Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/net/irda/irttp.c
15109 views
1
/*********************************************************************
2
*
3
* Filename: irttp.c
4
* Version: 1.2
5
* Description: Tiny Transport Protocol (TTP) implementation
6
* Status: Stable
7
* Author: Dag Brattli <[email protected]>
8
* Created at: Sun Aug 31 20:14:31 1997
9
* Modified at: Wed Jan 5 11:31:27 2000
10
* Modified by: Dag Brattli <[email protected]>
11
*
12
* Copyright (c) 1998-2000 Dag Brattli <[email protected]>,
13
* All Rights Reserved.
14
* Copyright (c) 2000-2003 Jean Tourrilhes <[email protected]>
15
*
16
* This program is free software; you can redistribute it and/or
17
* modify it under the terms of the GNU General Public License as
18
* published by the Free Software Foundation; either version 2 of
19
* the License, or (at your option) any later version.
20
*
21
* Neither Dag Brattli nor University of Tromsø admit liability nor
22
* provide warranty for any of this software. This material is
23
* provided "AS-IS" and at no charge.
24
*
25
********************************************************************/
26
27
#include <linux/skbuff.h>
28
#include <linux/init.h>
29
#include <linux/fs.h>
30
#include <linux/seq_file.h>
31
#include <linux/slab.h>
32
33
#include <asm/byteorder.h>
34
#include <asm/unaligned.h>
35
36
#include <net/irda/irda.h>
37
#include <net/irda/irlap.h>
38
#include <net/irda/irlmp.h>
39
#include <net/irda/parameters.h>
40
#include <net/irda/irttp.h>
41
42
static struct irttp_cb *irttp;
43
44
static void __irttp_close_tsap(struct tsap_cb *self);
45
46
static int irttp_data_indication(void *instance, void *sap,
47
struct sk_buff *skb);
48
static int irttp_udata_indication(void *instance, void *sap,
49
struct sk_buff *skb);
50
static void irttp_disconnect_indication(void *instance, void *sap,
51
LM_REASON reason, struct sk_buff *);
52
static void irttp_connect_indication(void *instance, void *sap,
53
struct qos_info *qos, __u32 max_sdu_size,
54
__u8 header_size, struct sk_buff *skb);
55
static void irttp_connect_confirm(void *instance, void *sap,
56
struct qos_info *qos, __u32 max_sdu_size,
57
__u8 header_size, struct sk_buff *skb);
58
static void irttp_run_tx_queue(struct tsap_cb *self);
59
static void irttp_run_rx_queue(struct tsap_cb *self);
60
61
static void irttp_flush_queues(struct tsap_cb *self);
62
static void irttp_fragment_skb(struct tsap_cb *self, struct sk_buff *skb);
63
static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self);
64
static void irttp_todo_expired(unsigned long data);
65
static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
66
int get);
67
68
static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow);
69
static void irttp_status_indication(void *instance,
70
LINK_STATUS link, LOCK_STATUS lock);
71
72
/* Information for parsing parameters in IrTTP */
73
static pi_minor_info_t pi_minor_call_table[] = {
74
{ NULL, 0 }, /* 0x00 */
75
{ irttp_param_max_sdu_size, PV_INTEGER | PV_BIG_ENDIAN } /* 0x01 */
76
};
77
static pi_major_info_t pi_major_call_table[] = {{ pi_minor_call_table, 2 }};
78
static pi_param_info_t param_info = { pi_major_call_table, 1, 0x0f, 4 };
79
80
/************************ GLOBAL PROCEDURES ************************/
81
82
/*
83
* Function irttp_init (void)
84
*
85
* Initialize the IrTTP layer. Called by module initialization code
86
*
87
*/
88
int __init irttp_init(void)
89
{
90
irttp = kzalloc(sizeof(struct irttp_cb), GFP_KERNEL);
91
if (irttp == NULL)
92
return -ENOMEM;
93
94
irttp->magic = TTP_MAGIC;
95
96
irttp->tsaps = hashbin_new(HB_LOCK);
97
if (!irttp->tsaps) {
98
IRDA_ERROR("%s: can't allocate IrTTP hashbin!\n",
99
__func__);
100
kfree(irttp);
101
return -ENOMEM;
102
}
103
104
return 0;
105
}
106
107
/*
108
* Function irttp_cleanup (void)
109
*
110
* Called by module destruction/cleanup code
111
*
112
*/
113
void irttp_cleanup(void)
114
{
115
/* Check for main structure */
116
IRDA_ASSERT(irttp->magic == TTP_MAGIC, return;);
117
118
/*
119
* Delete hashbin and close all TSAP instances in it
120
*/
121
hashbin_delete(irttp->tsaps, (FREE_FUNC) __irttp_close_tsap);
122
123
irttp->magic = 0;
124
125
/* De-allocate main structure */
126
kfree(irttp);
127
128
irttp = NULL;
129
}
130
131
/*************************** SUBROUTINES ***************************/
132
133
/*
134
* Function irttp_start_todo_timer (self, timeout)
135
*
136
* Start todo timer.
137
*
138
* Made it more effient and unsensitive to race conditions - Jean II
139
*/
140
static inline void irttp_start_todo_timer(struct tsap_cb *self, int timeout)
141
{
142
/* Set new value for timer */
143
mod_timer(&self->todo_timer, jiffies + timeout);
144
}
145
146
/*
147
* Function irttp_todo_expired (data)
148
*
149
* Todo timer has expired!
150
*
151
* One of the restriction of the timer is that it is run only on the timer
152
* interrupt which run every 10ms. This mean that even if you set the timer
153
* with a delay of 0, it may take up to 10ms before it's run.
154
* So, to minimise latency and keep cache fresh, we try to avoid using
155
* it as much as possible.
156
* Note : we can't use tasklets, because they can't be asynchronously
157
* killed (need user context), and we can't guarantee that here...
158
* Jean II
159
*/
160
static void irttp_todo_expired(unsigned long data)
161
{
162
struct tsap_cb *self = (struct tsap_cb *) data;
163
164
/* Check that we still exist */
165
if (!self || self->magic != TTP_TSAP_MAGIC)
166
return;
167
168
IRDA_DEBUG(4, "%s(instance=%p)\n", __func__, self);
169
170
/* Try to make some progress, especially on Tx side - Jean II */
171
irttp_run_rx_queue(self);
172
irttp_run_tx_queue(self);
173
174
/* Check if time for disconnect */
175
if (test_bit(0, &self->disconnect_pend)) {
176
/* Check if it's possible to disconnect yet */
177
if (skb_queue_empty(&self->tx_queue)) {
178
/* Make sure disconnect is not pending anymore */
179
clear_bit(0, &self->disconnect_pend); /* FALSE */
180
181
/* Note : self->disconnect_skb may be NULL */
182
irttp_disconnect_request(self, self->disconnect_skb,
183
P_NORMAL);
184
self->disconnect_skb = NULL;
185
} else {
186
/* Try again later */
187
irttp_start_todo_timer(self, HZ/10);
188
189
/* No reason to try and close now */
190
return;
191
}
192
}
193
194
/* Check if it's closing time */
195
if (self->close_pend)
196
/* Finish cleanup */
197
irttp_close_tsap(self);
198
}
199
200
/*
201
* Function irttp_flush_queues (self)
202
*
203
* Flushes (removes all frames) in transitt-buffer (tx_list)
204
*/
205
static void irttp_flush_queues(struct tsap_cb *self)
206
{
207
struct sk_buff* skb;
208
209
IRDA_DEBUG(4, "%s()\n", __func__);
210
211
IRDA_ASSERT(self != NULL, return;);
212
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
213
214
/* Deallocate frames waiting to be sent */
215
while ((skb = skb_dequeue(&self->tx_queue)) != NULL)
216
dev_kfree_skb(skb);
217
218
/* Deallocate received frames */
219
while ((skb = skb_dequeue(&self->rx_queue)) != NULL)
220
dev_kfree_skb(skb);
221
222
/* Deallocate received fragments */
223
while ((skb = skb_dequeue(&self->rx_fragments)) != NULL)
224
dev_kfree_skb(skb);
225
}
226
227
/*
228
* Function irttp_reassemble (self)
229
*
230
* Makes a new (continuous) skb of all the fragments in the fragment
231
* queue
232
*
233
*/
234
static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self)
235
{
236
struct sk_buff *skb, *frag;
237
int n = 0; /* Fragment index */
238
239
IRDA_ASSERT(self != NULL, return NULL;);
240
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return NULL;);
241
242
IRDA_DEBUG(2, "%s(), self->rx_sdu_size=%d\n", __func__,
243
self->rx_sdu_size);
244
245
skb = dev_alloc_skb(TTP_HEADER + self->rx_sdu_size);
246
if (!skb)
247
return NULL;
248
249
/*
250
* Need to reserve space for TTP header in case this skb needs to
251
* be requeued in case delivery failes
252
*/
253
skb_reserve(skb, TTP_HEADER);
254
skb_put(skb, self->rx_sdu_size);
255
256
/*
257
* Copy all fragments to a new buffer
258
*/
259
while ((frag = skb_dequeue(&self->rx_fragments)) != NULL) {
260
skb_copy_to_linear_data_offset(skb, n, frag->data, frag->len);
261
n += frag->len;
262
263
dev_kfree_skb(frag);
264
}
265
266
IRDA_DEBUG(2,
267
"%s(), frame len=%d, rx_sdu_size=%d, rx_max_sdu_size=%d\n",
268
__func__, n, self->rx_sdu_size, self->rx_max_sdu_size);
269
/* Note : irttp_run_rx_queue() calculate self->rx_sdu_size
270
* by summing the size of all fragments, so we should always
271
* have n == self->rx_sdu_size, except in cases where we
272
* droped the last fragment (when self->rx_sdu_size exceed
273
* self->rx_max_sdu_size), where n < self->rx_sdu_size.
274
* Jean II */
275
IRDA_ASSERT(n <= self->rx_sdu_size, n = self->rx_sdu_size;);
276
277
/* Set the new length */
278
skb_trim(skb, n);
279
280
self->rx_sdu_size = 0;
281
282
return skb;
283
}
284
285
/*
286
* Function irttp_fragment_skb (skb)
287
*
288
* Fragments a frame and queues all the fragments for transmission
289
*
290
*/
291
static inline void irttp_fragment_skb(struct tsap_cb *self,
292
struct sk_buff *skb)
293
{
294
struct sk_buff *frag;
295
__u8 *frame;
296
297
IRDA_DEBUG(2, "%s()\n", __func__);
298
299
IRDA_ASSERT(self != NULL, return;);
300
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
301
IRDA_ASSERT(skb != NULL, return;);
302
303
/*
304
* Split frame into a number of segments
305
*/
306
while (skb->len > self->max_seg_size) {
307
IRDA_DEBUG(2, "%s(), fragmenting ...\n", __func__);
308
309
/* Make new segment */
310
frag = alloc_skb(self->max_seg_size+self->max_header_size,
311
GFP_ATOMIC);
312
if (!frag)
313
return;
314
315
skb_reserve(frag, self->max_header_size);
316
317
/* Copy data from the original skb into this fragment. */
318
skb_copy_from_linear_data(skb, skb_put(frag, self->max_seg_size),
319
self->max_seg_size);
320
321
/* Insert TTP header, with the more bit set */
322
frame = skb_push(frag, TTP_HEADER);
323
frame[0] = TTP_MORE;
324
325
/* Hide the copied data from the original skb */
326
skb_pull(skb, self->max_seg_size);
327
328
/* Queue fragment */
329
skb_queue_tail(&self->tx_queue, frag);
330
}
331
/* Queue what is left of the original skb */
332
IRDA_DEBUG(2, "%s(), queuing last segment\n", __func__);
333
334
frame = skb_push(skb, TTP_HEADER);
335
frame[0] = 0x00; /* Clear more bit */
336
337
/* Queue fragment */
338
skb_queue_tail(&self->tx_queue, skb);
339
}
340
341
/*
342
* Function irttp_param_max_sdu_size (self, param)
343
*
344
* Handle the MaxSduSize parameter in the connect frames, this function
345
* will be called both when this parameter needs to be inserted into, and
346
* extracted from the connect frames
347
*/
348
static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
349
int get)
350
{
351
struct tsap_cb *self;
352
353
self = (struct tsap_cb *) instance;
354
355
IRDA_ASSERT(self != NULL, return -1;);
356
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
357
358
if (get)
359
param->pv.i = self->tx_max_sdu_size;
360
else
361
self->tx_max_sdu_size = param->pv.i;
362
363
IRDA_DEBUG(1, "%s(), MaxSduSize=%d\n", __func__, param->pv.i);
364
365
return 0;
366
}
367
368
/*************************** CLIENT CALLS ***************************/
369
/************************** LMP CALLBACKS **************************/
370
/* Everything is happily mixed up. Waiting for next clean up - Jean II */
371
372
/*
373
* Initialization, that has to be done on new tsap
374
* instance allocation and on duplication
375
*/
376
static void irttp_init_tsap(struct tsap_cb *tsap)
377
{
378
spin_lock_init(&tsap->lock);
379
init_timer(&tsap->todo_timer);
380
381
skb_queue_head_init(&tsap->rx_queue);
382
skb_queue_head_init(&tsap->tx_queue);
383
skb_queue_head_init(&tsap->rx_fragments);
384
}
385
386
/*
387
* Function irttp_open_tsap (stsap, notify)
388
*
389
* Create TSAP connection endpoint,
390
*/
391
struct tsap_cb *irttp_open_tsap(__u8 stsap_sel, int credit, notify_t *notify)
392
{
393
struct tsap_cb *self;
394
struct lsap_cb *lsap;
395
notify_t ttp_notify;
396
397
IRDA_ASSERT(irttp->magic == TTP_MAGIC, return NULL;);
398
399
/* The IrLMP spec (IrLMP 1.1 p10) says that we have the right to
400
* use only 0x01-0x6F. Of course, we can use LSAP_ANY as well.
401
* JeanII */
402
if((stsap_sel != LSAP_ANY) &&
403
((stsap_sel < 0x01) || (stsap_sel >= 0x70))) {
404
IRDA_DEBUG(0, "%s(), invalid tsap!\n", __func__);
405
return NULL;
406
}
407
408
self = kzalloc(sizeof(struct tsap_cb), GFP_ATOMIC);
409
if (self == NULL) {
410
IRDA_DEBUG(0, "%s(), unable to kmalloc!\n", __func__);
411
return NULL;
412
}
413
414
/* Initialize internal objects */
415
irttp_init_tsap(self);
416
417
/* Initialise todo timer */
418
self->todo_timer.data = (unsigned long) self;
419
self->todo_timer.function = &irttp_todo_expired;
420
421
/* Initialize callbacks for IrLMP to use */
422
irda_notify_init(&ttp_notify);
423
ttp_notify.connect_confirm = irttp_connect_confirm;
424
ttp_notify.connect_indication = irttp_connect_indication;
425
ttp_notify.disconnect_indication = irttp_disconnect_indication;
426
ttp_notify.data_indication = irttp_data_indication;
427
ttp_notify.udata_indication = irttp_udata_indication;
428
ttp_notify.flow_indication = irttp_flow_indication;
429
if(notify->status_indication != NULL)
430
ttp_notify.status_indication = irttp_status_indication;
431
ttp_notify.instance = self;
432
strncpy(ttp_notify.name, notify->name, NOTIFY_MAX_NAME);
433
434
self->magic = TTP_TSAP_MAGIC;
435
self->connected = FALSE;
436
437
/*
438
* Create LSAP at IrLMP layer
439
*/
440
lsap = irlmp_open_lsap(stsap_sel, &ttp_notify, 0);
441
if (lsap == NULL) {
442
IRDA_WARNING("%s: unable to allocate LSAP!!\n", __func__);
443
return NULL;
444
}
445
446
/*
447
* If user specified LSAP_ANY as source TSAP selector, then IrLMP
448
* will replace it with whatever source selector which is free, so
449
* the stsap_sel we have might not be valid anymore
450
*/
451
self->stsap_sel = lsap->slsap_sel;
452
IRDA_DEBUG(4, "%s(), stsap_sel=%02x\n", __func__, self->stsap_sel);
453
454
self->notify = *notify;
455
self->lsap = lsap;
456
457
hashbin_insert(irttp->tsaps, (irda_queue_t *) self, (long) self, NULL);
458
459
if (credit > TTP_RX_MAX_CREDIT)
460
self->initial_credit = TTP_RX_MAX_CREDIT;
461
else
462
self->initial_credit = credit;
463
464
return self;
465
}
466
EXPORT_SYMBOL(irttp_open_tsap);
467
468
/*
469
* Function irttp_close (handle)
470
*
471
* Remove an instance of a TSAP. This function should only deal with the
472
* deallocation of the TSAP, and resetting of the TSAPs values;
473
*
474
*/
475
static void __irttp_close_tsap(struct tsap_cb *self)
476
{
477
/* First make sure we're connected. */
478
IRDA_ASSERT(self != NULL, return;);
479
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
480
481
irttp_flush_queues(self);
482
483
del_timer(&self->todo_timer);
484
485
/* This one won't be cleaned up if we are disconnect_pend + close_pend
486
* and we receive a disconnect_indication */
487
if (self->disconnect_skb)
488
dev_kfree_skb(self->disconnect_skb);
489
490
self->connected = FALSE;
491
self->magic = ~TTP_TSAP_MAGIC;
492
493
kfree(self);
494
}
495
496
/*
497
* Function irttp_close (self)
498
*
499
* Remove TSAP from list of all TSAPs and then deallocate all resources
500
* associated with this TSAP
501
*
502
* Note : because we *free* the tsap structure, it is the responsibility
503
* of the caller to make sure we are called only once and to deal with
504
* possible race conditions. - Jean II
505
*/
506
int irttp_close_tsap(struct tsap_cb *self)
507
{
508
struct tsap_cb *tsap;
509
510
IRDA_DEBUG(4, "%s()\n", __func__);
511
512
IRDA_ASSERT(self != NULL, return -1;);
513
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
514
515
/* Make sure tsap has been disconnected */
516
if (self->connected) {
517
/* Check if disconnect is not pending */
518
if (!test_bit(0, &self->disconnect_pend)) {
519
IRDA_WARNING("%s: TSAP still connected!\n",
520
__func__);
521
irttp_disconnect_request(self, NULL, P_NORMAL);
522
}
523
self->close_pend = TRUE;
524
irttp_start_todo_timer(self, HZ/10);
525
526
return 0; /* Will be back! */
527
}
528
529
tsap = hashbin_remove(irttp->tsaps, (long) self, NULL);
530
531
IRDA_ASSERT(tsap == self, return -1;);
532
533
/* Close corresponding LSAP */
534
if (self->lsap) {
535
irlmp_close_lsap(self->lsap);
536
self->lsap = NULL;
537
}
538
539
__irttp_close_tsap(self);
540
541
return 0;
542
}
543
EXPORT_SYMBOL(irttp_close_tsap);
544
545
/*
546
* Function irttp_udata_request (self, skb)
547
*
548
* Send unreliable data on this TSAP
549
*
550
*/
551
int irttp_udata_request(struct tsap_cb *self, struct sk_buff *skb)
552
{
553
int ret;
554
555
IRDA_ASSERT(self != NULL, return -1;);
556
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
557
IRDA_ASSERT(skb != NULL, return -1;);
558
559
IRDA_DEBUG(4, "%s()\n", __func__);
560
561
/* Take shortcut on zero byte packets */
562
if (skb->len == 0) {
563
ret = 0;
564
goto err;
565
}
566
567
/* Check that nothing bad happens */
568
if (!self->connected) {
569
IRDA_WARNING("%s(), Not connected\n", __func__);
570
ret = -ENOTCONN;
571
goto err;
572
}
573
574
if (skb->len > self->max_seg_size) {
575
IRDA_ERROR("%s(), UData is too large for IrLAP!\n", __func__);
576
ret = -EMSGSIZE;
577
goto err;
578
}
579
580
irlmp_udata_request(self->lsap, skb);
581
self->stats.tx_packets++;
582
583
return 0;
584
585
err:
586
dev_kfree_skb(skb);
587
return ret;
588
}
589
EXPORT_SYMBOL(irttp_udata_request);
590
591
592
/*
593
* Function irttp_data_request (handle, skb)
594
*
595
* Queue frame for transmission. If SAR is enabled, fragement the frame
596
* and queue the fragments for transmission
597
*/
598
int irttp_data_request(struct tsap_cb *self, struct sk_buff *skb)
599
{
600
__u8 *frame;
601
int ret;
602
603
IRDA_ASSERT(self != NULL, return -1;);
604
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
605
IRDA_ASSERT(skb != NULL, return -1;);
606
607
IRDA_DEBUG(2, "%s() : queue len = %d\n", __func__,
608
skb_queue_len(&self->tx_queue));
609
610
/* Take shortcut on zero byte packets */
611
if (skb->len == 0) {
612
ret = 0;
613
goto err;
614
}
615
616
/* Check that nothing bad happens */
617
if (!self->connected) {
618
IRDA_WARNING("%s: Not connected\n", __func__);
619
ret = -ENOTCONN;
620
goto err;
621
}
622
623
/*
624
* Check if SAR is disabled, and the frame is larger than what fits
625
* inside an IrLAP frame
626
*/
627
if ((self->tx_max_sdu_size == 0) && (skb->len > self->max_seg_size)) {
628
IRDA_ERROR("%s: SAR disabled, and data is too large for IrLAP!\n",
629
__func__);
630
ret = -EMSGSIZE;
631
goto err;
632
}
633
634
/*
635
* Check if SAR is enabled, and the frame is larger than the
636
* TxMaxSduSize
637
*/
638
if ((self->tx_max_sdu_size != 0) &&
639
(self->tx_max_sdu_size != TTP_SAR_UNBOUND) &&
640
(skb->len > self->tx_max_sdu_size))
641
{
642
IRDA_ERROR("%s: SAR enabled, but data is larger than TxMaxSduSize!\n",
643
__func__);
644
ret = -EMSGSIZE;
645
goto err;
646
}
647
/*
648
* Check if transmit queue is full
649
*/
650
if (skb_queue_len(&self->tx_queue) >= TTP_TX_MAX_QUEUE) {
651
/*
652
* Give it a chance to empty itself
653
*/
654
irttp_run_tx_queue(self);
655
656
/* Drop packet. This error code should trigger the caller
657
* to resend the data in the client code - Jean II */
658
ret = -ENOBUFS;
659
goto err;
660
}
661
662
/* Queue frame, or queue frame segments */
663
if ((self->tx_max_sdu_size == 0) || (skb->len < self->max_seg_size)) {
664
/* Queue frame */
665
IRDA_ASSERT(skb_headroom(skb) >= TTP_HEADER, return -1;);
666
frame = skb_push(skb, TTP_HEADER);
667
frame[0] = 0x00; /* Clear more bit */
668
669
skb_queue_tail(&self->tx_queue, skb);
670
} else {
671
/*
672
* Fragment the frame, this function will also queue the
673
* fragments, we don't care about the fact the transmit
674
* queue may be overfilled by all the segments for a little
675
* while
676
*/
677
irttp_fragment_skb(self, skb);
678
}
679
680
/* Check if we can accept more data from client */
681
if ((!self->tx_sdu_busy) &&
682
(skb_queue_len(&self->tx_queue) > TTP_TX_HIGH_THRESHOLD)) {
683
/* Tx queue filling up, so stop client. */
684
if (self->notify.flow_indication) {
685
self->notify.flow_indication(self->notify.instance,
686
self, FLOW_STOP);
687
}
688
/* self->tx_sdu_busy is the state of the client.
689
* Update state after notifying client to avoid
690
* race condition with irttp_flow_indication().
691
* If the queue empty itself after our test but before
692
* we set the flag, we will fix ourselves below in
693
* irttp_run_tx_queue().
694
* Jean II */
695
self->tx_sdu_busy = TRUE;
696
}
697
698
/* Try to make some progress */
699
irttp_run_tx_queue(self);
700
701
return 0;
702
703
err:
704
dev_kfree_skb(skb);
705
return ret;
706
}
707
EXPORT_SYMBOL(irttp_data_request);
708
709
/*
710
* Function irttp_run_tx_queue (self)
711
*
712
* Transmit packets queued for transmission (if possible)
713
*
714
*/
715
static void irttp_run_tx_queue(struct tsap_cb *self)
716
{
717
struct sk_buff *skb;
718
unsigned long flags;
719
int n;
720
721
IRDA_DEBUG(2, "%s() : send_credit = %d, queue_len = %d\n",
722
__func__,
723
self->send_credit, skb_queue_len(&self->tx_queue));
724
725
/* Get exclusive access to the tx queue, otherwise don't touch it */
726
if (irda_lock(&self->tx_queue_lock) == FALSE)
727
return;
728
729
/* Try to send out frames as long as we have credits
730
* and as long as LAP is not full. If LAP is full, it will
731
* poll us through irttp_flow_indication() - Jean II */
732
while ((self->send_credit > 0) &&
733
(!irlmp_lap_tx_queue_full(self->lsap)) &&
734
(skb = skb_dequeue(&self->tx_queue)))
735
{
736
/*
737
* Since we can transmit and receive frames concurrently,
738
* the code below is a critical region and we must assure that
739
* nobody messes with the credits while we update them.
740
*/
741
spin_lock_irqsave(&self->lock, flags);
742
743
n = self->avail_credit;
744
self->avail_credit = 0;
745
746
/* Only room for 127 credits in frame */
747
if (n > 127) {
748
self->avail_credit = n-127;
749
n = 127;
750
}
751
self->remote_credit += n;
752
self->send_credit--;
753
754
spin_unlock_irqrestore(&self->lock, flags);
755
756
/*
757
* More bit must be set by the data_request() or fragment()
758
* functions
759
*/
760
skb->data[0] |= (n & 0x7f);
761
762
/* Detach from socket.
763
* The current skb has a reference to the socket that sent
764
* it (skb->sk). When we pass it to IrLMP, the skb will be
765
* stored in in IrLAP (self->wx_list). When we are within
766
* IrLAP, we lose the notion of socket, so we should not
767
* have a reference to a socket. So, we drop it here.
768
*
769
* Why does it matter ?
770
* When the skb is freed (kfree_skb), if it is associated
771
* with a socket, it release buffer space on the socket
772
* (through sock_wfree() and sock_def_write_space()).
773
* If the socket no longer exist, we may crash. Hard.
774
* When we close a socket, we make sure that associated packets
775
* in IrTTP are freed. However, we have no way to cancel
776
* the packet that we have passed to IrLAP. So, if a packet
777
* remains in IrLAP (retry on the link or else) after we
778
* close the socket, we are dead !
779
* Jean II */
780
if (skb->sk != NULL) {
781
/* IrSOCK application, IrOBEX, ... */
782
skb_orphan(skb);
783
}
784
/* IrCOMM over IrTTP, IrLAN, ... */
785
786
/* Pass the skb to IrLMP - done */
787
irlmp_data_request(self->lsap, skb);
788
self->stats.tx_packets++;
789
}
790
791
/* Check if we can accept more frames from client.
792
* We don't want to wait until the todo timer to do that, and we
793
* can't use tasklets (grr...), so we are obliged to give control
794
* to client. That's ok, this test will be true not too often
795
* (max once per LAP window) and we are called from places
796
* where we can spend a bit of time doing stuff. - Jean II */
797
if ((self->tx_sdu_busy) &&
798
(skb_queue_len(&self->tx_queue) < TTP_TX_LOW_THRESHOLD) &&
799
(!self->close_pend))
800
{
801
if (self->notify.flow_indication)
802
self->notify.flow_indication(self->notify.instance,
803
self, FLOW_START);
804
805
/* self->tx_sdu_busy is the state of the client.
806
* We don't really have a race here, but it's always safer
807
* to update our state after the client - Jean II */
808
self->tx_sdu_busy = FALSE;
809
}
810
811
/* Reset lock */
812
self->tx_queue_lock = 0;
813
}
814
815
/*
816
* Function irttp_give_credit (self)
817
*
818
* Send a dataless flowdata TTP-PDU and give available credit to peer
819
* TSAP
820
*/
821
static inline void irttp_give_credit(struct tsap_cb *self)
822
{
823
struct sk_buff *tx_skb = NULL;
824
unsigned long flags;
825
int n;
826
827
IRDA_ASSERT(self != NULL, return;);
828
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
829
830
IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n",
831
__func__,
832
self->send_credit, self->avail_credit, self->remote_credit);
833
834
/* Give credit to peer */
835
tx_skb = alloc_skb(TTP_MAX_HEADER, GFP_ATOMIC);
836
if (!tx_skb)
837
return;
838
839
/* Reserve space for LMP, and LAP header */
840
skb_reserve(tx_skb, LMP_MAX_HEADER);
841
842
/*
843
* Since we can transmit and receive frames concurrently,
844
* the code below is a critical region and we must assure that
845
* nobody messes with the credits while we update them.
846
*/
847
spin_lock_irqsave(&self->lock, flags);
848
849
n = self->avail_credit;
850
self->avail_credit = 0;
851
852
/* Only space for 127 credits in frame */
853
if (n > 127) {
854
self->avail_credit = n - 127;
855
n = 127;
856
}
857
self->remote_credit += n;
858
859
spin_unlock_irqrestore(&self->lock, flags);
860
861
skb_put(tx_skb, 1);
862
tx_skb->data[0] = (__u8) (n & 0x7f);
863
864
irlmp_data_request(self->lsap, tx_skb);
865
self->stats.tx_packets++;
866
}
867
868
/*
869
* Function irttp_udata_indication (instance, sap, skb)
870
*
871
* Received some unit-data (unreliable)
872
*
873
*/
874
static int irttp_udata_indication(void *instance, void *sap,
875
struct sk_buff *skb)
876
{
877
struct tsap_cb *self;
878
int err;
879
880
IRDA_DEBUG(4, "%s()\n", __func__);
881
882
self = (struct tsap_cb *) instance;
883
884
IRDA_ASSERT(self != NULL, return -1;);
885
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
886
IRDA_ASSERT(skb != NULL, return -1;);
887
888
self->stats.rx_packets++;
889
890
/* Just pass data to layer above */
891
if (self->notify.udata_indication) {
892
err = self->notify.udata_indication(self->notify.instance,
893
self,skb);
894
/* Same comment as in irttp_do_data_indication() */
895
if (!err)
896
return 0;
897
}
898
/* Either no handler, or handler returns an error */
899
dev_kfree_skb(skb);
900
901
return 0;
902
}
903
904
/*
905
* Function irttp_data_indication (instance, sap, skb)
906
*
907
* Receive segment from IrLMP.
908
*
909
*/
910
static int irttp_data_indication(void *instance, void *sap,
911
struct sk_buff *skb)
912
{
913
struct tsap_cb *self;
914
unsigned long flags;
915
int n;
916
917
self = (struct tsap_cb *) instance;
918
919
n = skb->data[0] & 0x7f; /* Extract the credits */
920
921
self->stats.rx_packets++;
922
923
/* Deal with inbound credit
924
* Since we can transmit and receive frames concurrently,
925
* the code below is a critical region and we must assure that
926
* nobody messes with the credits while we update them.
927
*/
928
spin_lock_irqsave(&self->lock, flags);
929
self->send_credit += n;
930
if (skb->len > 1)
931
self->remote_credit--;
932
spin_unlock_irqrestore(&self->lock, flags);
933
934
/*
935
* Data or dataless packet? Dataless frames contains only the
936
* TTP_HEADER.
937
*/
938
if (skb->len > 1) {
939
/*
940
* We don't remove the TTP header, since we must preserve the
941
* more bit, so the defragment routing knows what to do
942
*/
943
skb_queue_tail(&self->rx_queue, skb);
944
} else {
945
/* Dataless flowdata TTP-PDU */
946
dev_kfree_skb(skb);
947
}
948
949
950
/* Push data to the higher layer.
951
* We do it synchronously because running the todo timer for each
952
* receive packet would be too much overhead and latency.
953
* By passing control to the higher layer, we run the risk that
954
* it may take time or grab a lock. Most often, the higher layer
955
* will only put packet in a queue.
956
* Anyway, packets are only dripping through the IrDA, so we can
957
* have time before the next packet.
958
* Further, we are run from NET_BH, so the worse that can happen is
959
* us missing the optimal time to send back the PF bit in LAP.
960
* Jean II */
961
irttp_run_rx_queue(self);
962
963
/* We now give credits to peer in irttp_run_rx_queue().
964
* We need to send credit *NOW*, otherwise we are going
965
* to miss the next Tx window. The todo timer may take
966
* a while before it's run... - Jean II */
967
968
/*
969
* If the peer device has given us some credits and we didn't have
970
* anyone from before, then we need to shedule the tx queue.
971
* We need to do that because our Tx have stopped (so we may not
972
* get any LAP flow indication) and the user may be stopped as
973
* well. - Jean II
974
*/
975
if (self->send_credit == n) {
976
/* Restart pushing stuff to LAP */
977
irttp_run_tx_queue(self);
978
/* Note : we don't want to schedule the todo timer
979
* because it has horrible latency. No tasklets
980
* because the tasklet API is broken. - Jean II */
981
}
982
983
return 0;
984
}
985
986
/*
987
* Function irttp_status_indication (self, reason)
988
*
989
* Status_indication, just pass to the higher layer...
990
*
991
*/
992
static void irttp_status_indication(void *instance,
993
LINK_STATUS link, LOCK_STATUS lock)
994
{
995
struct tsap_cb *self;
996
997
IRDA_DEBUG(4, "%s()\n", __func__);
998
999
self = (struct tsap_cb *) instance;
1000
1001
IRDA_ASSERT(self != NULL, return;);
1002
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1003
1004
/* Check if client has already closed the TSAP and gone away */
1005
if (self->close_pend)
1006
return;
1007
1008
/*
1009
* Inform service user if he has requested it
1010
*/
1011
if (self->notify.status_indication != NULL)
1012
self->notify.status_indication(self->notify.instance,
1013
link, lock);
1014
else
1015
IRDA_DEBUG(2, "%s(), no handler\n", __func__);
1016
}
1017
1018
/*
1019
* Function irttp_flow_indication (self, reason)
1020
*
1021
* Flow_indication : IrLAP tells us to send more data.
1022
*
1023
*/
1024
static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow)
1025
{
1026
struct tsap_cb *self;
1027
1028
self = (struct tsap_cb *) instance;
1029
1030
IRDA_ASSERT(self != NULL, return;);
1031
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1032
1033
IRDA_DEBUG(4, "%s(instance=%p)\n", __func__, self);
1034
1035
/* We are "polled" directly from LAP, and the LAP want to fill
1036
* its Tx window. We want to do our best to send it data, so that
1037
* we maximise the window. On the other hand, we want to limit the
1038
* amount of work here so that LAP doesn't hang forever waiting
1039
* for packets. - Jean II */
1040
1041
/* Try to send some packets. Currently, LAP calls us every time
1042
* there is one free slot, so we will send only one packet.
1043
* This allow the scheduler to do its round robin - Jean II */
1044
irttp_run_tx_queue(self);
1045
1046
/* Note regarding the interraction with higher layer.
1047
* irttp_run_tx_queue() may call the client when its queue
1048
* start to empty, via notify.flow_indication(). Initially.
1049
* I wanted this to happen in a tasklet, to avoid client
1050
* grabbing the CPU, but we can't use tasklets safely. And timer
1051
* is definitely too slow.
1052
* This will happen only once per LAP window, and usually at
1053
* the third packet (unless window is smaller). LAP is still
1054
* doing mtt and sending first packet so it's sort of OK
1055
* to do that. Jean II */
1056
1057
/* If we need to send disconnect. try to do it now */
1058
if(self->disconnect_pend)
1059
irttp_start_todo_timer(self, 0);
1060
}
1061
1062
/*
1063
* Function irttp_flow_request (self, command)
1064
*
1065
* This function could be used by the upper layers to tell IrTTP to stop
1066
* delivering frames if the receive queues are starting to get full, or
1067
* to tell IrTTP to start delivering frames again.
1068
*/
1069
void irttp_flow_request(struct tsap_cb *self, LOCAL_FLOW flow)
1070
{
1071
IRDA_DEBUG(1, "%s()\n", __func__);
1072
1073
IRDA_ASSERT(self != NULL, return;);
1074
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1075
1076
switch (flow) {
1077
case FLOW_STOP:
1078
IRDA_DEBUG(1, "%s(), flow stop\n", __func__);
1079
self->rx_sdu_busy = TRUE;
1080
break;
1081
case FLOW_START:
1082
IRDA_DEBUG(1, "%s(), flow start\n", __func__);
1083
self->rx_sdu_busy = FALSE;
1084
1085
/* Client say he can accept more data, try to free our
1086
* queues ASAP - Jean II */
1087
irttp_run_rx_queue(self);
1088
1089
break;
1090
default:
1091
IRDA_DEBUG(1, "%s(), Unknown flow command!\n", __func__);
1092
}
1093
}
1094
EXPORT_SYMBOL(irttp_flow_request);
1095
1096
/*
1097
* Function irttp_connect_request (self, dtsap_sel, daddr, qos)
1098
*
1099
* Try to connect to remote destination TSAP selector
1100
*
1101
*/
1102
int irttp_connect_request(struct tsap_cb *self, __u8 dtsap_sel,
1103
__u32 saddr, __u32 daddr,
1104
struct qos_info *qos, __u32 max_sdu_size,
1105
struct sk_buff *userdata)
1106
{
1107
struct sk_buff *tx_skb;
1108
__u8 *frame;
1109
__u8 n;
1110
1111
IRDA_DEBUG(4, "%s(), max_sdu_size=%d\n", __func__, max_sdu_size);
1112
1113
IRDA_ASSERT(self != NULL, return -EBADR;);
1114
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -EBADR;);
1115
1116
if (self->connected) {
1117
if(userdata)
1118
dev_kfree_skb(userdata);
1119
return -EISCONN;
1120
}
1121
1122
/* Any userdata supplied? */
1123
if (userdata == NULL) {
1124
tx_skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
1125
GFP_ATOMIC);
1126
if (!tx_skb)
1127
return -ENOMEM;
1128
1129
/* Reserve space for MUX_CONTROL and LAP header */
1130
skb_reserve(tx_skb, TTP_MAX_HEADER + TTP_SAR_HEADER);
1131
} else {
1132
tx_skb = userdata;
1133
/*
1134
* Check that the client has reserved enough space for
1135
* headers
1136
*/
1137
IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
1138
{ dev_kfree_skb(userdata); return -1; } );
1139
}
1140
1141
/* Initialize connection parameters */
1142
self->connected = FALSE;
1143
self->avail_credit = 0;
1144
self->rx_max_sdu_size = max_sdu_size;
1145
self->rx_sdu_size = 0;
1146
self->rx_sdu_busy = FALSE;
1147
self->dtsap_sel = dtsap_sel;
1148
1149
n = self->initial_credit;
1150
1151
self->remote_credit = 0;
1152
self->send_credit = 0;
1153
1154
/*
1155
* Give away max 127 credits for now
1156
*/
1157
if (n > 127) {
1158
self->avail_credit=n-127;
1159
n = 127;
1160
}
1161
1162
self->remote_credit = n;
1163
1164
/* SAR enabled? */
1165
if (max_sdu_size > 0) {
1166
IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
1167
{ dev_kfree_skb(tx_skb); return -1; } );
1168
1169
/* Insert SAR parameters */
1170
frame = skb_push(tx_skb, TTP_HEADER+TTP_SAR_HEADER);
1171
1172
frame[0] = TTP_PARAMETERS | n;
1173
frame[1] = 0x04; /* Length */
1174
frame[2] = 0x01; /* MaxSduSize */
1175
frame[3] = 0x02; /* Value length */
1176
1177
put_unaligned(cpu_to_be16((__u16) max_sdu_size),
1178
(__be16 *)(frame+4));
1179
} else {
1180
/* Insert plain TTP header */
1181
frame = skb_push(tx_skb, TTP_HEADER);
1182
1183
/* Insert initial credit in frame */
1184
frame[0] = n & 0x7f;
1185
}
1186
1187
/* Connect with IrLMP. No QoS parameters for now */
1188
return irlmp_connect_request(self->lsap, dtsap_sel, saddr, daddr, qos,
1189
tx_skb);
1190
}
1191
EXPORT_SYMBOL(irttp_connect_request);
1192
1193
/*
1194
* Function irttp_connect_confirm (handle, qos, skb)
1195
*
1196
* Service user confirms TSAP connection with peer.
1197
*
1198
*/
1199
static void irttp_connect_confirm(void *instance, void *sap,
1200
struct qos_info *qos, __u32 max_seg_size,
1201
__u8 max_header_size, struct sk_buff *skb)
1202
{
1203
struct tsap_cb *self;
1204
int parameters;
1205
int ret;
1206
__u8 plen;
1207
__u8 n;
1208
1209
IRDA_DEBUG(4, "%s()\n", __func__);
1210
1211
self = (struct tsap_cb *) instance;
1212
1213
IRDA_ASSERT(self != NULL, return;);
1214
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1215
IRDA_ASSERT(skb != NULL, return;);
1216
1217
self->max_seg_size = max_seg_size - TTP_HEADER;
1218
self->max_header_size = max_header_size + TTP_HEADER;
1219
1220
/*
1221
* Check if we have got some QoS parameters back! This should be the
1222
* negotiated QoS for the link.
1223
*/
1224
if (qos) {
1225
IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %02x\n",
1226
qos->baud_rate.bits);
1227
IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %d bps.\n",
1228
qos->baud_rate.value);
1229
}
1230
1231
n = skb->data[0] & 0x7f;
1232
1233
IRDA_DEBUG(4, "%s(), Initial send_credit=%d\n", __func__, n);
1234
1235
self->send_credit = n;
1236
self->tx_max_sdu_size = 0;
1237
self->connected = TRUE;
1238
1239
parameters = skb->data[0] & 0x80;
1240
1241
IRDA_ASSERT(skb->len >= TTP_HEADER, return;);
1242
skb_pull(skb, TTP_HEADER);
1243
1244
if (parameters) {
1245
plen = skb->data[0];
1246
1247
ret = irda_param_extract_all(self, skb->data+1,
1248
IRDA_MIN(skb->len-1, plen),
1249
&param_info);
1250
1251
/* Any errors in the parameter list? */
1252
if (ret < 0) {
1253
IRDA_WARNING("%s: error extracting parameters\n",
1254
__func__);
1255
dev_kfree_skb(skb);
1256
1257
/* Do not accept this connection attempt */
1258
return;
1259
}
1260
/* Remove parameters */
1261
skb_pull(skb, IRDA_MIN(skb->len, plen+1));
1262
}
1263
1264
IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n", __func__,
1265
self->send_credit, self->avail_credit, self->remote_credit);
1266
1267
IRDA_DEBUG(2, "%s(), MaxSduSize=%d\n", __func__,
1268
self->tx_max_sdu_size);
1269
1270
if (self->notify.connect_confirm) {
1271
self->notify.connect_confirm(self->notify.instance, self, qos,
1272
self->tx_max_sdu_size,
1273
self->max_header_size, skb);
1274
} else
1275
dev_kfree_skb(skb);
1276
}
1277
1278
/*
1279
* Function irttp_connect_indication (handle, skb)
1280
*
1281
* Some other device is connecting to this TSAP
1282
*
1283
*/
1284
static void irttp_connect_indication(void *instance, void *sap,
1285
struct qos_info *qos, __u32 max_seg_size, __u8 max_header_size,
1286
struct sk_buff *skb)
1287
{
1288
struct tsap_cb *self;
1289
struct lsap_cb *lsap;
1290
int parameters;
1291
int ret;
1292
__u8 plen;
1293
__u8 n;
1294
1295
self = (struct tsap_cb *) instance;
1296
1297
IRDA_ASSERT(self != NULL, return;);
1298
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1299
IRDA_ASSERT(skb != NULL, return;);
1300
1301
lsap = (struct lsap_cb *) sap;
1302
1303
self->max_seg_size = max_seg_size - TTP_HEADER;
1304
self->max_header_size = max_header_size+TTP_HEADER;
1305
1306
IRDA_DEBUG(4, "%s(), TSAP sel=%02x\n", __func__, self->stsap_sel);
1307
1308
/* Need to update dtsap_sel if its equal to LSAP_ANY */
1309
self->dtsap_sel = lsap->dlsap_sel;
1310
1311
n = skb->data[0] & 0x7f;
1312
1313
self->send_credit = n;
1314
self->tx_max_sdu_size = 0;
1315
1316
parameters = skb->data[0] & 0x80;
1317
1318
IRDA_ASSERT(skb->len >= TTP_HEADER, return;);
1319
skb_pull(skb, TTP_HEADER);
1320
1321
if (parameters) {
1322
plen = skb->data[0];
1323
1324
ret = irda_param_extract_all(self, skb->data+1,
1325
IRDA_MIN(skb->len-1, plen),
1326
&param_info);
1327
1328
/* Any errors in the parameter list? */
1329
if (ret < 0) {
1330
IRDA_WARNING("%s: error extracting parameters\n",
1331
__func__);
1332
dev_kfree_skb(skb);
1333
1334
/* Do not accept this connection attempt */
1335
return;
1336
}
1337
1338
/* Remove parameters */
1339
skb_pull(skb, IRDA_MIN(skb->len, plen+1));
1340
}
1341
1342
if (self->notify.connect_indication) {
1343
self->notify.connect_indication(self->notify.instance, self,
1344
qos, self->tx_max_sdu_size,
1345
self->max_header_size, skb);
1346
} else
1347
dev_kfree_skb(skb);
1348
}
1349
1350
/*
1351
* Function irttp_connect_response (handle, userdata)
1352
*
1353
* Service user is accepting the connection, just pass it down to
1354
* IrLMP!
1355
*
1356
*/
1357
int irttp_connect_response(struct tsap_cb *self, __u32 max_sdu_size,
1358
struct sk_buff *userdata)
1359
{
1360
struct sk_buff *tx_skb;
1361
__u8 *frame;
1362
int ret;
1363
__u8 n;
1364
1365
IRDA_ASSERT(self != NULL, return -1;);
1366
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
1367
1368
IRDA_DEBUG(4, "%s(), Source TSAP selector=%02x\n", __func__,
1369
self->stsap_sel);
1370
1371
/* Any userdata supplied? */
1372
if (userdata == NULL) {
1373
tx_skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
1374
GFP_ATOMIC);
1375
if (!tx_skb)
1376
return -ENOMEM;
1377
1378
/* Reserve space for MUX_CONTROL and LAP header */
1379
skb_reserve(tx_skb, TTP_MAX_HEADER + TTP_SAR_HEADER);
1380
} else {
1381
tx_skb = userdata;
1382
/*
1383
* Check that the client has reserved enough space for
1384
* headers
1385
*/
1386
IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
1387
{ dev_kfree_skb(userdata); return -1; } );
1388
}
1389
1390
self->avail_credit = 0;
1391
self->remote_credit = 0;
1392
self->rx_max_sdu_size = max_sdu_size;
1393
self->rx_sdu_size = 0;
1394
self->rx_sdu_busy = FALSE;
1395
1396
n = self->initial_credit;
1397
1398
/* Frame has only space for max 127 credits (7 bits) */
1399
if (n > 127) {
1400
self->avail_credit = n - 127;
1401
n = 127;
1402
}
1403
1404
self->remote_credit = n;
1405
self->connected = TRUE;
1406
1407
/* SAR enabled? */
1408
if (max_sdu_size > 0) {
1409
IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
1410
{ dev_kfree_skb(tx_skb); return -1; } );
1411
1412
/* Insert TTP header with SAR parameters */
1413
frame = skb_push(tx_skb, TTP_HEADER+TTP_SAR_HEADER);
1414
1415
frame[0] = TTP_PARAMETERS | n;
1416
frame[1] = 0x04; /* Length */
1417
1418
/* irda_param_insert(self, IRTTP_MAX_SDU_SIZE, frame+1, */
1419
/* TTP_SAR_HEADER, &param_info) */
1420
1421
frame[2] = 0x01; /* MaxSduSize */
1422
frame[3] = 0x02; /* Value length */
1423
1424
put_unaligned(cpu_to_be16((__u16) max_sdu_size),
1425
(__be16 *)(frame+4));
1426
} else {
1427
/* Insert TTP header */
1428
frame = skb_push(tx_skb, TTP_HEADER);
1429
1430
frame[0] = n & 0x7f;
1431
}
1432
1433
ret = irlmp_connect_response(self->lsap, tx_skb);
1434
1435
return ret;
1436
}
1437
EXPORT_SYMBOL(irttp_connect_response);
1438
1439
/*
1440
* Function irttp_dup (self, instance)
1441
*
1442
* Duplicate TSAP, can be used by servers to confirm a connection on a
1443
* new TSAP so it can keep listening on the old one.
1444
*/
1445
struct tsap_cb *irttp_dup(struct tsap_cb *orig, void *instance)
1446
{
1447
struct tsap_cb *new;
1448
unsigned long flags;
1449
1450
IRDA_DEBUG(1, "%s()\n", __func__);
1451
1452
/* Protect our access to the old tsap instance */
1453
spin_lock_irqsave(&irttp->tsaps->hb_spinlock, flags);
1454
1455
/* Find the old instance */
1456
if (!hashbin_find(irttp->tsaps, (long) orig, NULL)) {
1457
IRDA_DEBUG(0, "%s(), unable to find TSAP\n", __func__);
1458
spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
1459
return NULL;
1460
}
1461
1462
/* Allocate a new instance */
1463
new = kmalloc(sizeof(struct tsap_cb), GFP_ATOMIC);
1464
if (!new) {
1465
IRDA_DEBUG(0, "%s(), unable to kmalloc\n", __func__);
1466
spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
1467
return NULL;
1468
}
1469
/* Dup */
1470
memcpy(new, orig, sizeof(struct tsap_cb));
1471
spin_lock_init(&new->lock);
1472
1473
/* We don't need the old instance any more */
1474
spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
1475
1476
/* Try to dup the LSAP (may fail if we were too slow) */
1477
new->lsap = irlmp_dup(orig->lsap, new);
1478
if (!new->lsap) {
1479
IRDA_DEBUG(0, "%s(), dup failed!\n", __func__);
1480
kfree(new);
1481
return NULL;
1482
}
1483
1484
/* Not everything should be copied */
1485
new->notify.instance = instance;
1486
1487
/* Initialize internal objects */
1488
irttp_init_tsap(new);
1489
1490
/* This is locked */
1491
hashbin_insert(irttp->tsaps, (irda_queue_t *) new, (long) new, NULL);
1492
1493
return new;
1494
}
1495
EXPORT_SYMBOL(irttp_dup);
1496
1497
/*
1498
* Function irttp_disconnect_request (self)
1499
*
1500
* Close this connection please! If priority is high, the queued data
1501
* segments, if any, will be deallocated first
1502
*
1503
*/
1504
int irttp_disconnect_request(struct tsap_cb *self, struct sk_buff *userdata,
1505
int priority)
1506
{
1507
int ret;
1508
1509
IRDA_ASSERT(self != NULL, return -1;);
1510
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
1511
1512
/* Already disconnected? */
1513
if (!self->connected) {
1514
IRDA_DEBUG(4, "%s(), already disconnected!\n", __func__);
1515
if (userdata)
1516
dev_kfree_skb(userdata);
1517
return -1;
1518
}
1519
1520
/* Disconnect already pending ?
1521
* We need to use an atomic operation to prevent reentry. This
1522
* function may be called from various context, like user, timer
1523
* for following a disconnect_indication() (i.e. net_bh).
1524
* Jean II */
1525
if(test_and_set_bit(0, &self->disconnect_pend)) {
1526
IRDA_DEBUG(0, "%s(), disconnect already pending\n",
1527
__func__);
1528
if (userdata)
1529
dev_kfree_skb(userdata);
1530
1531
/* Try to make some progress */
1532
irttp_run_tx_queue(self);
1533
return -1;
1534
}
1535
1536
/*
1537
* Check if there is still data segments in the transmit queue
1538
*/
1539
if (!skb_queue_empty(&self->tx_queue)) {
1540
if (priority == P_HIGH) {
1541
/*
1542
* No need to send the queued data, if we are
1543
* disconnecting right now since the data will
1544
* not have any usable connection to be sent on
1545
*/
1546
IRDA_DEBUG(1, "%s(): High priority!!()\n", __func__);
1547
irttp_flush_queues(self);
1548
} else if (priority == P_NORMAL) {
1549
/*
1550
* Must delay disconnect until after all data segments
1551
* have been sent and the tx_queue is empty
1552
*/
1553
/* We'll reuse this one later for the disconnect */
1554
self->disconnect_skb = userdata; /* May be NULL */
1555
1556
irttp_run_tx_queue(self);
1557
1558
irttp_start_todo_timer(self, HZ/10);
1559
return -1;
1560
}
1561
}
1562
/* Note : we don't need to check if self->rx_queue is full and the
1563
* state of self->rx_sdu_busy because the disconnect response will
1564
* be sent at the LMP level (so even if the peer has its Tx queue
1565
* full of data). - Jean II */
1566
1567
IRDA_DEBUG(1, "%s(), Disconnecting ...\n", __func__);
1568
self->connected = FALSE;
1569
1570
if (!userdata) {
1571
struct sk_buff *tx_skb;
1572
tx_skb = alloc_skb(LMP_MAX_HEADER, GFP_ATOMIC);
1573
if (!tx_skb)
1574
return -ENOMEM;
1575
1576
/*
1577
* Reserve space for MUX and LAP header
1578
*/
1579
skb_reserve(tx_skb, LMP_MAX_HEADER);
1580
1581
userdata = tx_skb;
1582
}
1583
ret = irlmp_disconnect_request(self->lsap, userdata);
1584
1585
/* The disconnect is no longer pending */
1586
clear_bit(0, &self->disconnect_pend); /* FALSE */
1587
1588
return ret;
1589
}
1590
EXPORT_SYMBOL(irttp_disconnect_request);
1591
1592
/*
1593
* Function irttp_disconnect_indication (self, reason)
1594
*
1595
* Disconnect indication, TSAP disconnected by peer?
1596
*
1597
*/
1598
static void irttp_disconnect_indication(void *instance, void *sap,
1599
LM_REASON reason, struct sk_buff *skb)
1600
{
1601
struct tsap_cb *self;
1602
1603
IRDA_DEBUG(4, "%s()\n", __func__);
1604
1605
self = (struct tsap_cb *) instance;
1606
1607
IRDA_ASSERT(self != NULL, return;);
1608
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1609
1610
/* Prevent higher layer to send more data */
1611
self->connected = FALSE;
1612
1613
/* Check if client has already tried to close the TSAP */
1614
if (self->close_pend) {
1615
/* In this case, the higher layer is probably gone. Don't
1616
* bother it and clean up the remains - Jean II */
1617
if (skb)
1618
dev_kfree_skb(skb);
1619
irttp_close_tsap(self);
1620
return;
1621
}
1622
1623
/* If we are here, we assume that is the higher layer is still
1624
* waiting for the disconnect notification and able to process it,
1625
* even if he tried to disconnect. Otherwise, it would have already
1626
* attempted to close the tsap and self->close_pend would be TRUE.
1627
* Jean II */
1628
1629
/* No need to notify the client if has already tried to disconnect */
1630
if(self->notify.disconnect_indication)
1631
self->notify.disconnect_indication(self->notify.instance, self,
1632
reason, skb);
1633
else
1634
if (skb)
1635
dev_kfree_skb(skb);
1636
}
1637
1638
/*
1639
* Function irttp_do_data_indication (self, skb)
1640
*
1641
* Try to deliver reassembled skb to layer above, and requeue it if that
1642
* for some reason should fail. We mark rx sdu as busy to apply back
1643
* pressure is necessary.
1644
*/
1645
static void irttp_do_data_indication(struct tsap_cb *self, struct sk_buff *skb)
1646
{
1647
int err;
1648
1649
/* Check if client has already closed the TSAP and gone away */
1650
if (self->close_pend) {
1651
dev_kfree_skb(skb);
1652
return;
1653
}
1654
1655
err = self->notify.data_indication(self->notify.instance, self, skb);
1656
1657
/* Usually the layer above will notify that it's input queue is
1658
* starting to get filled by using the flow request, but this may
1659
* be difficult, so it can instead just refuse to eat it and just
1660
* give an error back
1661
*/
1662
if (err) {
1663
IRDA_DEBUG(0, "%s() requeueing skb!\n", __func__);
1664
1665
/* Make sure we take a break */
1666
self->rx_sdu_busy = TRUE;
1667
1668
/* Need to push the header in again */
1669
skb_push(skb, TTP_HEADER);
1670
skb->data[0] = 0x00; /* Make sure MORE bit is cleared */
1671
1672
/* Put skb back on queue */
1673
skb_queue_head(&self->rx_queue, skb);
1674
}
1675
}
1676
1677
/*
1678
* Function irttp_run_rx_queue (self)
1679
*
1680
* Check if we have any frames to be transmitted, or if we have any
1681
* available credit to give away.
1682
*/
1683
static void irttp_run_rx_queue(struct tsap_cb *self)
1684
{
1685
struct sk_buff *skb;
1686
int more = 0;
1687
1688
IRDA_DEBUG(2, "%s() send=%d,avail=%d,remote=%d\n", __func__,
1689
self->send_credit, self->avail_credit, self->remote_credit);
1690
1691
/* Get exclusive access to the rx queue, otherwise don't touch it */
1692
if (irda_lock(&self->rx_queue_lock) == FALSE)
1693
return;
1694
1695
/*
1696
* Reassemble all frames in receive queue and deliver them
1697
*/
1698
while (!self->rx_sdu_busy && (skb = skb_dequeue(&self->rx_queue))) {
1699
/* This bit will tell us if it's the last fragment or not */
1700
more = skb->data[0] & 0x80;
1701
1702
/* Remove TTP header */
1703
skb_pull(skb, TTP_HEADER);
1704
1705
/* Add the length of the remaining data */
1706
self->rx_sdu_size += skb->len;
1707
1708
/*
1709
* If SAR is disabled, or user has requested no reassembly
1710
* of received fragments then we just deliver them
1711
* immediately. This can be requested by clients that
1712
* implements byte streams without any message boundaries
1713
*/
1714
if (self->rx_max_sdu_size == TTP_SAR_DISABLE) {
1715
irttp_do_data_indication(self, skb);
1716
self->rx_sdu_size = 0;
1717
1718
continue;
1719
}
1720
1721
/* Check if this is a fragment, and not the last fragment */
1722
if (more) {
1723
/*
1724
* Queue the fragment if we still are within the
1725
* limits of the maximum size of the rx_sdu
1726
*/
1727
if (self->rx_sdu_size <= self->rx_max_sdu_size) {
1728
IRDA_DEBUG(4, "%s(), queueing frag\n",
1729
__func__);
1730
skb_queue_tail(&self->rx_fragments, skb);
1731
} else {
1732
/* Free the part of the SDU that is too big */
1733
dev_kfree_skb(skb);
1734
}
1735
continue;
1736
}
1737
/*
1738
* This is the last fragment, so time to reassemble!
1739
*/
1740
if ((self->rx_sdu_size <= self->rx_max_sdu_size) ||
1741
(self->rx_max_sdu_size == TTP_SAR_UNBOUND))
1742
{
1743
/*
1744
* A little optimizing. Only queue the fragment if
1745
* there are other fragments. Since if this is the
1746
* last and only fragment, there is no need to
1747
* reassemble :-)
1748
*/
1749
if (!skb_queue_empty(&self->rx_fragments)) {
1750
skb_queue_tail(&self->rx_fragments,
1751
skb);
1752
1753
skb = irttp_reassemble_skb(self);
1754
}
1755
1756
/* Now we can deliver the reassembled skb */
1757
irttp_do_data_indication(self, skb);
1758
} else {
1759
IRDA_DEBUG(1, "%s(), Truncated frame\n", __func__);
1760
1761
/* Free the part of the SDU that is too big */
1762
dev_kfree_skb(skb);
1763
1764
/* Deliver only the valid but truncated part of SDU */
1765
skb = irttp_reassemble_skb(self);
1766
1767
irttp_do_data_indication(self, skb);
1768
}
1769
self->rx_sdu_size = 0;
1770
}
1771
1772
/*
1773
* It's not trivial to keep track of how many credits are available
1774
* by incrementing at each packet, because delivery may fail
1775
* (irttp_do_data_indication() may requeue the frame) and because
1776
* we need to take care of fragmentation.
1777
* We want the other side to send up to initial_credit packets.
1778
* We have some frames in our queues, and we have already allowed it
1779
* to send remote_credit.
1780
* No need to spinlock, write is atomic and self correcting...
1781
* Jean II
1782
*/
1783
self->avail_credit = (self->initial_credit -
1784
(self->remote_credit +
1785
skb_queue_len(&self->rx_queue) +
1786
skb_queue_len(&self->rx_fragments)));
1787
1788
/* Do we have too much credits to send to peer ? */
1789
if ((self->remote_credit <= TTP_RX_MIN_CREDIT) &&
1790
(self->avail_credit > 0)) {
1791
/* Send explicit credit frame */
1792
irttp_give_credit(self);
1793
/* Note : do *NOT* check if tx_queue is non-empty, that
1794
* will produce deadlocks. I repeat : send a credit frame
1795
* even if we have something to send in our Tx queue.
1796
* If we have credits, it means that our Tx queue is blocked.
1797
*
1798
* Let's suppose the peer can't keep up with our Tx. He will
1799
* flow control us by not sending us any credits, and we
1800
* will stop Tx and start accumulating credits here.
1801
* Up to the point where the peer will stop its Tx queue,
1802
* for lack of credits.
1803
* Let's assume the peer application is single threaded.
1804
* It will block on Tx and never consume any Rx buffer.
1805
* Deadlock. Guaranteed. - Jean II
1806
*/
1807
}
1808
1809
/* Reset lock */
1810
self->rx_queue_lock = 0;
1811
}
1812
1813
#ifdef CONFIG_PROC_FS
1814
struct irttp_iter_state {
1815
int id;
1816
};
1817
1818
static void *irttp_seq_start(struct seq_file *seq, loff_t *pos)
1819
{
1820
struct irttp_iter_state *iter = seq->private;
1821
struct tsap_cb *self;
1822
1823
/* Protect our access to the tsap list */
1824
spin_lock_irq(&irttp->tsaps->hb_spinlock);
1825
iter->id = 0;
1826
1827
for (self = (struct tsap_cb *) hashbin_get_first(irttp->tsaps);
1828
self != NULL;
1829
self = (struct tsap_cb *) hashbin_get_next(irttp->tsaps)) {
1830
if (iter->id == *pos)
1831
break;
1832
++iter->id;
1833
}
1834
1835
return self;
1836
}
1837
1838
static void *irttp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1839
{
1840
struct irttp_iter_state *iter = seq->private;
1841
1842
++*pos;
1843
++iter->id;
1844
return (void *) hashbin_get_next(irttp->tsaps);
1845
}
1846
1847
static void irttp_seq_stop(struct seq_file *seq, void *v)
1848
{
1849
spin_unlock_irq(&irttp->tsaps->hb_spinlock);
1850
}
1851
1852
static int irttp_seq_show(struct seq_file *seq, void *v)
1853
{
1854
const struct irttp_iter_state *iter = seq->private;
1855
const struct tsap_cb *self = v;
1856
1857
seq_printf(seq, "TSAP %d, ", iter->id);
1858
seq_printf(seq, "stsap_sel: %02x, ",
1859
self->stsap_sel);
1860
seq_printf(seq, "dtsap_sel: %02x\n",
1861
self->dtsap_sel);
1862
seq_printf(seq, " connected: %s, ",
1863
self->connected? "TRUE":"FALSE");
1864
seq_printf(seq, "avail credit: %d, ",
1865
self->avail_credit);
1866
seq_printf(seq, "remote credit: %d, ",
1867
self->remote_credit);
1868
seq_printf(seq, "send credit: %d\n",
1869
self->send_credit);
1870
seq_printf(seq, " tx packets: %lu, ",
1871
self->stats.tx_packets);
1872
seq_printf(seq, "rx packets: %lu, ",
1873
self->stats.rx_packets);
1874
seq_printf(seq, "tx_queue len: %u ",
1875
skb_queue_len(&self->tx_queue));
1876
seq_printf(seq, "rx_queue len: %u\n",
1877
skb_queue_len(&self->rx_queue));
1878
seq_printf(seq, " tx_sdu_busy: %s, ",
1879
self->tx_sdu_busy? "TRUE":"FALSE");
1880
seq_printf(seq, "rx_sdu_busy: %s\n",
1881
self->rx_sdu_busy? "TRUE":"FALSE");
1882
seq_printf(seq, " max_seg_size: %u, ",
1883
self->max_seg_size);
1884
seq_printf(seq, "tx_max_sdu_size: %u, ",
1885
self->tx_max_sdu_size);
1886
seq_printf(seq, "rx_max_sdu_size: %u\n",
1887
self->rx_max_sdu_size);
1888
1889
seq_printf(seq, " Used by (%s)\n\n",
1890
self->notify.name);
1891
return 0;
1892
}
1893
1894
static const struct seq_operations irttp_seq_ops = {
1895
.start = irttp_seq_start,
1896
.next = irttp_seq_next,
1897
.stop = irttp_seq_stop,
1898
.show = irttp_seq_show,
1899
};
1900
1901
static int irttp_seq_open(struct inode *inode, struct file *file)
1902
{
1903
return seq_open_private(file, &irttp_seq_ops,
1904
sizeof(struct irttp_iter_state));
1905
}
1906
1907
const struct file_operations irttp_seq_fops = {
1908
.owner = THIS_MODULE,
1909
.open = irttp_seq_open,
1910
.read = seq_read,
1911
.llseek = seq_lseek,
1912
.release = seq_release_private,
1913
};
1914
1915
#endif /* PROC_FS */
1916
1917