Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/net/irda/af_irda.c
15111 views
1
/*********************************************************************
2
*
3
* Filename: af_irda.c
4
* Version: 0.9
5
* Description: IrDA sockets implementation
6
* Status: Stable
7
* Author: Dag Brattli <[email protected]>
8
* Created at: Sun May 31 10:12:43 1998
9
* Modified at: Sat Dec 25 21:10:23 1999
10
* Modified by: Dag Brattli <[email protected]>
11
* Sources: af_netroom.c, af_ax25.c, af_rose.c, af_x25.c etc.
12
*
13
* Copyright (c) 1999 Dag Brattli <[email protected]>
14
* Copyright (c) 1999-2003 Jean Tourrilhes <[email protected]>
15
* All Rights Reserved.
16
*
17
* This program is free software; you can redistribute it and/or
18
* modify it under the terms of the GNU General Public License as
19
* published by the Free Software Foundation; either version 2 of
20
* the License, or (at your option) any later version.
21
*
22
* This program is distributed in the hope that it will be useful,
23
* but WITHOUT ANY WARRANTY; without even the implied warranty of
24
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25
* GNU General Public License for more details.
26
*
27
* You should have received a copy of the GNU General Public License
28
* along with this program; if not, write to the Free Software
29
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
30
* MA 02111-1307 USA
31
*
32
* Linux-IrDA now supports four different types of IrDA sockets:
33
*
34
* o SOCK_STREAM: TinyTP connections with SAR disabled. The
35
* max SDU size is 0 for conn. of this type
36
* o SOCK_SEQPACKET: TinyTP connections with SAR enabled. TTP may
37
* fragment the messages, but will preserve
38
* the message boundaries
39
* o SOCK_DGRAM: IRDAPROTO_UNITDATA: TinyTP connections with Unitdata
40
* (unreliable) transfers
41
* IRDAPROTO_ULTRA: Connectionless and unreliable data
42
*
43
********************************************************************/
44
45
#include <linux/capability.h>
46
#include <linux/module.h>
47
#include <linux/types.h>
48
#include <linux/socket.h>
49
#include <linux/sockios.h>
50
#include <linux/slab.h>
51
#include <linux/init.h>
52
#include <linux/net.h>
53
#include <linux/irda.h>
54
#include <linux/poll.h>
55
56
#include <asm/ioctls.h> /* TIOCOUTQ, TIOCINQ */
57
#include <asm/uaccess.h>
58
59
#include <net/sock.h>
60
#include <net/tcp_states.h>
61
62
#include <net/irda/af_irda.h>
63
64
static int irda_create(struct net *net, struct socket *sock, int protocol, int kern);
65
66
static const struct proto_ops irda_stream_ops;
67
static const struct proto_ops irda_seqpacket_ops;
68
static const struct proto_ops irda_dgram_ops;
69
70
#ifdef CONFIG_IRDA_ULTRA
71
static const struct proto_ops irda_ultra_ops;
72
#define ULTRA_MAX_DATA 382
73
#endif /* CONFIG_IRDA_ULTRA */
74
75
#define IRDA_MAX_HEADER (TTP_MAX_HEADER)
76
77
/*
78
* Function irda_data_indication (instance, sap, skb)
79
*
80
* Received some data from TinyTP. Just queue it on the receive queue
81
*
82
*/
83
static int irda_data_indication(void *instance, void *sap, struct sk_buff *skb)
84
{
85
struct irda_sock *self;
86
struct sock *sk;
87
int err;
88
89
IRDA_DEBUG(3, "%s()\n", __func__);
90
91
self = instance;
92
sk = instance;
93
94
err = sock_queue_rcv_skb(sk, skb);
95
if (err) {
96
IRDA_DEBUG(1, "%s(), error: no more mem!\n", __func__);
97
self->rx_flow = FLOW_STOP;
98
99
/* When we return error, TTP will need to requeue the skb */
100
return err;
101
}
102
103
return 0;
104
}
105
106
/*
107
* Function irda_disconnect_indication (instance, sap, reason, skb)
108
*
109
* Connection has been closed. Check reason to find out why
110
*
111
*/
112
static void irda_disconnect_indication(void *instance, void *sap,
113
LM_REASON reason, struct sk_buff *skb)
114
{
115
struct irda_sock *self;
116
struct sock *sk;
117
118
self = instance;
119
120
IRDA_DEBUG(2, "%s(%p)\n", __func__, self);
121
122
/* Don't care about it, but let's not leak it */
123
if(skb)
124
dev_kfree_skb(skb);
125
126
sk = instance;
127
if (sk == NULL) {
128
IRDA_DEBUG(0, "%s(%p) : BUG : sk is NULL\n",
129
__func__, self);
130
return;
131
}
132
133
/* Prevent race conditions with irda_release() and irda_shutdown() */
134
bh_lock_sock(sk);
135
if (!sock_flag(sk, SOCK_DEAD) && sk->sk_state != TCP_CLOSE) {
136
sk->sk_state = TCP_CLOSE;
137
sk->sk_shutdown |= SEND_SHUTDOWN;
138
139
sk->sk_state_change(sk);
140
141
/* Close our TSAP.
142
* If we leave it open, IrLMP put it back into the list of
143
* unconnected LSAPs. The problem is that any incoming request
144
* can then be matched to this socket (and it will be, because
145
* it is at the head of the list). This would prevent any
146
* listening socket waiting on the same TSAP to get those
147
* requests. Some apps forget to close sockets, or hang to it
148
* a bit too long, so we may stay in this dead state long
149
* enough to be noticed...
150
* Note : all socket function do check sk->sk_state, so we are
151
* safe...
152
* Jean II
153
*/
154
if (self->tsap) {
155
irttp_close_tsap(self->tsap);
156
self->tsap = NULL;
157
}
158
}
159
bh_unlock_sock(sk);
160
161
/* Note : once we are there, there is not much you want to do
162
* with the socket anymore, apart from closing it.
163
* For example, bind() and connect() won't reset sk->sk_err,
164
* sk->sk_shutdown and sk->sk_flags to valid values...
165
* Jean II
166
*/
167
}
168
169
/*
170
* Function irda_connect_confirm (instance, sap, qos, max_sdu_size, skb)
171
*
172
* Connections has been confirmed by the remote device
173
*
174
*/
175
static void irda_connect_confirm(void *instance, void *sap,
176
struct qos_info *qos,
177
__u32 max_sdu_size, __u8 max_header_size,
178
struct sk_buff *skb)
179
{
180
struct irda_sock *self;
181
struct sock *sk;
182
183
self = instance;
184
185
IRDA_DEBUG(2, "%s(%p)\n", __func__, self);
186
187
sk = instance;
188
if (sk == NULL) {
189
dev_kfree_skb(skb);
190
return;
191
}
192
193
dev_kfree_skb(skb);
194
// Should be ??? skb_queue_tail(&sk->sk_receive_queue, skb);
195
196
/* How much header space do we need to reserve */
197
self->max_header_size = max_header_size;
198
199
/* IrTTP max SDU size in transmit direction */
200
self->max_sdu_size_tx = max_sdu_size;
201
202
/* Find out what the largest chunk of data that we can transmit is */
203
switch (sk->sk_type) {
204
case SOCK_STREAM:
205
if (max_sdu_size != 0) {
206
IRDA_ERROR("%s: max_sdu_size must be 0\n",
207
__func__);
208
return;
209
}
210
self->max_data_size = irttp_get_max_seg_size(self->tsap);
211
break;
212
case SOCK_SEQPACKET:
213
if (max_sdu_size == 0) {
214
IRDA_ERROR("%s: max_sdu_size cannot be 0\n",
215
__func__);
216
return;
217
}
218
self->max_data_size = max_sdu_size;
219
break;
220
default:
221
self->max_data_size = irttp_get_max_seg_size(self->tsap);
222
}
223
224
IRDA_DEBUG(2, "%s(), max_data_size=%d\n", __func__,
225
self->max_data_size);
226
227
memcpy(&self->qos_tx, qos, sizeof(struct qos_info));
228
229
/* We are now connected! */
230
sk->sk_state = TCP_ESTABLISHED;
231
sk->sk_state_change(sk);
232
}
233
234
/*
235
* Function irda_connect_indication(instance, sap, qos, max_sdu_size, userdata)
236
*
237
* Incoming connection
238
*
239
*/
240
static void irda_connect_indication(void *instance, void *sap,
241
struct qos_info *qos, __u32 max_sdu_size,
242
__u8 max_header_size, struct sk_buff *skb)
243
{
244
struct irda_sock *self;
245
struct sock *sk;
246
247
self = instance;
248
249
IRDA_DEBUG(2, "%s(%p)\n", __func__, self);
250
251
sk = instance;
252
if (sk == NULL) {
253
dev_kfree_skb(skb);
254
return;
255
}
256
257
/* How much header space do we need to reserve */
258
self->max_header_size = max_header_size;
259
260
/* IrTTP max SDU size in transmit direction */
261
self->max_sdu_size_tx = max_sdu_size;
262
263
/* Find out what the largest chunk of data that we can transmit is */
264
switch (sk->sk_type) {
265
case SOCK_STREAM:
266
if (max_sdu_size != 0) {
267
IRDA_ERROR("%s: max_sdu_size must be 0\n",
268
__func__);
269
kfree_skb(skb);
270
return;
271
}
272
self->max_data_size = irttp_get_max_seg_size(self->tsap);
273
break;
274
case SOCK_SEQPACKET:
275
if (max_sdu_size == 0) {
276
IRDA_ERROR("%s: max_sdu_size cannot be 0\n",
277
__func__);
278
kfree_skb(skb);
279
return;
280
}
281
self->max_data_size = max_sdu_size;
282
break;
283
default:
284
self->max_data_size = irttp_get_max_seg_size(self->tsap);
285
}
286
287
IRDA_DEBUG(2, "%s(), max_data_size=%d\n", __func__,
288
self->max_data_size);
289
290
memcpy(&self->qos_tx, qos, sizeof(struct qos_info));
291
292
skb_queue_tail(&sk->sk_receive_queue, skb);
293
sk->sk_state_change(sk);
294
}
295
296
/*
297
* Function irda_connect_response (handle)
298
*
299
* Accept incoming connection
300
*
301
*/
302
static void irda_connect_response(struct irda_sock *self)
303
{
304
struct sk_buff *skb;
305
306
IRDA_DEBUG(2, "%s()\n", __func__);
307
308
skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
309
GFP_ATOMIC);
310
if (skb == NULL) {
311
IRDA_DEBUG(0, "%s() Unable to allocate sk_buff!\n",
312
__func__);
313
return;
314
}
315
316
/* Reserve space for MUX_CONTROL and LAP header */
317
skb_reserve(skb, IRDA_MAX_HEADER);
318
319
irttp_connect_response(self->tsap, self->max_sdu_size_rx, skb);
320
}
321
322
/*
323
* Function irda_flow_indication (instance, sap, flow)
324
*
325
* Used by TinyTP to tell us if it can accept more data or not
326
*
327
*/
328
static void irda_flow_indication(void *instance, void *sap, LOCAL_FLOW flow)
329
{
330
struct irda_sock *self;
331
struct sock *sk;
332
333
IRDA_DEBUG(2, "%s()\n", __func__);
334
335
self = instance;
336
sk = instance;
337
BUG_ON(sk == NULL);
338
339
switch (flow) {
340
case FLOW_STOP:
341
IRDA_DEBUG(1, "%s(), IrTTP wants us to slow down\n",
342
__func__);
343
self->tx_flow = flow;
344
break;
345
case FLOW_START:
346
self->tx_flow = flow;
347
IRDA_DEBUG(1, "%s(), IrTTP wants us to start again\n",
348
__func__);
349
wake_up_interruptible(sk_sleep(sk));
350
break;
351
default:
352
IRDA_DEBUG(0, "%s(), Unknown flow command!\n", __func__);
353
/* Unknown flow command, better stop */
354
self->tx_flow = flow;
355
break;
356
}
357
}
358
359
/*
360
* Function irda_getvalue_confirm (obj_id, value, priv)
361
*
362
* Got answer from remote LM-IAS, just pass object to requester...
363
*
364
* Note : duplicate from above, but we need our own version that
365
* doesn't touch the dtsap_sel and save the full value structure...
366
*/
367
static void irda_getvalue_confirm(int result, __u16 obj_id,
368
struct ias_value *value, void *priv)
369
{
370
struct irda_sock *self;
371
372
self = (struct irda_sock *) priv;
373
if (!self) {
374
IRDA_WARNING("%s: lost myself!\n", __func__);
375
return;
376
}
377
378
IRDA_DEBUG(2, "%s(%p)\n", __func__, self);
379
380
/* We probably don't need to make any more queries */
381
iriap_close(self->iriap);
382
self->iriap = NULL;
383
384
/* Check if request succeeded */
385
if (result != IAS_SUCCESS) {
386
IRDA_DEBUG(1, "%s(), IAS query failed! (%d)\n", __func__,
387
result);
388
389
self->errno = result; /* We really need it later */
390
391
/* Wake up any processes waiting for result */
392
wake_up_interruptible(&self->query_wait);
393
394
return;
395
}
396
397
/* Pass the object to the caller (so the caller must delete it) */
398
self->ias_result = value;
399
self->errno = 0;
400
401
/* Wake up any processes waiting for result */
402
wake_up_interruptible(&self->query_wait);
403
}
404
405
/*
406
* Function irda_selective_discovery_indication (discovery)
407
*
408
* Got a selective discovery indication from IrLMP.
409
*
410
* IrLMP is telling us that this node is new and matching our hint bit
411
* filter. Wake up any process waiting for answer...
412
*/
413
static void irda_selective_discovery_indication(discinfo_t *discovery,
414
DISCOVERY_MODE mode,
415
void *priv)
416
{
417
struct irda_sock *self;
418
419
IRDA_DEBUG(2, "%s()\n", __func__);
420
421
self = (struct irda_sock *) priv;
422
if (!self) {
423
IRDA_WARNING("%s: lost myself!\n", __func__);
424
return;
425
}
426
427
/* Pass parameter to the caller */
428
self->cachedaddr = discovery->daddr;
429
430
/* Wake up process if its waiting for device to be discovered */
431
wake_up_interruptible(&self->query_wait);
432
}
433
434
/*
435
* Function irda_discovery_timeout (priv)
436
*
437
* Timeout in the selective discovery process
438
*
439
* We were waiting for a node to be discovered, but nothing has come up
440
* so far. Wake up the user and tell him that we failed...
441
*/
442
static void irda_discovery_timeout(u_long priv)
443
{
444
struct irda_sock *self;
445
446
IRDA_DEBUG(2, "%s()\n", __func__);
447
448
self = (struct irda_sock *) priv;
449
BUG_ON(self == NULL);
450
451
/* Nothing for the caller */
452
self->cachelog = NULL;
453
self->cachedaddr = 0;
454
self->errno = -ETIME;
455
456
/* Wake up process if its still waiting... */
457
wake_up_interruptible(&self->query_wait);
458
}
459
460
/*
461
* Function irda_open_tsap (self)
462
*
463
* Open local Transport Service Access Point (TSAP)
464
*
465
*/
466
static int irda_open_tsap(struct irda_sock *self, __u8 tsap_sel, char *name)
467
{
468
notify_t notify;
469
470
if (self->tsap) {
471
IRDA_WARNING("%s: busy!\n", __func__);
472
return -EBUSY;
473
}
474
475
/* Initialize callbacks to be used by the IrDA stack */
476
irda_notify_init(&notify);
477
notify.connect_confirm = irda_connect_confirm;
478
notify.connect_indication = irda_connect_indication;
479
notify.disconnect_indication = irda_disconnect_indication;
480
notify.data_indication = irda_data_indication;
481
notify.udata_indication = irda_data_indication;
482
notify.flow_indication = irda_flow_indication;
483
notify.instance = self;
484
strncpy(notify.name, name, NOTIFY_MAX_NAME);
485
486
self->tsap = irttp_open_tsap(tsap_sel, DEFAULT_INITIAL_CREDIT,
487
&notify);
488
if (self->tsap == NULL) {
489
IRDA_DEBUG(0, "%s(), Unable to allocate TSAP!\n",
490
__func__);
491
return -ENOMEM;
492
}
493
/* Remember which TSAP selector we actually got */
494
self->stsap_sel = self->tsap->stsap_sel;
495
496
return 0;
497
}
498
499
/*
500
* Function irda_open_lsap (self)
501
*
502
* Open local Link Service Access Point (LSAP). Used for opening Ultra
503
* sockets
504
*/
505
#ifdef CONFIG_IRDA_ULTRA
506
static int irda_open_lsap(struct irda_sock *self, int pid)
507
{
508
notify_t notify;
509
510
if (self->lsap) {
511
IRDA_WARNING("%s(), busy!\n", __func__);
512
return -EBUSY;
513
}
514
515
/* Initialize callbacks to be used by the IrDA stack */
516
irda_notify_init(&notify);
517
notify.udata_indication = irda_data_indication;
518
notify.instance = self;
519
strncpy(notify.name, "Ultra", NOTIFY_MAX_NAME);
520
521
self->lsap = irlmp_open_lsap(LSAP_CONNLESS, &notify, pid);
522
if (self->lsap == NULL) {
523
IRDA_DEBUG( 0, "%s(), Unable to allocate LSAP!\n", __func__);
524
return -ENOMEM;
525
}
526
527
return 0;
528
}
529
#endif /* CONFIG_IRDA_ULTRA */
530
531
/*
532
* Function irda_find_lsap_sel (self, name)
533
*
534
* Try to lookup LSAP selector in remote LM-IAS
535
*
536
* Basically, we start a IAP query, and then go to sleep. When the query
537
* return, irda_getvalue_confirm will wake us up, and we can examine the
538
* result of the query...
539
* Note that in some case, the query fail even before we go to sleep,
540
* creating some races...
541
*/
542
static int irda_find_lsap_sel(struct irda_sock *self, char *name)
543
{
544
IRDA_DEBUG(2, "%s(%p, %s)\n", __func__, self, name);
545
546
if (self->iriap) {
547
IRDA_WARNING("%s(): busy with a previous query\n",
548
__func__);
549
return -EBUSY;
550
}
551
552
self->iriap = iriap_open(LSAP_ANY, IAS_CLIENT, self,
553
irda_getvalue_confirm);
554
if(self->iriap == NULL)
555
return -ENOMEM;
556
557
/* Treat unexpected wakeup as disconnect */
558
self->errno = -EHOSTUNREACH;
559
560
/* Query remote LM-IAS */
561
iriap_getvaluebyclass_request(self->iriap, self->saddr, self->daddr,
562
name, "IrDA:TinyTP:LsapSel");
563
564
/* Wait for answer, if not yet finished (or failed) */
565
if (wait_event_interruptible(self->query_wait, (self->iriap==NULL)))
566
/* Treat signals as disconnect */
567
return -EHOSTUNREACH;
568
569
/* Check what happened */
570
if (self->errno)
571
{
572
/* Requested object/attribute doesn't exist */
573
if((self->errno == IAS_CLASS_UNKNOWN) ||
574
(self->errno == IAS_ATTRIB_UNKNOWN))
575
return -EADDRNOTAVAIL;
576
else
577
return -EHOSTUNREACH;
578
}
579
580
/* Get the remote TSAP selector */
581
switch (self->ias_result->type) {
582
case IAS_INTEGER:
583
IRDA_DEBUG(4, "%s() int=%d\n",
584
__func__, self->ias_result->t.integer);
585
586
if (self->ias_result->t.integer != -1)
587
self->dtsap_sel = self->ias_result->t.integer;
588
else
589
self->dtsap_sel = 0;
590
break;
591
default:
592
self->dtsap_sel = 0;
593
IRDA_DEBUG(0, "%s(), bad type!\n", __func__);
594
break;
595
}
596
if (self->ias_result)
597
irias_delete_value(self->ias_result);
598
599
if (self->dtsap_sel)
600
return 0;
601
602
return -EADDRNOTAVAIL;
603
}
604
605
/*
606
* Function irda_discover_daddr_and_lsap_sel (self, name)
607
*
608
* This try to find a device with the requested service.
609
*
610
* It basically look into the discovery log. For each address in the list,
611
* it queries the LM-IAS of the device to find if this device offer
612
* the requested service.
613
* If there is more than one node supporting the service, we complain
614
* to the user (it should move devices around).
615
* The, we set both the destination address and the lsap selector to point
616
* on the service on the unique device we have found.
617
*
618
* Note : this function fails if there is more than one device in range,
619
* because IrLMP doesn't disconnect the LAP when the last LSAP is closed.
620
* Moreover, we would need to wait the LAP disconnection...
621
*/
622
static int irda_discover_daddr_and_lsap_sel(struct irda_sock *self, char *name)
623
{
624
discinfo_t *discoveries; /* Copy of the discovery log */
625
int number; /* Number of nodes in the log */
626
int i;
627
int err = -ENETUNREACH;
628
__u32 daddr = DEV_ADDR_ANY; /* Address we found the service on */
629
__u8 dtsap_sel = 0x0; /* TSAP associated with it */
630
631
IRDA_DEBUG(2, "%s(), name=%s\n", __func__, name);
632
633
/* Ask lmp for the current discovery log
634
* Note : we have to use irlmp_get_discoveries(), as opposed
635
* to play with the cachelog directly, because while we are
636
* making our ias query, le log might change... */
637
discoveries = irlmp_get_discoveries(&number, self->mask.word,
638
self->nslots);
639
/* Check if the we got some results */
640
if (discoveries == NULL)
641
return -ENETUNREACH; /* No nodes discovered */
642
643
/*
644
* Now, check all discovered devices (if any), and connect
645
* client only about the services that the client is
646
* interested in...
647
*/
648
for(i = 0; i < number; i++) {
649
/* Try the address in the log */
650
self->daddr = discoveries[i].daddr;
651
self->saddr = 0x0;
652
IRDA_DEBUG(1, "%s(), trying daddr = %08x\n",
653
__func__, self->daddr);
654
655
/* Query remote LM-IAS for this service */
656
err = irda_find_lsap_sel(self, name);
657
switch (err) {
658
case 0:
659
/* We found the requested service */
660
if(daddr != DEV_ADDR_ANY) {
661
IRDA_DEBUG(1, "%s(), discovered service ''%s'' in two different devices !!!\n",
662
__func__, name);
663
self->daddr = DEV_ADDR_ANY;
664
kfree(discoveries);
665
return -ENOTUNIQ;
666
}
667
/* First time we found that one, save it ! */
668
daddr = self->daddr;
669
dtsap_sel = self->dtsap_sel;
670
break;
671
case -EADDRNOTAVAIL:
672
/* Requested service simply doesn't exist on this node */
673
break;
674
default:
675
/* Something bad did happen :-( */
676
IRDA_DEBUG(0, "%s(), unexpected IAS query failure\n", __func__);
677
self->daddr = DEV_ADDR_ANY;
678
kfree(discoveries);
679
return -EHOSTUNREACH;
680
break;
681
}
682
}
683
/* Cleanup our copy of the discovery log */
684
kfree(discoveries);
685
686
/* Check out what we found */
687
if(daddr == DEV_ADDR_ANY) {
688
IRDA_DEBUG(1, "%s(), cannot discover service ''%s'' in any device !!!\n",
689
__func__, name);
690
self->daddr = DEV_ADDR_ANY;
691
return -EADDRNOTAVAIL;
692
}
693
694
/* Revert back to discovered device & service */
695
self->daddr = daddr;
696
self->saddr = 0x0;
697
self->dtsap_sel = dtsap_sel;
698
699
IRDA_DEBUG(1, "%s(), discovered requested service ''%s'' at address %08x\n",
700
__func__, name, self->daddr);
701
702
return 0;
703
}
704
705
/*
706
* Function irda_getname (sock, uaddr, uaddr_len, peer)
707
*
708
* Return the our own, or peers socket address (sockaddr_irda)
709
*
710
*/
711
static int irda_getname(struct socket *sock, struct sockaddr *uaddr,
712
int *uaddr_len, int peer)
713
{
714
struct sockaddr_irda saddr;
715
struct sock *sk = sock->sk;
716
struct irda_sock *self = irda_sk(sk);
717
718
memset(&saddr, 0, sizeof(saddr));
719
if (peer) {
720
if (sk->sk_state != TCP_ESTABLISHED)
721
return -ENOTCONN;
722
723
saddr.sir_family = AF_IRDA;
724
saddr.sir_lsap_sel = self->dtsap_sel;
725
saddr.sir_addr = self->daddr;
726
} else {
727
saddr.sir_family = AF_IRDA;
728
saddr.sir_lsap_sel = self->stsap_sel;
729
saddr.sir_addr = self->saddr;
730
}
731
732
IRDA_DEBUG(1, "%s(), tsap_sel = %#x\n", __func__, saddr.sir_lsap_sel);
733
IRDA_DEBUG(1, "%s(), addr = %08x\n", __func__, saddr.sir_addr);
734
735
/* uaddr_len come to us uninitialised */
736
*uaddr_len = sizeof (struct sockaddr_irda);
737
memcpy(uaddr, &saddr, *uaddr_len);
738
739
return 0;
740
}
741
742
/*
743
* Function irda_listen (sock, backlog)
744
*
745
* Just move to the listen state
746
*
747
*/
748
static int irda_listen(struct socket *sock, int backlog)
749
{
750
struct sock *sk = sock->sk;
751
int err = -EOPNOTSUPP;
752
753
IRDA_DEBUG(2, "%s()\n", __func__);
754
755
lock_sock(sk);
756
757
if ((sk->sk_type != SOCK_STREAM) && (sk->sk_type != SOCK_SEQPACKET) &&
758
(sk->sk_type != SOCK_DGRAM))
759
goto out;
760
761
if (sk->sk_state != TCP_LISTEN) {
762
sk->sk_max_ack_backlog = backlog;
763
sk->sk_state = TCP_LISTEN;
764
765
err = 0;
766
}
767
out:
768
release_sock(sk);
769
770
return err;
771
}
772
773
/*
774
* Function irda_bind (sock, uaddr, addr_len)
775
*
776
* Used by servers to register their well known TSAP
777
*
778
*/
779
static int irda_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
780
{
781
struct sock *sk = sock->sk;
782
struct sockaddr_irda *addr = (struct sockaddr_irda *) uaddr;
783
struct irda_sock *self = irda_sk(sk);
784
int err;
785
786
IRDA_DEBUG(2, "%s(%p)\n", __func__, self);
787
788
if (addr_len != sizeof(struct sockaddr_irda))
789
return -EINVAL;
790
791
lock_sock(sk);
792
#ifdef CONFIG_IRDA_ULTRA
793
/* Special care for Ultra sockets */
794
if ((sk->sk_type == SOCK_DGRAM) &&
795
(sk->sk_protocol == IRDAPROTO_ULTRA)) {
796
self->pid = addr->sir_lsap_sel;
797
err = -EOPNOTSUPP;
798
if (self->pid & 0x80) {
799
IRDA_DEBUG(0, "%s(), extension in PID not supp!\n", __func__);
800
goto out;
801
}
802
err = irda_open_lsap(self, self->pid);
803
if (err < 0)
804
goto out;
805
806
/* Pretend we are connected */
807
sock->state = SS_CONNECTED;
808
sk->sk_state = TCP_ESTABLISHED;
809
err = 0;
810
811
goto out;
812
}
813
#endif /* CONFIG_IRDA_ULTRA */
814
815
self->ias_obj = irias_new_object(addr->sir_name, jiffies);
816
err = -ENOMEM;
817
if (self->ias_obj == NULL)
818
goto out;
819
820
err = irda_open_tsap(self, addr->sir_lsap_sel, addr->sir_name);
821
if (err < 0) {
822
irias_delete_object(self->ias_obj);
823
self->ias_obj = NULL;
824
goto out;
825
}
826
827
/* Register with LM-IAS */
828
irias_add_integer_attrib(self->ias_obj, "IrDA:TinyTP:LsapSel",
829
self->stsap_sel, IAS_KERNEL_ATTR);
830
irias_insert_object(self->ias_obj);
831
832
err = 0;
833
out:
834
release_sock(sk);
835
return err;
836
}
837
838
/*
839
* Function irda_accept (sock, newsock, flags)
840
*
841
* Wait for incoming connection
842
*
843
*/
844
static int irda_accept(struct socket *sock, struct socket *newsock, int flags)
845
{
846
struct sock *sk = sock->sk;
847
struct irda_sock *new, *self = irda_sk(sk);
848
struct sock *newsk;
849
struct sk_buff *skb;
850
int err;
851
852
IRDA_DEBUG(2, "%s()\n", __func__);
853
854
err = irda_create(sock_net(sk), newsock, sk->sk_protocol, 0);
855
if (err)
856
return err;
857
858
err = -EINVAL;
859
860
lock_sock(sk);
861
if (sock->state != SS_UNCONNECTED)
862
goto out;
863
864
if ((sk = sock->sk) == NULL)
865
goto out;
866
867
err = -EOPNOTSUPP;
868
if ((sk->sk_type != SOCK_STREAM) && (sk->sk_type != SOCK_SEQPACKET) &&
869
(sk->sk_type != SOCK_DGRAM))
870
goto out;
871
872
err = -EINVAL;
873
if (sk->sk_state != TCP_LISTEN)
874
goto out;
875
876
/*
877
* The read queue this time is holding sockets ready to use
878
* hooked into the SABM we saved
879
*/
880
881
/*
882
* We can perform the accept only if there is incoming data
883
* on the listening socket.
884
* So, we will block the caller until we receive any data.
885
* If the caller was waiting on select() or poll() before
886
* calling us, the data is waiting for us ;-)
887
* Jean II
888
*/
889
while (1) {
890
skb = skb_dequeue(&sk->sk_receive_queue);
891
if (skb)
892
break;
893
894
/* Non blocking operation */
895
err = -EWOULDBLOCK;
896
if (flags & O_NONBLOCK)
897
goto out;
898
899
err = wait_event_interruptible(*(sk_sleep(sk)),
900
skb_peek(&sk->sk_receive_queue));
901
if (err)
902
goto out;
903
}
904
905
newsk = newsock->sk;
906
err = -EIO;
907
if (newsk == NULL)
908
goto out;
909
910
newsk->sk_state = TCP_ESTABLISHED;
911
912
new = irda_sk(newsk);
913
914
/* Now attach up the new socket */
915
new->tsap = irttp_dup(self->tsap, new);
916
err = -EPERM; /* value does not seem to make sense. -arnd */
917
if (!new->tsap) {
918
IRDA_DEBUG(0, "%s(), dup failed!\n", __func__);
919
kfree_skb(skb);
920
goto out;
921
}
922
923
new->stsap_sel = new->tsap->stsap_sel;
924
new->dtsap_sel = new->tsap->dtsap_sel;
925
new->saddr = irttp_get_saddr(new->tsap);
926
new->daddr = irttp_get_daddr(new->tsap);
927
928
new->max_sdu_size_tx = self->max_sdu_size_tx;
929
new->max_sdu_size_rx = self->max_sdu_size_rx;
930
new->max_data_size = self->max_data_size;
931
new->max_header_size = self->max_header_size;
932
933
memcpy(&new->qos_tx, &self->qos_tx, sizeof(struct qos_info));
934
935
/* Clean up the original one to keep it in listen state */
936
irttp_listen(self->tsap);
937
938
kfree_skb(skb);
939
sk->sk_ack_backlog--;
940
941
newsock->state = SS_CONNECTED;
942
943
irda_connect_response(new);
944
err = 0;
945
out:
946
release_sock(sk);
947
return err;
948
}
949
950
/*
951
* Function irda_connect (sock, uaddr, addr_len, flags)
952
*
953
* Connect to a IrDA device
954
*
955
* The main difference with a "standard" connect is that with IrDA we need
956
* to resolve the service name into a TSAP selector (in TCP, port number
957
* doesn't have to be resolved).
958
* Because of this service name resoltion, we can offer "auto-connect",
959
* where we connect to a service without specifying a destination address.
960
*
961
* Note : by consulting "errno", the user space caller may learn the cause
962
* of the failure. Most of them are visible in the function, others may come
963
* from subroutines called and are listed here :
964
* o EBUSY : already processing a connect
965
* o EHOSTUNREACH : bad addr->sir_addr argument
966
* o EADDRNOTAVAIL : bad addr->sir_name argument
967
* o ENOTUNIQ : more than one node has addr->sir_name (auto-connect)
968
* o ENETUNREACH : no node found on the network (auto-connect)
969
*/
970
static int irda_connect(struct socket *sock, struct sockaddr *uaddr,
971
int addr_len, int flags)
972
{
973
struct sock *sk = sock->sk;
974
struct sockaddr_irda *addr = (struct sockaddr_irda *) uaddr;
975
struct irda_sock *self = irda_sk(sk);
976
int err;
977
978
IRDA_DEBUG(2, "%s(%p)\n", __func__, self);
979
980
lock_sock(sk);
981
/* Don't allow connect for Ultra sockets */
982
err = -ESOCKTNOSUPPORT;
983
if ((sk->sk_type == SOCK_DGRAM) && (sk->sk_protocol == IRDAPROTO_ULTRA))
984
goto out;
985
986
if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) {
987
sock->state = SS_CONNECTED;
988
err = 0;
989
goto out; /* Connect completed during a ERESTARTSYS event */
990
}
991
992
if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) {
993
sock->state = SS_UNCONNECTED;
994
err = -ECONNREFUSED;
995
goto out;
996
}
997
998
err = -EISCONN; /* No reconnect on a seqpacket socket */
999
if (sk->sk_state == TCP_ESTABLISHED)
1000
goto out;
1001
1002
sk->sk_state = TCP_CLOSE;
1003
sock->state = SS_UNCONNECTED;
1004
1005
err = -EINVAL;
1006
if (addr_len != sizeof(struct sockaddr_irda))
1007
goto out;
1008
1009
/* Check if user supplied any destination device address */
1010
if ((!addr->sir_addr) || (addr->sir_addr == DEV_ADDR_ANY)) {
1011
/* Try to find one suitable */
1012
err = irda_discover_daddr_and_lsap_sel(self, addr->sir_name);
1013
if (err) {
1014
IRDA_DEBUG(0, "%s(), auto-connect failed!\n", __func__);
1015
goto out;
1016
}
1017
} else {
1018
/* Use the one provided by the user */
1019
self->daddr = addr->sir_addr;
1020
IRDA_DEBUG(1, "%s(), daddr = %08x\n", __func__, self->daddr);
1021
1022
/* If we don't have a valid service name, we assume the
1023
* user want to connect on a specific LSAP. Prevent
1024
* the use of invalid LSAPs (IrLMP 1.1 p10). Jean II */
1025
if((addr->sir_name[0] != '\0') ||
1026
(addr->sir_lsap_sel >= 0x70)) {
1027
/* Query remote LM-IAS using service name */
1028
err = irda_find_lsap_sel(self, addr->sir_name);
1029
if (err) {
1030
IRDA_DEBUG(0, "%s(), connect failed!\n", __func__);
1031
goto out;
1032
}
1033
} else {
1034
/* Directly connect to the remote LSAP
1035
* specified by the sir_lsap field.
1036
* Please use with caution, in IrDA LSAPs are
1037
* dynamic and there is no "well-known" LSAP. */
1038
self->dtsap_sel = addr->sir_lsap_sel;
1039
}
1040
}
1041
1042
/* Check if we have opened a local TSAP */
1043
if (!self->tsap)
1044
irda_open_tsap(self, LSAP_ANY, addr->sir_name);
1045
1046
/* Move to connecting socket, start sending Connect Requests */
1047
sock->state = SS_CONNECTING;
1048
sk->sk_state = TCP_SYN_SENT;
1049
1050
/* Connect to remote device */
1051
err = irttp_connect_request(self->tsap, self->dtsap_sel,
1052
self->saddr, self->daddr, NULL,
1053
self->max_sdu_size_rx, NULL);
1054
if (err) {
1055
IRDA_DEBUG(0, "%s(), connect failed!\n", __func__);
1056
goto out;
1057
}
1058
1059
/* Now the loop */
1060
err = -EINPROGRESS;
1061
if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK))
1062
goto out;
1063
1064
err = -ERESTARTSYS;
1065
if (wait_event_interruptible(*(sk_sleep(sk)),
1066
(sk->sk_state != TCP_SYN_SENT)))
1067
goto out;
1068
1069
if (sk->sk_state != TCP_ESTABLISHED) {
1070
sock->state = SS_UNCONNECTED;
1071
if (sk->sk_prot->disconnect(sk, flags))
1072
sock->state = SS_DISCONNECTING;
1073
err = sock_error(sk);
1074
if (!err)
1075
err = -ECONNRESET;
1076
goto out;
1077
}
1078
1079
sock->state = SS_CONNECTED;
1080
1081
/* At this point, IrLMP has assigned our source address */
1082
self->saddr = irttp_get_saddr(self->tsap);
1083
err = 0;
1084
out:
1085
release_sock(sk);
1086
return err;
1087
}
1088
1089
static struct proto irda_proto = {
1090
.name = "IRDA",
1091
.owner = THIS_MODULE,
1092
.obj_size = sizeof(struct irda_sock),
1093
};
1094
1095
/*
1096
* Function irda_create (sock, protocol)
1097
*
1098
* Create IrDA socket
1099
*
1100
*/
1101
static int irda_create(struct net *net, struct socket *sock, int protocol,
1102
int kern)
1103
{
1104
struct sock *sk;
1105
struct irda_sock *self;
1106
1107
IRDA_DEBUG(2, "%s()\n", __func__);
1108
1109
if (net != &init_net)
1110
return -EAFNOSUPPORT;
1111
1112
/* Check for valid socket type */
1113
switch (sock->type) {
1114
case SOCK_STREAM: /* For TTP connections with SAR disabled */
1115
case SOCK_SEQPACKET: /* For TTP connections with SAR enabled */
1116
case SOCK_DGRAM: /* For TTP Unitdata or LMP Ultra transfers */
1117
break;
1118
default:
1119
return -ESOCKTNOSUPPORT;
1120
}
1121
1122
/* Allocate networking socket */
1123
sk = sk_alloc(net, PF_IRDA, GFP_ATOMIC, &irda_proto);
1124
if (sk == NULL)
1125
return -ENOMEM;
1126
1127
self = irda_sk(sk);
1128
IRDA_DEBUG(2, "%s() : self is %p\n", __func__, self);
1129
1130
init_waitqueue_head(&self->query_wait);
1131
1132
switch (sock->type) {
1133
case SOCK_STREAM:
1134
sock->ops = &irda_stream_ops;
1135
self->max_sdu_size_rx = TTP_SAR_DISABLE;
1136
break;
1137
case SOCK_SEQPACKET:
1138
sock->ops = &irda_seqpacket_ops;
1139
self->max_sdu_size_rx = TTP_SAR_UNBOUND;
1140
break;
1141
case SOCK_DGRAM:
1142
switch (protocol) {
1143
#ifdef CONFIG_IRDA_ULTRA
1144
case IRDAPROTO_ULTRA:
1145
sock->ops = &irda_ultra_ops;
1146
/* Initialise now, because we may send on unbound
1147
* sockets. Jean II */
1148
self->max_data_size = ULTRA_MAX_DATA - LMP_PID_HEADER;
1149
self->max_header_size = IRDA_MAX_HEADER + LMP_PID_HEADER;
1150
break;
1151
#endif /* CONFIG_IRDA_ULTRA */
1152
case IRDAPROTO_UNITDATA:
1153
sock->ops = &irda_dgram_ops;
1154
/* We let Unitdata conn. be like seqpack conn. */
1155
self->max_sdu_size_rx = TTP_SAR_UNBOUND;
1156
break;
1157
default:
1158
sk_free(sk);
1159
return -ESOCKTNOSUPPORT;
1160
}
1161
break;
1162
default:
1163
sk_free(sk);
1164
return -ESOCKTNOSUPPORT;
1165
}
1166
1167
/* Initialise networking socket struct */
1168
sock_init_data(sock, sk); /* Note : set sk->sk_refcnt to 1 */
1169
sk->sk_family = PF_IRDA;
1170
sk->sk_protocol = protocol;
1171
1172
/* Register as a client with IrLMP */
1173
self->ckey = irlmp_register_client(0, NULL, NULL, NULL);
1174
self->mask.word = 0xffff;
1175
self->rx_flow = self->tx_flow = FLOW_START;
1176
self->nslots = DISCOVERY_DEFAULT_SLOTS;
1177
self->daddr = DEV_ADDR_ANY; /* Until we get connected */
1178
self->saddr = 0x0; /* so IrLMP assign us any link */
1179
return 0;
1180
}
1181
1182
/*
1183
* Function irda_destroy_socket (self)
1184
*
1185
* Destroy socket
1186
*
1187
*/
1188
static void irda_destroy_socket(struct irda_sock *self)
1189
{
1190
IRDA_DEBUG(2, "%s(%p)\n", __func__, self);
1191
1192
/* Unregister with IrLMP */
1193
irlmp_unregister_client(self->ckey);
1194
irlmp_unregister_service(self->skey);
1195
1196
/* Unregister with LM-IAS */
1197
if (self->ias_obj) {
1198
irias_delete_object(self->ias_obj);
1199
self->ias_obj = NULL;
1200
}
1201
1202
if (self->iriap) {
1203
iriap_close(self->iriap);
1204
self->iriap = NULL;
1205
}
1206
1207
if (self->tsap) {
1208
irttp_disconnect_request(self->tsap, NULL, P_NORMAL);
1209
irttp_close_tsap(self->tsap);
1210
self->tsap = NULL;
1211
}
1212
#ifdef CONFIG_IRDA_ULTRA
1213
if (self->lsap) {
1214
irlmp_close_lsap(self->lsap);
1215
self->lsap = NULL;
1216
}
1217
#endif /* CONFIG_IRDA_ULTRA */
1218
}
1219
1220
/*
1221
* Function irda_release (sock)
1222
*/
1223
static int irda_release(struct socket *sock)
1224
{
1225
struct sock *sk = sock->sk;
1226
1227
IRDA_DEBUG(2, "%s()\n", __func__);
1228
1229
if (sk == NULL)
1230
return 0;
1231
1232
lock_sock(sk);
1233
sk->sk_state = TCP_CLOSE;
1234
sk->sk_shutdown |= SEND_SHUTDOWN;
1235
sk->sk_state_change(sk);
1236
1237
/* Destroy IrDA socket */
1238
irda_destroy_socket(irda_sk(sk));
1239
1240
sock_orphan(sk);
1241
sock->sk = NULL;
1242
release_sock(sk);
1243
1244
/* Purge queues (see sock_init_data()) */
1245
skb_queue_purge(&sk->sk_receive_queue);
1246
1247
/* Destroy networking socket if we are the last reference on it,
1248
* i.e. if(sk->sk_refcnt == 0) -> sk_free(sk) */
1249
sock_put(sk);
1250
1251
/* Notes on socket locking and deallocation... - Jean II
1252
* In theory we should put pairs of sock_hold() / sock_put() to
1253
* prevent the socket to be destroyed whenever there is an
1254
* outstanding request or outstanding incoming packet or event.
1255
*
1256
* 1) This may include IAS request, both in connect and getsockopt.
1257
* Unfortunately, the situation is a bit more messy than it looks,
1258
* because we close iriap and kfree(self) above.
1259
*
1260
* 2) This may include selective discovery in getsockopt.
1261
* Same stuff as above, irlmp registration and self are gone.
1262
*
1263
* Probably 1 and 2 may not matter, because it's all triggered
1264
* by a process and the socket layer already prevent the
1265
* socket to go away while a process is holding it, through
1266
* sockfd_put() and fput()...
1267
*
1268
* 3) This may include deferred TSAP closure. In particular,
1269
* we may receive a late irda_disconnect_indication()
1270
* Fortunately, (tsap_cb *)->close_pend should protect us
1271
* from that.
1272
*
1273
* I did some testing on SMP, and it looks solid. And the socket
1274
* memory leak is now gone... - Jean II
1275
*/
1276
1277
return 0;
1278
}
1279
1280
/*
1281
* Function irda_sendmsg (iocb, sock, msg, len)
1282
*
1283
* Send message down to TinyTP. This function is used for both STREAM and
1284
* SEQPACK services. This is possible since it forces the client to
1285
* fragment the message if necessary
1286
*/
1287
static int irda_sendmsg(struct kiocb *iocb, struct socket *sock,
1288
struct msghdr *msg, size_t len)
1289
{
1290
struct sock *sk = sock->sk;
1291
struct irda_sock *self;
1292
struct sk_buff *skb;
1293
int err = -EPIPE;
1294
1295
IRDA_DEBUG(4, "%s(), len=%zd\n", __func__, len);
1296
1297
/* Note : socket.c set MSG_EOR on SEQPACKET sockets */
1298
if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_EOR | MSG_CMSG_COMPAT |
1299
MSG_NOSIGNAL)) {
1300
return -EINVAL;
1301
}
1302
1303
lock_sock(sk);
1304
1305
if (sk->sk_shutdown & SEND_SHUTDOWN)
1306
goto out_err;
1307
1308
if (sk->sk_state != TCP_ESTABLISHED) {
1309
err = -ENOTCONN;
1310
goto out;
1311
}
1312
1313
self = irda_sk(sk);
1314
1315
/* Check if IrTTP is wants us to slow down */
1316
1317
if (wait_event_interruptible(*(sk_sleep(sk)),
1318
(self->tx_flow != FLOW_STOP || sk->sk_state != TCP_ESTABLISHED))) {
1319
err = -ERESTARTSYS;
1320
goto out;
1321
}
1322
1323
/* Check if we are still connected */
1324
if (sk->sk_state != TCP_ESTABLISHED) {
1325
err = -ENOTCONN;
1326
goto out;
1327
}
1328
1329
/* Check that we don't send out too big frames */
1330
if (len > self->max_data_size) {
1331
IRDA_DEBUG(2, "%s(), Chopping frame from %zd to %d bytes!\n",
1332
__func__, len, self->max_data_size);
1333
len = self->max_data_size;
1334
}
1335
1336
skb = sock_alloc_send_skb(sk, len + self->max_header_size + 16,
1337
msg->msg_flags & MSG_DONTWAIT, &err);
1338
if (!skb)
1339
goto out_err;
1340
1341
skb_reserve(skb, self->max_header_size + 16);
1342
skb_reset_transport_header(skb);
1343
skb_put(skb, len);
1344
err = memcpy_fromiovec(skb_transport_header(skb), msg->msg_iov, len);
1345
if (err) {
1346
kfree_skb(skb);
1347
goto out_err;
1348
}
1349
1350
/*
1351
* Just send the message to TinyTP, and let it deal with possible
1352
* errors. No need to duplicate all that here
1353
*/
1354
err = irttp_data_request(self->tsap, skb);
1355
if (err) {
1356
IRDA_DEBUG(0, "%s(), err=%d\n", __func__, err);
1357
goto out_err;
1358
}
1359
1360
release_sock(sk);
1361
/* Tell client how much data we actually sent */
1362
return len;
1363
1364
out_err:
1365
err = sk_stream_error(sk, msg->msg_flags, err);
1366
out:
1367
release_sock(sk);
1368
return err;
1369
1370
}
1371
1372
/*
1373
* Function irda_recvmsg_dgram (iocb, sock, msg, size, flags)
1374
*
1375
* Try to receive message and copy it to user. The frame is discarded
1376
* after being read, regardless of how much the user actually read
1377
*/
1378
static int irda_recvmsg_dgram(struct kiocb *iocb, struct socket *sock,
1379
struct msghdr *msg, size_t size, int flags)
1380
{
1381
struct sock *sk = sock->sk;
1382
struct irda_sock *self = irda_sk(sk);
1383
struct sk_buff *skb;
1384
size_t copied;
1385
int err;
1386
1387
IRDA_DEBUG(4, "%s()\n", __func__);
1388
1389
skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT,
1390
flags & MSG_DONTWAIT, &err);
1391
if (!skb)
1392
return err;
1393
1394
skb_reset_transport_header(skb);
1395
copied = skb->len;
1396
1397
if (copied > size) {
1398
IRDA_DEBUG(2, "%s(), Received truncated frame (%zd < %zd)!\n",
1399
__func__, copied, size);
1400
copied = size;
1401
msg->msg_flags |= MSG_TRUNC;
1402
}
1403
skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1404
1405
skb_free_datagram(sk, skb);
1406
1407
/*
1408
* Check if we have previously stopped IrTTP and we know
1409
* have more free space in our rx_queue. If so tell IrTTP
1410
* to start delivering frames again before our rx_queue gets
1411
* empty
1412
*/
1413
if (self->rx_flow == FLOW_STOP) {
1414
if ((atomic_read(&sk->sk_rmem_alloc) << 2) <= sk->sk_rcvbuf) {
1415
IRDA_DEBUG(2, "%s(), Starting IrTTP\n", __func__);
1416
self->rx_flow = FLOW_START;
1417
irttp_flow_request(self->tsap, FLOW_START);
1418
}
1419
}
1420
1421
return copied;
1422
}
1423
1424
/*
1425
* Function irda_recvmsg_stream (iocb, sock, msg, size, flags)
1426
*/
1427
static int irda_recvmsg_stream(struct kiocb *iocb, struct socket *sock,
1428
struct msghdr *msg, size_t size, int flags)
1429
{
1430
struct sock *sk = sock->sk;
1431
struct irda_sock *self = irda_sk(sk);
1432
int noblock = flags & MSG_DONTWAIT;
1433
size_t copied = 0;
1434
int target, err;
1435
long timeo;
1436
1437
IRDA_DEBUG(3, "%s()\n", __func__);
1438
1439
if ((err = sock_error(sk)) < 0)
1440
return err;
1441
1442
if (sock->flags & __SO_ACCEPTCON)
1443
return -EINVAL;
1444
1445
err =-EOPNOTSUPP;
1446
if (flags & MSG_OOB)
1447
return -EOPNOTSUPP;
1448
1449
err = 0;
1450
target = sock_rcvlowat(sk, flags & MSG_WAITALL, size);
1451
timeo = sock_rcvtimeo(sk, noblock);
1452
1453
msg->msg_namelen = 0;
1454
1455
do {
1456
int chunk;
1457
struct sk_buff *skb = skb_dequeue(&sk->sk_receive_queue);
1458
1459
if (skb == NULL) {
1460
DEFINE_WAIT(wait);
1461
err = 0;
1462
1463
if (copied >= target)
1464
break;
1465
1466
prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1467
1468
/*
1469
* POSIX 1003.1g mandates this order.
1470
*/
1471
err = sock_error(sk);
1472
if (err)
1473
;
1474
else if (sk->sk_shutdown & RCV_SHUTDOWN)
1475
;
1476
else if (noblock)
1477
err = -EAGAIN;
1478
else if (signal_pending(current))
1479
err = sock_intr_errno(timeo);
1480
else if (sk->sk_state != TCP_ESTABLISHED)
1481
err = -ENOTCONN;
1482
else if (skb_peek(&sk->sk_receive_queue) == NULL)
1483
/* Wait process until data arrives */
1484
schedule();
1485
1486
finish_wait(sk_sleep(sk), &wait);
1487
1488
if (err)
1489
return err;
1490
if (sk->sk_shutdown & RCV_SHUTDOWN)
1491
break;
1492
1493
continue;
1494
}
1495
1496
chunk = min_t(unsigned int, skb->len, size);
1497
if (memcpy_toiovec(msg->msg_iov, skb->data, chunk)) {
1498
skb_queue_head(&sk->sk_receive_queue, skb);
1499
if (copied == 0)
1500
copied = -EFAULT;
1501
break;
1502
}
1503
copied += chunk;
1504
size -= chunk;
1505
1506
/* Mark read part of skb as used */
1507
if (!(flags & MSG_PEEK)) {
1508
skb_pull(skb, chunk);
1509
1510
/* put the skb back if we didn't use it up.. */
1511
if (skb->len) {
1512
IRDA_DEBUG(1, "%s(), back on q!\n",
1513
__func__);
1514
skb_queue_head(&sk->sk_receive_queue, skb);
1515
break;
1516
}
1517
1518
kfree_skb(skb);
1519
} else {
1520
IRDA_DEBUG(0, "%s() questionable!?\n", __func__);
1521
1522
/* put message back and return */
1523
skb_queue_head(&sk->sk_receive_queue, skb);
1524
break;
1525
}
1526
} while (size);
1527
1528
/*
1529
* Check if we have previously stopped IrTTP and we know
1530
* have more free space in our rx_queue. If so tell IrTTP
1531
* to start delivering frames again before our rx_queue gets
1532
* empty
1533
*/
1534
if (self->rx_flow == FLOW_STOP) {
1535
if ((atomic_read(&sk->sk_rmem_alloc) << 2) <= sk->sk_rcvbuf) {
1536
IRDA_DEBUG(2, "%s(), Starting IrTTP\n", __func__);
1537
self->rx_flow = FLOW_START;
1538
irttp_flow_request(self->tsap, FLOW_START);
1539
}
1540
}
1541
1542
return copied;
1543
}
1544
1545
/*
1546
* Function irda_sendmsg_dgram (iocb, sock, msg, len)
1547
*
1548
* Send message down to TinyTP for the unreliable sequenced
1549
* packet service...
1550
*
1551
*/
1552
static int irda_sendmsg_dgram(struct kiocb *iocb, struct socket *sock,
1553
struct msghdr *msg, size_t len)
1554
{
1555
struct sock *sk = sock->sk;
1556
struct irda_sock *self;
1557
struct sk_buff *skb;
1558
int err;
1559
1560
IRDA_DEBUG(4, "%s(), len=%zd\n", __func__, len);
1561
1562
if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_CMSG_COMPAT))
1563
return -EINVAL;
1564
1565
lock_sock(sk);
1566
1567
if (sk->sk_shutdown & SEND_SHUTDOWN) {
1568
send_sig(SIGPIPE, current, 0);
1569
err = -EPIPE;
1570
goto out;
1571
}
1572
1573
err = -ENOTCONN;
1574
if (sk->sk_state != TCP_ESTABLISHED)
1575
goto out;
1576
1577
self = irda_sk(sk);
1578
1579
/*
1580
* Check that we don't send out too big frames. This is an unreliable
1581
* service, so we have no fragmentation and no coalescence
1582
*/
1583
if (len > self->max_data_size) {
1584
IRDA_DEBUG(0, "%s(), Warning to much data! "
1585
"Chopping frame from %zd to %d bytes!\n",
1586
__func__, len, self->max_data_size);
1587
len = self->max_data_size;
1588
}
1589
1590
skb = sock_alloc_send_skb(sk, len + self->max_header_size,
1591
msg->msg_flags & MSG_DONTWAIT, &err);
1592
err = -ENOBUFS;
1593
if (!skb)
1594
goto out;
1595
1596
skb_reserve(skb, self->max_header_size);
1597
skb_reset_transport_header(skb);
1598
1599
IRDA_DEBUG(4, "%s(), appending user data\n", __func__);
1600
skb_put(skb, len);
1601
err = memcpy_fromiovec(skb_transport_header(skb), msg->msg_iov, len);
1602
if (err) {
1603
kfree_skb(skb);
1604
goto out;
1605
}
1606
1607
/*
1608
* Just send the message to TinyTP, and let it deal with possible
1609
* errors. No need to duplicate all that here
1610
*/
1611
err = irttp_udata_request(self->tsap, skb);
1612
if (err) {
1613
IRDA_DEBUG(0, "%s(), err=%d\n", __func__, err);
1614
goto out;
1615
}
1616
1617
release_sock(sk);
1618
return len;
1619
1620
out:
1621
release_sock(sk);
1622
return err;
1623
}
1624
1625
/*
1626
* Function irda_sendmsg_ultra (iocb, sock, msg, len)
1627
*
1628
* Send message down to IrLMP for the unreliable Ultra
1629
* packet service...
1630
*/
1631
#ifdef CONFIG_IRDA_ULTRA
1632
static int irda_sendmsg_ultra(struct kiocb *iocb, struct socket *sock,
1633
struct msghdr *msg, size_t len)
1634
{
1635
struct sock *sk = sock->sk;
1636
struct irda_sock *self;
1637
__u8 pid = 0;
1638
int bound = 0;
1639
struct sk_buff *skb;
1640
int err;
1641
1642
IRDA_DEBUG(4, "%s(), len=%zd\n", __func__, len);
1643
1644
err = -EINVAL;
1645
if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_CMSG_COMPAT))
1646
return -EINVAL;
1647
1648
lock_sock(sk);
1649
1650
err = -EPIPE;
1651
if (sk->sk_shutdown & SEND_SHUTDOWN) {
1652
send_sig(SIGPIPE, current, 0);
1653
goto out;
1654
}
1655
1656
self = irda_sk(sk);
1657
1658
/* Check if an address was specified with sendto. Jean II */
1659
if (msg->msg_name) {
1660
struct sockaddr_irda *addr = (struct sockaddr_irda *) msg->msg_name;
1661
err = -EINVAL;
1662
/* Check address, extract pid. Jean II */
1663
if (msg->msg_namelen < sizeof(*addr))
1664
goto out;
1665
if (addr->sir_family != AF_IRDA)
1666
goto out;
1667
1668
pid = addr->sir_lsap_sel;
1669
if (pid & 0x80) {
1670
IRDA_DEBUG(0, "%s(), extension in PID not supp!\n", __func__);
1671
err = -EOPNOTSUPP;
1672
goto out;
1673
}
1674
} else {
1675
/* Check that the socket is properly bound to an Ultra
1676
* port. Jean II */
1677
if ((self->lsap == NULL) ||
1678
(sk->sk_state != TCP_ESTABLISHED)) {
1679
IRDA_DEBUG(0, "%s(), socket not bound to Ultra PID.\n",
1680
__func__);
1681
err = -ENOTCONN;
1682
goto out;
1683
}
1684
/* Use PID from socket */
1685
bound = 1;
1686
}
1687
1688
/*
1689
* Check that we don't send out too big frames. This is an unreliable
1690
* service, so we have no fragmentation and no coalescence
1691
*/
1692
if (len > self->max_data_size) {
1693
IRDA_DEBUG(0, "%s(), Warning to much data! "
1694
"Chopping frame from %zd to %d bytes!\n",
1695
__func__, len, self->max_data_size);
1696
len = self->max_data_size;
1697
}
1698
1699
skb = sock_alloc_send_skb(sk, len + self->max_header_size,
1700
msg->msg_flags & MSG_DONTWAIT, &err);
1701
err = -ENOBUFS;
1702
if (!skb)
1703
goto out;
1704
1705
skb_reserve(skb, self->max_header_size);
1706
skb_reset_transport_header(skb);
1707
1708
IRDA_DEBUG(4, "%s(), appending user data\n", __func__);
1709
skb_put(skb, len);
1710
err = memcpy_fromiovec(skb_transport_header(skb), msg->msg_iov, len);
1711
if (err) {
1712
kfree_skb(skb);
1713
goto out;
1714
}
1715
1716
err = irlmp_connless_data_request((bound ? self->lsap : NULL),
1717
skb, pid);
1718
if (err)
1719
IRDA_DEBUG(0, "%s(), err=%d\n", __func__, err);
1720
out:
1721
release_sock(sk);
1722
return err ? : len;
1723
}
1724
#endif /* CONFIG_IRDA_ULTRA */
1725
1726
/*
1727
* Function irda_shutdown (sk, how)
1728
*/
1729
static int irda_shutdown(struct socket *sock, int how)
1730
{
1731
struct sock *sk = sock->sk;
1732
struct irda_sock *self = irda_sk(sk);
1733
1734
IRDA_DEBUG(1, "%s(%p)\n", __func__, self);
1735
1736
lock_sock(sk);
1737
1738
sk->sk_state = TCP_CLOSE;
1739
sk->sk_shutdown |= SEND_SHUTDOWN;
1740
sk->sk_state_change(sk);
1741
1742
if (self->iriap) {
1743
iriap_close(self->iriap);
1744
self->iriap = NULL;
1745
}
1746
1747
if (self->tsap) {
1748
irttp_disconnect_request(self->tsap, NULL, P_NORMAL);
1749
irttp_close_tsap(self->tsap);
1750
self->tsap = NULL;
1751
}
1752
1753
/* A few cleanup so the socket look as good as new... */
1754
self->rx_flow = self->tx_flow = FLOW_START; /* needed ??? */
1755
self->daddr = DEV_ADDR_ANY; /* Until we get re-connected */
1756
self->saddr = 0x0; /* so IrLMP assign us any link */
1757
1758
release_sock(sk);
1759
1760
return 0;
1761
}
1762
1763
/*
1764
* Function irda_poll (file, sock, wait)
1765
*/
1766
static unsigned int irda_poll(struct file * file, struct socket *sock,
1767
poll_table *wait)
1768
{
1769
struct sock *sk = sock->sk;
1770
struct irda_sock *self = irda_sk(sk);
1771
unsigned int mask;
1772
1773
IRDA_DEBUG(4, "%s()\n", __func__);
1774
1775
poll_wait(file, sk_sleep(sk), wait);
1776
mask = 0;
1777
1778
/* Exceptional events? */
1779
if (sk->sk_err)
1780
mask |= POLLERR;
1781
if (sk->sk_shutdown & RCV_SHUTDOWN) {
1782
IRDA_DEBUG(0, "%s(), POLLHUP\n", __func__);
1783
mask |= POLLHUP;
1784
}
1785
1786
/* Readable? */
1787
if (!skb_queue_empty(&sk->sk_receive_queue)) {
1788
IRDA_DEBUG(4, "Socket is readable\n");
1789
mask |= POLLIN | POLLRDNORM;
1790
}
1791
1792
/* Connection-based need to check for termination and startup */
1793
switch (sk->sk_type) {
1794
case SOCK_STREAM:
1795
if (sk->sk_state == TCP_CLOSE) {
1796
IRDA_DEBUG(0, "%s(), POLLHUP\n", __func__);
1797
mask |= POLLHUP;
1798
}
1799
1800
if (sk->sk_state == TCP_ESTABLISHED) {
1801
if ((self->tx_flow == FLOW_START) &&
1802
sock_writeable(sk))
1803
{
1804
mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1805
}
1806
}
1807
break;
1808
case SOCK_SEQPACKET:
1809
if ((self->tx_flow == FLOW_START) &&
1810
sock_writeable(sk))
1811
{
1812
mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1813
}
1814
break;
1815
case SOCK_DGRAM:
1816
if (sock_writeable(sk))
1817
mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1818
break;
1819
default:
1820
break;
1821
}
1822
1823
return mask;
1824
}
1825
1826
/*
1827
* Function irda_ioctl (sock, cmd, arg)
1828
*/
1829
static int irda_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1830
{
1831
struct sock *sk = sock->sk;
1832
int err;
1833
1834
IRDA_DEBUG(4, "%s(), cmd=%#x\n", __func__, cmd);
1835
1836
err = -EINVAL;
1837
switch (cmd) {
1838
case TIOCOUTQ: {
1839
long amount;
1840
1841
amount = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
1842
if (amount < 0)
1843
amount = 0;
1844
err = put_user(amount, (unsigned int __user *)arg);
1845
break;
1846
}
1847
1848
case TIOCINQ: {
1849
struct sk_buff *skb;
1850
long amount = 0L;
1851
/* These two are safe on a single CPU system as only user tasks fiddle here */
1852
if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL)
1853
amount = skb->len;
1854
err = put_user(amount, (unsigned int __user *)arg);
1855
break;
1856
}
1857
1858
case SIOCGSTAMP:
1859
if (sk != NULL)
1860
err = sock_get_timestamp(sk, (struct timeval __user *)arg);
1861
break;
1862
1863
case SIOCGIFADDR:
1864
case SIOCSIFADDR:
1865
case SIOCGIFDSTADDR:
1866
case SIOCSIFDSTADDR:
1867
case SIOCGIFBRDADDR:
1868
case SIOCSIFBRDADDR:
1869
case SIOCGIFNETMASK:
1870
case SIOCSIFNETMASK:
1871
case SIOCGIFMETRIC:
1872
case SIOCSIFMETRIC:
1873
break;
1874
default:
1875
IRDA_DEBUG(1, "%s(), doing device ioctl!\n", __func__);
1876
err = -ENOIOCTLCMD;
1877
}
1878
1879
return err;
1880
}
1881
1882
#ifdef CONFIG_COMPAT
1883
/*
1884
* Function irda_ioctl (sock, cmd, arg)
1885
*/
1886
static int irda_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1887
{
1888
/*
1889
* All IRDA's ioctl are standard ones.
1890
*/
1891
return -ENOIOCTLCMD;
1892
}
1893
#endif
1894
1895
/*
1896
* Function irda_setsockopt (sock, level, optname, optval, optlen)
1897
*
1898
* Set some options for the socket
1899
*
1900
*/
1901
static int irda_setsockopt(struct socket *sock, int level, int optname,
1902
char __user *optval, unsigned int optlen)
1903
{
1904
struct sock *sk = sock->sk;
1905
struct irda_sock *self = irda_sk(sk);
1906
struct irda_ias_set *ias_opt;
1907
struct ias_object *ias_obj;
1908
struct ias_attrib * ias_attr; /* Attribute in IAS object */
1909
int opt, free_ias = 0, err = 0;
1910
1911
IRDA_DEBUG(2, "%s(%p)\n", __func__, self);
1912
1913
if (level != SOL_IRLMP)
1914
return -ENOPROTOOPT;
1915
1916
lock_sock(sk);
1917
1918
switch (optname) {
1919
case IRLMP_IAS_SET:
1920
/* The user want to add an attribute to an existing IAS object
1921
* (in the IAS database) or to create a new object with this
1922
* attribute.
1923
* We first query IAS to know if the object exist, and then
1924
* create the right attribute...
1925
*/
1926
1927
if (optlen != sizeof(struct irda_ias_set)) {
1928
err = -EINVAL;
1929
goto out;
1930
}
1931
1932
ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
1933
if (ias_opt == NULL) {
1934
err = -ENOMEM;
1935
goto out;
1936
}
1937
1938
/* Copy query to the driver. */
1939
if (copy_from_user(ias_opt, optval, optlen)) {
1940
kfree(ias_opt);
1941
err = -EFAULT;
1942
goto out;
1943
}
1944
1945
/* Find the object we target.
1946
* If the user gives us an empty string, we use the object
1947
* associated with this socket. This will workaround
1948
* duplicated class name - Jean II */
1949
if(ias_opt->irda_class_name[0] == '\0') {
1950
if(self->ias_obj == NULL) {
1951
kfree(ias_opt);
1952
err = -EINVAL;
1953
goto out;
1954
}
1955
ias_obj = self->ias_obj;
1956
} else
1957
ias_obj = irias_find_object(ias_opt->irda_class_name);
1958
1959
/* Only ROOT can mess with the global IAS database.
1960
* Users can only add attributes to the object associated
1961
* with the socket they own - Jean II */
1962
if((!capable(CAP_NET_ADMIN)) &&
1963
((ias_obj == NULL) || (ias_obj != self->ias_obj))) {
1964
kfree(ias_opt);
1965
err = -EPERM;
1966
goto out;
1967
}
1968
1969
/* If the object doesn't exist, create it */
1970
if(ias_obj == (struct ias_object *) NULL) {
1971
/* Create a new object */
1972
ias_obj = irias_new_object(ias_opt->irda_class_name,
1973
jiffies);
1974
if (ias_obj == NULL) {
1975
kfree(ias_opt);
1976
err = -ENOMEM;
1977
goto out;
1978
}
1979
free_ias = 1;
1980
}
1981
1982
/* Do we have the attribute already ? */
1983
if(irias_find_attrib(ias_obj, ias_opt->irda_attrib_name)) {
1984
kfree(ias_opt);
1985
if (free_ias) {
1986
kfree(ias_obj->name);
1987
kfree(ias_obj);
1988
}
1989
err = -EINVAL;
1990
goto out;
1991
}
1992
1993
/* Look at the type */
1994
switch(ias_opt->irda_attrib_type) {
1995
case IAS_INTEGER:
1996
/* Add an integer attribute */
1997
irias_add_integer_attrib(
1998
ias_obj,
1999
ias_opt->irda_attrib_name,
2000
ias_opt->attribute.irda_attrib_int,
2001
IAS_USER_ATTR);
2002
break;
2003
case IAS_OCT_SEQ:
2004
/* Check length */
2005
if(ias_opt->attribute.irda_attrib_octet_seq.len >
2006
IAS_MAX_OCTET_STRING) {
2007
kfree(ias_opt);
2008
if (free_ias) {
2009
kfree(ias_obj->name);
2010
kfree(ias_obj);
2011
}
2012
2013
err = -EINVAL;
2014
goto out;
2015
}
2016
/* Add an octet sequence attribute */
2017
irias_add_octseq_attrib(
2018
ias_obj,
2019
ias_opt->irda_attrib_name,
2020
ias_opt->attribute.irda_attrib_octet_seq.octet_seq,
2021
ias_opt->attribute.irda_attrib_octet_seq.len,
2022
IAS_USER_ATTR);
2023
break;
2024
case IAS_STRING:
2025
/* Should check charset & co */
2026
/* Check length */
2027
/* The length is encoded in a __u8, and
2028
* IAS_MAX_STRING == 256, so there is no way
2029
* userspace can pass us a string too large.
2030
* Jean II */
2031
/* NULL terminate the string (avoid troubles) */
2032
ias_opt->attribute.irda_attrib_string.string[ias_opt->attribute.irda_attrib_string.len] = '\0';
2033
/* Add a string attribute */
2034
irias_add_string_attrib(
2035
ias_obj,
2036
ias_opt->irda_attrib_name,
2037
ias_opt->attribute.irda_attrib_string.string,
2038
IAS_USER_ATTR);
2039
break;
2040
default :
2041
kfree(ias_opt);
2042
if (free_ias) {
2043
kfree(ias_obj->name);
2044
kfree(ias_obj);
2045
}
2046
err = -EINVAL;
2047
goto out;
2048
}
2049
irias_insert_object(ias_obj);
2050
kfree(ias_opt);
2051
break;
2052
case IRLMP_IAS_DEL:
2053
/* The user want to delete an object from our local IAS
2054
* database. We just need to query the IAS, check is the
2055
* object is not owned by the kernel and delete it.
2056
*/
2057
2058
if (optlen != sizeof(struct irda_ias_set)) {
2059
err = -EINVAL;
2060
goto out;
2061
}
2062
2063
ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
2064
if (ias_opt == NULL) {
2065
err = -ENOMEM;
2066
goto out;
2067
}
2068
2069
/* Copy query to the driver. */
2070
if (copy_from_user(ias_opt, optval, optlen)) {
2071
kfree(ias_opt);
2072
err = -EFAULT;
2073
goto out;
2074
}
2075
2076
/* Find the object we target.
2077
* If the user gives us an empty string, we use the object
2078
* associated with this socket. This will workaround
2079
* duplicated class name - Jean II */
2080
if(ias_opt->irda_class_name[0] == '\0')
2081
ias_obj = self->ias_obj;
2082
else
2083
ias_obj = irias_find_object(ias_opt->irda_class_name);
2084
if(ias_obj == (struct ias_object *) NULL) {
2085
kfree(ias_opt);
2086
err = -EINVAL;
2087
goto out;
2088
}
2089
2090
/* Only ROOT can mess with the global IAS database.
2091
* Users can only del attributes from the object associated
2092
* with the socket they own - Jean II */
2093
if((!capable(CAP_NET_ADMIN)) &&
2094
((ias_obj == NULL) || (ias_obj != self->ias_obj))) {
2095
kfree(ias_opt);
2096
err = -EPERM;
2097
goto out;
2098
}
2099
2100
/* Find the attribute (in the object) we target */
2101
ias_attr = irias_find_attrib(ias_obj,
2102
ias_opt->irda_attrib_name);
2103
if(ias_attr == (struct ias_attrib *) NULL) {
2104
kfree(ias_opt);
2105
err = -EINVAL;
2106
goto out;
2107
}
2108
2109
/* Check is the user space own the object */
2110
if(ias_attr->value->owner != IAS_USER_ATTR) {
2111
IRDA_DEBUG(1, "%s(), attempting to delete a kernel attribute\n", __func__);
2112
kfree(ias_opt);
2113
err = -EPERM;
2114
goto out;
2115
}
2116
2117
/* Remove the attribute (and maybe the object) */
2118
irias_delete_attrib(ias_obj, ias_attr, 1);
2119
kfree(ias_opt);
2120
break;
2121
case IRLMP_MAX_SDU_SIZE:
2122
if (optlen < sizeof(int)) {
2123
err = -EINVAL;
2124
goto out;
2125
}
2126
2127
if (get_user(opt, (int __user *)optval)) {
2128
err = -EFAULT;
2129
goto out;
2130
}
2131
2132
/* Only possible for a seqpacket service (TTP with SAR) */
2133
if (sk->sk_type != SOCK_SEQPACKET) {
2134
IRDA_DEBUG(2, "%s(), setting max_sdu_size = %d\n",
2135
__func__, opt);
2136
self->max_sdu_size_rx = opt;
2137
} else {
2138
IRDA_WARNING("%s: not allowed to set MAXSDUSIZE for this socket type!\n",
2139
__func__);
2140
err = -ENOPROTOOPT;
2141
goto out;
2142
}
2143
break;
2144
case IRLMP_HINTS_SET:
2145
if (optlen < sizeof(int)) {
2146
err = -EINVAL;
2147
goto out;
2148
}
2149
2150
/* The input is really a (__u8 hints[2]), easier as an int */
2151
if (get_user(opt, (int __user *)optval)) {
2152
err = -EFAULT;
2153
goto out;
2154
}
2155
2156
/* Unregister any old registration */
2157
if (self->skey)
2158
irlmp_unregister_service(self->skey);
2159
2160
self->skey = irlmp_register_service((__u16) opt);
2161
break;
2162
case IRLMP_HINT_MASK_SET:
2163
/* As opposed to the previous case which set the hint bits
2164
* that we advertise, this one set the filter we use when
2165
* making a discovery (nodes which don't match any hint
2166
* bit in the mask are not reported).
2167
*/
2168
if (optlen < sizeof(int)) {
2169
err = -EINVAL;
2170
goto out;
2171
}
2172
2173
/* The input is really a (__u8 hints[2]), easier as an int */
2174
if (get_user(opt, (int __user *)optval)) {
2175
err = -EFAULT;
2176
goto out;
2177
}
2178
2179
/* Set the new hint mask */
2180
self->mask.word = (__u16) opt;
2181
/* Mask out extension bits */
2182
self->mask.word &= 0x7f7f;
2183
/* Check if no bits */
2184
if(!self->mask.word)
2185
self->mask.word = 0xFFFF;
2186
2187
break;
2188
default:
2189
err = -ENOPROTOOPT;
2190
break;
2191
}
2192
2193
out:
2194
release_sock(sk);
2195
2196
return err;
2197
}
2198
2199
/*
2200
* Function irda_extract_ias_value(ias_opt, ias_value)
2201
*
2202
* Translate internal IAS value structure to the user space representation
2203
*
2204
* The external representation of IAS values, as we exchange them with
2205
* user space program is quite different from the internal representation,
2206
* as stored in the IAS database (because we need a flat structure for
2207
* crossing kernel boundary).
2208
* This function transform the former in the latter. We also check
2209
* that the value type is valid.
2210
*/
2211
static int irda_extract_ias_value(struct irda_ias_set *ias_opt,
2212
struct ias_value *ias_value)
2213
{
2214
/* Look at the type */
2215
switch (ias_value->type) {
2216
case IAS_INTEGER:
2217
/* Copy the integer */
2218
ias_opt->attribute.irda_attrib_int = ias_value->t.integer;
2219
break;
2220
case IAS_OCT_SEQ:
2221
/* Set length */
2222
ias_opt->attribute.irda_attrib_octet_seq.len = ias_value->len;
2223
/* Copy over */
2224
memcpy(ias_opt->attribute.irda_attrib_octet_seq.octet_seq,
2225
ias_value->t.oct_seq, ias_value->len);
2226
break;
2227
case IAS_STRING:
2228
/* Set length */
2229
ias_opt->attribute.irda_attrib_string.len = ias_value->len;
2230
ias_opt->attribute.irda_attrib_string.charset = ias_value->charset;
2231
/* Copy over */
2232
memcpy(ias_opt->attribute.irda_attrib_string.string,
2233
ias_value->t.string, ias_value->len);
2234
/* NULL terminate the string (avoid troubles) */
2235
ias_opt->attribute.irda_attrib_string.string[ias_value->len] = '\0';
2236
break;
2237
case IAS_MISSING:
2238
default :
2239
return -EINVAL;
2240
}
2241
2242
/* Copy type over */
2243
ias_opt->irda_attrib_type = ias_value->type;
2244
2245
return 0;
2246
}
2247
2248
/*
2249
* Function irda_getsockopt (sock, level, optname, optval, optlen)
2250
*/
2251
static int irda_getsockopt(struct socket *sock, int level, int optname,
2252
char __user *optval, int __user *optlen)
2253
{
2254
struct sock *sk = sock->sk;
2255
struct irda_sock *self = irda_sk(sk);
2256
struct irda_device_list list;
2257
struct irda_device_info *discoveries;
2258
struct irda_ias_set * ias_opt; /* IAS get/query params */
2259
struct ias_object * ias_obj; /* Object in IAS */
2260
struct ias_attrib * ias_attr; /* Attribute in IAS object */
2261
int daddr = DEV_ADDR_ANY; /* Dest address for IAS queries */
2262
int val = 0;
2263
int len = 0;
2264
int err = 0;
2265
int offset, total;
2266
2267
IRDA_DEBUG(2, "%s(%p)\n", __func__, self);
2268
2269
if (level != SOL_IRLMP)
2270
return -ENOPROTOOPT;
2271
2272
if (get_user(len, optlen))
2273
return -EFAULT;
2274
2275
if(len < 0)
2276
return -EINVAL;
2277
2278
lock_sock(sk);
2279
2280
switch (optname) {
2281
case IRLMP_ENUMDEVICES:
2282
2283
/* Offset to first device entry */
2284
offset = sizeof(struct irda_device_list) -
2285
sizeof(struct irda_device_info);
2286
2287
if (len < offset) {
2288
err = -EINVAL;
2289
goto out;
2290
}
2291
2292
/* Ask lmp for the current discovery log */
2293
discoveries = irlmp_get_discoveries(&list.len, self->mask.word,
2294
self->nslots);
2295
/* Check if the we got some results */
2296
if (discoveries == NULL) {
2297
err = -EAGAIN;
2298
goto out; /* Didn't find any devices */
2299
}
2300
2301
/* Write total list length back to client */
2302
if (copy_to_user(optval, &list, offset))
2303
err = -EFAULT;
2304
2305
/* Copy the list itself - watch for overflow */
2306
if (list.len > 2048) {
2307
err = -EINVAL;
2308
goto bed;
2309
}
2310
total = offset + (list.len * sizeof(struct irda_device_info));
2311
if (total > len)
2312
total = len;
2313
if (copy_to_user(optval+offset, discoveries, total - offset))
2314
err = -EFAULT;
2315
2316
/* Write total number of bytes used back to client */
2317
if (put_user(total, optlen))
2318
err = -EFAULT;
2319
bed:
2320
/* Free up our buffer */
2321
kfree(discoveries);
2322
break;
2323
case IRLMP_MAX_SDU_SIZE:
2324
val = self->max_data_size;
2325
len = sizeof(int);
2326
if (put_user(len, optlen)) {
2327
err = -EFAULT;
2328
goto out;
2329
}
2330
2331
if (copy_to_user(optval, &val, len)) {
2332
err = -EFAULT;
2333
goto out;
2334
}
2335
2336
break;
2337
case IRLMP_IAS_GET:
2338
/* The user want an object from our local IAS database.
2339
* We just need to query the IAS and return the value
2340
* that we found */
2341
2342
/* Check that the user has allocated the right space for us */
2343
if (len != sizeof(struct irda_ias_set)) {
2344
err = -EINVAL;
2345
goto out;
2346
}
2347
2348
ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
2349
if (ias_opt == NULL) {
2350
err = -ENOMEM;
2351
goto out;
2352
}
2353
2354
/* Copy query to the driver. */
2355
if (copy_from_user(ias_opt, optval, len)) {
2356
kfree(ias_opt);
2357
err = -EFAULT;
2358
goto out;
2359
}
2360
2361
/* Find the object we target.
2362
* If the user gives us an empty string, we use the object
2363
* associated with this socket. This will workaround
2364
* duplicated class name - Jean II */
2365
if(ias_opt->irda_class_name[0] == '\0')
2366
ias_obj = self->ias_obj;
2367
else
2368
ias_obj = irias_find_object(ias_opt->irda_class_name);
2369
if(ias_obj == (struct ias_object *) NULL) {
2370
kfree(ias_opt);
2371
err = -EINVAL;
2372
goto out;
2373
}
2374
2375
/* Find the attribute (in the object) we target */
2376
ias_attr = irias_find_attrib(ias_obj,
2377
ias_opt->irda_attrib_name);
2378
if(ias_attr == (struct ias_attrib *) NULL) {
2379
kfree(ias_opt);
2380
err = -EINVAL;
2381
goto out;
2382
}
2383
2384
/* Translate from internal to user structure */
2385
err = irda_extract_ias_value(ias_opt, ias_attr->value);
2386
if(err) {
2387
kfree(ias_opt);
2388
goto out;
2389
}
2390
2391
/* Copy reply to the user */
2392
if (copy_to_user(optval, ias_opt,
2393
sizeof(struct irda_ias_set))) {
2394
kfree(ias_opt);
2395
err = -EFAULT;
2396
goto out;
2397
}
2398
/* Note : don't need to put optlen, we checked it */
2399
kfree(ias_opt);
2400
break;
2401
case IRLMP_IAS_QUERY:
2402
/* The user want an object from a remote IAS database.
2403
* We need to use IAP to query the remote database and
2404
* then wait for the answer to come back. */
2405
2406
/* Check that the user has allocated the right space for us */
2407
if (len != sizeof(struct irda_ias_set)) {
2408
err = -EINVAL;
2409
goto out;
2410
}
2411
2412
ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
2413
if (ias_opt == NULL) {
2414
err = -ENOMEM;
2415
goto out;
2416
}
2417
2418
/* Copy query to the driver. */
2419
if (copy_from_user(ias_opt, optval, len)) {
2420
kfree(ias_opt);
2421
err = -EFAULT;
2422
goto out;
2423
}
2424
2425
/* At this point, there are two cases...
2426
* 1) the socket is connected - that's the easy case, we
2427
* just query the device we are connected to...
2428
* 2) the socket is not connected - the user doesn't want
2429
* to connect and/or may not have a valid service name
2430
* (so can't create a fake connection). In this case,
2431
* we assume that the user pass us a valid destination
2432
* address in the requesting structure...
2433
*/
2434
if(self->daddr != DEV_ADDR_ANY) {
2435
/* We are connected - reuse known daddr */
2436
daddr = self->daddr;
2437
} else {
2438
/* We are not connected, we must specify a valid
2439
* destination address */
2440
daddr = ias_opt->daddr;
2441
if((!daddr) || (daddr == DEV_ADDR_ANY)) {
2442
kfree(ias_opt);
2443
err = -EINVAL;
2444
goto out;
2445
}
2446
}
2447
2448
/* Check that we can proceed with IAP */
2449
if (self->iriap) {
2450
IRDA_WARNING("%s: busy with a previous query\n",
2451
__func__);
2452
kfree(ias_opt);
2453
err = -EBUSY;
2454
goto out;
2455
}
2456
2457
self->iriap = iriap_open(LSAP_ANY, IAS_CLIENT, self,
2458
irda_getvalue_confirm);
2459
2460
if (self->iriap == NULL) {
2461
kfree(ias_opt);
2462
err = -ENOMEM;
2463
goto out;
2464
}
2465
2466
/* Treat unexpected wakeup as disconnect */
2467
self->errno = -EHOSTUNREACH;
2468
2469
/* Query remote LM-IAS */
2470
iriap_getvaluebyclass_request(self->iriap,
2471
self->saddr, daddr,
2472
ias_opt->irda_class_name,
2473
ias_opt->irda_attrib_name);
2474
2475
/* Wait for answer, if not yet finished (or failed) */
2476
if (wait_event_interruptible(self->query_wait,
2477
(self->iriap == NULL))) {
2478
/* pending request uses copy of ias_opt-content
2479
* we can free it regardless! */
2480
kfree(ias_opt);
2481
/* Treat signals as disconnect */
2482
err = -EHOSTUNREACH;
2483
goto out;
2484
}
2485
2486
/* Check what happened */
2487
if (self->errno)
2488
{
2489
kfree(ias_opt);
2490
/* Requested object/attribute doesn't exist */
2491
if((self->errno == IAS_CLASS_UNKNOWN) ||
2492
(self->errno == IAS_ATTRIB_UNKNOWN))
2493
err = -EADDRNOTAVAIL;
2494
else
2495
err = -EHOSTUNREACH;
2496
2497
goto out;
2498
}
2499
2500
/* Translate from internal to user structure */
2501
err = irda_extract_ias_value(ias_opt, self->ias_result);
2502
if (self->ias_result)
2503
irias_delete_value(self->ias_result);
2504
if (err) {
2505
kfree(ias_opt);
2506
goto out;
2507
}
2508
2509
/* Copy reply to the user */
2510
if (copy_to_user(optval, ias_opt,
2511
sizeof(struct irda_ias_set))) {
2512
kfree(ias_opt);
2513
err = -EFAULT;
2514
goto out;
2515
}
2516
/* Note : don't need to put optlen, we checked it */
2517
kfree(ias_opt);
2518
break;
2519
case IRLMP_WAITDEVICE:
2520
/* This function is just another way of seeing life ;-)
2521
* IRLMP_ENUMDEVICES assumes that you have a static network,
2522
* and that you just want to pick one of the devices present.
2523
* On the other hand, in here we assume that no device is
2524
* present and that at some point in the future a device will
2525
* come into range. When this device arrive, we just wake
2526
* up the caller, so that he has time to connect to it before
2527
* the device goes away...
2528
* Note : once the node has been discovered for more than a
2529
* few second, it won't trigger this function, unless it
2530
* goes away and come back changes its hint bits (so we
2531
* might call it IRLMP_WAITNEWDEVICE).
2532
*/
2533
2534
/* Check that the user is passing us an int */
2535
if (len != sizeof(int)) {
2536
err = -EINVAL;
2537
goto out;
2538
}
2539
/* Get timeout in ms (max time we block the caller) */
2540
if (get_user(val, (int __user *)optval)) {
2541
err = -EFAULT;
2542
goto out;
2543
}
2544
2545
/* Tell IrLMP we want to be notified */
2546
irlmp_update_client(self->ckey, self->mask.word,
2547
irda_selective_discovery_indication,
2548
NULL, (void *) self);
2549
2550
/* Do some discovery (and also return cached results) */
2551
irlmp_discovery_request(self->nslots);
2552
2553
/* Wait until a node is discovered */
2554
if (!self->cachedaddr) {
2555
IRDA_DEBUG(1, "%s(), nothing discovered yet, going to sleep...\n", __func__);
2556
2557
/* Set watchdog timer to expire in <val> ms. */
2558
self->errno = 0;
2559
setup_timer(&self->watchdog, irda_discovery_timeout,
2560
(unsigned long)self);
2561
self->watchdog.expires = jiffies + (val * HZ/1000);
2562
add_timer(&(self->watchdog));
2563
2564
/* Wait for IR-LMP to call us back */
2565
__wait_event_interruptible(self->query_wait,
2566
(self->cachedaddr != 0 || self->errno == -ETIME),
2567
err);
2568
2569
/* If watchdog is still activated, kill it! */
2570
if(timer_pending(&(self->watchdog)))
2571
del_timer(&(self->watchdog));
2572
2573
IRDA_DEBUG(1, "%s(), ...waking up !\n", __func__);
2574
2575
if (err != 0)
2576
goto out;
2577
}
2578
else
2579
IRDA_DEBUG(1, "%s(), found immediately !\n",
2580
__func__);
2581
2582
/* Tell IrLMP that we have been notified */
2583
irlmp_update_client(self->ckey, self->mask.word,
2584
NULL, NULL, NULL);
2585
2586
/* Check if the we got some results */
2587
if (!self->cachedaddr)
2588
return -EAGAIN; /* Didn't find any devices */
2589
daddr = self->cachedaddr;
2590
/* Cleanup */
2591
self->cachedaddr = 0;
2592
2593
/* We return the daddr of the device that trigger the
2594
* wakeup. As irlmp pass us only the new devices, we
2595
* are sure that it's not an old device.
2596
* If the user want more details, he should query
2597
* the whole discovery log and pick one device...
2598
*/
2599
if (put_user(daddr, (int __user *)optval)) {
2600
err = -EFAULT;
2601
goto out;
2602
}
2603
2604
break;
2605
default:
2606
err = -ENOPROTOOPT;
2607
}
2608
2609
out:
2610
2611
release_sock(sk);
2612
2613
return err;
2614
}
2615
2616
static const struct net_proto_family irda_family_ops = {
2617
.family = PF_IRDA,
2618
.create = irda_create,
2619
.owner = THIS_MODULE,
2620
};
2621
2622
static const struct proto_ops irda_stream_ops = {
2623
.family = PF_IRDA,
2624
.owner = THIS_MODULE,
2625
.release = irda_release,
2626
.bind = irda_bind,
2627
.connect = irda_connect,
2628
.socketpair = sock_no_socketpair,
2629
.accept = irda_accept,
2630
.getname = irda_getname,
2631
.poll = irda_poll,
2632
.ioctl = irda_ioctl,
2633
#ifdef CONFIG_COMPAT
2634
.compat_ioctl = irda_compat_ioctl,
2635
#endif
2636
.listen = irda_listen,
2637
.shutdown = irda_shutdown,
2638
.setsockopt = irda_setsockopt,
2639
.getsockopt = irda_getsockopt,
2640
.sendmsg = irda_sendmsg,
2641
.recvmsg = irda_recvmsg_stream,
2642
.mmap = sock_no_mmap,
2643
.sendpage = sock_no_sendpage,
2644
};
2645
2646
static const struct proto_ops irda_seqpacket_ops = {
2647
.family = PF_IRDA,
2648
.owner = THIS_MODULE,
2649
.release = irda_release,
2650
.bind = irda_bind,
2651
.connect = irda_connect,
2652
.socketpair = sock_no_socketpair,
2653
.accept = irda_accept,
2654
.getname = irda_getname,
2655
.poll = datagram_poll,
2656
.ioctl = irda_ioctl,
2657
#ifdef CONFIG_COMPAT
2658
.compat_ioctl = irda_compat_ioctl,
2659
#endif
2660
.listen = irda_listen,
2661
.shutdown = irda_shutdown,
2662
.setsockopt = irda_setsockopt,
2663
.getsockopt = irda_getsockopt,
2664
.sendmsg = irda_sendmsg,
2665
.recvmsg = irda_recvmsg_dgram,
2666
.mmap = sock_no_mmap,
2667
.sendpage = sock_no_sendpage,
2668
};
2669
2670
static const struct proto_ops irda_dgram_ops = {
2671
.family = PF_IRDA,
2672
.owner = THIS_MODULE,
2673
.release = irda_release,
2674
.bind = irda_bind,
2675
.connect = irda_connect,
2676
.socketpair = sock_no_socketpair,
2677
.accept = irda_accept,
2678
.getname = irda_getname,
2679
.poll = datagram_poll,
2680
.ioctl = irda_ioctl,
2681
#ifdef CONFIG_COMPAT
2682
.compat_ioctl = irda_compat_ioctl,
2683
#endif
2684
.listen = irda_listen,
2685
.shutdown = irda_shutdown,
2686
.setsockopt = irda_setsockopt,
2687
.getsockopt = irda_getsockopt,
2688
.sendmsg = irda_sendmsg_dgram,
2689
.recvmsg = irda_recvmsg_dgram,
2690
.mmap = sock_no_mmap,
2691
.sendpage = sock_no_sendpage,
2692
};
2693
2694
#ifdef CONFIG_IRDA_ULTRA
2695
static const struct proto_ops irda_ultra_ops = {
2696
.family = PF_IRDA,
2697
.owner = THIS_MODULE,
2698
.release = irda_release,
2699
.bind = irda_bind,
2700
.connect = sock_no_connect,
2701
.socketpair = sock_no_socketpair,
2702
.accept = sock_no_accept,
2703
.getname = irda_getname,
2704
.poll = datagram_poll,
2705
.ioctl = irda_ioctl,
2706
#ifdef CONFIG_COMPAT
2707
.compat_ioctl = irda_compat_ioctl,
2708
#endif
2709
.listen = sock_no_listen,
2710
.shutdown = irda_shutdown,
2711
.setsockopt = irda_setsockopt,
2712
.getsockopt = irda_getsockopt,
2713
.sendmsg = irda_sendmsg_ultra,
2714
.recvmsg = irda_recvmsg_dgram,
2715
.mmap = sock_no_mmap,
2716
.sendpage = sock_no_sendpage,
2717
};
2718
#endif /* CONFIG_IRDA_ULTRA */
2719
2720
/*
2721
* Function irsock_init (pro)
2722
*
2723
* Initialize IrDA protocol
2724
*
2725
*/
2726
int __init irsock_init(void)
2727
{
2728
int rc = proto_register(&irda_proto, 0);
2729
2730
if (rc == 0)
2731
rc = sock_register(&irda_family_ops);
2732
2733
return rc;
2734
}
2735
2736
/*
2737
* Function irsock_cleanup (void)
2738
*
2739
* Remove IrDA protocol
2740
*
2741
*/
2742
void irsock_cleanup(void)
2743
{
2744
sock_unregister(PF_IRDA);
2745
proto_unregister(&irda_proto);
2746
}
2747
2748