Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/net/ipv4/ipmr.c
15109 views
1
/*
2
* IP multicast routing support for mrouted 3.6/3.8
3
*
4
* (c) 1995 Alan Cox, <[email protected]>
5
* Linux Consultancy and Custom Driver Development
6
*
7
* This program is free software; you can redistribute it and/or
8
* modify it under the terms of the GNU General Public License
9
* as published by the Free Software Foundation; either version
10
* 2 of the License, or (at your option) any later version.
11
*
12
* Fixes:
13
* Michael Chastain : Incorrect size of copying.
14
* Alan Cox : Added the cache manager code
15
* Alan Cox : Fixed the clone/copy bug and device race.
16
* Mike McLagan : Routing by source
17
* Malcolm Beattie : Buffer handling fixes.
18
* Alexey Kuznetsov : Double buffer free and other fixes.
19
* SVR Anand : Fixed several multicast bugs and problems.
20
* Alexey Kuznetsov : Status, optimisations and more.
21
* Brad Parker : Better behaviour on mrouted upcall
22
* overflow.
23
* Carlos Picoto : PIMv1 Support
24
* Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
25
* Relax this requirement to work with older peers.
26
*
27
*/
28
29
#include <asm/system.h>
30
#include <asm/uaccess.h>
31
#include <linux/types.h>
32
#include <linux/capability.h>
33
#include <linux/errno.h>
34
#include <linux/timer.h>
35
#include <linux/mm.h>
36
#include <linux/kernel.h>
37
#include <linux/fcntl.h>
38
#include <linux/stat.h>
39
#include <linux/socket.h>
40
#include <linux/in.h>
41
#include <linux/inet.h>
42
#include <linux/netdevice.h>
43
#include <linux/inetdevice.h>
44
#include <linux/igmp.h>
45
#include <linux/proc_fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/mroute.h>
48
#include <linux/init.h>
49
#include <linux/if_ether.h>
50
#include <linux/slab.h>
51
#include <net/net_namespace.h>
52
#include <net/ip.h>
53
#include <net/protocol.h>
54
#include <linux/skbuff.h>
55
#include <net/route.h>
56
#include <net/sock.h>
57
#include <net/icmp.h>
58
#include <net/udp.h>
59
#include <net/raw.h>
60
#include <linux/notifier.h>
61
#include <linux/if_arp.h>
62
#include <linux/netfilter_ipv4.h>
63
#include <linux/compat.h>
64
#include <net/ipip.h>
65
#include <net/checksum.h>
66
#include <net/netlink.h>
67
#include <net/fib_rules.h>
68
69
#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
70
#define CONFIG_IP_PIMSM 1
71
#endif
72
73
struct mr_table {
74
struct list_head list;
75
#ifdef CONFIG_NET_NS
76
struct net *net;
77
#endif
78
u32 id;
79
struct sock __rcu *mroute_sk;
80
struct timer_list ipmr_expire_timer;
81
struct list_head mfc_unres_queue;
82
struct list_head mfc_cache_array[MFC_LINES];
83
struct vif_device vif_table[MAXVIFS];
84
int maxvif;
85
atomic_t cache_resolve_queue_len;
86
int mroute_do_assert;
87
int mroute_do_pim;
88
#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
89
int mroute_reg_vif_num;
90
#endif
91
};
92
93
struct ipmr_rule {
94
struct fib_rule common;
95
};
96
97
struct ipmr_result {
98
struct mr_table *mrt;
99
};
100
101
/* Big lock, protecting vif table, mrt cache and mroute socket state.
102
* Note that the changes are semaphored via rtnl_lock.
103
*/
104
105
static DEFINE_RWLOCK(mrt_lock);
106
107
/*
108
* Multicast router control variables
109
*/
110
111
#define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
112
113
/* Special spinlock for queue of unresolved entries */
114
static DEFINE_SPINLOCK(mfc_unres_lock);
115
116
/* We return to original Alan's scheme. Hash table of resolved
117
* entries is changed only in process context and protected
118
* with weak lock mrt_lock. Queue of unresolved entries is protected
119
* with strong spinlock mfc_unres_lock.
120
*
121
* In this case data path is free of exclusive locks at all.
122
*/
123
124
static struct kmem_cache *mrt_cachep __read_mostly;
125
126
static struct mr_table *ipmr_new_table(struct net *net, u32 id);
127
static int ip_mr_forward(struct net *net, struct mr_table *mrt,
128
struct sk_buff *skb, struct mfc_cache *cache,
129
int local);
130
static int ipmr_cache_report(struct mr_table *mrt,
131
struct sk_buff *pkt, vifi_t vifi, int assert);
132
static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
133
struct mfc_cache *c, struct rtmsg *rtm);
134
static void ipmr_expire_process(unsigned long arg);
135
136
#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
137
#define ipmr_for_each_table(mrt, net) \
138
list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
139
140
static struct mr_table *ipmr_get_table(struct net *net, u32 id)
141
{
142
struct mr_table *mrt;
143
144
ipmr_for_each_table(mrt, net) {
145
if (mrt->id == id)
146
return mrt;
147
}
148
return NULL;
149
}
150
151
static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
152
struct mr_table **mrt)
153
{
154
struct ipmr_result res;
155
struct fib_lookup_arg arg = { .result = &res, };
156
int err;
157
158
err = fib_rules_lookup(net->ipv4.mr_rules_ops,
159
flowi4_to_flowi(flp4), 0, &arg);
160
if (err < 0)
161
return err;
162
*mrt = res.mrt;
163
return 0;
164
}
165
166
static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
167
int flags, struct fib_lookup_arg *arg)
168
{
169
struct ipmr_result *res = arg->result;
170
struct mr_table *mrt;
171
172
switch (rule->action) {
173
case FR_ACT_TO_TBL:
174
break;
175
case FR_ACT_UNREACHABLE:
176
return -ENETUNREACH;
177
case FR_ACT_PROHIBIT:
178
return -EACCES;
179
case FR_ACT_BLACKHOLE:
180
default:
181
return -EINVAL;
182
}
183
184
mrt = ipmr_get_table(rule->fr_net, rule->table);
185
if (mrt == NULL)
186
return -EAGAIN;
187
res->mrt = mrt;
188
return 0;
189
}
190
191
static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
192
{
193
return 1;
194
}
195
196
static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
197
FRA_GENERIC_POLICY,
198
};
199
200
static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
201
struct fib_rule_hdr *frh, struct nlattr **tb)
202
{
203
return 0;
204
}
205
206
static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
207
struct nlattr **tb)
208
{
209
return 1;
210
}
211
212
static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
213
struct fib_rule_hdr *frh)
214
{
215
frh->dst_len = 0;
216
frh->src_len = 0;
217
frh->tos = 0;
218
return 0;
219
}
220
221
static const struct fib_rules_ops __net_initdata ipmr_rules_ops_template = {
222
.family = RTNL_FAMILY_IPMR,
223
.rule_size = sizeof(struct ipmr_rule),
224
.addr_size = sizeof(u32),
225
.action = ipmr_rule_action,
226
.match = ipmr_rule_match,
227
.configure = ipmr_rule_configure,
228
.compare = ipmr_rule_compare,
229
.default_pref = fib_default_rule_pref,
230
.fill = ipmr_rule_fill,
231
.nlgroup = RTNLGRP_IPV4_RULE,
232
.policy = ipmr_rule_policy,
233
.owner = THIS_MODULE,
234
};
235
236
static int __net_init ipmr_rules_init(struct net *net)
237
{
238
struct fib_rules_ops *ops;
239
struct mr_table *mrt;
240
int err;
241
242
ops = fib_rules_register(&ipmr_rules_ops_template, net);
243
if (IS_ERR(ops))
244
return PTR_ERR(ops);
245
246
INIT_LIST_HEAD(&net->ipv4.mr_tables);
247
248
mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
249
if (mrt == NULL) {
250
err = -ENOMEM;
251
goto err1;
252
}
253
254
err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
255
if (err < 0)
256
goto err2;
257
258
net->ipv4.mr_rules_ops = ops;
259
return 0;
260
261
err2:
262
kfree(mrt);
263
err1:
264
fib_rules_unregister(ops);
265
return err;
266
}
267
268
static void __net_exit ipmr_rules_exit(struct net *net)
269
{
270
struct mr_table *mrt, *next;
271
272
list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
273
list_del(&mrt->list);
274
kfree(mrt);
275
}
276
fib_rules_unregister(net->ipv4.mr_rules_ops);
277
}
278
#else
279
#define ipmr_for_each_table(mrt, net) \
280
for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
281
282
static struct mr_table *ipmr_get_table(struct net *net, u32 id)
283
{
284
return net->ipv4.mrt;
285
}
286
287
static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
288
struct mr_table **mrt)
289
{
290
*mrt = net->ipv4.mrt;
291
return 0;
292
}
293
294
static int __net_init ipmr_rules_init(struct net *net)
295
{
296
net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
297
return net->ipv4.mrt ? 0 : -ENOMEM;
298
}
299
300
static void __net_exit ipmr_rules_exit(struct net *net)
301
{
302
kfree(net->ipv4.mrt);
303
}
304
#endif
305
306
static struct mr_table *ipmr_new_table(struct net *net, u32 id)
307
{
308
struct mr_table *mrt;
309
unsigned int i;
310
311
mrt = ipmr_get_table(net, id);
312
if (mrt != NULL)
313
return mrt;
314
315
mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
316
if (mrt == NULL)
317
return NULL;
318
write_pnet(&mrt->net, net);
319
mrt->id = id;
320
321
/* Forwarding cache */
322
for (i = 0; i < MFC_LINES; i++)
323
INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
324
325
INIT_LIST_HEAD(&mrt->mfc_unres_queue);
326
327
setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
328
(unsigned long)mrt);
329
330
#ifdef CONFIG_IP_PIMSM
331
mrt->mroute_reg_vif_num = -1;
332
#endif
333
#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
334
list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
335
#endif
336
return mrt;
337
}
338
339
/* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
340
341
static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
342
{
343
struct net *net = dev_net(dev);
344
345
dev_close(dev);
346
347
dev = __dev_get_by_name(net, "tunl0");
348
if (dev) {
349
const struct net_device_ops *ops = dev->netdev_ops;
350
struct ifreq ifr;
351
struct ip_tunnel_parm p;
352
353
memset(&p, 0, sizeof(p));
354
p.iph.daddr = v->vifc_rmt_addr.s_addr;
355
p.iph.saddr = v->vifc_lcl_addr.s_addr;
356
p.iph.version = 4;
357
p.iph.ihl = 5;
358
p.iph.protocol = IPPROTO_IPIP;
359
sprintf(p.name, "dvmrp%d", v->vifc_vifi);
360
ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
361
362
if (ops->ndo_do_ioctl) {
363
mm_segment_t oldfs = get_fs();
364
365
set_fs(KERNEL_DS);
366
ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
367
set_fs(oldfs);
368
}
369
}
370
}
371
372
static
373
struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
374
{
375
struct net_device *dev;
376
377
dev = __dev_get_by_name(net, "tunl0");
378
379
if (dev) {
380
const struct net_device_ops *ops = dev->netdev_ops;
381
int err;
382
struct ifreq ifr;
383
struct ip_tunnel_parm p;
384
struct in_device *in_dev;
385
386
memset(&p, 0, sizeof(p));
387
p.iph.daddr = v->vifc_rmt_addr.s_addr;
388
p.iph.saddr = v->vifc_lcl_addr.s_addr;
389
p.iph.version = 4;
390
p.iph.ihl = 5;
391
p.iph.protocol = IPPROTO_IPIP;
392
sprintf(p.name, "dvmrp%d", v->vifc_vifi);
393
ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
394
395
if (ops->ndo_do_ioctl) {
396
mm_segment_t oldfs = get_fs();
397
398
set_fs(KERNEL_DS);
399
err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
400
set_fs(oldfs);
401
} else {
402
err = -EOPNOTSUPP;
403
}
404
dev = NULL;
405
406
if (err == 0 &&
407
(dev = __dev_get_by_name(net, p.name)) != NULL) {
408
dev->flags |= IFF_MULTICAST;
409
410
in_dev = __in_dev_get_rtnl(dev);
411
if (in_dev == NULL)
412
goto failure;
413
414
ipv4_devconf_setall(in_dev);
415
IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
416
417
if (dev_open(dev))
418
goto failure;
419
dev_hold(dev);
420
}
421
}
422
return dev;
423
424
failure:
425
/* allow the register to be completed before unregistering. */
426
rtnl_unlock();
427
rtnl_lock();
428
429
unregister_netdevice(dev);
430
return NULL;
431
}
432
433
#ifdef CONFIG_IP_PIMSM
434
435
static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
436
{
437
struct net *net = dev_net(dev);
438
struct mr_table *mrt;
439
struct flowi4 fl4 = {
440
.flowi4_oif = dev->ifindex,
441
.flowi4_iif = skb->skb_iif,
442
.flowi4_mark = skb->mark,
443
};
444
int err;
445
446
err = ipmr_fib_lookup(net, &fl4, &mrt);
447
if (err < 0) {
448
kfree_skb(skb);
449
return err;
450
}
451
452
read_lock(&mrt_lock);
453
dev->stats.tx_bytes += skb->len;
454
dev->stats.tx_packets++;
455
ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
456
read_unlock(&mrt_lock);
457
kfree_skb(skb);
458
return NETDEV_TX_OK;
459
}
460
461
static const struct net_device_ops reg_vif_netdev_ops = {
462
.ndo_start_xmit = reg_vif_xmit,
463
};
464
465
static void reg_vif_setup(struct net_device *dev)
466
{
467
dev->type = ARPHRD_PIMREG;
468
dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
469
dev->flags = IFF_NOARP;
470
dev->netdev_ops = &reg_vif_netdev_ops,
471
dev->destructor = free_netdev;
472
dev->features |= NETIF_F_NETNS_LOCAL;
473
}
474
475
static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
476
{
477
struct net_device *dev;
478
struct in_device *in_dev;
479
char name[IFNAMSIZ];
480
481
if (mrt->id == RT_TABLE_DEFAULT)
482
sprintf(name, "pimreg");
483
else
484
sprintf(name, "pimreg%u", mrt->id);
485
486
dev = alloc_netdev(0, name, reg_vif_setup);
487
488
if (dev == NULL)
489
return NULL;
490
491
dev_net_set(dev, net);
492
493
if (register_netdevice(dev)) {
494
free_netdev(dev);
495
return NULL;
496
}
497
dev->iflink = 0;
498
499
rcu_read_lock();
500
in_dev = __in_dev_get_rcu(dev);
501
if (!in_dev) {
502
rcu_read_unlock();
503
goto failure;
504
}
505
506
ipv4_devconf_setall(in_dev);
507
IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
508
rcu_read_unlock();
509
510
if (dev_open(dev))
511
goto failure;
512
513
dev_hold(dev);
514
515
return dev;
516
517
failure:
518
/* allow the register to be completed before unregistering. */
519
rtnl_unlock();
520
rtnl_lock();
521
522
unregister_netdevice(dev);
523
return NULL;
524
}
525
#endif
526
527
/*
528
* Delete a VIF entry
529
* @notify: Set to 1, if the caller is a notifier_call
530
*/
531
532
static int vif_delete(struct mr_table *mrt, int vifi, int notify,
533
struct list_head *head)
534
{
535
struct vif_device *v;
536
struct net_device *dev;
537
struct in_device *in_dev;
538
539
if (vifi < 0 || vifi >= mrt->maxvif)
540
return -EADDRNOTAVAIL;
541
542
v = &mrt->vif_table[vifi];
543
544
write_lock_bh(&mrt_lock);
545
dev = v->dev;
546
v->dev = NULL;
547
548
if (!dev) {
549
write_unlock_bh(&mrt_lock);
550
return -EADDRNOTAVAIL;
551
}
552
553
#ifdef CONFIG_IP_PIMSM
554
if (vifi == mrt->mroute_reg_vif_num)
555
mrt->mroute_reg_vif_num = -1;
556
#endif
557
558
if (vifi + 1 == mrt->maxvif) {
559
int tmp;
560
561
for (tmp = vifi - 1; tmp >= 0; tmp--) {
562
if (VIF_EXISTS(mrt, tmp))
563
break;
564
}
565
mrt->maxvif = tmp+1;
566
}
567
568
write_unlock_bh(&mrt_lock);
569
570
dev_set_allmulti(dev, -1);
571
572
in_dev = __in_dev_get_rtnl(dev);
573
if (in_dev) {
574
IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
575
ip_rt_multicast_event(in_dev);
576
}
577
578
if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
579
unregister_netdevice_queue(dev, head);
580
581
dev_put(dev);
582
return 0;
583
}
584
585
static void ipmr_cache_free_rcu(struct rcu_head *head)
586
{
587
struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
588
589
kmem_cache_free(mrt_cachep, c);
590
}
591
592
static inline void ipmr_cache_free(struct mfc_cache *c)
593
{
594
call_rcu(&c->rcu, ipmr_cache_free_rcu);
595
}
596
597
/* Destroy an unresolved cache entry, killing queued skbs
598
* and reporting error to netlink readers.
599
*/
600
601
static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
602
{
603
struct net *net = read_pnet(&mrt->net);
604
struct sk_buff *skb;
605
struct nlmsgerr *e;
606
607
atomic_dec(&mrt->cache_resolve_queue_len);
608
609
while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
610
if (ip_hdr(skb)->version == 0) {
611
struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
612
nlh->nlmsg_type = NLMSG_ERROR;
613
nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
614
skb_trim(skb, nlh->nlmsg_len);
615
e = NLMSG_DATA(nlh);
616
e->error = -ETIMEDOUT;
617
memset(&e->msg, 0, sizeof(e->msg));
618
619
rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
620
} else {
621
kfree_skb(skb);
622
}
623
}
624
625
ipmr_cache_free(c);
626
}
627
628
629
/* Timer process for the unresolved queue. */
630
631
static void ipmr_expire_process(unsigned long arg)
632
{
633
struct mr_table *mrt = (struct mr_table *)arg;
634
unsigned long now;
635
unsigned long expires;
636
struct mfc_cache *c, *next;
637
638
if (!spin_trylock(&mfc_unres_lock)) {
639
mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
640
return;
641
}
642
643
if (list_empty(&mrt->mfc_unres_queue))
644
goto out;
645
646
now = jiffies;
647
expires = 10*HZ;
648
649
list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
650
if (time_after(c->mfc_un.unres.expires, now)) {
651
unsigned long interval = c->mfc_un.unres.expires - now;
652
if (interval < expires)
653
expires = interval;
654
continue;
655
}
656
657
list_del(&c->list);
658
ipmr_destroy_unres(mrt, c);
659
}
660
661
if (!list_empty(&mrt->mfc_unres_queue))
662
mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
663
664
out:
665
spin_unlock(&mfc_unres_lock);
666
}
667
668
/* Fill oifs list. It is called under write locked mrt_lock. */
669
670
static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
671
unsigned char *ttls)
672
{
673
int vifi;
674
675
cache->mfc_un.res.minvif = MAXVIFS;
676
cache->mfc_un.res.maxvif = 0;
677
memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
678
679
for (vifi = 0; vifi < mrt->maxvif; vifi++) {
680
if (VIF_EXISTS(mrt, vifi) &&
681
ttls[vifi] && ttls[vifi] < 255) {
682
cache->mfc_un.res.ttls[vifi] = ttls[vifi];
683
if (cache->mfc_un.res.minvif > vifi)
684
cache->mfc_un.res.minvif = vifi;
685
if (cache->mfc_un.res.maxvif <= vifi)
686
cache->mfc_un.res.maxvif = vifi + 1;
687
}
688
}
689
}
690
691
static int vif_add(struct net *net, struct mr_table *mrt,
692
struct vifctl *vifc, int mrtsock)
693
{
694
int vifi = vifc->vifc_vifi;
695
struct vif_device *v = &mrt->vif_table[vifi];
696
struct net_device *dev;
697
struct in_device *in_dev;
698
int err;
699
700
/* Is vif busy ? */
701
if (VIF_EXISTS(mrt, vifi))
702
return -EADDRINUSE;
703
704
switch (vifc->vifc_flags) {
705
#ifdef CONFIG_IP_PIMSM
706
case VIFF_REGISTER:
707
/*
708
* Special Purpose VIF in PIM
709
* All the packets will be sent to the daemon
710
*/
711
if (mrt->mroute_reg_vif_num >= 0)
712
return -EADDRINUSE;
713
dev = ipmr_reg_vif(net, mrt);
714
if (!dev)
715
return -ENOBUFS;
716
err = dev_set_allmulti(dev, 1);
717
if (err) {
718
unregister_netdevice(dev);
719
dev_put(dev);
720
return err;
721
}
722
break;
723
#endif
724
case VIFF_TUNNEL:
725
dev = ipmr_new_tunnel(net, vifc);
726
if (!dev)
727
return -ENOBUFS;
728
err = dev_set_allmulti(dev, 1);
729
if (err) {
730
ipmr_del_tunnel(dev, vifc);
731
dev_put(dev);
732
return err;
733
}
734
break;
735
736
case VIFF_USE_IFINDEX:
737
case 0:
738
if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
739
dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
740
if (dev && __in_dev_get_rtnl(dev) == NULL) {
741
dev_put(dev);
742
return -EADDRNOTAVAIL;
743
}
744
} else {
745
dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
746
}
747
if (!dev)
748
return -EADDRNOTAVAIL;
749
err = dev_set_allmulti(dev, 1);
750
if (err) {
751
dev_put(dev);
752
return err;
753
}
754
break;
755
default:
756
return -EINVAL;
757
}
758
759
in_dev = __in_dev_get_rtnl(dev);
760
if (!in_dev) {
761
dev_put(dev);
762
return -EADDRNOTAVAIL;
763
}
764
IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
765
ip_rt_multicast_event(in_dev);
766
767
/* Fill in the VIF structures */
768
769
v->rate_limit = vifc->vifc_rate_limit;
770
v->local = vifc->vifc_lcl_addr.s_addr;
771
v->remote = vifc->vifc_rmt_addr.s_addr;
772
v->flags = vifc->vifc_flags;
773
if (!mrtsock)
774
v->flags |= VIFF_STATIC;
775
v->threshold = vifc->vifc_threshold;
776
v->bytes_in = 0;
777
v->bytes_out = 0;
778
v->pkt_in = 0;
779
v->pkt_out = 0;
780
v->link = dev->ifindex;
781
if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
782
v->link = dev->iflink;
783
784
/* And finish update writing critical data */
785
write_lock_bh(&mrt_lock);
786
v->dev = dev;
787
#ifdef CONFIG_IP_PIMSM
788
if (v->flags & VIFF_REGISTER)
789
mrt->mroute_reg_vif_num = vifi;
790
#endif
791
if (vifi+1 > mrt->maxvif)
792
mrt->maxvif = vifi+1;
793
write_unlock_bh(&mrt_lock);
794
return 0;
795
}
796
797
/* called with rcu_read_lock() */
798
static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
799
__be32 origin,
800
__be32 mcastgrp)
801
{
802
int line = MFC_HASH(mcastgrp, origin);
803
struct mfc_cache *c;
804
805
list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
806
if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
807
return c;
808
}
809
return NULL;
810
}
811
812
/*
813
* Allocate a multicast cache entry
814
*/
815
static struct mfc_cache *ipmr_cache_alloc(void)
816
{
817
struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
818
819
if (c)
820
c->mfc_un.res.minvif = MAXVIFS;
821
return c;
822
}
823
824
static struct mfc_cache *ipmr_cache_alloc_unres(void)
825
{
826
struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
827
828
if (c) {
829
skb_queue_head_init(&c->mfc_un.unres.unresolved);
830
c->mfc_un.unres.expires = jiffies + 10*HZ;
831
}
832
return c;
833
}
834
835
/*
836
* A cache entry has gone into a resolved state from queued
837
*/
838
839
static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
840
struct mfc_cache *uc, struct mfc_cache *c)
841
{
842
struct sk_buff *skb;
843
struct nlmsgerr *e;
844
845
/* Play the pending entries through our router */
846
847
while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
848
if (ip_hdr(skb)->version == 0) {
849
struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
850
851
if (__ipmr_fill_mroute(mrt, skb, c, NLMSG_DATA(nlh)) > 0) {
852
nlh->nlmsg_len = skb_tail_pointer(skb) -
853
(u8 *)nlh;
854
} else {
855
nlh->nlmsg_type = NLMSG_ERROR;
856
nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
857
skb_trim(skb, nlh->nlmsg_len);
858
e = NLMSG_DATA(nlh);
859
e->error = -EMSGSIZE;
860
memset(&e->msg, 0, sizeof(e->msg));
861
}
862
863
rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
864
} else {
865
ip_mr_forward(net, mrt, skb, c, 0);
866
}
867
}
868
}
869
870
/*
871
* Bounce a cache query up to mrouted. We could use netlink for this but mrouted
872
* expects the following bizarre scheme.
873
*
874
* Called under mrt_lock.
875
*/
876
877
static int ipmr_cache_report(struct mr_table *mrt,
878
struct sk_buff *pkt, vifi_t vifi, int assert)
879
{
880
struct sk_buff *skb;
881
const int ihl = ip_hdrlen(pkt);
882
struct igmphdr *igmp;
883
struct igmpmsg *msg;
884
struct sock *mroute_sk;
885
int ret;
886
887
#ifdef CONFIG_IP_PIMSM
888
if (assert == IGMPMSG_WHOLEPKT)
889
skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
890
else
891
#endif
892
skb = alloc_skb(128, GFP_ATOMIC);
893
894
if (!skb)
895
return -ENOBUFS;
896
897
#ifdef CONFIG_IP_PIMSM
898
if (assert == IGMPMSG_WHOLEPKT) {
899
/* Ugly, but we have no choice with this interface.
900
* Duplicate old header, fix ihl, length etc.
901
* And all this only to mangle msg->im_msgtype and
902
* to set msg->im_mbz to "mbz" :-)
903
*/
904
skb_push(skb, sizeof(struct iphdr));
905
skb_reset_network_header(skb);
906
skb_reset_transport_header(skb);
907
msg = (struct igmpmsg *)skb_network_header(skb);
908
memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
909
msg->im_msgtype = IGMPMSG_WHOLEPKT;
910
msg->im_mbz = 0;
911
msg->im_vif = mrt->mroute_reg_vif_num;
912
ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
913
ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
914
sizeof(struct iphdr));
915
} else
916
#endif
917
{
918
919
/* Copy the IP header */
920
921
skb->network_header = skb->tail;
922
skb_put(skb, ihl);
923
skb_copy_to_linear_data(skb, pkt->data, ihl);
924
ip_hdr(skb)->protocol = 0; /* Flag to the kernel this is a route add */
925
msg = (struct igmpmsg *)skb_network_header(skb);
926
msg->im_vif = vifi;
927
skb_dst_set(skb, dst_clone(skb_dst(pkt)));
928
929
/* Add our header */
930
931
igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
932
igmp->type =
933
msg->im_msgtype = assert;
934
igmp->code = 0;
935
ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
936
skb->transport_header = skb->network_header;
937
}
938
939
rcu_read_lock();
940
mroute_sk = rcu_dereference(mrt->mroute_sk);
941
if (mroute_sk == NULL) {
942
rcu_read_unlock();
943
kfree_skb(skb);
944
return -EINVAL;
945
}
946
947
/* Deliver to mrouted */
948
949
ret = sock_queue_rcv_skb(mroute_sk, skb);
950
rcu_read_unlock();
951
if (ret < 0) {
952
if (net_ratelimit())
953
printk(KERN_WARNING "mroute: pending queue full, dropping entries.\n");
954
kfree_skb(skb);
955
}
956
957
return ret;
958
}
959
960
/*
961
* Queue a packet for resolution. It gets locked cache entry!
962
*/
963
964
static int
965
ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
966
{
967
bool found = false;
968
int err;
969
struct mfc_cache *c;
970
const struct iphdr *iph = ip_hdr(skb);
971
972
spin_lock_bh(&mfc_unres_lock);
973
list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
974
if (c->mfc_mcastgrp == iph->daddr &&
975
c->mfc_origin == iph->saddr) {
976
found = true;
977
break;
978
}
979
}
980
981
if (!found) {
982
/* Create a new entry if allowable */
983
984
if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
985
(c = ipmr_cache_alloc_unres()) == NULL) {
986
spin_unlock_bh(&mfc_unres_lock);
987
988
kfree_skb(skb);
989
return -ENOBUFS;
990
}
991
992
/* Fill in the new cache entry */
993
994
c->mfc_parent = -1;
995
c->mfc_origin = iph->saddr;
996
c->mfc_mcastgrp = iph->daddr;
997
998
/* Reflect first query at mrouted. */
999
1000
err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1001
if (err < 0) {
1002
/* If the report failed throw the cache entry
1003
out - Brad Parker
1004
*/
1005
spin_unlock_bh(&mfc_unres_lock);
1006
1007
ipmr_cache_free(c);
1008
kfree_skb(skb);
1009
return err;
1010
}
1011
1012
atomic_inc(&mrt->cache_resolve_queue_len);
1013
list_add(&c->list, &mrt->mfc_unres_queue);
1014
1015
if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1016
mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1017
}
1018
1019
/* See if we can append the packet */
1020
1021
if (c->mfc_un.unres.unresolved.qlen > 3) {
1022
kfree_skb(skb);
1023
err = -ENOBUFS;
1024
} else {
1025
skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1026
err = 0;
1027
}
1028
1029
spin_unlock_bh(&mfc_unres_lock);
1030
return err;
1031
}
1032
1033
/*
1034
* MFC cache manipulation by user space mroute daemon
1035
*/
1036
1037
static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc)
1038
{
1039
int line;
1040
struct mfc_cache *c, *next;
1041
1042
line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1043
1044
list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1045
if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1046
c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
1047
list_del_rcu(&c->list);
1048
1049
ipmr_cache_free(c);
1050
return 0;
1051
}
1052
}
1053
return -ENOENT;
1054
}
1055
1056
static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1057
struct mfcctl *mfc, int mrtsock)
1058
{
1059
bool found = false;
1060
int line;
1061
struct mfc_cache *uc, *c;
1062
1063
if (mfc->mfcc_parent >= MAXVIFS)
1064
return -ENFILE;
1065
1066
line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1067
1068
list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1069
if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1070
c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
1071
found = true;
1072
break;
1073
}
1074
}
1075
1076
if (found) {
1077
write_lock_bh(&mrt_lock);
1078
c->mfc_parent = mfc->mfcc_parent;
1079
ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1080
if (!mrtsock)
1081
c->mfc_flags |= MFC_STATIC;
1082
write_unlock_bh(&mrt_lock);
1083
return 0;
1084
}
1085
1086
if (!ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1087
return -EINVAL;
1088
1089
c = ipmr_cache_alloc();
1090
if (c == NULL)
1091
return -ENOMEM;
1092
1093
c->mfc_origin = mfc->mfcc_origin.s_addr;
1094
c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1095
c->mfc_parent = mfc->mfcc_parent;
1096
ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1097
if (!mrtsock)
1098
c->mfc_flags |= MFC_STATIC;
1099
1100
list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1101
1102
/*
1103
* Check to see if we resolved a queued list. If so we
1104
* need to send on the frames and tidy up.
1105
*/
1106
found = false;
1107
spin_lock_bh(&mfc_unres_lock);
1108
list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1109
if (uc->mfc_origin == c->mfc_origin &&
1110
uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1111
list_del(&uc->list);
1112
atomic_dec(&mrt->cache_resolve_queue_len);
1113
found = true;
1114
break;
1115
}
1116
}
1117
if (list_empty(&mrt->mfc_unres_queue))
1118
del_timer(&mrt->ipmr_expire_timer);
1119
spin_unlock_bh(&mfc_unres_lock);
1120
1121
if (found) {
1122
ipmr_cache_resolve(net, mrt, uc, c);
1123
ipmr_cache_free(uc);
1124
}
1125
return 0;
1126
}
1127
1128
/*
1129
* Close the multicast socket, and clear the vif tables etc
1130
*/
1131
1132
static void mroute_clean_tables(struct mr_table *mrt)
1133
{
1134
int i;
1135
LIST_HEAD(list);
1136
struct mfc_cache *c, *next;
1137
1138
/* Shut down all active vif entries */
1139
1140
for (i = 0; i < mrt->maxvif; i++) {
1141
if (!(mrt->vif_table[i].flags & VIFF_STATIC))
1142
vif_delete(mrt, i, 0, &list);
1143
}
1144
unregister_netdevice_many(&list);
1145
1146
/* Wipe the cache */
1147
1148
for (i = 0; i < MFC_LINES; i++) {
1149
list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1150
if (c->mfc_flags & MFC_STATIC)
1151
continue;
1152
list_del_rcu(&c->list);
1153
ipmr_cache_free(c);
1154
}
1155
}
1156
1157
if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1158
spin_lock_bh(&mfc_unres_lock);
1159
list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1160
list_del(&c->list);
1161
ipmr_destroy_unres(mrt, c);
1162
}
1163
spin_unlock_bh(&mfc_unres_lock);
1164
}
1165
}
1166
1167
/* called from ip_ra_control(), before an RCU grace period,
1168
* we dont need to call synchronize_rcu() here
1169
*/
1170
static void mrtsock_destruct(struct sock *sk)
1171
{
1172
struct net *net = sock_net(sk);
1173
struct mr_table *mrt;
1174
1175
rtnl_lock();
1176
ipmr_for_each_table(mrt, net) {
1177
if (sk == rtnl_dereference(mrt->mroute_sk)) {
1178
IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1179
rcu_assign_pointer(mrt->mroute_sk, NULL);
1180
mroute_clean_tables(mrt);
1181
}
1182
}
1183
rtnl_unlock();
1184
}
1185
1186
/*
1187
* Socket options and virtual interface manipulation. The whole
1188
* virtual interface system is a complete heap, but unfortunately
1189
* that's how BSD mrouted happens to think. Maybe one day with a proper
1190
* MOSPF/PIM router set up we can clean this up.
1191
*/
1192
1193
int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1194
{
1195
int ret;
1196
struct vifctl vif;
1197
struct mfcctl mfc;
1198
struct net *net = sock_net(sk);
1199
struct mr_table *mrt;
1200
1201
mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1202
if (mrt == NULL)
1203
return -ENOENT;
1204
1205
if (optname != MRT_INIT) {
1206
if (sk != rcu_dereference_raw(mrt->mroute_sk) &&
1207
!capable(CAP_NET_ADMIN))
1208
return -EACCES;
1209
}
1210
1211
switch (optname) {
1212
case MRT_INIT:
1213
if (sk->sk_type != SOCK_RAW ||
1214
inet_sk(sk)->inet_num != IPPROTO_IGMP)
1215
return -EOPNOTSUPP;
1216
if (optlen != sizeof(int))
1217
return -ENOPROTOOPT;
1218
1219
rtnl_lock();
1220
if (rtnl_dereference(mrt->mroute_sk)) {
1221
rtnl_unlock();
1222
return -EADDRINUSE;
1223
}
1224
1225
ret = ip_ra_control(sk, 1, mrtsock_destruct);
1226
if (ret == 0) {
1227
rcu_assign_pointer(mrt->mroute_sk, sk);
1228
IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1229
}
1230
rtnl_unlock();
1231
return ret;
1232
case MRT_DONE:
1233
if (sk != rcu_dereference_raw(mrt->mroute_sk))
1234
return -EACCES;
1235
return ip_ra_control(sk, 0, NULL);
1236
case MRT_ADD_VIF:
1237
case MRT_DEL_VIF:
1238
if (optlen != sizeof(vif))
1239
return -EINVAL;
1240
if (copy_from_user(&vif, optval, sizeof(vif)))
1241
return -EFAULT;
1242
if (vif.vifc_vifi >= MAXVIFS)
1243
return -ENFILE;
1244
rtnl_lock();
1245
if (optname == MRT_ADD_VIF) {
1246
ret = vif_add(net, mrt, &vif,
1247
sk == rtnl_dereference(mrt->mroute_sk));
1248
} else {
1249
ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1250
}
1251
rtnl_unlock();
1252
return ret;
1253
1254
/*
1255
* Manipulate the forwarding caches. These live
1256
* in a sort of kernel/user symbiosis.
1257
*/
1258
case MRT_ADD_MFC:
1259
case MRT_DEL_MFC:
1260
if (optlen != sizeof(mfc))
1261
return -EINVAL;
1262
if (copy_from_user(&mfc, optval, sizeof(mfc)))
1263
return -EFAULT;
1264
rtnl_lock();
1265
if (optname == MRT_DEL_MFC)
1266
ret = ipmr_mfc_delete(mrt, &mfc);
1267
else
1268
ret = ipmr_mfc_add(net, mrt, &mfc,
1269
sk == rtnl_dereference(mrt->mroute_sk));
1270
rtnl_unlock();
1271
return ret;
1272
/*
1273
* Control PIM assert.
1274
*/
1275
case MRT_ASSERT:
1276
{
1277
int v;
1278
if (get_user(v, (int __user *)optval))
1279
return -EFAULT;
1280
mrt->mroute_do_assert = (v) ? 1 : 0;
1281
return 0;
1282
}
1283
#ifdef CONFIG_IP_PIMSM
1284
case MRT_PIM:
1285
{
1286
int v;
1287
1288
if (get_user(v, (int __user *)optval))
1289
return -EFAULT;
1290
v = (v) ? 1 : 0;
1291
1292
rtnl_lock();
1293
ret = 0;
1294
if (v != mrt->mroute_do_pim) {
1295
mrt->mroute_do_pim = v;
1296
mrt->mroute_do_assert = v;
1297
}
1298
rtnl_unlock();
1299
return ret;
1300
}
1301
#endif
1302
#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1303
case MRT_TABLE:
1304
{
1305
u32 v;
1306
1307
if (optlen != sizeof(u32))
1308
return -EINVAL;
1309
if (get_user(v, (u32 __user *)optval))
1310
return -EFAULT;
1311
1312
rtnl_lock();
1313
ret = 0;
1314
if (sk == rtnl_dereference(mrt->mroute_sk)) {
1315
ret = -EBUSY;
1316
} else {
1317
if (!ipmr_new_table(net, v))
1318
ret = -ENOMEM;
1319
raw_sk(sk)->ipmr_table = v;
1320
}
1321
rtnl_unlock();
1322
return ret;
1323
}
1324
#endif
1325
/*
1326
* Spurious command, or MRT_VERSION which you cannot
1327
* set.
1328
*/
1329
default:
1330
return -ENOPROTOOPT;
1331
}
1332
}
1333
1334
/*
1335
* Getsock opt support for the multicast routing system.
1336
*/
1337
1338
int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1339
{
1340
int olr;
1341
int val;
1342
struct net *net = sock_net(sk);
1343
struct mr_table *mrt;
1344
1345
mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1346
if (mrt == NULL)
1347
return -ENOENT;
1348
1349
if (optname != MRT_VERSION &&
1350
#ifdef CONFIG_IP_PIMSM
1351
optname != MRT_PIM &&
1352
#endif
1353
optname != MRT_ASSERT)
1354
return -ENOPROTOOPT;
1355
1356
if (get_user(olr, optlen))
1357
return -EFAULT;
1358
1359
olr = min_t(unsigned int, olr, sizeof(int));
1360
if (olr < 0)
1361
return -EINVAL;
1362
1363
if (put_user(olr, optlen))
1364
return -EFAULT;
1365
if (optname == MRT_VERSION)
1366
val = 0x0305;
1367
#ifdef CONFIG_IP_PIMSM
1368
else if (optname == MRT_PIM)
1369
val = mrt->mroute_do_pim;
1370
#endif
1371
else
1372
val = mrt->mroute_do_assert;
1373
if (copy_to_user(optval, &val, olr))
1374
return -EFAULT;
1375
return 0;
1376
}
1377
1378
/*
1379
* The IP multicast ioctl support routines.
1380
*/
1381
1382
int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1383
{
1384
struct sioc_sg_req sr;
1385
struct sioc_vif_req vr;
1386
struct vif_device *vif;
1387
struct mfc_cache *c;
1388
struct net *net = sock_net(sk);
1389
struct mr_table *mrt;
1390
1391
mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1392
if (mrt == NULL)
1393
return -ENOENT;
1394
1395
switch (cmd) {
1396
case SIOCGETVIFCNT:
1397
if (copy_from_user(&vr, arg, sizeof(vr)))
1398
return -EFAULT;
1399
if (vr.vifi >= mrt->maxvif)
1400
return -EINVAL;
1401
read_lock(&mrt_lock);
1402
vif = &mrt->vif_table[vr.vifi];
1403
if (VIF_EXISTS(mrt, vr.vifi)) {
1404
vr.icount = vif->pkt_in;
1405
vr.ocount = vif->pkt_out;
1406
vr.ibytes = vif->bytes_in;
1407
vr.obytes = vif->bytes_out;
1408
read_unlock(&mrt_lock);
1409
1410
if (copy_to_user(arg, &vr, sizeof(vr)))
1411
return -EFAULT;
1412
return 0;
1413
}
1414
read_unlock(&mrt_lock);
1415
return -EADDRNOTAVAIL;
1416
case SIOCGETSGCNT:
1417
if (copy_from_user(&sr, arg, sizeof(sr)))
1418
return -EFAULT;
1419
1420
rcu_read_lock();
1421
c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1422
if (c) {
1423
sr.pktcnt = c->mfc_un.res.pkt;
1424
sr.bytecnt = c->mfc_un.res.bytes;
1425
sr.wrong_if = c->mfc_un.res.wrong_if;
1426
rcu_read_unlock();
1427
1428
if (copy_to_user(arg, &sr, sizeof(sr)))
1429
return -EFAULT;
1430
return 0;
1431
}
1432
rcu_read_unlock();
1433
return -EADDRNOTAVAIL;
1434
default:
1435
return -ENOIOCTLCMD;
1436
}
1437
}
1438
1439
#ifdef CONFIG_COMPAT
1440
struct compat_sioc_sg_req {
1441
struct in_addr src;
1442
struct in_addr grp;
1443
compat_ulong_t pktcnt;
1444
compat_ulong_t bytecnt;
1445
compat_ulong_t wrong_if;
1446
};
1447
1448
struct compat_sioc_vif_req {
1449
vifi_t vifi; /* Which iface */
1450
compat_ulong_t icount;
1451
compat_ulong_t ocount;
1452
compat_ulong_t ibytes;
1453
compat_ulong_t obytes;
1454
};
1455
1456
int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1457
{
1458
struct compat_sioc_sg_req sr;
1459
struct compat_sioc_vif_req vr;
1460
struct vif_device *vif;
1461
struct mfc_cache *c;
1462
struct net *net = sock_net(sk);
1463
struct mr_table *mrt;
1464
1465
mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1466
if (mrt == NULL)
1467
return -ENOENT;
1468
1469
switch (cmd) {
1470
case SIOCGETVIFCNT:
1471
if (copy_from_user(&vr, arg, sizeof(vr)))
1472
return -EFAULT;
1473
if (vr.vifi >= mrt->maxvif)
1474
return -EINVAL;
1475
read_lock(&mrt_lock);
1476
vif = &mrt->vif_table[vr.vifi];
1477
if (VIF_EXISTS(mrt, vr.vifi)) {
1478
vr.icount = vif->pkt_in;
1479
vr.ocount = vif->pkt_out;
1480
vr.ibytes = vif->bytes_in;
1481
vr.obytes = vif->bytes_out;
1482
read_unlock(&mrt_lock);
1483
1484
if (copy_to_user(arg, &vr, sizeof(vr)))
1485
return -EFAULT;
1486
return 0;
1487
}
1488
read_unlock(&mrt_lock);
1489
return -EADDRNOTAVAIL;
1490
case SIOCGETSGCNT:
1491
if (copy_from_user(&sr, arg, sizeof(sr)))
1492
return -EFAULT;
1493
1494
rcu_read_lock();
1495
c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1496
if (c) {
1497
sr.pktcnt = c->mfc_un.res.pkt;
1498
sr.bytecnt = c->mfc_un.res.bytes;
1499
sr.wrong_if = c->mfc_un.res.wrong_if;
1500
rcu_read_unlock();
1501
1502
if (copy_to_user(arg, &sr, sizeof(sr)))
1503
return -EFAULT;
1504
return 0;
1505
}
1506
rcu_read_unlock();
1507
return -EADDRNOTAVAIL;
1508
default:
1509
return -ENOIOCTLCMD;
1510
}
1511
}
1512
#endif
1513
1514
1515
static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1516
{
1517
struct net_device *dev = ptr;
1518
struct net *net = dev_net(dev);
1519
struct mr_table *mrt;
1520
struct vif_device *v;
1521
int ct;
1522
LIST_HEAD(list);
1523
1524
if (event != NETDEV_UNREGISTER)
1525
return NOTIFY_DONE;
1526
1527
ipmr_for_each_table(mrt, net) {
1528
v = &mrt->vif_table[0];
1529
for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1530
if (v->dev == dev)
1531
vif_delete(mrt, ct, 1, &list);
1532
}
1533
}
1534
unregister_netdevice_many(&list);
1535
return NOTIFY_DONE;
1536
}
1537
1538
1539
static struct notifier_block ip_mr_notifier = {
1540
.notifier_call = ipmr_device_event,
1541
};
1542
1543
/*
1544
* Encapsulate a packet by attaching a valid IPIP header to it.
1545
* This avoids tunnel drivers and other mess and gives us the speed so
1546
* important for multicast video.
1547
*/
1548
1549
static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
1550
{
1551
struct iphdr *iph;
1552
const struct iphdr *old_iph = ip_hdr(skb);
1553
1554
skb_push(skb, sizeof(struct iphdr));
1555
skb->transport_header = skb->network_header;
1556
skb_reset_network_header(skb);
1557
iph = ip_hdr(skb);
1558
1559
iph->version = 4;
1560
iph->tos = old_iph->tos;
1561
iph->ttl = old_iph->ttl;
1562
iph->frag_off = 0;
1563
iph->daddr = daddr;
1564
iph->saddr = saddr;
1565
iph->protocol = IPPROTO_IPIP;
1566
iph->ihl = 5;
1567
iph->tot_len = htons(skb->len);
1568
ip_select_ident(iph, skb_dst(skb), NULL);
1569
ip_send_check(iph);
1570
1571
memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1572
nf_reset(skb);
1573
}
1574
1575
static inline int ipmr_forward_finish(struct sk_buff *skb)
1576
{
1577
struct ip_options *opt = &(IPCB(skb)->opt);
1578
1579
IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
1580
1581
if (unlikely(opt->optlen))
1582
ip_forward_options(skb);
1583
1584
return dst_output(skb);
1585
}
1586
1587
/*
1588
* Processing handlers for ipmr_forward
1589
*/
1590
1591
static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1592
struct sk_buff *skb, struct mfc_cache *c, int vifi)
1593
{
1594
const struct iphdr *iph = ip_hdr(skb);
1595
struct vif_device *vif = &mrt->vif_table[vifi];
1596
struct net_device *dev;
1597
struct rtable *rt;
1598
struct flowi4 fl4;
1599
int encap = 0;
1600
1601
if (vif->dev == NULL)
1602
goto out_free;
1603
1604
#ifdef CONFIG_IP_PIMSM
1605
if (vif->flags & VIFF_REGISTER) {
1606
vif->pkt_out++;
1607
vif->bytes_out += skb->len;
1608
vif->dev->stats.tx_bytes += skb->len;
1609
vif->dev->stats.tx_packets++;
1610
ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1611
goto out_free;
1612
}
1613
#endif
1614
1615
if (vif->flags & VIFF_TUNNEL) {
1616
rt = ip_route_output_ports(net, &fl4, NULL,
1617
vif->remote, vif->local,
1618
0, 0,
1619
IPPROTO_IPIP,
1620
RT_TOS(iph->tos), vif->link);
1621
if (IS_ERR(rt))
1622
goto out_free;
1623
encap = sizeof(struct iphdr);
1624
} else {
1625
rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1626
0, 0,
1627
IPPROTO_IPIP,
1628
RT_TOS(iph->tos), vif->link);
1629
if (IS_ERR(rt))
1630
goto out_free;
1631
}
1632
1633
dev = rt->dst.dev;
1634
1635
if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1636
/* Do not fragment multicasts. Alas, IPv4 does not
1637
* allow to send ICMP, so that packets will disappear
1638
* to blackhole.
1639
*/
1640
1641
IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1642
ip_rt_put(rt);
1643
goto out_free;
1644
}
1645
1646
encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1647
1648
if (skb_cow(skb, encap)) {
1649
ip_rt_put(rt);
1650
goto out_free;
1651
}
1652
1653
vif->pkt_out++;
1654
vif->bytes_out += skb->len;
1655
1656
skb_dst_drop(skb);
1657
skb_dst_set(skb, &rt->dst);
1658
ip_decrease_ttl(ip_hdr(skb));
1659
1660
/* FIXME: forward and output firewalls used to be called here.
1661
* What do we do with netfilter? -- RR
1662
*/
1663
if (vif->flags & VIFF_TUNNEL) {
1664
ip_encap(skb, vif->local, vif->remote);
1665
/* FIXME: extra output firewall step used to be here. --RR */
1666
vif->dev->stats.tx_packets++;
1667
vif->dev->stats.tx_bytes += skb->len;
1668
}
1669
1670
IPCB(skb)->flags |= IPSKB_FORWARDED;
1671
1672
/*
1673
* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1674
* not only before forwarding, but after forwarding on all output
1675
* interfaces. It is clear, if mrouter runs a multicasting
1676
* program, it should receive packets not depending to what interface
1677
* program is joined.
1678
* If we will not make it, the program will have to join on all
1679
* interfaces. On the other hand, multihoming host (or router, but
1680
* not mrouter) cannot join to more than one interface - it will
1681
* result in receiving multiple packets.
1682
*/
1683
NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
1684
ipmr_forward_finish);
1685
return;
1686
1687
out_free:
1688
kfree_skb(skb);
1689
}
1690
1691
static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1692
{
1693
int ct;
1694
1695
for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1696
if (mrt->vif_table[ct].dev == dev)
1697
break;
1698
}
1699
return ct;
1700
}
1701
1702
/* "local" means that we should preserve one skb (for local delivery) */
1703
1704
static int ip_mr_forward(struct net *net, struct mr_table *mrt,
1705
struct sk_buff *skb, struct mfc_cache *cache,
1706
int local)
1707
{
1708
int psend = -1;
1709
int vif, ct;
1710
1711
vif = cache->mfc_parent;
1712
cache->mfc_un.res.pkt++;
1713
cache->mfc_un.res.bytes += skb->len;
1714
1715
/*
1716
* Wrong interface: drop packet and (maybe) send PIM assert.
1717
*/
1718
if (mrt->vif_table[vif].dev != skb->dev) {
1719
int true_vifi;
1720
1721
if (rt_is_output_route(skb_rtable(skb))) {
1722
/* It is our own packet, looped back.
1723
* Very complicated situation...
1724
*
1725
* The best workaround until routing daemons will be
1726
* fixed is not to redistribute packet, if it was
1727
* send through wrong interface. It means, that
1728
* multicast applications WILL NOT work for
1729
* (S,G), which have default multicast route pointing
1730
* to wrong oif. In any case, it is not a good
1731
* idea to use multicasting applications on router.
1732
*/
1733
goto dont_forward;
1734
}
1735
1736
cache->mfc_un.res.wrong_if++;
1737
true_vifi = ipmr_find_vif(mrt, skb->dev);
1738
1739
if (true_vifi >= 0 && mrt->mroute_do_assert &&
1740
/* pimsm uses asserts, when switching from RPT to SPT,
1741
* so that we cannot check that packet arrived on an oif.
1742
* It is bad, but otherwise we would need to move pretty
1743
* large chunk of pimd to kernel. Ough... --ANK
1744
*/
1745
(mrt->mroute_do_pim ||
1746
cache->mfc_un.res.ttls[true_vifi] < 255) &&
1747
time_after(jiffies,
1748
cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1749
cache->mfc_un.res.last_assert = jiffies;
1750
ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1751
}
1752
goto dont_forward;
1753
}
1754
1755
mrt->vif_table[vif].pkt_in++;
1756
mrt->vif_table[vif].bytes_in += skb->len;
1757
1758
/*
1759
* Forward the frame
1760
*/
1761
for (ct = cache->mfc_un.res.maxvif - 1;
1762
ct >= cache->mfc_un.res.minvif; ct--) {
1763
if (ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1764
if (psend != -1) {
1765
struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1766
1767
if (skb2)
1768
ipmr_queue_xmit(net, mrt, skb2, cache,
1769
psend);
1770
}
1771
psend = ct;
1772
}
1773
}
1774
if (psend != -1) {
1775
if (local) {
1776
struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1777
1778
if (skb2)
1779
ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1780
} else {
1781
ipmr_queue_xmit(net, mrt, skb, cache, psend);
1782
return 0;
1783
}
1784
}
1785
1786
dont_forward:
1787
if (!local)
1788
kfree_skb(skb);
1789
return 0;
1790
}
1791
1792
static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1793
{
1794
struct rtable *rt = skb_rtable(skb);
1795
struct iphdr *iph = ip_hdr(skb);
1796
struct flowi4 fl4 = {
1797
.daddr = iph->daddr,
1798
.saddr = iph->saddr,
1799
.flowi4_tos = iph->tos,
1800
.flowi4_oif = rt->rt_oif,
1801
.flowi4_iif = rt->rt_iif,
1802
.flowi4_mark = rt->rt_mark,
1803
};
1804
struct mr_table *mrt;
1805
int err;
1806
1807
err = ipmr_fib_lookup(net, &fl4, &mrt);
1808
if (err)
1809
return ERR_PTR(err);
1810
return mrt;
1811
}
1812
1813
/*
1814
* Multicast packets for forwarding arrive here
1815
* Called with rcu_read_lock();
1816
*/
1817
1818
int ip_mr_input(struct sk_buff *skb)
1819
{
1820
struct mfc_cache *cache;
1821
struct net *net = dev_net(skb->dev);
1822
int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1823
struct mr_table *mrt;
1824
1825
/* Packet is looped back after forward, it should not be
1826
* forwarded second time, but still can be delivered locally.
1827
*/
1828
if (IPCB(skb)->flags & IPSKB_FORWARDED)
1829
goto dont_forward;
1830
1831
mrt = ipmr_rt_fib_lookup(net, skb);
1832
if (IS_ERR(mrt)) {
1833
kfree_skb(skb);
1834
return PTR_ERR(mrt);
1835
}
1836
if (!local) {
1837
if (IPCB(skb)->opt.router_alert) {
1838
if (ip_call_ra_chain(skb))
1839
return 0;
1840
} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1841
/* IGMPv1 (and broken IGMPv2 implementations sort of
1842
* Cisco IOS <= 11.2(8)) do not put router alert
1843
* option to IGMP packets destined to routable
1844
* groups. It is very bad, because it means
1845
* that we can forward NO IGMP messages.
1846
*/
1847
struct sock *mroute_sk;
1848
1849
mroute_sk = rcu_dereference(mrt->mroute_sk);
1850
if (mroute_sk) {
1851
nf_reset(skb);
1852
raw_rcv(mroute_sk, skb);
1853
return 0;
1854
}
1855
}
1856
}
1857
1858
/* already under rcu_read_lock() */
1859
cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1860
1861
/*
1862
* No usable cache entry
1863
*/
1864
if (cache == NULL) {
1865
int vif;
1866
1867
if (local) {
1868
struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1869
ip_local_deliver(skb);
1870
if (skb2 == NULL)
1871
return -ENOBUFS;
1872
skb = skb2;
1873
}
1874
1875
read_lock(&mrt_lock);
1876
vif = ipmr_find_vif(mrt, skb->dev);
1877
if (vif >= 0) {
1878
int err2 = ipmr_cache_unresolved(mrt, vif, skb);
1879
read_unlock(&mrt_lock);
1880
1881
return err2;
1882
}
1883
read_unlock(&mrt_lock);
1884
kfree_skb(skb);
1885
return -ENODEV;
1886
}
1887
1888
read_lock(&mrt_lock);
1889
ip_mr_forward(net, mrt, skb, cache, local);
1890
read_unlock(&mrt_lock);
1891
1892
if (local)
1893
return ip_local_deliver(skb);
1894
1895
return 0;
1896
1897
dont_forward:
1898
if (local)
1899
return ip_local_deliver(skb);
1900
kfree_skb(skb);
1901
return 0;
1902
}
1903
1904
#ifdef CONFIG_IP_PIMSM
1905
/* called with rcu_read_lock() */
1906
static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
1907
unsigned int pimlen)
1908
{
1909
struct net_device *reg_dev = NULL;
1910
struct iphdr *encap;
1911
1912
encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
1913
/*
1914
* Check that:
1915
* a. packet is really sent to a multicast group
1916
* b. packet is not a NULL-REGISTER
1917
* c. packet is not truncated
1918
*/
1919
if (!ipv4_is_multicast(encap->daddr) ||
1920
encap->tot_len == 0 ||
1921
ntohs(encap->tot_len) + pimlen > skb->len)
1922
return 1;
1923
1924
read_lock(&mrt_lock);
1925
if (mrt->mroute_reg_vif_num >= 0)
1926
reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
1927
read_unlock(&mrt_lock);
1928
1929
if (reg_dev == NULL)
1930
return 1;
1931
1932
skb->mac_header = skb->network_header;
1933
skb_pull(skb, (u8 *)encap - skb->data);
1934
skb_reset_network_header(skb);
1935
skb->protocol = htons(ETH_P_IP);
1936
skb->ip_summed = CHECKSUM_NONE;
1937
skb->pkt_type = PACKET_HOST;
1938
1939
skb_tunnel_rx(skb, reg_dev);
1940
1941
netif_rx(skb);
1942
1943
return NET_RX_SUCCESS;
1944
}
1945
#endif
1946
1947
#ifdef CONFIG_IP_PIMSM_V1
1948
/*
1949
* Handle IGMP messages of PIMv1
1950
*/
1951
1952
int pim_rcv_v1(struct sk_buff *skb)
1953
{
1954
struct igmphdr *pim;
1955
struct net *net = dev_net(skb->dev);
1956
struct mr_table *mrt;
1957
1958
if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1959
goto drop;
1960
1961
pim = igmp_hdr(skb);
1962
1963
mrt = ipmr_rt_fib_lookup(net, skb);
1964
if (IS_ERR(mrt))
1965
goto drop;
1966
if (!mrt->mroute_do_pim ||
1967
pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
1968
goto drop;
1969
1970
if (__pim_rcv(mrt, skb, sizeof(*pim))) {
1971
drop:
1972
kfree_skb(skb);
1973
}
1974
return 0;
1975
}
1976
#endif
1977
1978
#ifdef CONFIG_IP_PIMSM_V2
1979
static int pim_rcv(struct sk_buff *skb)
1980
{
1981
struct pimreghdr *pim;
1982
struct net *net = dev_net(skb->dev);
1983
struct mr_table *mrt;
1984
1985
if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1986
goto drop;
1987
1988
pim = (struct pimreghdr *)skb_transport_header(skb);
1989
if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
1990
(pim->flags & PIM_NULL_REGISTER) ||
1991
(ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
1992
csum_fold(skb_checksum(skb, 0, skb->len, 0))))
1993
goto drop;
1994
1995
mrt = ipmr_rt_fib_lookup(net, skb);
1996
if (IS_ERR(mrt))
1997
goto drop;
1998
if (__pim_rcv(mrt, skb, sizeof(*pim))) {
1999
drop:
2000
kfree_skb(skb);
2001
}
2002
return 0;
2003
}
2004
#endif
2005
2006
static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2007
struct mfc_cache *c, struct rtmsg *rtm)
2008
{
2009
int ct;
2010
struct rtnexthop *nhp;
2011
u8 *b = skb_tail_pointer(skb);
2012
struct rtattr *mp_head;
2013
2014
/* If cache is unresolved, don't try to parse IIF and OIF */
2015
if (c->mfc_parent >= MAXVIFS)
2016
return -ENOENT;
2017
2018
if (VIF_EXISTS(mrt, c->mfc_parent))
2019
RTA_PUT(skb, RTA_IIF, 4, &mrt->vif_table[c->mfc_parent].dev->ifindex);
2020
2021
mp_head = (struct rtattr *)skb_put(skb, RTA_LENGTH(0));
2022
2023
for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2024
if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2025
if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4))
2026
goto rtattr_failure;
2027
nhp = (struct rtnexthop *)skb_put(skb, RTA_ALIGN(sizeof(*nhp)));
2028
nhp->rtnh_flags = 0;
2029
nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2030
nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2031
nhp->rtnh_len = sizeof(*nhp);
2032
}
2033
}
2034
mp_head->rta_type = RTA_MULTIPATH;
2035
mp_head->rta_len = skb_tail_pointer(skb) - (u8 *)mp_head;
2036
rtm->rtm_type = RTN_MULTICAST;
2037
return 1;
2038
2039
rtattr_failure:
2040
nlmsg_trim(skb, b);
2041
return -EMSGSIZE;
2042
}
2043
2044
int ipmr_get_route(struct net *net, struct sk_buff *skb,
2045
__be32 saddr, __be32 daddr,
2046
struct rtmsg *rtm, int nowait)
2047
{
2048
struct mfc_cache *cache;
2049
struct mr_table *mrt;
2050
int err;
2051
2052
mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2053
if (mrt == NULL)
2054
return -ENOENT;
2055
2056
rcu_read_lock();
2057
cache = ipmr_cache_find(mrt, saddr, daddr);
2058
2059
if (cache == NULL) {
2060
struct sk_buff *skb2;
2061
struct iphdr *iph;
2062
struct net_device *dev;
2063
int vif = -1;
2064
2065
if (nowait) {
2066
rcu_read_unlock();
2067
return -EAGAIN;
2068
}
2069
2070
dev = skb->dev;
2071
read_lock(&mrt_lock);
2072
if (dev)
2073
vif = ipmr_find_vif(mrt, dev);
2074
if (vif < 0) {
2075
read_unlock(&mrt_lock);
2076
rcu_read_unlock();
2077
return -ENODEV;
2078
}
2079
skb2 = skb_clone(skb, GFP_ATOMIC);
2080
if (!skb2) {
2081
read_unlock(&mrt_lock);
2082
rcu_read_unlock();
2083
return -ENOMEM;
2084
}
2085
2086
skb_push(skb2, sizeof(struct iphdr));
2087
skb_reset_network_header(skb2);
2088
iph = ip_hdr(skb2);
2089
iph->ihl = sizeof(struct iphdr) >> 2;
2090
iph->saddr = saddr;
2091
iph->daddr = daddr;
2092
iph->version = 0;
2093
err = ipmr_cache_unresolved(mrt, vif, skb2);
2094
read_unlock(&mrt_lock);
2095
rcu_read_unlock();
2096
return err;
2097
}
2098
2099
read_lock(&mrt_lock);
2100
if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2101
cache->mfc_flags |= MFC_NOTIFY;
2102
err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2103
read_unlock(&mrt_lock);
2104
rcu_read_unlock();
2105
return err;
2106
}
2107
2108
static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2109
u32 pid, u32 seq, struct mfc_cache *c)
2110
{
2111
struct nlmsghdr *nlh;
2112
struct rtmsg *rtm;
2113
2114
nlh = nlmsg_put(skb, pid, seq, RTM_NEWROUTE, sizeof(*rtm), NLM_F_MULTI);
2115
if (nlh == NULL)
2116
return -EMSGSIZE;
2117
2118
rtm = nlmsg_data(nlh);
2119
rtm->rtm_family = RTNL_FAMILY_IPMR;
2120
rtm->rtm_dst_len = 32;
2121
rtm->rtm_src_len = 32;
2122
rtm->rtm_tos = 0;
2123
rtm->rtm_table = mrt->id;
2124
NLA_PUT_U32(skb, RTA_TABLE, mrt->id);
2125
rtm->rtm_type = RTN_MULTICAST;
2126
rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2127
rtm->rtm_protocol = RTPROT_UNSPEC;
2128
rtm->rtm_flags = 0;
2129
2130
NLA_PUT_BE32(skb, RTA_SRC, c->mfc_origin);
2131
NLA_PUT_BE32(skb, RTA_DST, c->mfc_mcastgrp);
2132
2133
if (__ipmr_fill_mroute(mrt, skb, c, rtm) < 0)
2134
goto nla_put_failure;
2135
2136
return nlmsg_end(skb, nlh);
2137
2138
nla_put_failure:
2139
nlmsg_cancel(skb, nlh);
2140
return -EMSGSIZE;
2141
}
2142
2143
static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2144
{
2145
struct net *net = sock_net(skb->sk);
2146
struct mr_table *mrt;
2147
struct mfc_cache *mfc;
2148
unsigned int t = 0, s_t;
2149
unsigned int h = 0, s_h;
2150
unsigned int e = 0, s_e;
2151
2152
s_t = cb->args[0];
2153
s_h = cb->args[1];
2154
s_e = cb->args[2];
2155
2156
rcu_read_lock();
2157
ipmr_for_each_table(mrt, net) {
2158
if (t < s_t)
2159
goto next_table;
2160
if (t > s_t)
2161
s_h = 0;
2162
for (h = s_h; h < MFC_LINES; h++) {
2163
list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2164
if (e < s_e)
2165
goto next_entry;
2166
if (ipmr_fill_mroute(mrt, skb,
2167
NETLINK_CB(cb->skb).pid,
2168
cb->nlh->nlmsg_seq,
2169
mfc) < 0)
2170
goto done;
2171
next_entry:
2172
e++;
2173
}
2174
e = s_e = 0;
2175
}
2176
s_h = 0;
2177
next_table:
2178
t++;
2179
}
2180
done:
2181
rcu_read_unlock();
2182
2183
cb->args[2] = e;
2184
cb->args[1] = h;
2185
cb->args[0] = t;
2186
2187
return skb->len;
2188
}
2189
2190
#ifdef CONFIG_PROC_FS
2191
/*
2192
* The /proc interfaces to multicast routing :
2193
* /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2194
*/
2195
struct ipmr_vif_iter {
2196
struct seq_net_private p;
2197
struct mr_table *mrt;
2198
int ct;
2199
};
2200
2201
static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2202
struct ipmr_vif_iter *iter,
2203
loff_t pos)
2204
{
2205
struct mr_table *mrt = iter->mrt;
2206
2207
for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2208
if (!VIF_EXISTS(mrt, iter->ct))
2209
continue;
2210
if (pos-- == 0)
2211
return &mrt->vif_table[iter->ct];
2212
}
2213
return NULL;
2214
}
2215
2216
static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2217
__acquires(mrt_lock)
2218
{
2219
struct ipmr_vif_iter *iter = seq->private;
2220
struct net *net = seq_file_net(seq);
2221
struct mr_table *mrt;
2222
2223
mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2224
if (mrt == NULL)
2225
return ERR_PTR(-ENOENT);
2226
2227
iter->mrt = mrt;
2228
2229
read_lock(&mrt_lock);
2230
return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2231
: SEQ_START_TOKEN;
2232
}
2233
2234
static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2235
{
2236
struct ipmr_vif_iter *iter = seq->private;
2237
struct net *net = seq_file_net(seq);
2238
struct mr_table *mrt = iter->mrt;
2239
2240
++*pos;
2241
if (v == SEQ_START_TOKEN)
2242
return ipmr_vif_seq_idx(net, iter, 0);
2243
2244
while (++iter->ct < mrt->maxvif) {
2245
if (!VIF_EXISTS(mrt, iter->ct))
2246
continue;
2247
return &mrt->vif_table[iter->ct];
2248
}
2249
return NULL;
2250
}
2251
2252
static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2253
__releases(mrt_lock)
2254
{
2255
read_unlock(&mrt_lock);
2256
}
2257
2258
static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2259
{
2260
struct ipmr_vif_iter *iter = seq->private;
2261
struct mr_table *mrt = iter->mrt;
2262
2263
if (v == SEQ_START_TOKEN) {
2264
seq_puts(seq,
2265
"Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
2266
} else {
2267
const struct vif_device *vif = v;
2268
const char *name = vif->dev ? vif->dev->name : "none";
2269
2270
seq_printf(seq,
2271
"%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
2272
vif - mrt->vif_table,
2273
name, vif->bytes_in, vif->pkt_in,
2274
vif->bytes_out, vif->pkt_out,
2275
vif->flags, vif->local, vif->remote);
2276
}
2277
return 0;
2278
}
2279
2280
static const struct seq_operations ipmr_vif_seq_ops = {
2281
.start = ipmr_vif_seq_start,
2282
.next = ipmr_vif_seq_next,
2283
.stop = ipmr_vif_seq_stop,
2284
.show = ipmr_vif_seq_show,
2285
};
2286
2287
static int ipmr_vif_open(struct inode *inode, struct file *file)
2288
{
2289
return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2290
sizeof(struct ipmr_vif_iter));
2291
}
2292
2293
static const struct file_operations ipmr_vif_fops = {
2294
.owner = THIS_MODULE,
2295
.open = ipmr_vif_open,
2296
.read = seq_read,
2297
.llseek = seq_lseek,
2298
.release = seq_release_net,
2299
};
2300
2301
struct ipmr_mfc_iter {
2302
struct seq_net_private p;
2303
struct mr_table *mrt;
2304
struct list_head *cache;
2305
int ct;
2306
};
2307
2308
2309
static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2310
struct ipmr_mfc_iter *it, loff_t pos)
2311
{
2312
struct mr_table *mrt = it->mrt;
2313
struct mfc_cache *mfc;
2314
2315
rcu_read_lock();
2316
for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2317
it->cache = &mrt->mfc_cache_array[it->ct];
2318
list_for_each_entry_rcu(mfc, it->cache, list)
2319
if (pos-- == 0)
2320
return mfc;
2321
}
2322
rcu_read_unlock();
2323
2324
spin_lock_bh(&mfc_unres_lock);
2325
it->cache = &mrt->mfc_unres_queue;
2326
list_for_each_entry(mfc, it->cache, list)
2327
if (pos-- == 0)
2328
return mfc;
2329
spin_unlock_bh(&mfc_unres_lock);
2330
2331
it->cache = NULL;
2332
return NULL;
2333
}
2334
2335
2336
static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2337
{
2338
struct ipmr_mfc_iter *it = seq->private;
2339
struct net *net = seq_file_net(seq);
2340
struct mr_table *mrt;
2341
2342
mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2343
if (mrt == NULL)
2344
return ERR_PTR(-ENOENT);
2345
2346
it->mrt = mrt;
2347
it->cache = NULL;
2348
it->ct = 0;
2349
return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2350
: SEQ_START_TOKEN;
2351
}
2352
2353
static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2354
{
2355
struct mfc_cache *mfc = v;
2356
struct ipmr_mfc_iter *it = seq->private;
2357
struct net *net = seq_file_net(seq);
2358
struct mr_table *mrt = it->mrt;
2359
2360
++*pos;
2361
2362
if (v == SEQ_START_TOKEN)
2363
return ipmr_mfc_seq_idx(net, seq->private, 0);
2364
2365
if (mfc->list.next != it->cache)
2366
return list_entry(mfc->list.next, struct mfc_cache, list);
2367
2368
if (it->cache == &mrt->mfc_unres_queue)
2369
goto end_of_list;
2370
2371
BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2372
2373
while (++it->ct < MFC_LINES) {
2374
it->cache = &mrt->mfc_cache_array[it->ct];
2375
if (list_empty(it->cache))
2376
continue;
2377
return list_first_entry(it->cache, struct mfc_cache, list);
2378
}
2379
2380
/* exhausted cache_array, show unresolved */
2381
rcu_read_unlock();
2382
it->cache = &mrt->mfc_unres_queue;
2383
it->ct = 0;
2384
2385
spin_lock_bh(&mfc_unres_lock);
2386
if (!list_empty(it->cache))
2387
return list_first_entry(it->cache, struct mfc_cache, list);
2388
2389
end_of_list:
2390
spin_unlock_bh(&mfc_unres_lock);
2391
it->cache = NULL;
2392
2393
return NULL;
2394
}
2395
2396
static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2397
{
2398
struct ipmr_mfc_iter *it = seq->private;
2399
struct mr_table *mrt = it->mrt;
2400
2401
if (it->cache == &mrt->mfc_unres_queue)
2402
spin_unlock_bh(&mfc_unres_lock);
2403
else if (it->cache == &mrt->mfc_cache_array[it->ct])
2404
rcu_read_unlock();
2405
}
2406
2407
static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2408
{
2409
int n;
2410
2411
if (v == SEQ_START_TOKEN) {
2412
seq_puts(seq,
2413
"Group Origin Iif Pkts Bytes Wrong Oifs\n");
2414
} else {
2415
const struct mfc_cache *mfc = v;
2416
const struct ipmr_mfc_iter *it = seq->private;
2417
const struct mr_table *mrt = it->mrt;
2418
2419
seq_printf(seq, "%08X %08X %-3hd",
2420
(__force u32) mfc->mfc_mcastgrp,
2421
(__force u32) mfc->mfc_origin,
2422
mfc->mfc_parent);
2423
2424
if (it->cache != &mrt->mfc_unres_queue) {
2425
seq_printf(seq, " %8lu %8lu %8lu",
2426
mfc->mfc_un.res.pkt,
2427
mfc->mfc_un.res.bytes,
2428
mfc->mfc_un.res.wrong_if);
2429
for (n = mfc->mfc_un.res.minvif;
2430
n < mfc->mfc_un.res.maxvif; n++) {
2431
if (VIF_EXISTS(mrt, n) &&
2432
mfc->mfc_un.res.ttls[n] < 255)
2433
seq_printf(seq,
2434
" %2d:%-3d",
2435
n, mfc->mfc_un.res.ttls[n]);
2436
}
2437
} else {
2438
/* unresolved mfc_caches don't contain
2439
* pkt, bytes and wrong_if values
2440
*/
2441
seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2442
}
2443
seq_putc(seq, '\n');
2444
}
2445
return 0;
2446
}
2447
2448
static const struct seq_operations ipmr_mfc_seq_ops = {
2449
.start = ipmr_mfc_seq_start,
2450
.next = ipmr_mfc_seq_next,
2451
.stop = ipmr_mfc_seq_stop,
2452
.show = ipmr_mfc_seq_show,
2453
};
2454
2455
static int ipmr_mfc_open(struct inode *inode, struct file *file)
2456
{
2457
return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2458
sizeof(struct ipmr_mfc_iter));
2459
}
2460
2461
static const struct file_operations ipmr_mfc_fops = {
2462
.owner = THIS_MODULE,
2463
.open = ipmr_mfc_open,
2464
.read = seq_read,
2465
.llseek = seq_lseek,
2466
.release = seq_release_net,
2467
};
2468
#endif
2469
2470
#ifdef CONFIG_IP_PIMSM_V2
2471
static const struct net_protocol pim_protocol = {
2472
.handler = pim_rcv,
2473
.netns_ok = 1,
2474
};
2475
#endif
2476
2477
2478
/*
2479
* Setup for IP multicast routing
2480
*/
2481
static int __net_init ipmr_net_init(struct net *net)
2482
{
2483
int err;
2484
2485
err = ipmr_rules_init(net);
2486
if (err < 0)
2487
goto fail;
2488
2489
#ifdef CONFIG_PROC_FS
2490
err = -ENOMEM;
2491
if (!proc_net_fops_create(net, "ip_mr_vif", 0, &ipmr_vif_fops))
2492
goto proc_vif_fail;
2493
if (!proc_net_fops_create(net, "ip_mr_cache", 0, &ipmr_mfc_fops))
2494
goto proc_cache_fail;
2495
#endif
2496
return 0;
2497
2498
#ifdef CONFIG_PROC_FS
2499
proc_cache_fail:
2500
proc_net_remove(net, "ip_mr_vif");
2501
proc_vif_fail:
2502
ipmr_rules_exit(net);
2503
#endif
2504
fail:
2505
return err;
2506
}
2507
2508
static void __net_exit ipmr_net_exit(struct net *net)
2509
{
2510
#ifdef CONFIG_PROC_FS
2511
proc_net_remove(net, "ip_mr_cache");
2512
proc_net_remove(net, "ip_mr_vif");
2513
#endif
2514
ipmr_rules_exit(net);
2515
}
2516
2517
static struct pernet_operations ipmr_net_ops = {
2518
.init = ipmr_net_init,
2519
.exit = ipmr_net_exit,
2520
};
2521
2522
int __init ip_mr_init(void)
2523
{
2524
int err;
2525
2526
mrt_cachep = kmem_cache_create("ip_mrt_cache",
2527
sizeof(struct mfc_cache),
2528
0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2529
NULL);
2530
if (!mrt_cachep)
2531
return -ENOMEM;
2532
2533
err = register_pernet_subsys(&ipmr_net_ops);
2534
if (err)
2535
goto reg_pernet_fail;
2536
2537
err = register_netdevice_notifier(&ip_mr_notifier);
2538
if (err)
2539
goto reg_notif_fail;
2540
#ifdef CONFIG_IP_PIMSM_V2
2541
if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2542
printk(KERN_ERR "ip_mr_init: can't add PIM protocol\n");
2543
err = -EAGAIN;
2544
goto add_proto_fail;
2545
}
2546
#endif
2547
rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE, NULL, ipmr_rtm_dumproute);
2548
return 0;
2549
2550
#ifdef CONFIG_IP_PIMSM_V2
2551
add_proto_fail:
2552
unregister_netdevice_notifier(&ip_mr_notifier);
2553
#endif
2554
reg_notif_fail:
2555
unregister_pernet_subsys(&ipmr_net_ops);
2556
reg_pernet_fail:
2557
kmem_cache_destroy(mrt_cachep);
2558
return err;
2559
}
2560
2561