Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/net/ipv4/tcp_cubic.c
15109 views
1
/*
2
* TCP CUBIC: Binary Increase Congestion control for TCP v2.3
3
* Home page:
4
* http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC
5
* This is from the implementation of CUBIC TCP in
6
* Sangtae Ha, Injong Rhee and Lisong Xu,
7
* "CUBIC: A New TCP-Friendly High-Speed TCP Variant"
8
* in ACM SIGOPS Operating System Review, July 2008.
9
* Available from:
10
* http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf
11
*
12
* CUBIC integrates a new slow start algorithm, called HyStart.
13
* The details of HyStart are presented in
14
* Sangtae Ha and Injong Rhee,
15
* "Taming the Elephants: New TCP Slow Start", NCSU TechReport 2008.
16
* Available from:
17
* http://netsrv.csc.ncsu.edu/export/hystart_techreport_2008.pdf
18
*
19
* All testing results are available from:
20
* http://netsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing
21
*
22
* Unless CUBIC is enabled and congestion window is large
23
* this behaves the same as the original Reno.
24
*/
25
26
#include <linux/mm.h>
27
#include <linux/module.h>
28
#include <linux/math64.h>
29
#include <net/tcp.h>
30
31
#define BICTCP_BETA_SCALE 1024 /* Scale factor beta calculation
32
* max_cwnd = snd_cwnd * beta
33
*/
34
#define BICTCP_HZ 10 /* BIC HZ 2^10 = 1024 */
35
36
/* Two methods of hybrid slow start */
37
#define HYSTART_ACK_TRAIN 0x1
38
#define HYSTART_DELAY 0x2
39
40
/* Number of delay samples for detecting the increase of delay */
41
#define HYSTART_MIN_SAMPLES 8
42
#define HYSTART_DELAY_MIN (4U<<3)
43
#define HYSTART_DELAY_MAX (16U<<3)
44
#define HYSTART_DELAY_THRESH(x) clamp(x, HYSTART_DELAY_MIN, HYSTART_DELAY_MAX)
45
46
static int fast_convergence __read_mostly = 1;
47
static int beta __read_mostly = 717; /* = 717/1024 (BICTCP_BETA_SCALE) */
48
static int initial_ssthresh __read_mostly;
49
static int bic_scale __read_mostly = 41;
50
static int tcp_friendliness __read_mostly = 1;
51
52
static int hystart __read_mostly = 1;
53
static int hystart_detect __read_mostly = HYSTART_ACK_TRAIN | HYSTART_DELAY;
54
static int hystart_low_window __read_mostly = 16;
55
static int hystart_ack_delta __read_mostly = 2;
56
57
static u32 cube_rtt_scale __read_mostly;
58
static u32 beta_scale __read_mostly;
59
static u64 cube_factor __read_mostly;
60
61
/* Note parameters that are used for precomputing scale factors are read-only */
62
module_param(fast_convergence, int, 0644);
63
MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");
64
module_param(beta, int, 0644);
65
MODULE_PARM_DESC(beta, "beta for multiplicative increase");
66
module_param(initial_ssthresh, int, 0644);
67
MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");
68
module_param(bic_scale, int, 0444);
69
MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
70
module_param(tcp_friendliness, int, 0644);
71
MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");
72
module_param(hystart, int, 0644);
73
MODULE_PARM_DESC(hystart, "turn on/off hybrid slow start algorithm");
74
module_param(hystart_detect, int, 0644);
75
MODULE_PARM_DESC(hystart_detect, "hyrbrid slow start detection mechanisms"
76
" 1: packet-train 2: delay 3: both packet-train and delay");
77
module_param(hystart_low_window, int, 0644);
78
MODULE_PARM_DESC(hystart_low_window, "lower bound cwnd for hybrid slow start");
79
module_param(hystart_ack_delta, int, 0644);
80
MODULE_PARM_DESC(hystart_ack_delta, "spacing between ack's indicating train (msecs)");
81
82
/* BIC TCP Parameters */
83
struct bictcp {
84
u32 cnt; /* increase cwnd by 1 after ACKs */
85
u32 last_max_cwnd; /* last maximum snd_cwnd */
86
u32 loss_cwnd; /* congestion window at last loss */
87
u32 last_cwnd; /* the last snd_cwnd */
88
u32 last_time; /* time when updated last_cwnd */
89
u32 bic_origin_point;/* origin point of bic function */
90
u32 bic_K; /* time to origin point from the beginning of the current epoch */
91
u32 delay_min; /* min delay (msec << 3) */
92
u32 epoch_start; /* beginning of an epoch */
93
u32 ack_cnt; /* number of acks */
94
u32 tcp_cwnd; /* estimated tcp cwnd */
95
#define ACK_RATIO_SHIFT 4
96
#define ACK_RATIO_LIMIT (32u << ACK_RATIO_SHIFT)
97
u16 delayed_ack; /* estimate the ratio of Packets/ACKs << 4 */
98
u8 sample_cnt; /* number of samples to decide curr_rtt */
99
u8 found; /* the exit point is found? */
100
u32 round_start; /* beginning of each round */
101
u32 end_seq; /* end_seq of the round */
102
u32 last_ack; /* last time when the ACK spacing is close */
103
u32 curr_rtt; /* the minimum rtt of current round */
104
};
105
106
static inline void bictcp_reset(struct bictcp *ca)
107
{
108
ca->cnt = 0;
109
ca->last_max_cwnd = 0;
110
ca->loss_cwnd = 0;
111
ca->last_cwnd = 0;
112
ca->last_time = 0;
113
ca->bic_origin_point = 0;
114
ca->bic_K = 0;
115
ca->delay_min = 0;
116
ca->epoch_start = 0;
117
ca->delayed_ack = 2 << ACK_RATIO_SHIFT;
118
ca->ack_cnt = 0;
119
ca->tcp_cwnd = 0;
120
ca->found = 0;
121
}
122
123
static inline u32 bictcp_clock(void)
124
{
125
#if HZ < 1000
126
return ktime_to_ms(ktime_get_real());
127
#else
128
return jiffies_to_msecs(jiffies);
129
#endif
130
}
131
132
static inline void bictcp_hystart_reset(struct sock *sk)
133
{
134
struct tcp_sock *tp = tcp_sk(sk);
135
struct bictcp *ca = inet_csk_ca(sk);
136
137
ca->round_start = ca->last_ack = bictcp_clock();
138
ca->end_seq = tp->snd_nxt;
139
ca->curr_rtt = 0;
140
ca->sample_cnt = 0;
141
}
142
143
static void bictcp_init(struct sock *sk)
144
{
145
bictcp_reset(inet_csk_ca(sk));
146
147
if (hystart)
148
bictcp_hystart_reset(sk);
149
150
if (!hystart && initial_ssthresh)
151
tcp_sk(sk)->snd_ssthresh = initial_ssthresh;
152
}
153
154
/* calculate the cubic root of x using a table lookup followed by one
155
* Newton-Raphson iteration.
156
* Avg err ~= 0.195%
157
*/
158
static u32 cubic_root(u64 a)
159
{
160
u32 x, b, shift;
161
/*
162
* cbrt(x) MSB values for x MSB values in [0..63].
163
* Precomputed then refined by hand - Willy Tarreau
164
*
165
* For x in [0..63],
166
* v = cbrt(x << 18) - 1
167
* cbrt(x) = (v[x] + 10) >> 6
168
*/
169
static const u8 v[] = {
170
/* 0x00 */ 0, 54, 54, 54, 118, 118, 118, 118,
171
/* 0x08 */ 123, 129, 134, 138, 143, 147, 151, 156,
172
/* 0x10 */ 157, 161, 164, 168, 170, 173, 176, 179,
173
/* 0x18 */ 181, 185, 187, 190, 192, 194, 197, 199,
174
/* 0x20 */ 200, 202, 204, 206, 209, 211, 213, 215,
175
/* 0x28 */ 217, 219, 221, 222, 224, 225, 227, 229,
176
/* 0x30 */ 231, 232, 234, 236, 237, 239, 240, 242,
177
/* 0x38 */ 244, 245, 246, 248, 250, 251, 252, 254,
178
};
179
180
b = fls64(a);
181
if (b < 7) {
182
/* a in [0..63] */
183
return ((u32)v[(u32)a] + 35) >> 6;
184
}
185
186
b = ((b * 84) >> 8) - 1;
187
shift = (a >> (b * 3));
188
189
x = ((u32)(((u32)v[shift] + 10) << b)) >> 6;
190
191
/*
192
* Newton-Raphson iteration
193
* 2
194
* x = ( 2 * x + a / x ) / 3
195
* k+1 k k
196
*/
197
x = (2 * x + (u32)div64_u64(a, (u64)x * (u64)(x - 1)));
198
x = ((x * 341) >> 10);
199
return x;
200
}
201
202
/*
203
* Compute congestion window to use.
204
*/
205
static inline void bictcp_update(struct bictcp *ca, u32 cwnd)
206
{
207
u64 offs;
208
u32 delta, t, bic_target, max_cnt;
209
210
ca->ack_cnt++; /* count the number of ACKs */
211
212
if (ca->last_cwnd == cwnd &&
213
(s32)(tcp_time_stamp - ca->last_time) <= HZ / 32)
214
return;
215
216
ca->last_cwnd = cwnd;
217
ca->last_time = tcp_time_stamp;
218
219
if (ca->epoch_start == 0) {
220
ca->epoch_start = tcp_time_stamp; /* record the beginning of an epoch */
221
ca->ack_cnt = 1; /* start counting */
222
ca->tcp_cwnd = cwnd; /* syn with cubic */
223
224
if (ca->last_max_cwnd <= cwnd) {
225
ca->bic_K = 0;
226
ca->bic_origin_point = cwnd;
227
} else {
228
/* Compute new K based on
229
* (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
230
*/
231
ca->bic_K = cubic_root(cube_factor
232
* (ca->last_max_cwnd - cwnd));
233
ca->bic_origin_point = ca->last_max_cwnd;
234
}
235
}
236
237
/* cubic function - calc*/
238
/* calculate c * time^3 / rtt,
239
* while considering overflow in calculation of time^3
240
* (so time^3 is done by using 64 bit)
241
* and without the support of division of 64bit numbers
242
* (so all divisions are done by using 32 bit)
243
* also NOTE the unit of those veriables
244
* time = (t - K) / 2^bictcp_HZ
245
* c = bic_scale >> 10
246
* rtt = (srtt >> 3) / HZ
247
* !!! The following code does not have overflow problems,
248
* if the cwnd < 1 million packets !!!
249
*/
250
251
/* change the unit from HZ to bictcp_HZ */
252
t = ((tcp_time_stamp + msecs_to_jiffies(ca->delay_min>>3)
253
- ca->epoch_start) << BICTCP_HZ) / HZ;
254
255
if (t < ca->bic_K) /* t - K */
256
offs = ca->bic_K - t;
257
else
258
offs = t - ca->bic_K;
259
260
/* c/rtt * (t-K)^3 */
261
delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ);
262
if (t < ca->bic_K) /* below origin*/
263
bic_target = ca->bic_origin_point - delta;
264
else /* above origin*/
265
bic_target = ca->bic_origin_point + delta;
266
267
/* cubic function - calc bictcp_cnt*/
268
if (bic_target > cwnd) {
269
ca->cnt = cwnd / (bic_target - cwnd);
270
} else {
271
ca->cnt = 100 * cwnd; /* very small increment*/
272
}
273
274
/*
275
* The initial growth of cubic function may be too conservative
276
* when the available bandwidth is still unknown.
277
*/
278
if (ca->loss_cwnd == 0 && ca->cnt > 20)
279
ca->cnt = 20; /* increase cwnd 5% per RTT */
280
281
/* TCP Friendly */
282
if (tcp_friendliness) {
283
u32 scale = beta_scale;
284
delta = (cwnd * scale) >> 3;
285
while (ca->ack_cnt > delta) { /* update tcp cwnd */
286
ca->ack_cnt -= delta;
287
ca->tcp_cwnd++;
288
}
289
290
if (ca->tcp_cwnd > cwnd){ /* if bic is slower than tcp */
291
delta = ca->tcp_cwnd - cwnd;
292
max_cnt = cwnd / delta;
293
if (ca->cnt > max_cnt)
294
ca->cnt = max_cnt;
295
}
296
}
297
298
ca->cnt = (ca->cnt << ACK_RATIO_SHIFT) / ca->delayed_ack;
299
if (ca->cnt == 0) /* cannot be zero */
300
ca->cnt = 1;
301
}
302
303
static void bictcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
304
{
305
struct tcp_sock *tp = tcp_sk(sk);
306
struct bictcp *ca = inet_csk_ca(sk);
307
308
if (!tcp_is_cwnd_limited(sk, in_flight))
309
return;
310
311
if (tp->snd_cwnd <= tp->snd_ssthresh) {
312
if (hystart && after(ack, ca->end_seq))
313
bictcp_hystart_reset(sk);
314
tcp_slow_start(tp);
315
} else {
316
bictcp_update(ca, tp->snd_cwnd);
317
tcp_cong_avoid_ai(tp, ca->cnt);
318
}
319
320
}
321
322
static u32 bictcp_recalc_ssthresh(struct sock *sk)
323
{
324
const struct tcp_sock *tp = tcp_sk(sk);
325
struct bictcp *ca = inet_csk_ca(sk);
326
327
ca->epoch_start = 0; /* end of epoch */
328
329
/* Wmax and fast convergence */
330
if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence)
331
ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta))
332
/ (2 * BICTCP_BETA_SCALE);
333
else
334
ca->last_max_cwnd = tp->snd_cwnd;
335
336
ca->loss_cwnd = tp->snd_cwnd;
337
338
return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U);
339
}
340
341
static u32 bictcp_undo_cwnd(struct sock *sk)
342
{
343
struct bictcp *ca = inet_csk_ca(sk);
344
345
return max(tcp_sk(sk)->snd_cwnd, ca->last_max_cwnd);
346
}
347
348
static void bictcp_state(struct sock *sk, u8 new_state)
349
{
350
if (new_state == TCP_CA_Loss) {
351
bictcp_reset(inet_csk_ca(sk));
352
bictcp_hystart_reset(sk);
353
}
354
}
355
356
static void hystart_update(struct sock *sk, u32 delay)
357
{
358
struct tcp_sock *tp = tcp_sk(sk);
359
struct bictcp *ca = inet_csk_ca(sk);
360
361
if (!(ca->found & hystart_detect)) {
362
u32 now = bictcp_clock();
363
364
/* first detection parameter - ack-train detection */
365
if ((s32)(now - ca->last_ack) <= hystart_ack_delta) {
366
ca->last_ack = now;
367
if ((s32)(now - ca->round_start) > ca->delay_min >> 4)
368
ca->found |= HYSTART_ACK_TRAIN;
369
}
370
371
/* obtain the minimum delay of more than sampling packets */
372
if (ca->sample_cnt < HYSTART_MIN_SAMPLES) {
373
if (ca->curr_rtt == 0 || ca->curr_rtt > delay)
374
ca->curr_rtt = delay;
375
376
ca->sample_cnt++;
377
} else {
378
if (ca->curr_rtt > ca->delay_min +
379
HYSTART_DELAY_THRESH(ca->delay_min>>4))
380
ca->found |= HYSTART_DELAY;
381
}
382
/*
383
* Either one of two conditions are met,
384
* we exit from slow start immediately.
385
*/
386
if (ca->found & hystart_detect)
387
tp->snd_ssthresh = tp->snd_cwnd;
388
}
389
}
390
391
/* Track delayed acknowledgment ratio using sliding window
392
* ratio = (15*ratio + sample) / 16
393
*/
394
static void bictcp_acked(struct sock *sk, u32 cnt, s32 rtt_us)
395
{
396
const struct inet_connection_sock *icsk = inet_csk(sk);
397
const struct tcp_sock *tp = tcp_sk(sk);
398
struct bictcp *ca = inet_csk_ca(sk);
399
u32 delay;
400
401
if (icsk->icsk_ca_state == TCP_CA_Open) {
402
u32 ratio = ca->delayed_ack;
403
404
ratio -= ca->delayed_ack >> ACK_RATIO_SHIFT;
405
ratio += cnt;
406
407
ca->delayed_ack = min(ratio, ACK_RATIO_LIMIT);
408
}
409
410
/* Some calls are for duplicates without timetamps */
411
if (rtt_us < 0)
412
return;
413
414
/* Discard delay samples right after fast recovery */
415
if ((s32)(tcp_time_stamp - ca->epoch_start) < HZ)
416
return;
417
418
delay = (rtt_us << 3) / USEC_PER_MSEC;
419
if (delay == 0)
420
delay = 1;
421
422
/* first time call or link delay decreases */
423
if (ca->delay_min == 0 || ca->delay_min > delay)
424
ca->delay_min = delay;
425
426
/* hystart triggers when cwnd is larger than some threshold */
427
if (hystart && tp->snd_cwnd <= tp->snd_ssthresh &&
428
tp->snd_cwnd >= hystart_low_window)
429
hystart_update(sk, delay);
430
}
431
432
static struct tcp_congestion_ops cubictcp __read_mostly = {
433
.init = bictcp_init,
434
.ssthresh = bictcp_recalc_ssthresh,
435
.cong_avoid = bictcp_cong_avoid,
436
.set_state = bictcp_state,
437
.undo_cwnd = bictcp_undo_cwnd,
438
.pkts_acked = bictcp_acked,
439
.owner = THIS_MODULE,
440
.name = "cubic",
441
};
442
443
static int __init cubictcp_register(void)
444
{
445
BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE);
446
447
/* Precompute a bunch of the scaling factors that are used per-packet
448
* based on SRTT of 100ms
449
*/
450
451
beta_scale = 8*(BICTCP_BETA_SCALE+beta)/ 3 / (BICTCP_BETA_SCALE - beta);
452
453
cube_rtt_scale = (bic_scale * 10); /* 1024*c/rtt */
454
455
/* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
456
* so K = cubic_root( (wmax-cwnd)*rtt/c )
457
* the unit of K is bictcp_HZ=2^10, not HZ
458
*
459
* c = bic_scale >> 10
460
* rtt = 100ms
461
*
462
* the following code has been designed and tested for
463
* cwnd < 1 million packets
464
* RTT < 100 seconds
465
* HZ < 1,000,00 (corresponding to 10 nano-second)
466
*/
467
468
/* 1/c * 2^2*bictcp_HZ * srtt */
469
cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */
470
471
/* divide by bic_scale and by constant Srtt (100ms) */
472
do_div(cube_factor, bic_scale * 10);
473
474
/* hystart needs ms clock resolution */
475
if (hystart && HZ < 1000)
476
cubictcp.flags |= TCP_CONG_RTT_STAMP;
477
478
return tcp_register_congestion_control(&cubictcp);
479
}
480
481
static void __exit cubictcp_unregister(void)
482
{
483
tcp_unregister_congestion_control(&cubictcp);
484
}
485
486
module_init(cubictcp_register);
487
module_exit(cubictcp_unregister);
488
489
MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
490
MODULE_LICENSE("GPL");
491
MODULE_DESCRIPTION("CUBIC TCP");
492
MODULE_VERSION("2.3");
493
494