Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/net/ipv6/ip6_fib.c
15109 views
1
/*
2
* Linux INET6 implementation
3
* Forwarding Information Database
4
*
5
* Authors:
6
* Pedro Roque <[email protected]>
7
*
8
* This program is free software; you can redistribute it and/or
9
* modify it under the terms of the GNU General Public License
10
* as published by the Free Software Foundation; either version
11
* 2 of the License, or (at your option) any later version.
12
*/
13
14
/*
15
* Changes:
16
* Yuji SEKIYA @USAGI: Support default route on router node;
17
* remove ip6_null_entry from the top of
18
* routing table.
19
* Ville Nuorvala: Fixed routing subtrees.
20
*/
21
#include <linux/errno.h>
22
#include <linux/types.h>
23
#include <linux/net.h>
24
#include <linux/route.h>
25
#include <linux/netdevice.h>
26
#include <linux/in6.h>
27
#include <linux/init.h>
28
#include <linux/list.h>
29
#include <linux/slab.h>
30
31
#ifdef CONFIG_PROC_FS
32
#include <linux/proc_fs.h>
33
#endif
34
35
#include <net/ipv6.h>
36
#include <net/ndisc.h>
37
#include <net/addrconf.h>
38
39
#include <net/ip6_fib.h>
40
#include <net/ip6_route.h>
41
42
#define RT6_DEBUG 2
43
44
#if RT6_DEBUG >= 3
45
#define RT6_TRACE(x...) printk(KERN_DEBUG x)
46
#else
47
#define RT6_TRACE(x...) do { ; } while (0)
48
#endif
49
50
static struct kmem_cache * fib6_node_kmem __read_mostly;
51
52
enum fib_walk_state_t
53
{
54
#ifdef CONFIG_IPV6_SUBTREES
55
FWS_S,
56
#endif
57
FWS_L,
58
FWS_R,
59
FWS_C,
60
FWS_U
61
};
62
63
struct fib6_cleaner_t
64
{
65
struct fib6_walker_t w;
66
struct net *net;
67
int (*func)(struct rt6_info *, void *arg);
68
void *arg;
69
};
70
71
static DEFINE_RWLOCK(fib6_walker_lock);
72
73
#ifdef CONFIG_IPV6_SUBTREES
74
#define FWS_INIT FWS_S
75
#else
76
#define FWS_INIT FWS_L
77
#endif
78
79
static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
80
struct rt6_info *rt);
81
static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
82
static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
83
static int fib6_walk(struct fib6_walker_t *w);
84
static int fib6_walk_continue(struct fib6_walker_t *w);
85
86
/*
87
* A routing update causes an increase of the serial number on the
88
* affected subtree. This allows for cached routes to be asynchronously
89
* tested when modifications are made to the destination cache as a
90
* result of redirects, path MTU changes, etc.
91
*/
92
93
static __u32 rt_sernum;
94
95
static void fib6_gc_timer_cb(unsigned long arg);
96
97
static LIST_HEAD(fib6_walkers);
98
#define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
99
100
static inline void fib6_walker_link(struct fib6_walker_t *w)
101
{
102
write_lock_bh(&fib6_walker_lock);
103
list_add(&w->lh, &fib6_walkers);
104
write_unlock_bh(&fib6_walker_lock);
105
}
106
107
static inline void fib6_walker_unlink(struct fib6_walker_t *w)
108
{
109
write_lock_bh(&fib6_walker_lock);
110
list_del(&w->lh);
111
write_unlock_bh(&fib6_walker_lock);
112
}
113
static __inline__ u32 fib6_new_sernum(void)
114
{
115
u32 n = ++rt_sernum;
116
if ((__s32)n <= 0)
117
rt_sernum = n = 1;
118
return n;
119
}
120
121
/*
122
* Auxiliary address test functions for the radix tree.
123
*
124
* These assume a 32bit processor (although it will work on
125
* 64bit processors)
126
*/
127
128
/*
129
* test bit
130
*/
131
#if defined(__LITTLE_ENDIAN)
132
# define BITOP_BE32_SWIZZLE (0x1F & ~7)
133
#else
134
# define BITOP_BE32_SWIZZLE 0
135
#endif
136
137
static __inline__ __be32 addr_bit_set(const void *token, int fn_bit)
138
{
139
const __be32 *addr = token;
140
/*
141
* Here,
142
* 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
143
* is optimized version of
144
* htonl(1 << ((~fn_bit)&0x1F))
145
* See include/asm-generic/bitops/le.h.
146
*/
147
return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
148
addr[fn_bit >> 5];
149
}
150
151
static __inline__ struct fib6_node * node_alloc(void)
152
{
153
struct fib6_node *fn;
154
155
fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
156
157
return fn;
158
}
159
160
static __inline__ void node_free(struct fib6_node * fn)
161
{
162
kmem_cache_free(fib6_node_kmem, fn);
163
}
164
165
static __inline__ void rt6_release(struct rt6_info *rt)
166
{
167
if (atomic_dec_and_test(&rt->rt6i_ref))
168
dst_free(&rt->dst);
169
}
170
171
static void fib6_link_table(struct net *net, struct fib6_table *tb)
172
{
173
unsigned int h;
174
175
/*
176
* Initialize table lock at a single place to give lockdep a key,
177
* tables aren't visible prior to being linked to the list.
178
*/
179
rwlock_init(&tb->tb6_lock);
180
181
h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
182
183
/*
184
* No protection necessary, this is the only list mutatation
185
* operation, tables never disappear once they exist.
186
*/
187
hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
188
}
189
190
#ifdef CONFIG_IPV6_MULTIPLE_TABLES
191
192
static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
193
{
194
struct fib6_table *table;
195
196
table = kzalloc(sizeof(*table), GFP_ATOMIC);
197
if (table != NULL) {
198
table->tb6_id = id;
199
table->tb6_root.leaf = net->ipv6.ip6_null_entry;
200
table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
201
}
202
203
return table;
204
}
205
206
struct fib6_table *fib6_new_table(struct net *net, u32 id)
207
{
208
struct fib6_table *tb;
209
210
if (id == 0)
211
id = RT6_TABLE_MAIN;
212
tb = fib6_get_table(net, id);
213
if (tb)
214
return tb;
215
216
tb = fib6_alloc_table(net, id);
217
if (tb != NULL)
218
fib6_link_table(net, tb);
219
220
return tb;
221
}
222
223
struct fib6_table *fib6_get_table(struct net *net, u32 id)
224
{
225
struct fib6_table *tb;
226
struct hlist_head *head;
227
struct hlist_node *node;
228
unsigned int h;
229
230
if (id == 0)
231
id = RT6_TABLE_MAIN;
232
h = id & (FIB6_TABLE_HASHSZ - 1);
233
rcu_read_lock();
234
head = &net->ipv6.fib_table_hash[h];
235
hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
236
if (tb->tb6_id == id) {
237
rcu_read_unlock();
238
return tb;
239
}
240
}
241
rcu_read_unlock();
242
243
return NULL;
244
}
245
246
static void __net_init fib6_tables_init(struct net *net)
247
{
248
fib6_link_table(net, net->ipv6.fib6_main_tbl);
249
fib6_link_table(net, net->ipv6.fib6_local_tbl);
250
}
251
#else
252
253
struct fib6_table *fib6_new_table(struct net *net, u32 id)
254
{
255
return fib6_get_table(net, id);
256
}
257
258
struct fib6_table *fib6_get_table(struct net *net, u32 id)
259
{
260
return net->ipv6.fib6_main_tbl;
261
}
262
263
struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
264
int flags, pol_lookup_t lookup)
265
{
266
return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
267
}
268
269
static void __net_init fib6_tables_init(struct net *net)
270
{
271
fib6_link_table(net, net->ipv6.fib6_main_tbl);
272
}
273
274
#endif
275
276
static int fib6_dump_node(struct fib6_walker_t *w)
277
{
278
int res;
279
struct rt6_info *rt;
280
281
for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
282
res = rt6_dump_route(rt, w->args);
283
if (res < 0) {
284
/* Frame is full, suspend walking */
285
w->leaf = rt;
286
return 1;
287
}
288
WARN_ON(res == 0);
289
}
290
w->leaf = NULL;
291
return 0;
292
}
293
294
static void fib6_dump_end(struct netlink_callback *cb)
295
{
296
struct fib6_walker_t *w = (void*)cb->args[2];
297
298
if (w) {
299
if (cb->args[4]) {
300
cb->args[4] = 0;
301
fib6_walker_unlink(w);
302
}
303
cb->args[2] = 0;
304
kfree(w);
305
}
306
cb->done = (void*)cb->args[3];
307
cb->args[1] = 3;
308
}
309
310
static int fib6_dump_done(struct netlink_callback *cb)
311
{
312
fib6_dump_end(cb);
313
return cb->done ? cb->done(cb) : 0;
314
}
315
316
static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
317
struct netlink_callback *cb)
318
{
319
struct fib6_walker_t *w;
320
int res;
321
322
w = (void *)cb->args[2];
323
w->root = &table->tb6_root;
324
325
if (cb->args[4] == 0) {
326
w->count = 0;
327
w->skip = 0;
328
329
read_lock_bh(&table->tb6_lock);
330
res = fib6_walk(w);
331
read_unlock_bh(&table->tb6_lock);
332
if (res > 0) {
333
cb->args[4] = 1;
334
cb->args[5] = w->root->fn_sernum;
335
}
336
} else {
337
if (cb->args[5] != w->root->fn_sernum) {
338
/* Begin at the root if the tree changed */
339
cb->args[5] = w->root->fn_sernum;
340
w->state = FWS_INIT;
341
w->node = w->root;
342
w->skip = w->count;
343
} else
344
w->skip = 0;
345
346
read_lock_bh(&table->tb6_lock);
347
res = fib6_walk_continue(w);
348
read_unlock_bh(&table->tb6_lock);
349
if (res <= 0) {
350
fib6_walker_unlink(w);
351
cb->args[4] = 0;
352
}
353
}
354
355
return res;
356
}
357
358
static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
359
{
360
struct net *net = sock_net(skb->sk);
361
unsigned int h, s_h;
362
unsigned int e = 0, s_e;
363
struct rt6_rtnl_dump_arg arg;
364
struct fib6_walker_t *w;
365
struct fib6_table *tb;
366
struct hlist_node *node;
367
struct hlist_head *head;
368
int res = 0;
369
370
s_h = cb->args[0];
371
s_e = cb->args[1];
372
373
w = (void *)cb->args[2];
374
if (w == NULL) {
375
/* New dump:
376
*
377
* 1. hook callback destructor.
378
*/
379
cb->args[3] = (long)cb->done;
380
cb->done = fib6_dump_done;
381
382
/*
383
* 2. allocate and initialize walker.
384
*/
385
w = kzalloc(sizeof(*w), GFP_ATOMIC);
386
if (w == NULL)
387
return -ENOMEM;
388
w->func = fib6_dump_node;
389
cb->args[2] = (long)w;
390
}
391
392
arg.skb = skb;
393
arg.cb = cb;
394
arg.net = net;
395
w->args = &arg;
396
397
rcu_read_lock();
398
for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
399
e = 0;
400
head = &net->ipv6.fib_table_hash[h];
401
hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
402
if (e < s_e)
403
goto next;
404
res = fib6_dump_table(tb, skb, cb);
405
if (res != 0)
406
goto out;
407
next:
408
e++;
409
}
410
}
411
out:
412
rcu_read_unlock();
413
cb->args[1] = e;
414
cb->args[0] = h;
415
416
res = res < 0 ? res : skb->len;
417
if (res <= 0)
418
fib6_dump_end(cb);
419
return res;
420
}
421
422
/*
423
* Routing Table
424
*
425
* return the appropriate node for a routing tree "add" operation
426
* by either creating and inserting or by returning an existing
427
* node.
428
*/
429
430
static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
431
int addrlen, int plen,
432
int offset)
433
{
434
struct fib6_node *fn, *in, *ln;
435
struct fib6_node *pn = NULL;
436
struct rt6key *key;
437
int bit;
438
__be32 dir = 0;
439
__u32 sernum = fib6_new_sernum();
440
441
RT6_TRACE("fib6_add_1\n");
442
443
/* insert node in tree */
444
445
fn = root;
446
447
do {
448
key = (struct rt6key *)((u8 *)fn->leaf + offset);
449
450
/*
451
* Prefix match
452
*/
453
if (plen < fn->fn_bit ||
454
!ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
455
goto insert_above;
456
457
/*
458
* Exact match ?
459
*/
460
461
if (plen == fn->fn_bit) {
462
/* clean up an intermediate node */
463
if ((fn->fn_flags & RTN_RTINFO) == 0) {
464
rt6_release(fn->leaf);
465
fn->leaf = NULL;
466
}
467
468
fn->fn_sernum = sernum;
469
470
return fn;
471
}
472
473
/*
474
* We have more bits to go
475
*/
476
477
/* Try to walk down on tree. */
478
fn->fn_sernum = sernum;
479
dir = addr_bit_set(addr, fn->fn_bit);
480
pn = fn;
481
fn = dir ? fn->right: fn->left;
482
} while (fn);
483
484
/*
485
* We walked to the bottom of tree.
486
* Create new leaf node without children.
487
*/
488
489
ln = node_alloc();
490
491
if (ln == NULL)
492
return NULL;
493
ln->fn_bit = plen;
494
495
ln->parent = pn;
496
ln->fn_sernum = sernum;
497
498
if (dir)
499
pn->right = ln;
500
else
501
pn->left = ln;
502
503
return ln;
504
505
506
insert_above:
507
/*
508
* split since we don't have a common prefix anymore or
509
* we have a less significant route.
510
* we've to insert an intermediate node on the list
511
* this new node will point to the one we need to create
512
* and the current
513
*/
514
515
pn = fn->parent;
516
517
/* find 1st bit in difference between the 2 addrs.
518
519
See comment in __ipv6_addr_diff: bit may be an invalid value,
520
but if it is >= plen, the value is ignored in any case.
521
*/
522
523
bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
524
525
/*
526
* (intermediate)[in]
527
* / \
528
* (new leaf node)[ln] (old node)[fn]
529
*/
530
if (plen > bit) {
531
in = node_alloc();
532
ln = node_alloc();
533
534
if (in == NULL || ln == NULL) {
535
if (in)
536
node_free(in);
537
if (ln)
538
node_free(ln);
539
return NULL;
540
}
541
542
/*
543
* new intermediate node.
544
* RTN_RTINFO will
545
* be off since that an address that chooses one of
546
* the branches would not match less specific routes
547
* in the other branch
548
*/
549
550
in->fn_bit = bit;
551
552
in->parent = pn;
553
in->leaf = fn->leaf;
554
atomic_inc(&in->leaf->rt6i_ref);
555
556
in->fn_sernum = sernum;
557
558
/* update parent pointer */
559
if (dir)
560
pn->right = in;
561
else
562
pn->left = in;
563
564
ln->fn_bit = plen;
565
566
ln->parent = in;
567
fn->parent = in;
568
569
ln->fn_sernum = sernum;
570
571
if (addr_bit_set(addr, bit)) {
572
in->right = ln;
573
in->left = fn;
574
} else {
575
in->left = ln;
576
in->right = fn;
577
}
578
} else { /* plen <= bit */
579
580
/*
581
* (new leaf node)[ln]
582
* / \
583
* (old node)[fn] NULL
584
*/
585
586
ln = node_alloc();
587
588
if (ln == NULL)
589
return NULL;
590
591
ln->fn_bit = plen;
592
593
ln->parent = pn;
594
595
ln->fn_sernum = sernum;
596
597
if (dir)
598
pn->right = ln;
599
else
600
pn->left = ln;
601
602
if (addr_bit_set(&key->addr, plen))
603
ln->right = fn;
604
else
605
ln->left = fn;
606
607
fn->parent = ln;
608
}
609
return ln;
610
}
611
612
/*
613
* Insert routing information in a node.
614
*/
615
616
static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
617
struct nl_info *info)
618
{
619
struct rt6_info *iter = NULL;
620
struct rt6_info **ins;
621
622
ins = &fn->leaf;
623
624
for (iter = fn->leaf; iter; iter=iter->dst.rt6_next) {
625
/*
626
* Search for duplicates
627
*/
628
629
if (iter->rt6i_metric == rt->rt6i_metric) {
630
/*
631
* Same priority level
632
*/
633
634
if (iter->rt6i_dev == rt->rt6i_dev &&
635
iter->rt6i_idev == rt->rt6i_idev &&
636
ipv6_addr_equal(&iter->rt6i_gateway,
637
&rt->rt6i_gateway)) {
638
if (!(iter->rt6i_flags&RTF_EXPIRES))
639
return -EEXIST;
640
iter->rt6i_expires = rt->rt6i_expires;
641
if (!(rt->rt6i_flags&RTF_EXPIRES)) {
642
iter->rt6i_flags &= ~RTF_EXPIRES;
643
iter->rt6i_expires = 0;
644
}
645
return -EEXIST;
646
}
647
}
648
649
if (iter->rt6i_metric > rt->rt6i_metric)
650
break;
651
652
ins = &iter->dst.rt6_next;
653
}
654
655
/* Reset round-robin state, if necessary */
656
if (ins == &fn->leaf)
657
fn->rr_ptr = NULL;
658
659
/*
660
* insert node
661
*/
662
663
rt->dst.rt6_next = iter;
664
*ins = rt;
665
rt->rt6i_node = fn;
666
atomic_inc(&rt->rt6i_ref);
667
inet6_rt_notify(RTM_NEWROUTE, rt, info);
668
info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
669
670
if ((fn->fn_flags & RTN_RTINFO) == 0) {
671
info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
672
fn->fn_flags |= RTN_RTINFO;
673
}
674
675
return 0;
676
}
677
678
static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
679
{
680
if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
681
(rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE)))
682
mod_timer(&net->ipv6.ip6_fib_timer,
683
jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
684
}
685
686
void fib6_force_start_gc(struct net *net)
687
{
688
if (!timer_pending(&net->ipv6.ip6_fib_timer))
689
mod_timer(&net->ipv6.ip6_fib_timer,
690
jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
691
}
692
693
/*
694
* Add routing information to the routing tree.
695
* <destination addr>/<source addr>
696
* with source addr info in sub-trees
697
*/
698
699
int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
700
{
701
struct fib6_node *fn, *pn = NULL;
702
int err = -ENOMEM;
703
704
fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
705
rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst));
706
707
if (fn == NULL)
708
goto out;
709
710
pn = fn;
711
712
#ifdef CONFIG_IPV6_SUBTREES
713
if (rt->rt6i_src.plen) {
714
struct fib6_node *sn;
715
716
if (fn->subtree == NULL) {
717
struct fib6_node *sfn;
718
719
/*
720
* Create subtree.
721
*
722
* fn[main tree]
723
* |
724
* sfn[subtree root]
725
* \
726
* sn[new leaf node]
727
*/
728
729
/* Create subtree root node */
730
sfn = node_alloc();
731
if (sfn == NULL)
732
goto st_failure;
733
734
sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
735
atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
736
sfn->fn_flags = RTN_ROOT;
737
sfn->fn_sernum = fib6_new_sernum();
738
739
/* Now add the first leaf node to new subtree */
740
741
sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
742
sizeof(struct in6_addr), rt->rt6i_src.plen,
743
offsetof(struct rt6_info, rt6i_src));
744
745
if (sn == NULL) {
746
/* If it is failed, discard just allocated
747
root, and then (in st_failure) stale node
748
in main tree.
749
*/
750
node_free(sfn);
751
goto st_failure;
752
}
753
754
/* Now link new subtree to main tree */
755
sfn->parent = fn;
756
fn->subtree = sfn;
757
} else {
758
sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
759
sizeof(struct in6_addr), rt->rt6i_src.plen,
760
offsetof(struct rt6_info, rt6i_src));
761
762
if (sn == NULL)
763
goto st_failure;
764
}
765
766
if (fn->leaf == NULL) {
767
fn->leaf = rt;
768
atomic_inc(&rt->rt6i_ref);
769
}
770
fn = sn;
771
}
772
#endif
773
774
err = fib6_add_rt2node(fn, rt, info);
775
776
if (err == 0) {
777
fib6_start_gc(info->nl_net, rt);
778
if (!(rt->rt6i_flags&RTF_CACHE))
779
fib6_prune_clones(info->nl_net, pn, rt);
780
}
781
782
out:
783
if (err) {
784
#ifdef CONFIG_IPV6_SUBTREES
785
/*
786
* If fib6_add_1 has cleared the old leaf pointer in the
787
* super-tree leaf node we have to find a new one for it.
788
*/
789
if (pn != fn && pn->leaf == rt) {
790
pn->leaf = NULL;
791
atomic_dec(&rt->rt6i_ref);
792
}
793
if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
794
pn->leaf = fib6_find_prefix(info->nl_net, pn);
795
#if RT6_DEBUG >= 2
796
if (!pn->leaf) {
797
WARN_ON(pn->leaf == NULL);
798
pn->leaf = info->nl_net->ipv6.ip6_null_entry;
799
}
800
#endif
801
atomic_inc(&pn->leaf->rt6i_ref);
802
}
803
#endif
804
dst_free(&rt->dst);
805
}
806
return err;
807
808
#ifdef CONFIG_IPV6_SUBTREES
809
/* Subtree creation failed, probably main tree node
810
is orphan. If it is, shoot it.
811
*/
812
st_failure:
813
if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
814
fib6_repair_tree(info->nl_net, fn);
815
dst_free(&rt->dst);
816
return err;
817
#endif
818
}
819
820
/*
821
* Routing tree lookup
822
*
823
*/
824
825
struct lookup_args {
826
int offset; /* key offset on rt6_info */
827
const struct in6_addr *addr; /* search key */
828
};
829
830
static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
831
struct lookup_args *args)
832
{
833
struct fib6_node *fn;
834
__be32 dir;
835
836
if (unlikely(args->offset == 0))
837
return NULL;
838
839
/*
840
* Descend on a tree
841
*/
842
843
fn = root;
844
845
for (;;) {
846
struct fib6_node *next;
847
848
dir = addr_bit_set(args->addr, fn->fn_bit);
849
850
next = dir ? fn->right : fn->left;
851
852
if (next) {
853
fn = next;
854
continue;
855
}
856
857
break;
858
}
859
860
while(fn) {
861
if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
862
struct rt6key *key;
863
864
key = (struct rt6key *) ((u8 *) fn->leaf +
865
args->offset);
866
867
if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
868
#ifdef CONFIG_IPV6_SUBTREES
869
if (fn->subtree)
870
fn = fib6_lookup_1(fn->subtree, args + 1);
871
#endif
872
if (!fn || fn->fn_flags & RTN_RTINFO)
873
return fn;
874
}
875
}
876
877
if (fn->fn_flags & RTN_ROOT)
878
break;
879
880
fn = fn->parent;
881
}
882
883
return NULL;
884
}
885
886
struct fib6_node * fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
887
const struct in6_addr *saddr)
888
{
889
struct fib6_node *fn;
890
struct lookup_args args[] = {
891
{
892
.offset = offsetof(struct rt6_info, rt6i_dst),
893
.addr = daddr,
894
},
895
#ifdef CONFIG_IPV6_SUBTREES
896
{
897
.offset = offsetof(struct rt6_info, rt6i_src),
898
.addr = saddr,
899
},
900
#endif
901
{
902
.offset = 0, /* sentinel */
903
}
904
};
905
906
fn = fib6_lookup_1(root, daddr ? args : args + 1);
907
908
if (fn == NULL || fn->fn_flags & RTN_TL_ROOT)
909
fn = root;
910
911
return fn;
912
}
913
914
/*
915
* Get node with specified destination prefix (and source prefix,
916
* if subtrees are used)
917
*/
918
919
920
static struct fib6_node * fib6_locate_1(struct fib6_node *root,
921
const struct in6_addr *addr,
922
int plen, int offset)
923
{
924
struct fib6_node *fn;
925
926
for (fn = root; fn ; ) {
927
struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
928
929
/*
930
* Prefix match
931
*/
932
if (plen < fn->fn_bit ||
933
!ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
934
return NULL;
935
936
if (plen == fn->fn_bit)
937
return fn;
938
939
/*
940
* We have more bits to go
941
*/
942
if (addr_bit_set(addr, fn->fn_bit))
943
fn = fn->right;
944
else
945
fn = fn->left;
946
}
947
return NULL;
948
}
949
950
struct fib6_node * fib6_locate(struct fib6_node *root,
951
const struct in6_addr *daddr, int dst_len,
952
const struct in6_addr *saddr, int src_len)
953
{
954
struct fib6_node *fn;
955
956
fn = fib6_locate_1(root, daddr, dst_len,
957
offsetof(struct rt6_info, rt6i_dst));
958
959
#ifdef CONFIG_IPV6_SUBTREES
960
if (src_len) {
961
WARN_ON(saddr == NULL);
962
if (fn && fn->subtree)
963
fn = fib6_locate_1(fn->subtree, saddr, src_len,
964
offsetof(struct rt6_info, rt6i_src));
965
}
966
#endif
967
968
if (fn && fn->fn_flags&RTN_RTINFO)
969
return fn;
970
971
return NULL;
972
}
973
974
975
/*
976
* Deletion
977
*
978
*/
979
980
static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
981
{
982
if (fn->fn_flags&RTN_ROOT)
983
return net->ipv6.ip6_null_entry;
984
985
while(fn) {
986
if(fn->left)
987
return fn->left->leaf;
988
989
if(fn->right)
990
return fn->right->leaf;
991
992
fn = FIB6_SUBTREE(fn);
993
}
994
return NULL;
995
}
996
997
/*
998
* Called to trim the tree of intermediate nodes when possible. "fn"
999
* is the node we want to try and remove.
1000
*/
1001
1002
static struct fib6_node *fib6_repair_tree(struct net *net,
1003
struct fib6_node *fn)
1004
{
1005
int children;
1006
int nstate;
1007
struct fib6_node *child, *pn;
1008
struct fib6_walker_t *w;
1009
int iter = 0;
1010
1011
for (;;) {
1012
RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1013
iter++;
1014
1015
WARN_ON(fn->fn_flags & RTN_RTINFO);
1016
WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1017
WARN_ON(fn->leaf != NULL);
1018
1019
children = 0;
1020
child = NULL;
1021
if (fn->right) child = fn->right, children |= 1;
1022
if (fn->left) child = fn->left, children |= 2;
1023
1024
if (children == 3 || FIB6_SUBTREE(fn)
1025
#ifdef CONFIG_IPV6_SUBTREES
1026
/* Subtree root (i.e. fn) may have one child */
1027
|| (children && fn->fn_flags&RTN_ROOT)
1028
#endif
1029
) {
1030
fn->leaf = fib6_find_prefix(net, fn);
1031
#if RT6_DEBUG >= 2
1032
if (fn->leaf==NULL) {
1033
WARN_ON(!fn->leaf);
1034
fn->leaf = net->ipv6.ip6_null_entry;
1035
}
1036
#endif
1037
atomic_inc(&fn->leaf->rt6i_ref);
1038
return fn->parent;
1039
}
1040
1041
pn = fn->parent;
1042
#ifdef CONFIG_IPV6_SUBTREES
1043
if (FIB6_SUBTREE(pn) == fn) {
1044
WARN_ON(!(fn->fn_flags & RTN_ROOT));
1045
FIB6_SUBTREE(pn) = NULL;
1046
nstate = FWS_L;
1047
} else {
1048
WARN_ON(fn->fn_flags & RTN_ROOT);
1049
#endif
1050
if (pn->right == fn) pn->right = child;
1051
else if (pn->left == fn) pn->left = child;
1052
#if RT6_DEBUG >= 2
1053
else
1054
WARN_ON(1);
1055
#endif
1056
if (child)
1057
child->parent = pn;
1058
nstate = FWS_R;
1059
#ifdef CONFIG_IPV6_SUBTREES
1060
}
1061
#endif
1062
1063
read_lock(&fib6_walker_lock);
1064
FOR_WALKERS(w) {
1065
if (child == NULL) {
1066
if (w->root == fn) {
1067
w->root = w->node = NULL;
1068
RT6_TRACE("W %p adjusted by delroot 1\n", w);
1069
} else if (w->node == fn) {
1070
RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1071
w->node = pn;
1072
w->state = nstate;
1073
}
1074
} else {
1075
if (w->root == fn) {
1076
w->root = child;
1077
RT6_TRACE("W %p adjusted by delroot 2\n", w);
1078
}
1079
if (w->node == fn) {
1080
w->node = child;
1081
if (children&2) {
1082
RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1083
w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1084
} else {
1085
RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1086
w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1087
}
1088
}
1089
}
1090
}
1091
read_unlock(&fib6_walker_lock);
1092
1093
node_free(fn);
1094
if (pn->fn_flags&RTN_RTINFO || FIB6_SUBTREE(pn))
1095
return pn;
1096
1097
rt6_release(pn->leaf);
1098
pn->leaf = NULL;
1099
fn = pn;
1100
}
1101
}
1102
1103
static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1104
struct nl_info *info)
1105
{
1106
struct fib6_walker_t *w;
1107
struct rt6_info *rt = *rtp;
1108
struct net *net = info->nl_net;
1109
1110
RT6_TRACE("fib6_del_route\n");
1111
1112
/* Unlink it */
1113
*rtp = rt->dst.rt6_next;
1114
rt->rt6i_node = NULL;
1115
net->ipv6.rt6_stats->fib_rt_entries--;
1116
net->ipv6.rt6_stats->fib_discarded_routes++;
1117
1118
/* Reset round-robin state, if necessary */
1119
if (fn->rr_ptr == rt)
1120
fn->rr_ptr = NULL;
1121
1122
/* Adjust walkers */
1123
read_lock(&fib6_walker_lock);
1124
FOR_WALKERS(w) {
1125
if (w->state == FWS_C && w->leaf == rt) {
1126
RT6_TRACE("walker %p adjusted by delroute\n", w);
1127
w->leaf = rt->dst.rt6_next;
1128
if (w->leaf == NULL)
1129
w->state = FWS_U;
1130
}
1131
}
1132
read_unlock(&fib6_walker_lock);
1133
1134
rt->dst.rt6_next = NULL;
1135
1136
/* If it was last route, expunge its radix tree node */
1137
if (fn->leaf == NULL) {
1138
fn->fn_flags &= ~RTN_RTINFO;
1139
net->ipv6.rt6_stats->fib_route_nodes--;
1140
fn = fib6_repair_tree(net, fn);
1141
}
1142
1143
if (atomic_read(&rt->rt6i_ref) != 1) {
1144
/* This route is used as dummy address holder in some split
1145
* nodes. It is not leaked, but it still holds other resources,
1146
* which must be released in time. So, scan ascendant nodes
1147
* and replace dummy references to this route with references
1148
* to still alive ones.
1149
*/
1150
while (fn) {
1151
if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) {
1152
fn->leaf = fib6_find_prefix(net, fn);
1153
atomic_inc(&fn->leaf->rt6i_ref);
1154
rt6_release(rt);
1155
}
1156
fn = fn->parent;
1157
}
1158
/* No more references are possible at this point. */
1159
BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1160
}
1161
1162
inet6_rt_notify(RTM_DELROUTE, rt, info);
1163
rt6_release(rt);
1164
}
1165
1166
int fib6_del(struct rt6_info *rt, struct nl_info *info)
1167
{
1168
struct net *net = info->nl_net;
1169
struct fib6_node *fn = rt->rt6i_node;
1170
struct rt6_info **rtp;
1171
1172
#if RT6_DEBUG >= 2
1173
if (rt->dst.obsolete>0) {
1174
WARN_ON(fn != NULL);
1175
return -ENOENT;
1176
}
1177
#endif
1178
if (fn == NULL || rt == net->ipv6.ip6_null_entry)
1179
return -ENOENT;
1180
1181
WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1182
1183
if (!(rt->rt6i_flags&RTF_CACHE)) {
1184
struct fib6_node *pn = fn;
1185
#ifdef CONFIG_IPV6_SUBTREES
1186
/* clones of this route might be in another subtree */
1187
if (rt->rt6i_src.plen) {
1188
while (!(pn->fn_flags&RTN_ROOT))
1189
pn = pn->parent;
1190
pn = pn->parent;
1191
}
1192
#endif
1193
fib6_prune_clones(info->nl_net, pn, rt);
1194
}
1195
1196
/*
1197
* Walk the leaf entries looking for ourself
1198
*/
1199
1200
for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1201
if (*rtp == rt) {
1202
fib6_del_route(fn, rtp, info);
1203
return 0;
1204
}
1205
}
1206
return -ENOENT;
1207
}
1208
1209
/*
1210
* Tree traversal function.
1211
*
1212
* Certainly, it is not interrupt safe.
1213
* However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1214
* It means, that we can modify tree during walking
1215
* and use this function for garbage collection, clone pruning,
1216
* cleaning tree when a device goes down etc. etc.
1217
*
1218
* It guarantees that every node will be traversed,
1219
* and that it will be traversed only once.
1220
*
1221
* Callback function w->func may return:
1222
* 0 -> continue walking.
1223
* positive value -> walking is suspended (used by tree dumps,
1224
* and probably by gc, if it will be split to several slices)
1225
* negative value -> terminate walking.
1226
*
1227
* The function itself returns:
1228
* 0 -> walk is complete.
1229
* >0 -> walk is incomplete (i.e. suspended)
1230
* <0 -> walk is terminated by an error.
1231
*/
1232
1233
static int fib6_walk_continue(struct fib6_walker_t *w)
1234
{
1235
struct fib6_node *fn, *pn;
1236
1237
for (;;) {
1238
fn = w->node;
1239
if (fn == NULL)
1240
return 0;
1241
1242
if (w->prune && fn != w->root &&
1243
fn->fn_flags&RTN_RTINFO && w->state < FWS_C) {
1244
w->state = FWS_C;
1245
w->leaf = fn->leaf;
1246
}
1247
switch (w->state) {
1248
#ifdef CONFIG_IPV6_SUBTREES
1249
case FWS_S:
1250
if (FIB6_SUBTREE(fn)) {
1251
w->node = FIB6_SUBTREE(fn);
1252
continue;
1253
}
1254
w->state = FWS_L;
1255
#endif
1256
case FWS_L:
1257
if (fn->left) {
1258
w->node = fn->left;
1259
w->state = FWS_INIT;
1260
continue;
1261
}
1262
w->state = FWS_R;
1263
case FWS_R:
1264
if (fn->right) {
1265
w->node = fn->right;
1266
w->state = FWS_INIT;
1267
continue;
1268
}
1269
w->state = FWS_C;
1270
w->leaf = fn->leaf;
1271
case FWS_C:
1272
if (w->leaf && fn->fn_flags&RTN_RTINFO) {
1273
int err;
1274
1275
if (w->count < w->skip) {
1276
w->count++;
1277
continue;
1278
}
1279
1280
err = w->func(w);
1281
if (err)
1282
return err;
1283
1284
w->count++;
1285
continue;
1286
}
1287
w->state = FWS_U;
1288
case FWS_U:
1289
if (fn == w->root)
1290
return 0;
1291
pn = fn->parent;
1292
w->node = pn;
1293
#ifdef CONFIG_IPV6_SUBTREES
1294
if (FIB6_SUBTREE(pn) == fn) {
1295
WARN_ON(!(fn->fn_flags & RTN_ROOT));
1296
w->state = FWS_L;
1297
continue;
1298
}
1299
#endif
1300
if (pn->left == fn) {
1301
w->state = FWS_R;
1302
continue;
1303
}
1304
if (pn->right == fn) {
1305
w->state = FWS_C;
1306
w->leaf = w->node->leaf;
1307
continue;
1308
}
1309
#if RT6_DEBUG >= 2
1310
WARN_ON(1);
1311
#endif
1312
}
1313
}
1314
}
1315
1316
static int fib6_walk(struct fib6_walker_t *w)
1317
{
1318
int res;
1319
1320
w->state = FWS_INIT;
1321
w->node = w->root;
1322
1323
fib6_walker_link(w);
1324
res = fib6_walk_continue(w);
1325
if (res <= 0)
1326
fib6_walker_unlink(w);
1327
return res;
1328
}
1329
1330
static int fib6_clean_node(struct fib6_walker_t *w)
1331
{
1332
int res;
1333
struct rt6_info *rt;
1334
struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1335
struct nl_info info = {
1336
.nl_net = c->net,
1337
};
1338
1339
for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1340
res = c->func(rt, c->arg);
1341
if (res < 0) {
1342
w->leaf = rt;
1343
res = fib6_del(rt, &info);
1344
if (res) {
1345
#if RT6_DEBUG >= 2
1346
printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
1347
#endif
1348
continue;
1349
}
1350
return 0;
1351
}
1352
WARN_ON(res != 0);
1353
}
1354
w->leaf = rt;
1355
return 0;
1356
}
1357
1358
/*
1359
* Convenient frontend to tree walker.
1360
*
1361
* func is called on each route.
1362
* It may return -1 -> delete this route.
1363
* 0 -> continue walking
1364
*
1365
* prune==1 -> only immediate children of node (certainly,
1366
* ignoring pure split nodes) will be scanned.
1367
*/
1368
1369
static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1370
int (*func)(struct rt6_info *, void *arg),
1371
int prune, void *arg)
1372
{
1373
struct fib6_cleaner_t c;
1374
1375
c.w.root = root;
1376
c.w.func = fib6_clean_node;
1377
c.w.prune = prune;
1378
c.w.count = 0;
1379
c.w.skip = 0;
1380
c.func = func;
1381
c.arg = arg;
1382
c.net = net;
1383
1384
fib6_walk(&c.w);
1385
}
1386
1387
void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1388
int prune, void *arg)
1389
{
1390
struct fib6_table *table;
1391
struct hlist_node *node;
1392
struct hlist_head *head;
1393
unsigned int h;
1394
1395
rcu_read_lock();
1396
for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1397
head = &net->ipv6.fib_table_hash[h];
1398
hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1399
write_lock_bh(&table->tb6_lock);
1400
fib6_clean_tree(net, &table->tb6_root,
1401
func, prune, arg);
1402
write_unlock_bh(&table->tb6_lock);
1403
}
1404
}
1405
rcu_read_unlock();
1406
}
1407
1408
static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1409
{
1410
if (rt->rt6i_flags & RTF_CACHE) {
1411
RT6_TRACE("pruning clone %p\n", rt);
1412
return -1;
1413
}
1414
1415
return 0;
1416
}
1417
1418
static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1419
struct rt6_info *rt)
1420
{
1421
fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
1422
}
1423
1424
/*
1425
* Garbage collection
1426
*/
1427
1428
static struct fib6_gc_args
1429
{
1430
int timeout;
1431
int more;
1432
} gc_args;
1433
1434
static int fib6_age(struct rt6_info *rt, void *arg)
1435
{
1436
unsigned long now = jiffies;
1437
1438
/*
1439
* check addrconf expiration here.
1440
* Routes are expired even if they are in use.
1441
*
1442
* Also age clones. Note, that clones are aged out
1443
* only if they are not in use now.
1444
*/
1445
1446
if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) {
1447
if (time_after(now, rt->rt6i_expires)) {
1448
RT6_TRACE("expiring %p\n", rt);
1449
return -1;
1450
}
1451
gc_args.more++;
1452
} else if (rt->rt6i_flags & RTF_CACHE) {
1453
if (atomic_read(&rt->dst.__refcnt) == 0 &&
1454
time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1455
RT6_TRACE("aging clone %p\n", rt);
1456
return -1;
1457
} else if ((rt->rt6i_flags & RTF_GATEWAY) &&
1458
(!(rt->rt6i_nexthop->flags & NTF_ROUTER))) {
1459
RT6_TRACE("purging route %p via non-router but gateway\n",
1460
rt);
1461
return -1;
1462
}
1463
gc_args.more++;
1464
}
1465
1466
return 0;
1467
}
1468
1469
static DEFINE_SPINLOCK(fib6_gc_lock);
1470
1471
void fib6_run_gc(unsigned long expires, struct net *net)
1472
{
1473
if (expires != ~0UL) {
1474
spin_lock_bh(&fib6_gc_lock);
1475
gc_args.timeout = expires ? (int)expires :
1476
net->ipv6.sysctl.ip6_rt_gc_interval;
1477
} else {
1478
if (!spin_trylock_bh(&fib6_gc_lock)) {
1479
mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1480
return;
1481
}
1482
gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval;
1483
}
1484
1485
gc_args.more = icmp6_dst_gc();
1486
1487
fib6_clean_all(net, fib6_age, 0, NULL);
1488
1489
if (gc_args.more)
1490
mod_timer(&net->ipv6.ip6_fib_timer,
1491
round_jiffies(jiffies
1492
+ net->ipv6.sysctl.ip6_rt_gc_interval));
1493
else
1494
del_timer(&net->ipv6.ip6_fib_timer);
1495
spin_unlock_bh(&fib6_gc_lock);
1496
}
1497
1498
static void fib6_gc_timer_cb(unsigned long arg)
1499
{
1500
fib6_run_gc(0, (struct net *)arg);
1501
}
1502
1503
static int __net_init fib6_net_init(struct net *net)
1504
{
1505
size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1506
1507
setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1508
1509
net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1510
if (!net->ipv6.rt6_stats)
1511
goto out_timer;
1512
1513
/* Avoid false sharing : Use at least a full cache line */
1514
size = max_t(size_t, size, L1_CACHE_BYTES);
1515
1516
net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1517
if (!net->ipv6.fib_table_hash)
1518
goto out_rt6_stats;
1519
1520
net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1521
GFP_KERNEL);
1522
if (!net->ipv6.fib6_main_tbl)
1523
goto out_fib_table_hash;
1524
1525
net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1526
net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1527
net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1528
RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1529
1530
#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1531
net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1532
GFP_KERNEL);
1533
if (!net->ipv6.fib6_local_tbl)
1534
goto out_fib6_main_tbl;
1535
net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1536
net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1537
net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1538
RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1539
#endif
1540
fib6_tables_init(net);
1541
1542
return 0;
1543
1544
#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1545
out_fib6_main_tbl:
1546
kfree(net->ipv6.fib6_main_tbl);
1547
#endif
1548
out_fib_table_hash:
1549
kfree(net->ipv6.fib_table_hash);
1550
out_rt6_stats:
1551
kfree(net->ipv6.rt6_stats);
1552
out_timer:
1553
return -ENOMEM;
1554
}
1555
1556
static void fib6_net_exit(struct net *net)
1557
{
1558
rt6_ifdown(net, NULL);
1559
del_timer_sync(&net->ipv6.ip6_fib_timer);
1560
1561
#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1562
kfree(net->ipv6.fib6_local_tbl);
1563
#endif
1564
kfree(net->ipv6.fib6_main_tbl);
1565
kfree(net->ipv6.fib_table_hash);
1566
kfree(net->ipv6.rt6_stats);
1567
}
1568
1569
static struct pernet_operations fib6_net_ops = {
1570
.init = fib6_net_init,
1571
.exit = fib6_net_exit,
1572
};
1573
1574
int __init fib6_init(void)
1575
{
1576
int ret = -ENOMEM;
1577
1578
fib6_node_kmem = kmem_cache_create("fib6_nodes",
1579
sizeof(struct fib6_node),
1580
0, SLAB_HWCACHE_ALIGN,
1581
NULL);
1582
if (!fib6_node_kmem)
1583
goto out;
1584
1585
ret = register_pernet_subsys(&fib6_net_ops);
1586
if (ret)
1587
goto out_kmem_cache_create;
1588
1589
ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib);
1590
if (ret)
1591
goto out_unregister_subsys;
1592
out:
1593
return ret;
1594
1595
out_unregister_subsys:
1596
unregister_pernet_subsys(&fib6_net_ops);
1597
out_kmem_cache_create:
1598
kmem_cache_destroy(fib6_node_kmem);
1599
goto out;
1600
}
1601
1602
void fib6_gc_cleanup(void)
1603
{
1604
unregister_pernet_subsys(&fib6_net_ops);
1605
kmem_cache_destroy(fib6_node_kmem);
1606
}
1607
1608