Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/net/ipv4/tcp.c
15109 views
1
/*
2
* INET An implementation of the TCP/IP protocol suite for the LINUX
3
* operating system. INET is implemented using the BSD Socket
4
* interface as the means of communication with the user level.
5
*
6
* Implementation of the Transmission Control Protocol(TCP).
7
*
8
* Authors: Ross Biro
9
* Fred N. van Kempen, <[email protected]>
10
* Mark Evans, <[email protected]>
11
* Corey Minyard <[email protected]>
12
* Florian La Roche, <[email protected]>
13
* Charles Hedrick, <[email protected]>
14
* Linus Torvalds, <[email protected]>
15
* Alan Cox, <[email protected]>
16
* Matthew Dillon, <[email protected]>
17
* Arnt Gulbrandsen, <[email protected]>
18
* Jorge Cwik, <[email protected]>
19
*
20
* Fixes:
21
* Alan Cox : Numerous verify_area() calls
22
* Alan Cox : Set the ACK bit on a reset
23
* Alan Cox : Stopped it crashing if it closed while
24
* sk->inuse=1 and was trying to connect
25
* (tcp_err()).
26
* Alan Cox : All icmp error handling was broken
27
* pointers passed where wrong and the
28
* socket was looked up backwards. Nobody
29
* tested any icmp error code obviously.
30
* Alan Cox : tcp_err() now handled properly. It
31
* wakes people on errors. poll
32
* behaves and the icmp error race
33
* has gone by moving it into sock.c
34
* Alan Cox : tcp_send_reset() fixed to work for
35
* everything not just packets for
36
* unknown sockets.
37
* Alan Cox : tcp option processing.
38
* Alan Cox : Reset tweaked (still not 100%) [Had
39
* syn rule wrong]
40
* Herp Rosmanith : More reset fixes
41
* Alan Cox : No longer acks invalid rst frames.
42
* Acking any kind of RST is right out.
43
* Alan Cox : Sets an ignore me flag on an rst
44
* receive otherwise odd bits of prattle
45
* escape still
46
* Alan Cox : Fixed another acking RST frame bug.
47
* Should stop LAN workplace lockups.
48
* Alan Cox : Some tidyups using the new skb list
49
* facilities
50
* Alan Cox : sk->keepopen now seems to work
51
* Alan Cox : Pulls options out correctly on accepts
52
* Alan Cox : Fixed assorted sk->rqueue->next errors
53
* Alan Cox : PSH doesn't end a TCP read. Switched a
54
* bit to skb ops.
55
* Alan Cox : Tidied tcp_data to avoid a potential
56
* nasty.
57
* Alan Cox : Added some better commenting, as the
58
* tcp is hard to follow
59
* Alan Cox : Removed incorrect check for 20 * psh
60
* Michael O'Reilly : ack < copied bug fix.
61
* Johannes Stille : Misc tcp fixes (not all in yet).
62
* Alan Cox : FIN with no memory -> CRASH
63
* Alan Cox : Added socket option proto entries.
64
* Also added awareness of them to accept.
65
* Alan Cox : Added TCP options (SOL_TCP)
66
* Alan Cox : Switched wakeup calls to callbacks,
67
* so the kernel can layer network
68
* sockets.
69
* Alan Cox : Use ip_tos/ip_ttl settings.
70
* Alan Cox : Handle FIN (more) properly (we hope).
71
* Alan Cox : RST frames sent on unsynchronised
72
* state ack error.
73
* Alan Cox : Put in missing check for SYN bit.
74
* Alan Cox : Added tcp_select_window() aka NET2E
75
* window non shrink trick.
76
* Alan Cox : Added a couple of small NET2E timer
77
* fixes
78
* Charles Hedrick : TCP fixes
79
* Toomas Tamm : TCP window fixes
80
* Alan Cox : Small URG fix to rlogin ^C ack fight
81
* Charles Hedrick : Rewrote most of it to actually work
82
* Linus : Rewrote tcp_read() and URG handling
83
* completely
84
* Gerhard Koerting: Fixed some missing timer handling
85
* Matthew Dillon : Reworked TCP machine states as per RFC
86
* Gerhard Koerting: PC/TCP workarounds
87
* Adam Caldwell : Assorted timer/timing errors
88
* Matthew Dillon : Fixed another RST bug
89
* Alan Cox : Move to kernel side addressing changes.
90
* Alan Cox : Beginning work on TCP fastpathing
91
* (not yet usable)
92
* Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93
* Alan Cox : TCP fast path debugging
94
* Alan Cox : Window clamping
95
* Michael Riepe : Bug in tcp_check()
96
* Matt Dillon : More TCP improvements and RST bug fixes
97
* Matt Dillon : Yet more small nasties remove from the
98
* TCP code (Be very nice to this man if
99
* tcp finally works 100%) 8)
100
* Alan Cox : BSD accept semantics.
101
* Alan Cox : Reset on closedown bug.
102
* Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103
* Michael Pall : Handle poll() after URG properly in
104
* all cases.
105
* Michael Pall : Undo the last fix in tcp_read_urg()
106
* (multi URG PUSH broke rlogin).
107
* Michael Pall : Fix the multi URG PUSH problem in
108
* tcp_readable(), poll() after URG
109
* works now.
110
* Michael Pall : recv(...,MSG_OOB) never blocks in the
111
* BSD api.
112
* Alan Cox : Changed the semantics of sk->socket to
113
* fix a race and a signal problem with
114
* accept() and async I/O.
115
* Alan Cox : Relaxed the rules on tcp_sendto().
116
* Yury Shevchuk : Really fixed accept() blocking problem.
117
* Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118
* clients/servers which listen in on
119
* fixed ports.
120
* Alan Cox : Cleaned the above up and shrank it to
121
* a sensible code size.
122
* Alan Cox : Self connect lockup fix.
123
* Alan Cox : No connect to multicast.
124
* Ross Biro : Close unaccepted children on master
125
* socket close.
126
* Alan Cox : Reset tracing code.
127
* Alan Cox : Spurious resets on shutdown.
128
* Alan Cox : Giant 15 minute/60 second timer error
129
* Alan Cox : Small whoops in polling before an
130
* accept.
131
* Alan Cox : Kept the state trace facility since
132
* it's handy for debugging.
133
* Alan Cox : More reset handler fixes.
134
* Alan Cox : Started rewriting the code based on
135
* the RFC's for other useful protocol
136
* references see: Comer, KA9Q NOS, and
137
* for a reference on the difference
138
* between specifications and how BSD
139
* works see the 4.4lite source.
140
* A.N.Kuznetsov : Don't time wait on completion of tidy
141
* close.
142
* Linus Torvalds : Fin/Shutdown & copied_seq changes.
143
* Linus Torvalds : Fixed BSD port reuse to work first syn
144
* Alan Cox : Reimplemented timers as per the RFC
145
* and using multiple timers for sanity.
146
* Alan Cox : Small bug fixes, and a lot of new
147
* comments.
148
* Alan Cox : Fixed dual reader crash by locking
149
* the buffers (much like datagram.c)
150
* Alan Cox : Fixed stuck sockets in probe. A probe
151
* now gets fed up of retrying without
152
* (even a no space) answer.
153
* Alan Cox : Extracted closing code better
154
* Alan Cox : Fixed the closing state machine to
155
* resemble the RFC.
156
* Alan Cox : More 'per spec' fixes.
157
* Jorge Cwik : Even faster checksumming.
158
* Alan Cox : tcp_data() doesn't ack illegal PSH
159
* only frames. At least one pc tcp stack
160
* generates them.
161
* Alan Cox : Cache last socket.
162
* Alan Cox : Per route irtt.
163
* Matt Day : poll()->select() match BSD precisely on error
164
* Alan Cox : New buffers
165
* Marc Tamsky : Various sk->prot->retransmits and
166
* sk->retransmits misupdating fixed.
167
* Fixed tcp_write_timeout: stuck close,
168
* and TCP syn retries gets used now.
169
* Mark Yarvis : In tcp_read_wakeup(), don't send an
170
* ack if state is TCP_CLOSED.
171
* Alan Cox : Look up device on a retransmit - routes may
172
* change. Doesn't yet cope with MSS shrink right
173
* but it's a start!
174
* Marc Tamsky : Closing in closing fixes.
175
* Mike Shaver : RFC1122 verifications.
176
* Alan Cox : rcv_saddr errors.
177
* Alan Cox : Block double connect().
178
* Alan Cox : Small hooks for enSKIP.
179
* Alexey Kuznetsov: Path MTU discovery.
180
* Alan Cox : Support soft errors.
181
* Alan Cox : Fix MTU discovery pathological case
182
* when the remote claims no mtu!
183
* Marc Tamsky : TCP_CLOSE fix.
184
* Colin (G3TNE) : Send a reset on syn ack replies in
185
* window but wrong (fixes NT lpd problems)
186
* Pedro Roque : Better TCP window handling, delayed ack.
187
* Joerg Reuter : No modification of locked buffers in
188
* tcp_do_retransmit()
189
* Eric Schenk : Changed receiver side silly window
190
* avoidance algorithm to BSD style
191
* algorithm. This doubles throughput
192
* against machines running Solaris,
193
* and seems to result in general
194
* improvement.
195
* Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196
* Willy Konynenberg : Transparent proxying support.
197
* Mike McLagan : Routing by source
198
* Keith Owens : Do proper merging with partial SKB's in
199
* tcp_do_sendmsg to avoid burstiness.
200
* Eric Schenk : Fix fast close down bug with
201
* shutdown() followed by close().
202
* Andi Kleen : Make poll agree with SIGIO
203
* Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204
* lingertime == 0 (RFC 793 ABORT Call)
205
* Hirokazu Takahashi : Use copy_from_user() instead of
206
* csum_and_copy_from_user() if possible.
207
*
208
* This program is free software; you can redistribute it and/or
209
* modify it under the terms of the GNU General Public License
210
* as published by the Free Software Foundation; either version
211
* 2 of the License, or(at your option) any later version.
212
*
213
* Description of States:
214
*
215
* TCP_SYN_SENT sent a connection request, waiting for ack
216
*
217
* TCP_SYN_RECV received a connection request, sent ack,
218
* waiting for final ack in three-way handshake.
219
*
220
* TCP_ESTABLISHED connection established
221
*
222
* TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223
* transmission of remaining buffered data
224
*
225
* TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226
* to shutdown
227
*
228
* TCP_CLOSING both sides have shutdown but we still have
229
* data we have to finish sending
230
*
231
* TCP_TIME_WAIT timeout to catch resent junk before entering
232
* closed, can only be entered from FIN_WAIT2
233
* or CLOSING. Required because the other end
234
* may not have gotten our last ACK causing it
235
* to retransmit the data packet (which we ignore)
236
*
237
* TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238
* us to finish writing our data and to shutdown
239
* (we have to close() to move on to LAST_ACK)
240
*
241
* TCP_LAST_ACK out side has shutdown after remote has
242
* shutdown. There may still be data in our
243
* buffer that we have to finish sending
244
*
245
* TCP_CLOSE socket is finished
246
*/
247
248
#include <linux/kernel.h>
249
#include <linux/module.h>
250
#include <linux/types.h>
251
#include <linux/fcntl.h>
252
#include <linux/poll.h>
253
#include <linux/init.h>
254
#include <linux/fs.h>
255
#include <linux/skbuff.h>
256
#include <linux/scatterlist.h>
257
#include <linux/splice.h>
258
#include <linux/net.h>
259
#include <linux/socket.h>
260
#include <linux/random.h>
261
#include <linux/bootmem.h>
262
#include <linux/highmem.h>
263
#include <linux/swap.h>
264
#include <linux/cache.h>
265
#include <linux/err.h>
266
#include <linux/crypto.h>
267
#include <linux/time.h>
268
#include <linux/slab.h>
269
270
#include <net/icmp.h>
271
#include <net/tcp.h>
272
#include <net/xfrm.h>
273
#include <net/ip.h>
274
#include <net/netdma.h>
275
#include <net/sock.h>
276
277
#include <asm/uaccess.h>
278
#include <asm/ioctls.h>
279
280
int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
281
282
struct percpu_counter tcp_orphan_count;
283
EXPORT_SYMBOL_GPL(tcp_orphan_count);
284
285
long sysctl_tcp_mem[3] __read_mostly;
286
int sysctl_tcp_wmem[3] __read_mostly;
287
int sysctl_tcp_rmem[3] __read_mostly;
288
289
EXPORT_SYMBOL(sysctl_tcp_mem);
290
EXPORT_SYMBOL(sysctl_tcp_rmem);
291
EXPORT_SYMBOL(sysctl_tcp_wmem);
292
293
atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
294
EXPORT_SYMBOL(tcp_memory_allocated);
295
296
/*
297
* Current number of TCP sockets.
298
*/
299
struct percpu_counter tcp_sockets_allocated;
300
EXPORT_SYMBOL(tcp_sockets_allocated);
301
302
/*
303
* TCP splice context
304
*/
305
struct tcp_splice_state {
306
struct pipe_inode_info *pipe;
307
size_t len;
308
unsigned int flags;
309
};
310
311
/*
312
* Pressure flag: try to collapse.
313
* Technical note: it is used by multiple contexts non atomically.
314
* All the __sk_mem_schedule() is of this nature: accounting
315
* is strict, actions are advisory and have some latency.
316
*/
317
int tcp_memory_pressure __read_mostly;
318
EXPORT_SYMBOL(tcp_memory_pressure);
319
320
void tcp_enter_memory_pressure(struct sock *sk)
321
{
322
if (!tcp_memory_pressure) {
323
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
324
tcp_memory_pressure = 1;
325
}
326
}
327
EXPORT_SYMBOL(tcp_enter_memory_pressure);
328
329
/* Convert seconds to retransmits based on initial and max timeout */
330
static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
331
{
332
u8 res = 0;
333
334
if (seconds > 0) {
335
int period = timeout;
336
337
res = 1;
338
while (seconds > period && res < 255) {
339
res++;
340
timeout <<= 1;
341
if (timeout > rto_max)
342
timeout = rto_max;
343
period += timeout;
344
}
345
}
346
return res;
347
}
348
349
/* Convert retransmits to seconds based on initial and max timeout */
350
static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
351
{
352
int period = 0;
353
354
if (retrans > 0) {
355
period = timeout;
356
while (--retrans) {
357
timeout <<= 1;
358
if (timeout > rto_max)
359
timeout = rto_max;
360
period += timeout;
361
}
362
}
363
return period;
364
}
365
366
/*
367
* Wait for a TCP event.
368
*
369
* Note that we don't need to lock the socket, as the upper poll layers
370
* take care of normal races (between the test and the event) and we don't
371
* go look at any of the socket buffers directly.
372
*/
373
unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
374
{
375
unsigned int mask;
376
struct sock *sk = sock->sk;
377
struct tcp_sock *tp = tcp_sk(sk);
378
379
sock_poll_wait(file, sk_sleep(sk), wait);
380
if (sk->sk_state == TCP_LISTEN)
381
return inet_csk_listen_poll(sk);
382
383
/* Socket is not locked. We are protected from async events
384
* by poll logic and correct handling of state changes
385
* made by other threads is impossible in any case.
386
*/
387
388
mask = 0;
389
390
/*
391
* POLLHUP is certainly not done right. But poll() doesn't
392
* have a notion of HUP in just one direction, and for a
393
* socket the read side is more interesting.
394
*
395
* Some poll() documentation says that POLLHUP is incompatible
396
* with the POLLOUT/POLLWR flags, so somebody should check this
397
* all. But careful, it tends to be safer to return too many
398
* bits than too few, and you can easily break real applications
399
* if you don't tell them that something has hung up!
400
*
401
* Check-me.
402
*
403
* Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
404
* our fs/select.c). It means that after we received EOF,
405
* poll always returns immediately, making impossible poll() on write()
406
* in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
407
* if and only if shutdown has been made in both directions.
408
* Actually, it is interesting to look how Solaris and DUX
409
* solve this dilemma. I would prefer, if POLLHUP were maskable,
410
* then we could set it on SND_SHUTDOWN. BTW examples given
411
* in Stevens' books assume exactly this behaviour, it explains
412
* why POLLHUP is incompatible with POLLOUT. --ANK
413
*
414
* NOTE. Check for TCP_CLOSE is added. The goal is to prevent
415
* blocking on fresh not-connected or disconnected socket. --ANK
416
*/
417
if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
418
mask |= POLLHUP;
419
if (sk->sk_shutdown & RCV_SHUTDOWN)
420
mask |= POLLIN | POLLRDNORM | POLLRDHUP;
421
422
/* Connected? */
423
if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
424
int target = sock_rcvlowat(sk, 0, INT_MAX);
425
426
if (tp->urg_seq == tp->copied_seq &&
427
!sock_flag(sk, SOCK_URGINLINE) &&
428
tp->urg_data)
429
target++;
430
431
/* Potential race condition. If read of tp below will
432
* escape above sk->sk_state, we can be illegally awaken
433
* in SYN_* states. */
434
if (tp->rcv_nxt - tp->copied_seq >= target)
435
mask |= POLLIN | POLLRDNORM;
436
437
if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
438
if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
439
mask |= POLLOUT | POLLWRNORM;
440
} else { /* send SIGIO later */
441
set_bit(SOCK_ASYNC_NOSPACE,
442
&sk->sk_socket->flags);
443
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
444
445
/* Race breaker. If space is freed after
446
* wspace test but before the flags are set,
447
* IO signal will be lost.
448
*/
449
if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
450
mask |= POLLOUT | POLLWRNORM;
451
}
452
} else
453
mask |= POLLOUT | POLLWRNORM;
454
455
if (tp->urg_data & TCP_URG_VALID)
456
mask |= POLLPRI;
457
}
458
/* This barrier is coupled with smp_wmb() in tcp_reset() */
459
smp_rmb();
460
if (sk->sk_err)
461
mask |= POLLERR;
462
463
return mask;
464
}
465
EXPORT_SYMBOL(tcp_poll);
466
467
int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
468
{
469
struct tcp_sock *tp = tcp_sk(sk);
470
int answ;
471
472
switch (cmd) {
473
case SIOCINQ:
474
if (sk->sk_state == TCP_LISTEN)
475
return -EINVAL;
476
477
lock_sock(sk);
478
if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
479
answ = 0;
480
else if (sock_flag(sk, SOCK_URGINLINE) ||
481
!tp->urg_data ||
482
before(tp->urg_seq, tp->copied_seq) ||
483
!before(tp->urg_seq, tp->rcv_nxt)) {
484
struct sk_buff *skb;
485
486
answ = tp->rcv_nxt - tp->copied_seq;
487
488
/* Subtract 1, if FIN is in queue. */
489
skb = skb_peek_tail(&sk->sk_receive_queue);
490
if (answ && skb)
491
answ -= tcp_hdr(skb)->fin;
492
} else
493
answ = tp->urg_seq - tp->copied_seq;
494
release_sock(sk);
495
break;
496
case SIOCATMARK:
497
answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
498
break;
499
case SIOCOUTQ:
500
if (sk->sk_state == TCP_LISTEN)
501
return -EINVAL;
502
503
if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
504
answ = 0;
505
else
506
answ = tp->write_seq - tp->snd_una;
507
break;
508
case SIOCOUTQNSD:
509
if (sk->sk_state == TCP_LISTEN)
510
return -EINVAL;
511
512
if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
513
answ = 0;
514
else
515
answ = tp->write_seq - tp->snd_nxt;
516
break;
517
default:
518
return -ENOIOCTLCMD;
519
}
520
521
return put_user(answ, (int __user *)arg);
522
}
523
EXPORT_SYMBOL(tcp_ioctl);
524
525
static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
526
{
527
TCP_SKB_CB(skb)->flags |= TCPHDR_PSH;
528
tp->pushed_seq = tp->write_seq;
529
}
530
531
static inline int forced_push(struct tcp_sock *tp)
532
{
533
return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
534
}
535
536
static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
537
{
538
struct tcp_sock *tp = tcp_sk(sk);
539
struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
540
541
skb->csum = 0;
542
tcb->seq = tcb->end_seq = tp->write_seq;
543
tcb->flags = TCPHDR_ACK;
544
tcb->sacked = 0;
545
skb_header_release(skb);
546
tcp_add_write_queue_tail(sk, skb);
547
sk->sk_wmem_queued += skb->truesize;
548
sk_mem_charge(sk, skb->truesize);
549
if (tp->nonagle & TCP_NAGLE_PUSH)
550
tp->nonagle &= ~TCP_NAGLE_PUSH;
551
}
552
553
static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
554
{
555
if (flags & MSG_OOB)
556
tp->snd_up = tp->write_seq;
557
}
558
559
static inline void tcp_push(struct sock *sk, int flags, int mss_now,
560
int nonagle)
561
{
562
if (tcp_send_head(sk)) {
563
struct tcp_sock *tp = tcp_sk(sk);
564
565
if (!(flags & MSG_MORE) || forced_push(tp))
566
tcp_mark_push(tp, tcp_write_queue_tail(sk));
567
568
tcp_mark_urg(tp, flags);
569
__tcp_push_pending_frames(sk, mss_now,
570
(flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
571
}
572
}
573
574
static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
575
unsigned int offset, size_t len)
576
{
577
struct tcp_splice_state *tss = rd_desc->arg.data;
578
int ret;
579
580
ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
581
tss->flags);
582
if (ret > 0)
583
rd_desc->count -= ret;
584
return ret;
585
}
586
587
static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
588
{
589
/* Store TCP splice context information in read_descriptor_t. */
590
read_descriptor_t rd_desc = {
591
.arg.data = tss,
592
.count = tss->len,
593
};
594
595
return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
596
}
597
598
/**
599
* tcp_splice_read - splice data from TCP socket to a pipe
600
* @sock: socket to splice from
601
* @ppos: position (not valid)
602
* @pipe: pipe to splice to
603
* @len: number of bytes to splice
604
* @flags: splice modifier flags
605
*
606
* Description:
607
* Will read pages from given socket and fill them into a pipe.
608
*
609
**/
610
ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
611
struct pipe_inode_info *pipe, size_t len,
612
unsigned int flags)
613
{
614
struct sock *sk = sock->sk;
615
struct tcp_splice_state tss = {
616
.pipe = pipe,
617
.len = len,
618
.flags = flags,
619
};
620
long timeo;
621
ssize_t spliced;
622
int ret;
623
624
sock_rps_record_flow(sk);
625
/*
626
* We can't seek on a socket input
627
*/
628
if (unlikely(*ppos))
629
return -ESPIPE;
630
631
ret = spliced = 0;
632
633
lock_sock(sk);
634
635
timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
636
while (tss.len) {
637
ret = __tcp_splice_read(sk, &tss);
638
if (ret < 0)
639
break;
640
else if (!ret) {
641
if (spliced)
642
break;
643
if (sock_flag(sk, SOCK_DONE))
644
break;
645
if (sk->sk_err) {
646
ret = sock_error(sk);
647
break;
648
}
649
if (sk->sk_shutdown & RCV_SHUTDOWN)
650
break;
651
if (sk->sk_state == TCP_CLOSE) {
652
/*
653
* This occurs when user tries to read
654
* from never connected socket.
655
*/
656
if (!sock_flag(sk, SOCK_DONE))
657
ret = -ENOTCONN;
658
break;
659
}
660
if (!timeo) {
661
ret = -EAGAIN;
662
break;
663
}
664
sk_wait_data(sk, &timeo);
665
if (signal_pending(current)) {
666
ret = sock_intr_errno(timeo);
667
break;
668
}
669
continue;
670
}
671
tss.len -= ret;
672
spliced += ret;
673
674
if (!timeo)
675
break;
676
release_sock(sk);
677
lock_sock(sk);
678
679
if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
680
(sk->sk_shutdown & RCV_SHUTDOWN) ||
681
signal_pending(current))
682
break;
683
}
684
685
release_sock(sk);
686
687
if (spliced)
688
return spliced;
689
690
return ret;
691
}
692
EXPORT_SYMBOL(tcp_splice_read);
693
694
struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
695
{
696
struct sk_buff *skb;
697
698
/* The TCP header must be at least 32-bit aligned. */
699
size = ALIGN(size, 4);
700
701
skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
702
if (skb) {
703
if (sk_wmem_schedule(sk, skb->truesize)) {
704
/*
705
* Make sure that we have exactly size bytes
706
* available to the caller, no more, no less.
707
*/
708
skb_reserve(skb, skb_tailroom(skb) - size);
709
return skb;
710
}
711
__kfree_skb(skb);
712
} else {
713
sk->sk_prot->enter_memory_pressure(sk);
714
sk_stream_moderate_sndbuf(sk);
715
}
716
return NULL;
717
}
718
719
static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
720
int large_allowed)
721
{
722
struct tcp_sock *tp = tcp_sk(sk);
723
u32 xmit_size_goal, old_size_goal;
724
725
xmit_size_goal = mss_now;
726
727
if (large_allowed && sk_can_gso(sk)) {
728
xmit_size_goal = ((sk->sk_gso_max_size - 1) -
729
inet_csk(sk)->icsk_af_ops->net_header_len -
730
inet_csk(sk)->icsk_ext_hdr_len -
731
tp->tcp_header_len);
732
733
xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
734
735
/* We try hard to avoid divides here */
736
old_size_goal = tp->xmit_size_goal_segs * mss_now;
737
738
if (likely(old_size_goal <= xmit_size_goal &&
739
old_size_goal + mss_now > xmit_size_goal)) {
740
xmit_size_goal = old_size_goal;
741
} else {
742
tp->xmit_size_goal_segs = xmit_size_goal / mss_now;
743
xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
744
}
745
}
746
747
return max(xmit_size_goal, mss_now);
748
}
749
750
static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
751
{
752
int mss_now;
753
754
mss_now = tcp_current_mss(sk);
755
*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
756
757
return mss_now;
758
}
759
760
static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
761
size_t psize, int flags)
762
{
763
struct tcp_sock *tp = tcp_sk(sk);
764
int mss_now, size_goal;
765
int err;
766
ssize_t copied;
767
long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
768
769
/* Wait for a connection to finish. */
770
if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
771
if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
772
goto out_err;
773
774
clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
775
776
mss_now = tcp_send_mss(sk, &size_goal, flags);
777
copied = 0;
778
779
err = -EPIPE;
780
if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
781
goto out_err;
782
783
while (psize > 0) {
784
struct sk_buff *skb = tcp_write_queue_tail(sk);
785
struct page *page = pages[poffset / PAGE_SIZE];
786
int copy, i, can_coalesce;
787
int offset = poffset % PAGE_SIZE;
788
int size = min_t(size_t, psize, PAGE_SIZE - offset);
789
790
if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
791
new_segment:
792
if (!sk_stream_memory_free(sk))
793
goto wait_for_sndbuf;
794
795
skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
796
if (!skb)
797
goto wait_for_memory;
798
799
skb_entail(sk, skb);
800
copy = size_goal;
801
}
802
803
if (copy > size)
804
copy = size;
805
806
i = skb_shinfo(skb)->nr_frags;
807
can_coalesce = skb_can_coalesce(skb, i, page, offset);
808
if (!can_coalesce && i >= MAX_SKB_FRAGS) {
809
tcp_mark_push(tp, skb);
810
goto new_segment;
811
}
812
if (!sk_wmem_schedule(sk, copy))
813
goto wait_for_memory;
814
815
if (can_coalesce) {
816
skb_shinfo(skb)->frags[i - 1].size += copy;
817
} else {
818
get_page(page);
819
skb_fill_page_desc(skb, i, page, offset, copy);
820
}
821
822
skb->len += copy;
823
skb->data_len += copy;
824
skb->truesize += copy;
825
sk->sk_wmem_queued += copy;
826
sk_mem_charge(sk, copy);
827
skb->ip_summed = CHECKSUM_PARTIAL;
828
tp->write_seq += copy;
829
TCP_SKB_CB(skb)->end_seq += copy;
830
skb_shinfo(skb)->gso_segs = 0;
831
832
if (!copied)
833
TCP_SKB_CB(skb)->flags &= ~TCPHDR_PSH;
834
835
copied += copy;
836
poffset += copy;
837
if (!(psize -= copy))
838
goto out;
839
840
if (skb->len < size_goal || (flags & MSG_OOB))
841
continue;
842
843
if (forced_push(tp)) {
844
tcp_mark_push(tp, skb);
845
__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
846
} else if (skb == tcp_send_head(sk))
847
tcp_push_one(sk, mss_now);
848
continue;
849
850
wait_for_sndbuf:
851
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
852
wait_for_memory:
853
if (copied)
854
tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
855
856
if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
857
goto do_error;
858
859
mss_now = tcp_send_mss(sk, &size_goal, flags);
860
}
861
862
out:
863
if (copied)
864
tcp_push(sk, flags, mss_now, tp->nonagle);
865
return copied;
866
867
do_error:
868
if (copied)
869
goto out;
870
out_err:
871
return sk_stream_error(sk, flags, err);
872
}
873
874
int tcp_sendpage(struct sock *sk, struct page *page, int offset,
875
size_t size, int flags)
876
{
877
ssize_t res;
878
879
if (!(sk->sk_route_caps & NETIF_F_SG) ||
880
!(sk->sk_route_caps & NETIF_F_ALL_CSUM))
881
return sock_no_sendpage(sk->sk_socket, page, offset, size,
882
flags);
883
884
lock_sock(sk);
885
res = do_tcp_sendpages(sk, &page, offset, size, flags);
886
release_sock(sk);
887
return res;
888
}
889
EXPORT_SYMBOL(tcp_sendpage);
890
891
#define TCP_PAGE(sk) (sk->sk_sndmsg_page)
892
#define TCP_OFF(sk) (sk->sk_sndmsg_off)
893
894
static inline int select_size(struct sock *sk, int sg)
895
{
896
struct tcp_sock *tp = tcp_sk(sk);
897
int tmp = tp->mss_cache;
898
899
if (sg) {
900
if (sk_can_gso(sk))
901
tmp = 0;
902
else {
903
int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
904
905
if (tmp >= pgbreak &&
906
tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
907
tmp = pgbreak;
908
}
909
}
910
911
return tmp;
912
}
913
914
int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
915
size_t size)
916
{
917
struct iovec *iov;
918
struct tcp_sock *tp = tcp_sk(sk);
919
struct sk_buff *skb;
920
int iovlen, flags;
921
int mss_now, size_goal;
922
int sg, err, copied;
923
long timeo;
924
925
lock_sock(sk);
926
927
flags = msg->msg_flags;
928
timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
929
930
/* Wait for a connection to finish. */
931
if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
932
if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
933
goto out_err;
934
935
/* This should be in poll */
936
clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
937
938
mss_now = tcp_send_mss(sk, &size_goal, flags);
939
940
/* Ok commence sending. */
941
iovlen = msg->msg_iovlen;
942
iov = msg->msg_iov;
943
copied = 0;
944
945
err = -EPIPE;
946
if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
947
goto out_err;
948
949
sg = sk->sk_route_caps & NETIF_F_SG;
950
951
while (--iovlen >= 0) {
952
size_t seglen = iov->iov_len;
953
unsigned char __user *from = iov->iov_base;
954
955
iov++;
956
957
while (seglen > 0) {
958
int copy = 0;
959
int max = size_goal;
960
961
skb = tcp_write_queue_tail(sk);
962
if (tcp_send_head(sk)) {
963
if (skb->ip_summed == CHECKSUM_NONE)
964
max = mss_now;
965
copy = max - skb->len;
966
}
967
968
if (copy <= 0) {
969
new_segment:
970
/* Allocate new segment. If the interface is SG,
971
* allocate skb fitting to single page.
972
*/
973
if (!sk_stream_memory_free(sk))
974
goto wait_for_sndbuf;
975
976
skb = sk_stream_alloc_skb(sk,
977
select_size(sk, sg),
978
sk->sk_allocation);
979
if (!skb)
980
goto wait_for_memory;
981
982
/*
983
* Check whether we can use HW checksum.
984
*/
985
if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
986
skb->ip_summed = CHECKSUM_PARTIAL;
987
988
skb_entail(sk, skb);
989
copy = size_goal;
990
max = size_goal;
991
}
992
993
/* Try to append data to the end of skb. */
994
if (copy > seglen)
995
copy = seglen;
996
997
/* Where to copy to? */
998
if (skb_tailroom(skb) > 0) {
999
/* We have some space in skb head. Superb! */
1000
if (copy > skb_tailroom(skb))
1001
copy = skb_tailroom(skb);
1002
err = skb_add_data_nocache(sk, skb, from, copy);
1003
if (err)
1004
goto do_fault;
1005
} else {
1006
int merge = 0;
1007
int i = skb_shinfo(skb)->nr_frags;
1008
struct page *page = TCP_PAGE(sk);
1009
int off = TCP_OFF(sk);
1010
1011
if (skb_can_coalesce(skb, i, page, off) &&
1012
off != PAGE_SIZE) {
1013
/* We can extend the last page
1014
* fragment. */
1015
merge = 1;
1016
} else if (i == MAX_SKB_FRAGS || !sg) {
1017
/* Need to add new fragment and cannot
1018
* do this because interface is non-SG,
1019
* or because all the page slots are
1020
* busy. */
1021
tcp_mark_push(tp, skb);
1022
goto new_segment;
1023
} else if (page) {
1024
if (off == PAGE_SIZE) {
1025
put_page(page);
1026
TCP_PAGE(sk) = page = NULL;
1027
off = 0;
1028
}
1029
} else
1030
off = 0;
1031
1032
if (copy > PAGE_SIZE - off)
1033
copy = PAGE_SIZE - off;
1034
1035
if (!sk_wmem_schedule(sk, copy))
1036
goto wait_for_memory;
1037
1038
if (!page) {
1039
/* Allocate new cache page. */
1040
if (!(page = sk_stream_alloc_page(sk)))
1041
goto wait_for_memory;
1042
}
1043
1044
/* Time to copy data. We are close to
1045
* the end! */
1046
err = skb_copy_to_page_nocache(sk, from, skb,
1047
page, off, copy);
1048
if (err) {
1049
/* If this page was new, give it to the
1050
* socket so it does not get leaked.
1051
*/
1052
if (!TCP_PAGE(sk)) {
1053
TCP_PAGE(sk) = page;
1054
TCP_OFF(sk) = 0;
1055
}
1056
goto do_error;
1057
}
1058
1059
/* Update the skb. */
1060
if (merge) {
1061
skb_shinfo(skb)->frags[i - 1].size +=
1062
copy;
1063
} else {
1064
skb_fill_page_desc(skb, i, page, off, copy);
1065
if (TCP_PAGE(sk)) {
1066
get_page(page);
1067
} else if (off + copy < PAGE_SIZE) {
1068
get_page(page);
1069
TCP_PAGE(sk) = page;
1070
}
1071
}
1072
1073
TCP_OFF(sk) = off + copy;
1074
}
1075
1076
if (!copied)
1077
TCP_SKB_CB(skb)->flags &= ~TCPHDR_PSH;
1078
1079
tp->write_seq += copy;
1080
TCP_SKB_CB(skb)->end_seq += copy;
1081
skb_shinfo(skb)->gso_segs = 0;
1082
1083
from += copy;
1084
copied += copy;
1085
if ((seglen -= copy) == 0 && iovlen == 0)
1086
goto out;
1087
1088
if (skb->len < max || (flags & MSG_OOB))
1089
continue;
1090
1091
if (forced_push(tp)) {
1092
tcp_mark_push(tp, skb);
1093
__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1094
} else if (skb == tcp_send_head(sk))
1095
tcp_push_one(sk, mss_now);
1096
continue;
1097
1098
wait_for_sndbuf:
1099
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1100
wait_for_memory:
1101
if (copied)
1102
tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1103
1104
if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1105
goto do_error;
1106
1107
mss_now = tcp_send_mss(sk, &size_goal, flags);
1108
}
1109
}
1110
1111
out:
1112
if (copied)
1113
tcp_push(sk, flags, mss_now, tp->nonagle);
1114
release_sock(sk);
1115
return copied;
1116
1117
do_fault:
1118
if (!skb->len) {
1119
tcp_unlink_write_queue(skb, sk);
1120
/* It is the one place in all of TCP, except connection
1121
* reset, where we can be unlinking the send_head.
1122
*/
1123
tcp_check_send_head(sk, skb);
1124
sk_wmem_free_skb(sk, skb);
1125
}
1126
1127
do_error:
1128
if (copied)
1129
goto out;
1130
out_err:
1131
err = sk_stream_error(sk, flags, err);
1132
release_sock(sk);
1133
return err;
1134
}
1135
EXPORT_SYMBOL(tcp_sendmsg);
1136
1137
/*
1138
* Handle reading urgent data. BSD has very simple semantics for
1139
* this, no blocking and very strange errors 8)
1140
*/
1141
1142
static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1143
{
1144
struct tcp_sock *tp = tcp_sk(sk);
1145
1146
/* No URG data to read. */
1147
if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1148
tp->urg_data == TCP_URG_READ)
1149
return -EINVAL; /* Yes this is right ! */
1150
1151
if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1152
return -ENOTCONN;
1153
1154
if (tp->urg_data & TCP_URG_VALID) {
1155
int err = 0;
1156
char c = tp->urg_data;
1157
1158
if (!(flags & MSG_PEEK))
1159
tp->urg_data = TCP_URG_READ;
1160
1161
/* Read urgent data. */
1162
msg->msg_flags |= MSG_OOB;
1163
1164
if (len > 0) {
1165
if (!(flags & MSG_TRUNC))
1166
err = memcpy_toiovec(msg->msg_iov, &c, 1);
1167
len = 1;
1168
} else
1169
msg->msg_flags |= MSG_TRUNC;
1170
1171
return err ? -EFAULT : len;
1172
}
1173
1174
if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1175
return 0;
1176
1177
/* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1178
* the available implementations agree in this case:
1179
* this call should never block, independent of the
1180
* blocking state of the socket.
1181
* Mike <[email protected]>
1182
*/
1183
return -EAGAIN;
1184
}
1185
1186
/* Clean up the receive buffer for full frames taken by the user,
1187
* then send an ACK if necessary. COPIED is the number of bytes
1188
* tcp_recvmsg has given to the user so far, it speeds up the
1189
* calculation of whether or not we must ACK for the sake of
1190
* a window update.
1191
*/
1192
void tcp_cleanup_rbuf(struct sock *sk, int copied)
1193
{
1194
struct tcp_sock *tp = tcp_sk(sk);
1195
int time_to_ack = 0;
1196
1197
#if TCP_DEBUG
1198
struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1199
1200
WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1201
"cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1202
tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1203
#endif
1204
1205
if (inet_csk_ack_scheduled(sk)) {
1206
const struct inet_connection_sock *icsk = inet_csk(sk);
1207
/* Delayed ACKs frequently hit locked sockets during bulk
1208
* receive. */
1209
if (icsk->icsk_ack.blocked ||
1210
/* Once-per-two-segments ACK was not sent by tcp_input.c */
1211
tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1212
/*
1213
* If this read emptied read buffer, we send ACK, if
1214
* connection is not bidirectional, user drained
1215
* receive buffer and there was a small segment
1216
* in queue.
1217
*/
1218
(copied > 0 &&
1219
((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1220
((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1221
!icsk->icsk_ack.pingpong)) &&
1222
!atomic_read(&sk->sk_rmem_alloc)))
1223
time_to_ack = 1;
1224
}
1225
1226
/* We send an ACK if we can now advertise a non-zero window
1227
* which has been raised "significantly".
1228
*
1229
* Even if window raised up to infinity, do not send window open ACK
1230
* in states, where we will not receive more. It is useless.
1231
*/
1232
if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1233
__u32 rcv_window_now = tcp_receive_window(tp);
1234
1235
/* Optimize, __tcp_select_window() is not cheap. */
1236
if (2*rcv_window_now <= tp->window_clamp) {
1237
__u32 new_window = __tcp_select_window(sk);
1238
1239
/* Send ACK now, if this read freed lots of space
1240
* in our buffer. Certainly, new_window is new window.
1241
* We can advertise it now, if it is not less than current one.
1242
* "Lots" means "at least twice" here.
1243
*/
1244
if (new_window && new_window >= 2 * rcv_window_now)
1245
time_to_ack = 1;
1246
}
1247
}
1248
if (time_to_ack)
1249
tcp_send_ack(sk);
1250
}
1251
1252
static void tcp_prequeue_process(struct sock *sk)
1253
{
1254
struct sk_buff *skb;
1255
struct tcp_sock *tp = tcp_sk(sk);
1256
1257
NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1258
1259
/* RX process wants to run with disabled BHs, though it is not
1260
* necessary */
1261
local_bh_disable();
1262
while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1263
sk_backlog_rcv(sk, skb);
1264
local_bh_enable();
1265
1266
/* Clear memory counter. */
1267
tp->ucopy.memory = 0;
1268
}
1269
1270
#ifdef CONFIG_NET_DMA
1271
static void tcp_service_net_dma(struct sock *sk, bool wait)
1272
{
1273
dma_cookie_t done, used;
1274
dma_cookie_t last_issued;
1275
struct tcp_sock *tp = tcp_sk(sk);
1276
1277
if (!tp->ucopy.dma_chan)
1278
return;
1279
1280
last_issued = tp->ucopy.dma_cookie;
1281
dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1282
1283
do {
1284
if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1285
last_issued, &done,
1286
&used) == DMA_SUCCESS) {
1287
/* Safe to free early-copied skbs now */
1288
__skb_queue_purge(&sk->sk_async_wait_queue);
1289
break;
1290
} else {
1291
struct sk_buff *skb;
1292
while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1293
(dma_async_is_complete(skb->dma_cookie, done,
1294
used) == DMA_SUCCESS)) {
1295
__skb_dequeue(&sk->sk_async_wait_queue);
1296
kfree_skb(skb);
1297
}
1298
}
1299
} while (wait);
1300
}
1301
#endif
1302
1303
static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1304
{
1305
struct sk_buff *skb;
1306
u32 offset;
1307
1308
skb_queue_walk(&sk->sk_receive_queue, skb) {
1309
offset = seq - TCP_SKB_CB(skb)->seq;
1310
if (tcp_hdr(skb)->syn)
1311
offset--;
1312
if (offset < skb->len || tcp_hdr(skb)->fin) {
1313
*off = offset;
1314
return skb;
1315
}
1316
}
1317
return NULL;
1318
}
1319
1320
/*
1321
* This routine provides an alternative to tcp_recvmsg() for routines
1322
* that would like to handle copying from skbuffs directly in 'sendfile'
1323
* fashion.
1324
* Note:
1325
* - It is assumed that the socket was locked by the caller.
1326
* - The routine does not block.
1327
* - At present, there is no support for reading OOB data
1328
* or for 'peeking' the socket using this routine
1329
* (although both would be easy to implement).
1330
*/
1331
int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1332
sk_read_actor_t recv_actor)
1333
{
1334
struct sk_buff *skb;
1335
struct tcp_sock *tp = tcp_sk(sk);
1336
u32 seq = tp->copied_seq;
1337
u32 offset;
1338
int copied = 0;
1339
1340
if (sk->sk_state == TCP_LISTEN)
1341
return -ENOTCONN;
1342
while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1343
if (offset < skb->len) {
1344
int used;
1345
size_t len;
1346
1347
len = skb->len - offset;
1348
/* Stop reading if we hit a patch of urgent data */
1349
if (tp->urg_data) {
1350
u32 urg_offset = tp->urg_seq - seq;
1351
if (urg_offset < len)
1352
len = urg_offset;
1353
if (!len)
1354
break;
1355
}
1356
used = recv_actor(desc, skb, offset, len);
1357
if (used < 0) {
1358
if (!copied)
1359
copied = used;
1360
break;
1361
} else if (used <= len) {
1362
seq += used;
1363
copied += used;
1364
offset += used;
1365
}
1366
/*
1367
* If recv_actor drops the lock (e.g. TCP splice
1368
* receive) the skb pointer might be invalid when
1369
* getting here: tcp_collapse might have deleted it
1370
* while aggregating skbs from the socket queue.
1371
*/
1372
skb = tcp_recv_skb(sk, seq-1, &offset);
1373
if (!skb || (offset+1 != skb->len))
1374
break;
1375
}
1376
if (tcp_hdr(skb)->fin) {
1377
sk_eat_skb(sk, skb, 0);
1378
++seq;
1379
break;
1380
}
1381
sk_eat_skb(sk, skb, 0);
1382
if (!desc->count)
1383
break;
1384
tp->copied_seq = seq;
1385
}
1386
tp->copied_seq = seq;
1387
1388
tcp_rcv_space_adjust(sk);
1389
1390
/* Clean up data we have read: This will do ACK frames. */
1391
if (copied > 0)
1392
tcp_cleanup_rbuf(sk, copied);
1393
return copied;
1394
}
1395
EXPORT_SYMBOL(tcp_read_sock);
1396
1397
/*
1398
* This routine copies from a sock struct into the user buffer.
1399
*
1400
* Technical note: in 2.3 we work on _locked_ socket, so that
1401
* tricks with *seq access order and skb->users are not required.
1402
* Probably, code can be easily improved even more.
1403
*/
1404
1405
int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1406
size_t len, int nonblock, int flags, int *addr_len)
1407
{
1408
struct tcp_sock *tp = tcp_sk(sk);
1409
int copied = 0;
1410
u32 peek_seq;
1411
u32 *seq;
1412
unsigned long used;
1413
int err;
1414
int target; /* Read at least this many bytes */
1415
long timeo;
1416
struct task_struct *user_recv = NULL;
1417
int copied_early = 0;
1418
struct sk_buff *skb;
1419
u32 urg_hole = 0;
1420
1421
lock_sock(sk);
1422
1423
err = -ENOTCONN;
1424
if (sk->sk_state == TCP_LISTEN)
1425
goto out;
1426
1427
timeo = sock_rcvtimeo(sk, nonblock);
1428
1429
/* Urgent data needs to be handled specially. */
1430
if (flags & MSG_OOB)
1431
goto recv_urg;
1432
1433
seq = &tp->copied_seq;
1434
if (flags & MSG_PEEK) {
1435
peek_seq = tp->copied_seq;
1436
seq = &peek_seq;
1437
}
1438
1439
target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1440
1441
#ifdef CONFIG_NET_DMA
1442
tp->ucopy.dma_chan = NULL;
1443
preempt_disable();
1444
skb = skb_peek_tail(&sk->sk_receive_queue);
1445
{
1446
int available = 0;
1447
1448
if (skb)
1449
available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1450
if ((available < target) &&
1451
(len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1452
!sysctl_tcp_low_latency &&
1453
dma_find_channel(DMA_MEMCPY)) {
1454
preempt_enable_no_resched();
1455
tp->ucopy.pinned_list =
1456
dma_pin_iovec_pages(msg->msg_iov, len);
1457
} else {
1458
preempt_enable_no_resched();
1459
}
1460
}
1461
#endif
1462
1463
do {
1464
u32 offset;
1465
1466
/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1467
if (tp->urg_data && tp->urg_seq == *seq) {
1468
if (copied)
1469
break;
1470
if (signal_pending(current)) {
1471
copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1472
break;
1473
}
1474
}
1475
1476
/* Next get a buffer. */
1477
1478
skb_queue_walk(&sk->sk_receive_queue, skb) {
1479
/* Now that we have two receive queues this
1480
* shouldn't happen.
1481
*/
1482
if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1483
"recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1484
*seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1485
flags))
1486
break;
1487
1488
offset = *seq - TCP_SKB_CB(skb)->seq;
1489
if (tcp_hdr(skb)->syn)
1490
offset--;
1491
if (offset < skb->len)
1492
goto found_ok_skb;
1493
if (tcp_hdr(skb)->fin)
1494
goto found_fin_ok;
1495
WARN(!(flags & MSG_PEEK),
1496
"recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1497
*seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1498
}
1499
1500
/* Well, if we have backlog, try to process it now yet. */
1501
1502
if (copied >= target && !sk->sk_backlog.tail)
1503
break;
1504
1505
if (copied) {
1506
if (sk->sk_err ||
1507
sk->sk_state == TCP_CLOSE ||
1508
(sk->sk_shutdown & RCV_SHUTDOWN) ||
1509
!timeo ||
1510
signal_pending(current))
1511
break;
1512
} else {
1513
if (sock_flag(sk, SOCK_DONE))
1514
break;
1515
1516
if (sk->sk_err) {
1517
copied = sock_error(sk);
1518
break;
1519
}
1520
1521
if (sk->sk_shutdown & RCV_SHUTDOWN)
1522
break;
1523
1524
if (sk->sk_state == TCP_CLOSE) {
1525
if (!sock_flag(sk, SOCK_DONE)) {
1526
/* This occurs when user tries to read
1527
* from never connected socket.
1528
*/
1529
copied = -ENOTCONN;
1530
break;
1531
}
1532
break;
1533
}
1534
1535
if (!timeo) {
1536
copied = -EAGAIN;
1537
break;
1538
}
1539
1540
if (signal_pending(current)) {
1541
copied = sock_intr_errno(timeo);
1542
break;
1543
}
1544
}
1545
1546
tcp_cleanup_rbuf(sk, copied);
1547
1548
if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1549
/* Install new reader */
1550
if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1551
user_recv = current;
1552
tp->ucopy.task = user_recv;
1553
tp->ucopy.iov = msg->msg_iov;
1554
}
1555
1556
tp->ucopy.len = len;
1557
1558
WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1559
!(flags & (MSG_PEEK | MSG_TRUNC)));
1560
1561
/* Ugly... If prequeue is not empty, we have to
1562
* process it before releasing socket, otherwise
1563
* order will be broken at second iteration.
1564
* More elegant solution is required!!!
1565
*
1566
* Look: we have the following (pseudo)queues:
1567
*
1568
* 1. packets in flight
1569
* 2. backlog
1570
* 3. prequeue
1571
* 4. receive_queue
1572
*
1573
* Each queue can be processed only if the next ones
1574
* are empty. At this point we have empty receive_queue.
1575
* But prequeue _can_ be not empty after 2nd iteration,
1576
* when we jumped to start of loop because backlog
1577
* processing added something to receive_queue.
1578
* We cannot release_sock(), because backlog contains
1579
* packets arrived _after_ prequeued ones.
1580
*
1581
* Shortly, algorithm is clear --- to process all
1582
* the queues in order. We could make it more directly,
1583
* requeueing packets from backlog to prequeue, if
1584
* is not empty. It is more elegant, but eats cycles,
1585
* unfortunately.
1586
*/
1587
if (!skb_queue_empty(&tp->ucopy.prequeue))
1588
goto do_prequeue;
1589
1590
/* __ Set realtime policy in scheduler __ */
1591
}
1592
1593
#ifdef CONFIG_NET_DMA
1594
if (tp->ucopy.dma_chan)
1595
dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1596
#endif
1597
if (copied >= target) {
1598
/* Do not sleep, just process backlog. */
1599
release_sock(sk);
1600
lock_sock(sk);
1601
} else
1602
sk_wait_data(sk, &timeo);
1603
1604
#ifdef CONFIG_NET_DMA
1605
tcp_service_net_dma(sk, false); /* Don't block */
1606
tp->ucopy.wakeup = 0;
1607
#endif
1608
1609
if (user_recv) {
1610
int chunk;
1611
1612
/* __ Restore normal policy in scheduler __ */
1613
1614
if ((chunk = len - tp->ucopy.len) != 0) {
1615
NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1616
len -= chunk;
1617
copied += chunk;
1618
}
1619
1620
if (tp->rcv_nxt == tp->copied_seq &&
1621
!skb_queue_empty(&tp->ucopy.prequeue)) {
1622
do_prequeue:
1623
tcp_prequeue_process(sk);
1624
1625
if ((chunk = len - tp->ucopy.len) != 0) {
1626
NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1627
len -= chunk;
1628
copied += chunk;
1629
}
1630
}
1631
}
1632
if ((flags & MSG_PEEK) &&
1633
(peek_seq - copied - urg_hole != tp->copied_seq)) {
1634
if (net_ratelimit())
1635
printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1636
current->comm, task_pid_nr(current));
1637
peek_seq = tp->copied_seq;
1638
}
1639
continue;
1640
1641
found_ok_skb:
1642
/* Ok so how much can we use? */
1643
used = skb->len - offset;
1644
if (len < used)
1645
used = len;
1646
1647
/* Do we have urgent data here? */
1648
if (tp->urg_data) {
1649
u32 urg_offset = tp->urg_seq - *seq;
1650
if (urg_offset < used) {
1651
if (!urg_offset) {
1652
if (!sock_flag(sk, SOCK_URGINLINE)) {
1653
++*seq;
1654
urg_hole++;
1655
offset++;
1656
used--;
1657
if (!used)
1658
goto skip_copy;
1659
}
1660
} else
1661
used = urg_offset;
1662
}
1663
}
1664
1665
if (!(flags & MSG_TRUNC)) {
1666
#ifdef CONFIG_NET_DMA
1667
if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1668
tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1669
1670
if (tp->ucopy.dma_chan) {
1671
tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1672
tp->ucopy.dma_chan, skb, offset,
1673
msg->msg_iov, used,
1674
tp->ucopy.pinned_list);
1675
1676
if (tp->ucopy.dma_cookie < 0) {
1677
1678
printk(KERN_ALERT "dma_cookie < 0\n");
1679
1680
/* Exception. Bailout! */
1681
if (!copied)
1682
copied = -EFAULT;
1683
break;
1684
}
1685
1686
dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1687
1688
if ((offset + used) == skb->len)
1689
copied_early = 1;
1690
1691
} else
1692
#endif
1693
{
1694
err = skb_copy_datagram_iovec(skb, offset,
1695
msg->msg_iov, used);
1696
if (err) {
1697
/* Exception. Bailout! */
1698
if (!copied)
1699
copied = -EFAULT;
1700
break;
1701
}
1702
}
1703
}
1704
1705
*seq += used;
1706
copied += used;
1707
len -= used;
1708
1709
tcp_rcv_space_adjust(sk);
1710
1711
skip_copy:
1712
if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1713
tp->urg_data = 0;
1714
tcp_fast_path_check(sk);
1715
}
1716
if (used + offset < skb->len)
1717
continue;
1718
1719
if (tcp_hdr(skb)->fin)
1720
goto found_fin_ok;
1721
if (!(flags & MSG_PEEK)) {
1722
sk_eat_skb(sk, skb, copied_early);
1723
copied_early = 0;
1724
}
1725
continue;
1726
1727
found_fin_ok:
1728
/* Process the FIN. */
1729
++*seq;
1730
if (!(flags & MSG_PEEK)) {
1731
sk_eat_skb(sk, skb, copied_early);
1732
copied_early = 0;
1733
}
1734
break;
1735
} while (len > 0);
1736
1737
if (user_recv) {
1738
if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1739
int chunk;
1740
1741
tp->ucopy.len = copied > 0 ? len : 0;
1742
1743
tcp_prequeue_process(sk);
1744
1745
if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1746
NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1747
len -= chunk;
1748
copied += chunk;
1749
}
1750
}
1751
1752
tp->ucopy.task = NULL;
1753
tp->ucopy.len = 0;
1754
}
1755
1756
#ifdef CONFIG_NET_DMA
1757
tcp_service_net_dma(sk, true); /* Wait for queue to drain */
1758
tp->ucopy.dma_chan = NULL;
1759
1760
if (tp->ucopy.pinned_list) {
1761
dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1762
tp->ucopy.pinned_list = NULL;
1763
}
1764
#endif
1765
1766
/* According to UNIX98, msg_name/msg_namelen are ignored
1767
* on connected socket. I was just happy when found this 8) --ANK
1768
*/
1769
1770
/* Clean up data we have read: This will do ACK frames. */
1771
tcp_cleanup_rbuf(sk, copied);
1772
1773
release_sock(sk);
1774
return copied;
1775
1776
out:
1777
release_sock(sk);
1778
return err;
1779
1780
recv_urg:
1781
err = tcp_recv_urg(sk, msg, len, flags);
1782
goto out;
1783
}
1784
EXPORT_SYMBOL(tcp_recvmsg);
1785
1786
void tcp_set_state(struct sock *sk, int state)
1787
{
1788
int oldstate = sk->sk_state;
1789
1790
switch (state) {
1791
case TCP_ESTABLISHED:
1792
if (oldstate != TCP_ESTABLISHED)
1793
TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1794
break;
1795
1796
case TCP_CLOSE:
1797
if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1798
TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1799
1800
sk->sk_prot->unhash(sk);
1801
if (inet_csk(sk)->icsk_bind_hash &&
1802
!(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1803
inet_put_port(sk);
1804
/* fall through */
1805
default:
1806
if (oldstate == TCP_ESTABLISHED)
1807
TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1808
}
1809
1810
/* Change state AFTER socket is unhashed to avoid closed
1811
* socket sitting in hash tables.
1812
*/
1813
sk->sk_state = state;
1814
1815
#ifdef STATE_TRACE
1816
SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1817
#endif
1818
}
1819
EXPORT_SYMBOL_GPL(tcp_set_state);
1820
1821
/*
1822
* State processing on a close. This implements the state shift for
1823
* sending our FIN frame. Note that we only send a FIN for some
1824
* states. A shutdown() may have already sent the FIN, or we may be
1825
* closed.
1826
*/
1827
1828
static const unsigned char new_state[16] = {
1829
/* current state: new state: action: */
1830
/* (Invalid) */ TCP_CLOSE,
1831
/* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1832
/* TCP_SYN_SENT */ TCP_CLOSE,
1833
/* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1834
/* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1,
1835
/* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2,
1836
/* TCP_TIME_WAIT */ TCP_CLOSE,
1837
/* TCP_CLOSE */ TCP_CLOSE,
1838
/* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN,
1839
/* TCP_LAST_ACK */ TCP_LAST_ACK,
1840
/* TCP_LISTEN */ TCP_CLOSE,
1841
/* TCP_CLOSING */ TCP_CLOSING,
1842
};
1843
1844
static int tcp_close_state(struct sock *sk)
1845
{
1846
int next = (int)new_state[sk->sk_state];
1847
int ns = next & TCP_STATE_MASK;
1848
1849
tcp_set_state(sk, ns);
1850
1851
return next & TCP_ACTION_FIN;
1852
}
1853
1854
/*
1855
* Shutdown the sending side of a connection. Much like close except
1856
* that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1857
*/
1858
1859
void tcp_shutdown(struct sock *sk, int how)
1860
{
1861
/* We need to grab some memory, and put together a FIN,
1862
* and then put it into the queue to be sent.
1863
* Tim MacKenzie([email protected]) 4 Dec '92.
1864
*/
1865
if (!(how & SEND_SHUTDOWN))
1866
return;
1867
1868
/* If we've already sent a FIN, or it's a closed state, skip this. */
1869
if ((1 << sk->sk_state) &
1870
(TCPF_ESTABLISHED | TCPF_SYN_SENT |
1871
TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1872
/* Clear out any half completed packets. FIN if needed. */
1873
if (tcp_close_state(sk))
1874
tcp_send_fin(sk);
1875
}
1876
}
1877
EXPORT_SYMBOL(tcp_shutdown);
1878
1879
void tcp_close(struct sock *sk, long timeout)
1880
{
1881
struct sk_buff *skb;
1882
int data_was_unread = 0;
1883
int state;
1884
1885
lock_sock(sk);
1886
sk->sk_shutdown = SHUTDOWN_MASK;
1887
1888
if (sk->sk_state == TCP_LISTEN) {
1889
tcp_set_state(sk, TCP_CLOSE);
1890
1891
/* Special case. */
1892
inet_csk_listen_stop(sk);
1893
1894
goto adjudge_to_death;
1895
}
1896
1897
/* We need to flush the recv. buffs. We do this only on the
1898
* descriptor close, not protocol-sourced closes, because the
1899
* reader process may not have drained the data yet!
1900
*/
1901
while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1902
u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1903
tcp_hdr(skb)->fin;
1904
data_was_unread += len;
1905
__kfree_skb(skb);
1906
}
1907
1908
sk_mem_reclaim(sk);
1909
1910
/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
1911
if (sk->sk_state == TCP_CLOSE)
1912
goto adjudge_to_death;
1913
1914
/* As outlined in RFC 2525, section 2.17, we send a RST here because
1915
* data was lost. To witness the awful effects of the old behavior of
1916
* always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1917
* GET in an FTP client, suspend the process, wait for the client to
1918
* advertise a zero window, then kill -9 the FTP client, wheee...
1919
* Note: timeout is always zero in such a case.
1920
*/
1921
if (data_was_unread) {
1922
/* Unread data was tossed, zap the connection. */
1923
NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
1924
tcp_set_state(sk, TCP_CLOSE);
1925
tcp_send_active_reset(sk, sk->sk_allocation);
1926
} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1927
/* Check zero linger _after_ checking for unread data. */
1928
sk->sk_prot->disconnect(sk, 0);
1929
NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
1930
} else if (tcp_close_state(sk)) {
1931
/* We FIN if the application ate all the data before
1932
* zapping the connection.
1933
*/
1934
1935
/* RED-PEN. Formally speaking, we have broken TCP state
1936
* machine. State transitions:
1937
*
1938
* TCP_ESTABLISHED -> TCP_FIN_WAIT1
1939
* TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
1940
* TCP_CLOSE_WAIT -> TCP_LAST_ACK
1941
*
1942
* are legal only when FIN has been sent (i.e. in window),
1943
* rather than queued out of window. Purists blame.
1944
*
1945
* F.e. "RFC state" is ESTABLISHED,
1946
* if Linux state is FIN-WAIT-1, but FIN is still not sent.
1947
*
1948
* The visible declinations are that sometimes
1949
* we enter time-wait state, when it is not required really
1950
* (harmless), do not send active resets, when they are
1951
* required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1952
* they look as CLOSING or LAST_ACK for Linux)
1953
* Probably, I missed some more holelets.
1954
* --ANK
1955
*/
1956
tcp_send_fin(sk);
1957
}
1958
1959
sk_stream_wait_close(sk, timeout);
1960
1961
adjudge_to_death:
1962
state = sk->sk_state;
1963
sock_hold(sk);
1964
sock_orphan(sk);
1965
1966
/* It is the last release_sock in its life. It will remove backlog. */
1967
release_sock(sk);
1968
1969
1970
/* Now socket is owned by kernel and we acquire BH lock
1971
to finish close. No need to check for user refs.
1972
*/
1973
local_bh_disable();
1974
bh_lock_sock(sk);
1975
WARN_ON(sock_owned_by_user(sk));
1976
1977
percpu_counter_inc(sk->sk_prot->orphan_count);
1978
1979
/* Have we already been destroyed by a softirq or backlog? */
1980
if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
1981
goto out;
1982
1983
/* This is a (useful) BSD violating of the RFC. There is a
1984
* problem with TCP as specified in that the other end could
1985
* keep a socket open forever with no application left this end.
1986
* We use a 3 minute timeout (about the same as BSD) then kill
1987
* our end. If they send after that then tough - BUT: long enough
1988
* that we won't make the old 4*rto = almost no time - whoops
1989
* reset mistake.
1990
*
1991
* Nope, it was not mistake. It is really desired behaviour
1992
* f.e. on http servers, when such sockets are useless, but
1993
* consume significant resources. Let's do it with special
1994
* linger2 option. --ANK
1995
*/
1996
1997
if (sk->sk_state == TCP_FIN_WAIT2) {
1998
struct tcp_sock *tp = tcp_sk(sk);
1999
if (tp->linger2 < 0) {
2000
tcp_set_state(sk, TCP_CLOSE);
2001
tcp_send_active_reset(sk, GFP_ATOMIC);
2002
NET_INC_STATS_BH(sock_net(sk),
2003
LINUX_MIB_TCPABORTONLINGER);
2004
} else {
2005
const int tmo = tcp_fin_time(sk);
2006
2007
if (tmo > TCP_TIMEWAIT_LEN) {
2008
inet_csk_reset_keepalive_timer(sk,
2009
tmo - TCP_TIMEWAIT_LEN);
2010
} else {
2011
tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2012
goto out;
2013
}
2014
}
2015
}
2016
if (sk->sk_state != TCP_CLOSE) {
2017
sk_mem_reclaim(sk);
2018
if (tcp_too_many_orphans(sk, 0)) {
2019
if (net_ratelimit())
2020
printk(KERN_INFO "TCP: too many of orphaned "
2021
"sockets\n");
2022
tcp_set_state(sk, TCP_CLOSE);
2023
tcp_send_active_reset(sk, GFP_ATOMIC);
2024
NET_INC_STATS_BH(sock_net(sk),
2025
LINUX_MIB_TCPABORTONMEMORY);
2026
}
2027
}
2028
2029
if (sk->sk_state == TCP_CLOSE)
2030
inet_csk_destroy_sock(sk);
2031
/* Otherwise, socket is reprieved until protocol close. */
2032
2033
out:
2034
bh_unlock_sock(sk);
2035
local_bh_enable();
2036
sock_put(sk);
2037
}
2038
EXPORT_SYMBOL(tcp_close);
2039
2040
/* These states need RST on ABORT according to RFC793 */
2041
2042
static inline int tcp_need_reset(int state)
2043
{
2044
return (1 << state) &
2045
(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2046
TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2047
}
2048
2049
int tcp_disconnect(struct sock *sk, int flags)
2050
{
2051
struct inet_sock *inet = inet_sk(sk);
2052
struct inet_connection_sock *icsk = inet_csk(sk);
2053
struct tcp_sock *tp = tcp_sk(sk);
2054
int err = 0;
2055
int old_state = sk->sk_state;
2056
2057
if (old_state != TCP_CLOSE)
2058
tcp_set_state(sk, TCP_CLOSE);
2059
2060
/* ABORT function of RFC793 */
2061
if (old_state == TCP_LISTEN) {
2062
inet_csk_listen_stop(sk);
2063
} else if (tcp_need_reset(old_state) ||
2064
(tp->snd_nxt != tp->write_seq &&
2065
(1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2066
/* The last check adjusts for discrepancy of Linux wrt. RFC
2067
* states
2068
*/
2069
tcp_send_active_reset(sk, gfp_any());
2070
sk->sk_err = ECONNRESET;
2071
} else if (old_state == TCP_SYN_SENT)
2072
sk->sk_err = ECONNRESET;
2073
2074
tcp_clear_xmit_timers(sk);
2075
__skb_queue_purge(&sk->sk_receive_queue);
2076
tcp_write_queue_purge(sk);
2077
__skb_queue_purge(&tp->out_of_order_queue);
2078
#ifdef CONFIG_NET_DMA
2079
__skb_queue_purge(&sk->sk_async_wait_queue);
2080
#endif
2081
2082
inet->inet_dport = 0;
2083
2084
if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2085
inet_reset_saddr(sk);
2086
2087
sk->sk_shutdown = 0;
2088
sock_reset_flag(sk, SOCK_DONE);
2089
tp->srtt = 0;
2090
if ((tp->write_seq += tp->max_window + 2) == 0)
2091
tp->write_seq = 1;
2092
icsk->icsk_backoff = 0;
2093
tp->snd_cwnd = 2;
2094
icsk->icsk_probes_out = 0;
2095
tp->packets_out = 0;
2096
tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2097
tp->snd_cwnd_cnt = 0;
2098
tp->bytes_acked = 0;
2099
tp->window_clamp = 0;
2100
tcp_set_ca_state(sk, TCP_CA_Open);
2101
tcp_clear_retrans(tp);
2102
inet_csk_delack_init(sk);
2103
tcp_init_send_head(sk);
2104
memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2105
__sk_dst_reset(sk);
2106
2107
WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2108
2109
sk->sk_error_report(sk);
2110
return err;
2111
}
2112
EXPORT_SYMBOL(tcp_disconnect);
2113
2114
/*
2115
* Socket option code for TCP.
2116
*/
2117
static int do_tcp_setsockopt(struct sock *sk, int level,
2118
int optname, char __user *optval, unsigned int optlen)
2119
{
2120
struct tcp_sock *tp = tcp_sk(sk);
2121
struct inet_connection_sock *icsk = inet_csk(sk);
2122
int val;
2123
int err = 0;
2124
2125
/* These are data/string values, all the others are ints */
2126
switch (optname) {
2127
case TCP_CONGESTION: {
2128
char name[TCP_CA_NAME_MAX];
2129
2130
if (optlen < 1)
2131
return -EINVAL;
2132
2133
val = strncpy_from_user(name, optval,
2134
min_t(long, TCP_CA_NAME_MAX-1, optlen));
2135
if (val < 0)
2136
return -EFAULT;
2137
name[val] = 0;
2138
2139
lock_sock(sk);
2140
err = tcp_set_congestion_control(sk, name);
2141
release_sock(sk);
2142
return err;
2143
}
2144
case TCP_COOKIE_TRANSACTIONS: {
2145
struct tcp_cookie_transactions ctd;
2146
struct tcp_cookie_values *cvp = NULL;
2147
2148
if (sizeof(ctd) > optlen)
2149
return -EINVAL;
2150
if (copy_from_user(&ctd, optval, sizeof(ctd)))
2151
return -EFAULT;
2152
2153
if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2154
ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2155
return -EINVAL;
2156
2157
if (ctd.tcpct_cookie_desired == 0) {
2158
/* default to global value */
2159
} else if ((0x1 & ctd.tcpct_cookie_desired) ||
2160
ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2161
ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2162
return -EINVAL;
2163
}
2164
2165
if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2166
/* Supercedes all other values */
2167
lock_sock(sk);
2168
if (tp->cookie_values != NULL) {
2169
kref_put(&tp->cookie_values->kref,
2170
tcp_cookie_values_release);
2171
tp->cookie_values = NULL;
2172
}
2173
tp->rx_opt.cookie_in_always = 0; /* false */
2174
tp->rx_opt.cookie_out_never = 1; /* true */
2175
release_sock(sk);
2176
return err;
2177
}
2178
2179
/* Allocate ancillary memory before locking.
2180
*/
2181
if (ctd.tcpct_used > 0 ||
2182
(tp->cookie_values == NULL &&
2183
(sysctl_tcp_cookie_size > 0 ||
2184
ctd.tcpct_cookie_desired > 0 ||
2185
ctd.tcpct_s_data_desired > 0))) {
2186
cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2187
GFP_KERNEL);
2188
if (cvp == NULL)
2189
return -ENOMEM;
2190
2191
kref_init(&cvp->kref);
2192
}
2193
lock_sock(sk);
2194
tp->rx_opt.cookie_in_always =
2195
(TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2196
tp->rx_opt.cookie_out_never = 0; /* false */
2197
2198
if (tp->cookie_values != NULL) {
2199
if (cvp != NULL) {
2200
/* Changed values are recorded by a changed
2201
* pointer, ensuring the cookie will differ,
2202
* without separately hashing each value later.
2203
*/
2204
kref_put(&tp->cookie_values->kref,
2205
tcp_cookie_values_release);
2206
} else {
2207
cvp = tp->cookie_values;
2208
}
2209
}
2210
2211
if (cvp != NULL) {
2212
cvp->cookie_desired = ctd.tcpct_cookie_desired;
2213
2214
if (ctd.tcpct_used > 0) {
2215
memcpy(cvp->s_data_payload, ctd.tcpct_value,
2216
ctd.tcpct_used);
2217
cvp->s_data_desired = ctd.tcpct_used;
2218
cvp->s_data_constant = 1; /* true */
2219
} else {
2220
/* No constant payload data. */
2221
cvp->s_data_desired = ctd.tcpct_s_data_desired;
2222
cvp->s_data_constant = 0; /* false */
2223
}
2224
2225
tp->cookie_values = cvp;
2226
}
2227
release_sock(sk);
2228
return err;
2229
}
2230
default:
2231
/* fallthru */
2232
break;
2233
}
2234
2235
if (optlen < sizeof(int))
2236
return -EINVAL;
2237
2238
if (get_user(val, (int __user *)optval))
2239
return -EFAULT;
2240
2241
lock_sock(sk);
2242
2243
switch (optname) {
2244
case TCP_MAXSEG:
2245
/* Values greater than interface MTU won't take effect. However
2246
* at the point when this call is done we typically don't yet
2247
* know which interface is going to be used */
2248
if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2249
err = -EINVAL;
2250
break;
2251
}
2252
tp->rx_opt.user_mss = val;
2253
break;
2254
2255
case TCP_NODELAY:
2256
if (val) {
2257
/* TCP_NODELAY is weaker than TCP_CORK, so that
2258
* this option on corked socket is remembered, but
2259
* it is not activated until cork is cleared.
2260
*
2261
* However, when TCP_NODELAY is set we make
2262
* an explicit push, which overrides even TCP_CORK
2263
* for currently queued segments.
2264
*/
2265
tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2266
tcp_push_pending_frames(sk);
2267
} else {
2268
tp->nonagle &= ~TCP_NAGLE_OFF;
2269
}
2270
break;
2271
2272
case TCP_THIN_LINEAR_TIMEOUTS:
2273
if (val < 0 || val > 1)
2274
err = -EINVAL;
2275
else
2276
tp->thin_lto = val;
2277
break;
2278
2279
case TCP_THIN_DUPACK:
2280
if (val < 0 || val > 1)
2281
err = -EINVAL;
2282
else
2283
tp->thin_dupack = val;
2284
break;
2285
2286
case TCP_CORK:
2287
/* When set indicates to always queue non-full frames.
2288
* Later the user clears this option and we transmit
2289
* any pending partial frames in the queue. This is
2290
* meant to be used alongside sendfile() to get properly
2291
* filled frames when the user (for example) must write
2292
* out headers with a write() call first and then use
2293
* sendfile to send out the data parts.
2294
*
2295
* TCP_CORK can be set together with TCP_NODELAY and it is
2296
* stronger than TCP_NODELAY.
2297
*/
2298
if (val) {
2299
tp->nonagle |= TCP_NAGLE_CORK;
2300
} else {
2301
tp->nonagle &= ~TCP_NAGLE_CORK;
2302
if (tp->nonagle&TCP_NAGLE_OFF)
2303
tp->nonagle |= TCP_NAGLE_PUSH;
2304
tcp_push_pending_frames(sk);
2305
}
2306
break;
2307
2308
case TCP_KEEPIDLE:
2309
if (val < 1 || val > MAX_TCP_KEEPIDLE)
2310
err = -EINVAL;
2311
else {
2312
tp->keepalive_time = val * HZ;
2313
if (sock_flag(sk, SOCK_KEEPOPEN) &&
2314
!((1 << sk->sk_state) &
2315
(TCPF_CLOSE | TCPF_LISTEN))) {
2316
u32 elapsed = keepalive_time_elapsed(tp);
2317
if (tp->keepalive_time > elapsed)
2318
elapsed = tp->keepalive_time - elapsed;
2319
else
2320
elapsed = 0;
2321
inet_csk_reset_keepalive_timer(sk, elapsed);
2322
}
2323
}
2324
break;
2325
case TCP_KEEPINTVL:
2326
if (val < 1 || val > MAX_TCP_KEEPINTVL)
2327
err = -EINVAL;
2328
else
2329
tp->keepalive_intvl = val * HZ;
2330
break;
2331
case TCP_KEEPCNT:
2332
if (val < 1 || val > MAX_TCP_KEEPCNT)
2333
err = -EINVAL;
2334
else
2335
tp->keepalive_probes = val;
2336
break;
2337
case TCP_SYNCNT:
2338
if (val < 1 || val > MAX_TCP_SYNCNT)
2339
err = -EINVAL;
2340
else
2341
icsk->icsk_syn_retries = val;
2342
break;
2343
2344
case TCP_LINGER2:
2345
if (val < 0)
2346
tp->linger2 = -1;
2347
else if (val > sysctl_tcp_fin_timeout / HZ)
2348
tp->linger2 = 0;
2349
else
2350
tp->linger2 = val * HZ;
2351
break;
2352
2353
case TCP_DEFER_ACCEPT:
2354
/* Translate value in seconds to number of retransmits */
2355
icsk->icsk_accept_queue.rskq_defer_accept =
2356
secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2357
TCP_RTO_MAX / HZ);
2358
break;
2359
2360
case TCP_WINDOW_CLAMP:
2361
if (!val) {
2362
if (sk->sk_state != TCP_CLOSE) {
2363
err = -EINVAL;
2364
break;
2365
}
2366
tp->window_clamp = 0;
2367
} else
2368
tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2369
SOCK_MIN_RCVBUF / 2 : val;
2370
break;
2371
2372
case TCP_QUICKACK:
2373
if (!val) {
2374
icsk->icsk_ack.pingpong = 1;
2375
} else {
2376
icsk->icsk_ack.pingpong = 0;
2377
if ((1 << sk->sk_state) &
2378
(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2379
inet_csk_ack_scheduled(sk)) {
2380
icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2381
tcp_cleanup_rbuf(sk, 1);
2382
if (!(val & 1))
2383
icsk->icsk_ack.pingpong = 1;
2384
}
2385
}
2386
break;
2387
2388
#ifdef CONFIG_TCP_MD5SIG
2389
case TCP_MD5SIG:
2390
/* Read the IP->Key mappings from userspace */
2391
err = tp->af_specific->md5_parse(sk, optval, optlen);
2392
break;
2393
#endif
2394
case TCP_USER_TIMEOUT:
2395
/* Cap the max timeout in ms TCP will retry/retrans
2396
* before giving up and aborting (ETIMEDOUT) a connection.
2397
*/
2398
icsk->icsk_user_timeout = msecs_to_jiffies(val);
2399
break;
2400
default:
2401
err = -ENOPROTOOPT;
2402
break;
2403
}
2404
2405
release_sock(sk);
2406
return err;
2407
}
2408
2409
int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2410
unsigned int optlen)
2411
{
2412
struct inet_connection_sock *icsk = inet_csk(sk);
2413
2414
if (level != SOL_TCP)
2415
return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2416
optval, optlen);
2417
return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2418
}
2419
EXPORT_SYMBOL(tcp_setsockopt);
2420
2421
#ifdef CONFIG_COMPAT
2422
int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2423
char __user *optval, unsigned int optlen)
2424
{
2425
if (level != SOL_TCP)
2426
return inet_csk_compat_setsockopt(sk, level, optname,
2427
optval, optlen);
2428
return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2429
}
2430
EXPORT_SYMBOL(compat_tcp_setsockopt);
2431
#endif
2432
2433
/* Return information about state of tcp endpoint in API format. */
2434
void tcp_get_info(struct sock *sk, struct tcp_info *info)
2435
{
2436
struct tcp_sock *tp = tcp_sk(sk);
2437
const struct inet_connection_sock *icsk = inet_csk(sk);
2438
u32 now = tcp_time_stamp;
2439
2440
memset(info, 0, sizeof(*info));
2441
2442
info->tcpi_state = sk->sk_state;
2443
info->tcpi_ca_state = icsk->icsk_ca_state;
2444
info->tcpi_retransmits = icsk->icsk_retransmits;
2445
info->tcpi_probes = icsk->icsk_probes_out;
2446
info->tcpi_backoff = icsk->icsk_backoff;
2447
2448
if (tp->rx_opt.tstamp_ok)
2449
info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2450
if (tcp_is_sack(tp))
2451
info->tcpi_options |= TCPI_OPT_SACK;
2452
if (tp->rx_opt.wscale_ok) {
2453
info->tcpi_options |= TCPI_OPT_WSCALE;
2454
info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2455
info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2456
}
2457
2458
if (tp->ecn_flags&TCP_ECN_OK)
2459
info->tcpi_options |= TCPI_OPT_ECN;
2460
2461
info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2462
info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2463
info->tcpi_snd_mss = tp->mss_cache;
2464
info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2465
2466
if (sk->sk_state == TCP_LISTEN) {
2467
info->tcpi_unacked = sk->sk_ack_backlog;
2468
info->tcpi_sacked = sk->sk_max_ack_backlog;
2469
} else {
2470
info->tcpi_unacked = tp->packets_out;
2471
info->tcpi_sacked = tp->sacked_out;
2472
}
2473
info->tcpi_lost = tp->lost_out;
2474
info->tcpi_retrans = tp->retrans_out;
2475
info->tcpi_fackets = tp->fackets_out;
2476
2477
info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2478
info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2479
info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2480
2481
info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2482
info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2483
info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2484
info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2485
info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2486
info->tcpi_snd_cwnd = tp->snd_cwnd;
2487
info->tcpi_advmss = tp->advmss;
2488
info->tcpi_reordering = tp->reordering;
2489
2490
info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2491
info->tcpi_rcv_space = tp->rcvq_space.space;
2492
2493
info->tcpi_total_retrans = tp->total_retrans;
2494
}
2495
EXPORT_SYMBOL_GPL(tcp_get_info);
2496
2497
static int do_tcp_getsockopt(struct sock *sk, int level,
2498
int optname, char __user *optval, int __user *optlen)
2499
{
2500
struct inet_connection_sock *icsk = inet_csk(sk);
2501
struct tcp_sock *tp = tcp_sk(sk);
2502
int val, len;
2503
2504
if (get_user(len, optlen))
2505
return -EFAULT;
2506
2507
len = min_t(unsigned int, len, sizeof(int));
2508
2509
if (len < 0)
2510
return -EINVAL;
2511
2512
switch (optname) {
2513
case TCP_MAXSEG:
2514
val = tp->mss_cache;
2515
if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2516
val = tp->rx_opt.user_mss;
2517
break;
2518
case TCP_NODELAY:
2519
val = !!(tp->nonagle&TCP_NAGLE_OFF);
2520
break;
2521
case TCP_CORK:
2522
val = !!(tp->nonagle&TCP_NAGLE_CORK);
2523
break;
2524
case TCP_KEEPIDLE:
2525
val = keepalive_time_when(tp) / HZ;
2526
break;
2527
case TCP_KEEPINTVL:
2528
val = keepalive_intvl_when(tp) / HZ;
2529
break;
2530
case TCP_KEEPCNT:
2531
val = keepalive_probes(tp);
2532
break;
2533
case TCP_SYNCNT:
2534
val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2535
break;
2536
case TCP_LINGER2:
2537
val = tp->linger2;
2538
if (val >= 0)
2539
val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2540
break;
2541
case TCP_DEFER_ACCEPT:
2542
val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2543
TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2544
break;
2545
case TCP_WINDOW_CLAMP:
2546
val = tp->window_clamp;
2547
break;
2548
case TCP_INFO: {
2549
struct tcp_info info;
2550
2551
if (get_user(len, optlen))
2552
return -EFAULT;
2553
2554
tcp_get_info(sk, &info);
2555
2556
len = min_t(unsigned int, len, sizeof(info));
2557
if (put_user(len, optlen))
2558
return -EFAULT;
2559
if (copy_to_user(optval, &info, len))
2560
return -EFAULT;
2561
return 0;
2562
}
2563
case TCP_QUICKACK:
2564
val = !icsk->icsk_ack.pingpong;
2565
break;
2566
2567
case TCP_CONGESTION:
2568
if (get_user(len, optlen))
2569
return -EFAULT;
2570
len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2571
if (put_user(len, optlen))
2572
return -EFAULT;
2573
if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2574
return -EFAULT;
2575
return 0;
2576
2577
case TCP_COOKIE_TRANSACTIONS: {
2578
struct tcp_cookie_transactions ctd;
2579
struct tcp_cookie_values *cvp = tp->cookie_values;
2580
2581
if (get_user(len, optlen))
2582
return -EFAULT;
2583
if (len < sizeof(ctd))
2584
return -EINVAL;
2585
2586
memset(&ctd, 0, sizeof(ctd));
2587
ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2588
TCP_COOKIE_IN_ALWAYS : 0)
2589
| (tp->rx_opt.cookie_out_never ?
2590
TCP_COOKIE_OUT_NEVER : 0);
2591
2592
if (cvp != NULL) {
2593
ctd.tcpct_flags |= (cvp->s_data_in ?
2594
TCP_S_DATA_IN : 0)
2595
| (cvp->s_data_out ?
2596
TCP_S_DATA_OUT : 0);
2597
2598
ctd.tcpct_cookie_desired = cvp->cookie_desired;
2599
ctd.tcpct_s_data_desired = cvp->s_data_desired;
2600
2601
memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2602
cvp->cookie_pair_size);
2603
ctd.tcpct_used = cvp->cookie_pair_size;
2604
}
2605
2606
if (put_user(sizeof(ctd), optlen))
2607
return -EFAULT;
2608
if (copy_to_user(optval, &ctd, sizeof(ctd)))
2609
return -EFAULT;
2610
return 0;
2611
}
2612
case TCP_THIN_LINEAR_TIMEOUTS:
2613
val = tp->thin_lto;
2614
break;
2615
case TCP_THIN_DUPACK:
2616
val = tp->thin_dupack;
2617
break;
2618
2619
case TCP_USER_TIMEOUT:
2620
val = jiffies_to_msecs(icsk->icsk_user_timeout);
2621
break;
2622
default:
2623
return -ENOPROTOOPT;
2624
}
2625
2626
if (put_user(len, optlen))
2627
return -EFAULT;
2628
if (copy_to_user(optval, &val, len))
2629
return -EFAULT;
2630
return 0;
2631
}
2632
2633
int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2634
int __user *optlen)
2635
{
2636
struct inet_connection_sock *icsk = inet_csk(sk);
2637
2638
if (level != SOL_TCP)
2639
return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2640
optval, optlen);
2641
return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2642
}
2643
EXPORT_SYMBOL(tcp_getsockopt);
2644
2645
#ifdef CONFIG_COMPAT
2646
int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2647
char __user *optval, int __user *optlen)
2648
{
2649
if (level != SOL_TCP)
2650
return inet_csk_compat_getsockopt(sk, level, optname,
2651
optval, optlen);
2652
return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2653
}
2654
EXPORT_SYMBOL(compat_tcp_getsockopt);
2655
#endif
2656
2657
struct sk_buff *tcp_tso_segment(struct sk_buff *skb, u32 features)
2658
{
2659
struct sk_buff *segs = ERR_PTR(-EINVAL);
2660
struct tcphdr *th;
2661
unsigned thlen;
2662
unsigned int seq;
2663
__be32 delta;
2664
unsigned int oldlen;
2665
unsigned int mss;
2666
2667
if (!pskb_may_pull(skb, sizeof(*th)))
2668
goto out;
2669
2670
th = tcp_hdr(skb);
2671
thlen = th->doff * 4;
2672
if (thlen < sizeof(*th))
2673
goto out;
2674
2675
if (!pskb_may_pull(skb, thlen))
2676
goto out;
2677
2678
oldlen = (u16)~skb->len;
2679
__skb_pull(skb, thlen);
2680
2681
mss = skb_shinfo(skb)->gso_size;
2682
if (unlikely(skb->len <= mss))
2683
goto out;
2684
2685
if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2686
/* Packet is from an untrusted source, reset gso_segs. */
2687
int type = skb_shinfo(skb)->gso_type;
2688
2689
if (unlikely(type &
2690
~(SKB_GSO_TCPV4 |
2691
SKB_GSO_DODGY |
2692
SKB_GSO_TCP_ECN |
2693
SKB_GSO_TCPV6 |
2694
0) ||
2695
!(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2696
goto out;
2697
2698
skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2699
2700
segs = NULL;
2701
goto out;
2702
}
2703
2704
segs = skb_segment(skb, features);
2705
if (IS_ERR(segs))
2706
goto out;
2707
2708
delta = htonl(oldlen + (thlen + mss));
2709
2710
skb = segs;
2711
th = tcp_hdr(skb);
2712
seq = ntohl(th->seq);
2713
2714
do {
2715
th->fin = th->psh = 0;
2716
2717
th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2718
(__force u32)delta));
2719
if (skb->ip_summed != CHECKSUM_PARTIAL)
2720
th->check =
2721
csum_fold(csum_partial(skb_transport_header(skb),
2722
thlen, skb->csum));
2723
2724
seq += mss;
2725
skb = skb->next;
2726
th = tcp_hdr(skb);
2727
2728
th->seq = htonl(seq);
2729
th->cwr = 0;
2730
} while (skb->next);
2731
2732
delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2733
skb->data_len);
2734
th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2735
(__force u32)delta));
2736
if (skb->ip_summed != CHECKSUM_PARTIAL)
2737
th->check = csum_fold(csum_partial(skb_transport_header(skb),
2738
thlen, skb->csum));
2739
2740
out:
2741
return segs;
2742
}
2743
EXPORT_SYMBOL(tcp_tso_segment);
2744
2745
struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2746
{
2747
struct sk_buff **pp = NULL;
2748
struct sk_buff *p;
2749
struct tcphdr *th;
2750
struct tcphdr *th2;
2751
unsigned int len;
2752
unsigned int thlen;
2753
__be32 flags;
2754
unsigned int mss = 1;
2755
unsigned int hlen;
2756
unsigned int off;
2757
int flush = 1;
2758
int i;
2759
2760
off = skb_gro_offset(skb);
2761
hlen = off + sizeof(*th);
2762
th = skb_gro_header_fast(skb, off);
2763
if (skb_gro_header_hard(skb, hlen)) {
2764
th = skb_gro_header_slow(skb, hlen, off);
2765
if (unlikely(!th))
2766
goto out;
2767
}
2768
2769
thlen = th->doff * 4;
2770
if (thlen < sizeof(*th))
2771
goto out;
2772
2773
hlen = off + thlen;
2774
if (skb_gro_header_hard(skb, hlen)) {
2775
th = skb_gro_header_slow(skb, hlen, off);
2776
if (unlikely(!th))
2777
goto out;
2778
}
2779
2780
skb_gro_pull(skb, thlen);
2781
2782
len = skb_gro_len(skb);
2783
flags = tcp_flag_word(th);
2784
2785
for (; (p = *head); head = &p->next) {
2786
if (!NAPI_GRO_CB(p)->same_flow)
2787
continue;
2788
2789
th2 = tcp_hdr(p);
2790
2791
if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
2792
NAPI_GRO_CB(p)->same_flow = 0;
2793
continue;
2794
}
2795
2796
goto found;
2797
}
2798
2799
goto out_check_final;
2800
2801
found:
2802
flush = NAPI_GRO_CB(p)->flush;
2803
flush |= (__force int)(flags & TCP_FLAG_CWR);
2804
flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
2805
~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
2806
flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
2807
for (i = sizeof(*th); i < thlen; i += 4)
2808
flush |= *(u32 *)((u8 *)th + i) ^
2809
*(u32 *)((u8 *)th2 + i);
2810
2811
mss = skb_shinfo(p)->gso_size;
2812
2813
flush |= (len - 1) >= mss;
2814
flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
2815
2816
if (flush || skb_gro_receive(head, skb)) {
2817
mss = 1;
2818
goto out_check_final;
2819
}
2820
2821
p = *head;
2822
th2 = tcp_hdr(p);
2823
tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
2824
2825
out_check_final:
2826
flush = len < mss;
2827
flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
2828
TCP_FLAG_RST | TCP_FLAG_SYN |
2829
TCP_FLAG_FIN));
2830
2831
if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
2832
pp = head;
2833
2834
out:
2835
NAPI_GRO_CB(skb)->flush |= flush;
2836
2837
return pp;
2838
}
2839
EXPORT_SYMBOL(tcp_gro_receive);
2840
2841
int tcp_gro_complete(struct sk_buff *skb)
2842
{
2843
struct tcphdr *th = tcp_hdr(skb);
2844
2845
skb->csum_start = skb_transport_header(skb) - skb->head;
2846
skb->csum_offset = offsetof(struct tcphdr, check);
2847
skb->ip_summed = CHECKSUM_PARTIAL;
2848
2849
skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2850
2851
if (th->cwr)
2852
skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2853
2854
return 0;
2855
}
2856
EXPORT_SYMBOL(tcp_gro_complete);
2857
2858
#ifdef CONFIG_TCP_MD5SIG
2859
static unsigned long tcp_md5sig_users;
2860
static struct tcp_md5sig_pool * __percpu *tcp_md5sig_pool;
2861
static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2862
2863
static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool * __percpu *pool)
2864
{
2865
int cpu;
2866
for_each_possible_cpu(cpu) {
2867
struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu);
2868
if (p) {
2869
if (p->md5_desc.tfm)
2870
crypto_free_hash(p->md5_desc.tfm);
2871
kfree(p);
2872
}
2873
}
2874
free_percpu(pool);
2875
}
2876
2877
void tcp_free_md5sig_pool(void)
2878
{
2879
struct tcp_md5sig_pool * __percpu *pool = NULL;
2880
2881
spin_lock_bh(&tcp_md5sig_pool_lock);
2882
if (--tcp_md5sig_users == 0) {
2883
pool = tcp_md5sig_pool;
2884
tcp_md5sig_pool = NULL;
2885
}
2886
spin_unlock_bh(&tcp_md5sig_pool_lock);
2887
if (pool)
2888
__tcp_free_md5sig_pool(pool);
2889
}
2890
EXPORT_SYMBOL(tcp_free_md5sig_pool);
2891
2892
static struct tcp_md5sig_pool * __percpu *
2893
__tcp_alloc_md5sig_pool(struct sock *sk)
2894
{
2895
int cpu;
2896
struct tcp_md5sig_pool * __percpu *pool;
2897
2898
pool = alloc_percpu(struct tcp_md5sig_pool *);
2899
if (!pool)
2900
return NULL;
2901
2902
for_each_possible_cpu(cpu) {
2903
struct tcp_md5sig_pool *p;
2904
struct crypto_hash *hash;
2905
2906
p = kzalloc(sizeof(*p), sk->sk_allocation);
2907
if (!p)
2908
goto out_free;
2909
*per_cpu_ptr(pool, cpu) = p;
2910
2911
hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2912
if (!hash || IS_ERR(hash))
2913
goto out_free;
2914
2915
p->md5_desc.tfm = hash;
2916
}
2917
return pool;
2918
out_free:
2919
__tcp_free_md5sig_pool(pool);
2920
return NULL;
2921
}
2922
2923
struct tcp_md5sig_pool * __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
2924
{
2925
struct tcp_md5sig_pool * __percpu *pool;
2926
int alloc = 0;
2927
2928
retry:
2929
spin_lock_bh(&tcp_md5sig_pool_lock);
2930
pool = tcp_md5sig_pool;
2931
if (tcp_md5sig_users++ == 0) {
2932
alloc = 1;
2933
spin_unlock_bh(&tcp_md5sig_pool_lock);
2934
} else if (!pool) {
2935
tcp_md5sig_users--;
2936
spin_unlock_bh(&tcp_md5sig_pool_lock);
2937
cpu_relax();
2938
goto retry;
2939
} else
2940
spin_unlock_bh(&tcp_md5sig_pool_lock);
2941
2942
if (alloc) {
2943
/* we cannot hold spinlock here because this may sleep. */
2944
struct tcp_md5sig_pool * __percpu *p;
2945
2946
p = __tcp_alloc_md5sig_pool(sk);
2947
spin_lock_bh(&tcp_md5sig_pool_lock);
2948
if (!p) {
2949
tcp_md5sig_users--;
2950
spin_unlock_bh(&tcp_md5sig_pool_lock);
2951
return NULL;
2952
}
2953
pool = tcp_md5sig_pool;
2954
if (pool) {
2955
/* oops, it has already been assigned. */
2956
spin_unlock_bh(&tcp_md5sig_pool_lock);
2957
__tcp_free_md5sig_pool(p);
2958
} else {
2959
tcp_md5sig_pool = pool = p;
2960
spin_unlock_bh(&tcp_md5sig_pool_lock);
2961
}
2962
}
2963
return pool;
2964
}
2965
EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2966
2967
2968
/**
2969
* tcp_get_md5sig_pool - get md5sig_pool for this user
2970
*
2971
* We use percpu structure, so if we succeed, we exit with preemption
2972
* and BH disabled, to make sure another thread or softirq handling
2973
* wont try to get same context.
2974
*/
2975
struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2976
{
2977
struct tcp_md5sig_pool * __percpu *p;
2978
2979
local_bh_disable();
2980
2981
spin_lock(&tcp_md5sig_pool_lock);
2982
p = tcp_md5sig_pool;
2983
if (p)
2984
tcp_md5sig_users++;
2985
spin_unlock(&tcp_md5sig_pool_lock);
2986
2987
if (p)
2988
return *this_cpu_ptr(p);
2989
2990
local_bh_enable();
2991
return NULL;
2992
}
2993
EXPORT_SYMBOL(tcp_get_md5sig_pool);
2994
2995
void tcp_put_md5sig_pool(void)
2996
{
2997
local_bh_enable();
2998
tcp_free_md5sig_pool();
2999
}
3000
EXPORT_SYMBOL(tcp_put_md5sig_pool);
3001
3002
int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3003
struct tcphdr *th)
3004
{
3005
struct scatterlist sg;
3006
int err;
3007
3008
__sum16 old_checksum = th->check;
3009
th->check = 0;
3010
/* options aren't included in the hash */
3011
sg_init_one(&sg, th, sizeof(struct tcphdr));
3012
err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(struct tcphdr));
3013
th->check = old_checksum;
3014
return err;
3015
}
3016
EXPORT_SYMBOL(tcp_md5_hash_header);
3017
3018
int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3019
struct sk_buff *skb, unsigned header_len)
3020
{
3021
struct scatterlist sg;
3022
const struct tcphdr *tp = tcp_hdr(skb);
3023
struct hash_desc *desc = &hp->md5_desc;
3024
unsigned i;
3025
const unsigned head_data_len = skb_headlen(skb) > header_len ?
3026
skb_headlen(skb) - header_len : 0;
3027
const struct skb_shared_info *shi = skb_shinfo(skb);
3028
struct sk_buff *frag_iter;
3029
3030
sg_init_table(&sg, 1);
3031
3032
sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3033
if (crypto_hash_update(desc, &sg, head_data_len))
3034
return 1;
3035
3036
for (i = 0; i < shi->nr_frags; ++i) {
3037
const struct skb_frag_struct *f = &shi->frags[i];
3038
sg_set_page(&sg, f->page, f->size, f->page_offset);
3039
if (crypto_hash_update(desc, &sg, f->size))
3040
return 1;
3041
}
3042
3043
skb_walk_frags(skb, frag_iter)
3044
if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3045
return 1;
3046
3047
return 0;
3048
}
3049
EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3050
3051
int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, struct tcp_md5sig_key *key)
3052
{
3053
struct scatterlist sg;
3054
3055
sg_init_one(&sg, key->key, key->keylen);
3056
return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3057
}
3058
EXPORT_SYMBOL(tcp_md5_hash_key);
3059
3060
#endif
3061
3062
/**
3063
* Each Responder maintains up to two secret values concurrently for
3064
* efficient secret rollover. Each secret value has 4 states:
3065
*
3066
* Generating. (tcp_secret_generating != tcp_secret_primary)
3067
* Generates new Responder-Cookies, but not yet used for primary
3068
* verification. This is a short-term state, typically lasting only
3069
* one round trip time (RTT).
3070
*
3071
* Primary. (tcp_secret_generating == tcp_secret_primary)
3072
* Used both for generation and primary verification.
3073
*
3074
* Retiring. (tcp_secret_retiring != tcp_secret_secondary)
3075
* Used for verification, until the first failure that can be
3076
* verified by the newer Generating secret. At that time, this
3077
* cookie's state is changed to Secondary, and the Generating
3078
* cookie's state is changed to Primary. This is a short-term state,
3079
* typically lasting only one round trip time (RTT).
3080
*
3081
* Secondary. (tcp_secret_retiring == tcp_secret_secondary)
3082
* Used for secondary verification, after primary verification
3083
* failures. This state lasts no more than twice the Maximum Segment
3084
* Lifetime (2MSL). Then, the secret is discarded.
3085
*/
3086
struct tcp_cookie_secret {
3087
/* The secret is divided into two parts. The digest part is the
3088
* equivalent of previously hashing a secret and saving the state,
3089
* and serves as an initialization vector (IV). The message part
3090
* serves as the trailing secret.
3091
*/
3092
u32 secrets[COOKIE_WORKSPACE_WORDS];
3093
unsigned long expires;
3094
};
3095
3096
#define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3097
#define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3098
#define TCP_SECRET_LIFE (HZ * 600)
3099
3100
static struct tcp_cookie_secret tcp_secret_one;
3101
static struct tcp_cookie_secret tcp_secret_two;
3102
3103
/* Essentially a circular list, without dynamic allocation. */
3104
static struct tcp_cookie_secret *tcp_secret_generating;
3105
static struct tcp_cookie_secret *tcp_secret_primary;
3106
static struct tcp_cookie_secret *tcp_secret_retiring;
3107
static struct tcp_cookie_secret *tcp_secret_secondary;
3108
3109
static DEFINE_SPINLOCK(tcp_secret_locker);
3110
3111
/* Select a pseudo-random word in the cookie workspace.
3112
*/
3113
static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3114
{
3115
return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3116
}
3117
3118
/* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3119
* Called in softirq context.
3120
* Returns: 0 for success.
3121
*/
3122
int tcp_cookie_generator(u32 *bakery)
3123
{
3124
unsigned long jiffy = jiffies;
3125
3126
if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3127
spin_lock_bh(&tcp_secret_locker);
3128
if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3129
/* refreshed by another */
3130
memcpy(bakery,
3131
&tcp_secret_generating->secrets[0],
3132
COOKIE_WORKSPACE_WORDS);
3133
} else {
3134
/* still needs refreshing */
3135
get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3136
3137
/* The first time, paranoia assumes that the
3138
* randomization function isn't as strong. But,
3139
* this secret initialization is delayed until
3140
* the last possible moment (packet arrival).
3141
* Although that time is observable, it is
3142
* unpredictably variable. Mash in the most
3143
* volatile clock bits available, and expire the
3144
* secret extra quickly.
3145
*/
3146
if (unlikely(tcp_secret_primary->expires ==
3147
tcp_secret_secondary->expires)) {
3148
struct timespec tv;
3149
3150
getnstimeofday(&tv);
3151
bakery[COOKIE_DIGEST_WORDS+0] ^=
3152
(u32)tv.tv_nsec;
3153
3154
tcp_secret_secondary->expires = jiffy
3155
+ TCP_SECRET_1MSL
3156
+ (0x0f & tcp_cookie_work(bakery, 0));
3157
} else {
3158
tcp_secret_secondary->expires = jiffy
3159
+ TCP_SECRET_LIFE
3160
+ (0xff & tcp_cookie_work(bakery, 1));
3161
tcp_secret_primary->expires = jiffy
3162
+ TCP_SECRET_2MSL
3163
+ (0x1f & tcp_cookie_work(bakery, 2));
3164
}
3165
memcpy(&tcp_secret_secondary->secrets[0],
3166
bakery, COOKIE_WORKSPACE_WORDS);
3167
3168
rcu_assign_pointer(tcp_secret_generating,
3169
tcp_secret_secondary);
3170
rcu_assign_pointer(tcp_secret_retiring,
3171
tcp_secret_primary);
3172
/*
3173
* Neither call_rcu() nor synchronize_rcu() needed.
3174
* Retiring data is not freed. It is replaced after
3175
* further (locked) pointer updates, and a quiet time
3176
* (minimum 1MSL, maximum LIFE - 2MSL).
3177
*/
3178
}
3179
spin_unlock_bh(&tcp_secret_locker);
3180
} else {
3181
rcu_read_lock_bh();
3182
memcpy(bakery,
3183
&rcu_dereference(tcp_secret_generating)->secrets[0],
3184
COOKIE_WORKSPACE_WORDS);
3185
rcu_read_unlock_bh();
3186
}
3187
return 0;
3188
}
3189
EXPORT_SYMBOL(tcp_cookie_generator);
3190
3191
void tcp_done(struct sock *sk)
3192
{
3193
if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3194
TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3195
3196
tcp_set_state(sk, TCP_CLOSE);
3197
tcp_clear_xmit_timers(sk);
3198
3199
sk->sk_shutdown = SHUTDOWN_MASK;
3200
3201
if (!sock_flag(sk, SOCK_DEAD))
3202
sk->sk_state_change(sk);
3203
else
3204
inet_csk_destroy_sock(sk);
3205
}
3206
EXPORT_SYMBOL_GPL(tcp_done);
3207
3208
extern struct tcp_congestion_ops tcp_reno;
3209
3210
static __initdata unsigned long thash_entries;
3211
static int __init set_thash_entries(char *str)
3212
{
3213
if (!str)
3214
return 0;
3215
thash_entries = simple_strtoul(str, &str, 0);
3216
return 1;
3217
}
3218
__setup("thash_entries=", set_thash_entries);
3219
3220
void __init tcp_init(void)
3221
{
3222
struct sk_buff *skb = NULL;
3223
unsigned long limit;
3224
int i, max_share, cnt;
3225
unsigned long jiffy = jiffies;
3226
3227
BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3228
3229
percpu_counter_init(&tcp_sockets_allocated, 0);
3230
percpu_counter_init(&tcp_orphan_count, 0);
3231
tcp_hashinfo.bind_bucket_cachep =
3232
kmem_cache_create("tcp_bind_bucket",
3233
sizeof(struct inet_bind_bucket), 0,
3234
SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3235
3236
/* Size and allocate the main established and bind bucket
3237
* hash tables.
3238
*
3239
* The methodology is similar to that of the buffer cache.
3240
*/
3241
tcp_hashinfo.ehash =
3242
alloc_large_system_hash("TCP established",
3243
sizeof(struct inet_ehash_bucket),
3244
thash_entries,
3245
(totalram_pages >= 128 * 1024) ?
3246
13 : 15,
3247
0,
3248
NULL,
3249
&tcp_hashinfo.ehash_mask,
3250
thash_entries ? 0 : 512 * 1024);
3251
for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3252
INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3253
INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3254
}
3255
if (inet_ehash_locks_alloc(&tcp_hashinfo))
3256
panic("TCP: failed to alloc ehash_locks");
3257
tcp_hashinfo.bhash =
3258
alloc_large_system_hash("TCP bind",
3259
sizeof(struct inet_bind_hashbucket),
3260
tcp_hashinfo.ehash_mask + 1,
3261
(totalram_pages >= 128 * 1024) ?
3262
13 : 15,
3263
0,
3264
&tcp_hashinfo.bhash_size,
3265
NULL,
3266
64 * 1024);
3267
tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
3268
for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3269
spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3270
INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3271
}
3272
3273
3274
cnt = tcp_hashinfo.ehash_mask + 1;
3275
3276
tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3277
sysctl_tcp_max_orphans = cnt / 2;
3278
sysctl_max_syn_backlog = max(128, cnt / 256);
3279
3280
limit = nr_free_buffer_pages() / 8;
3281
limit = max(limit, 128UL);
3282
sysctl_tcp_mem[0] = limit / 4 * 3;
3283
sysctl_tcp_mem[1] = limit;
3284
sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
3285
3286
/* Set per-socket limits to no more than 1/128 the pressure threshold */
3287
limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7);
3288
max_share = min(4UL*1024*1024, limit);
3289
3290
sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3291
sysctl_tcp_wmem[1] = 16*1024;
3292
sysctl_tcp_wmem[2] = max(64*1024, max_share);
3293
3294
sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3295
sysctl_tcp_rmem[1] = 87380;
3296
sysctl_tcp_rmem[2] = max(87380, max_share);
3297
3298
printk(KERN_INFO "TCP: Hash tables configured "
3299
"(established %u bind %u)\n",
3300
tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3301
3302
tcp_register_congestion_control(&tcp_reno);
3303
3304
memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3305
memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3306
tcp_secret_one.expires = jiffy; /* past due */
3307
tcp_secret_two.expires = jiffy; /* past due */
3308
tcp_secret_generating = &tcp_secret_one;
3309
tcp_secret_primary = &tcp_secret_one;
3310
tcp_secret_retiring = &tcp_secret_two;
3311
tcp_secret_secondary = &tcp_secret_two;
3312
}
3313
3314