2553
if (fa->fa_type == RTN_BROADCAST
2554
|| fa->fa_type == RTN_MULTICAST)
2555
continue;
2556
2557
if (fi)
2558
seq_printf(seq,
2559
"%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2560
"%d\t%08X\t%d\t%u\t%u%n",
2561
fi->fib_dev ? fi->fib_dev->name : "*",
2562
prefix,
2563
fi->fib_nh->nh_gw, flags, 0, 0,
2564
fi->fib_priority,
2565
mask,
2566
(fi->fib_advmss ?
2567
fi->fib_advmss + 40 : 0),
2568
fi->fib_window,
2569
fi->fib_rtt >> 3, &len);
2570
else
2571
seq_printf(seq,
2572
"*\t%08X\t%08X\t%04X\t%d\t%u\t"
2573
"%d\t%08X\t%d\t%u\t%u%n",
2574
prefix, 0, flags, 0, 0, 0,
2575
mask, 0, 0, 0, &len);
2576
2577
seq_printf(seq, "%*s\n", 127 - len, "");
2578
}
2579
}
2580
2581
return 0;
2582
}
2583
2584
static const struct seq_operations fib_route_seq_ops = {
2585
.start = fib_route_seq_start,
2586
.next = fib_route_seq_next,
2587
.stop = fib_route_seq_stop,
2588
.show = fib_route_seq_show,
2589
};
2590
2591
static int fib_route_seq_open(struct inode *inode, struct file *file)
2592
{
2593
return seq_open_net(inode, file, &fib_route_seq_ops,
2594
sizeof(struct fib_route_iter));
2595
}
2596
2597
static const struct file_operations fib_route_fops = {
2598
.owner = THIS_MODULE,
2599
.open = fib_route_seq_open,
2600
.read = seq_read,
2601
.llseek = seq_lseek,
2602
.release = seq_release_net,
2603
};
2604
2605
int __net_init fib_proc_init(struct net *net)
2606
{
2607
if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
2608
goto out1;
2609
2610
if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2611
&fib_triestat_fops))
2612
goto out2;
2613
2614
if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
2615
goto out3;
2616
2617
return 0;
2618
2619
out3:
2620
proc_net_remove(net, "fib_triestat");
2621
out2:
2622
proc_net_remove(net, "fib_trie");
2623
out1:
2624
return -ENOMEM;
2625
}
2626
2627
void __net_exit fib_proc_exit(struct net *net)
2628
{
2629
proc_net_remove(net, "fib_trie");
2630
proc_net_remove(net, "fib_triestat");
2631
proc_net_remove(net, "route");
2632
}
2633
2634
#endif /* CONFIG_PROC_FS */
2635
2636