#include <asm/byteorder.h>
#include <net/irda/irda.h>
#include <net/irda/parameters.h>
#include <net/irda/qos.h>
#include <net/irda/irlap.h>
#include <net/irda/irlap_frame.h>
int sysctl_max_baud_rate = 16000000;
int sysctl_max_noreply_time = 12;
unsigned sysctl_min_tx_turn_time = 10;
unsigned sysctl_max_tx_data_size = 2042;
unsigned sysctl_max_tx_window = 7;
static int irlap_param_baud_rate(void *instance, irda_param_t *param, int get);
static int irlap_param_link_disconnect(void *instance, irda_param_t *parm,
int get);
static int irlap_param_max_turn_time(void *instance, irda_param_t *param,
int get);
static int irlap_param_data_size(void *instance, irda_param_t *param, int get);
static int irlap_param_window_size(void *instance, irda_param_t *param,
int get);
static int irlap_param_additional_bofs(void *instance, irda_param_t *parm,
int get);
static int irlap_param_min_turn_time(void *instance, irda_param_t *param,
int get);
#ifndef CONFIG_IRDA_DYNAMIC_WINDOW
static __u32 irlap_requested_line_capacity(struct qos_info *qos);
#endif
static __u32 min_turn_times[] = { 10000, 5000, 1000, 500, 100, 50, 10, 0 };
static __u32 baud_rates[] = { 2400, 9600, 19200, 38400, 57600, 115200, 576000,
1152000, 4000000, 16000000 };
static __u32 data_sizes[] = { 64, 128, 256, 512, 1024, 2048 };
static __u32 add_bofs[] = { 48, 24, 12, 5, 3, 2, 1, 0 };
static __u32 max_turn_times[] = { 500, 250, 100, 50 };
static __u32 link_disc_times[] = { 3, 8, 12, 16, 20, 25, 30, 40 };
static __u32 max_line_capacities[10][4] = {
{ 100, 0, 0, 0 },
{ 400, 0, 0, 0 },
{ 800, 0, 0, 0 },
{ 1600, 0, 0, 0 },
{ 2360, 0, 0, 0 },
{ 4800, 2400, 960, 480 },
{ 28800, 11520, 5760, 2880 },
{ 57600, 28800, 11520, 5760 },
{ 200000, 100000, 40000, 20000 },
{ 800000, 400000, 160000, 80000 },
};
static pi_minor_info_t pi_minor_call_table_type_0[] = {
{ NULL, 0 },
{ irlap_param_baud_rate, PV_INTEGER | PV_LITTLE_ENDIAN },
{ NULL, 0 },
{ NULL, 0 },
{ NULL, 0 },
{ NULL, 0 },
{ NULL, 0 },
{ NULL, 0 },
{ irlap_param_link_disconnect, PV_INT_8_BITS }
};
static pi_minor_info_t pi_minor_call_table_type_1[] = {
{ NULL, 0 },
{ NULL, 0 },
{ irlap_param_max_turn_time, PV_INT_8_BITS },
{ irlap_param_data_size, PV_INT_8_BITS },
{ irlap_param_window_size, PV_INT_8_BITS },
{ irlap_param_additional_bofs, PV_INT_8_BITS },
{ irlap_param_min_turn_time, PV_INT_8_BITS },
};
static pi_major_info_t pi_major_call_table[] = {
{ pi_minor_call_table_type_0, 9 },
{ pi_minor_call_table_type_1, 7 },
};
static pi_param_info_t irlap_param_info = { pi_major_call_table, 2, 0x7f, 7 };
static inline int value_index(__u32 value, __u32 *array, int size)
{
int i;
for (i=0; i < size; i++)
if (array[i] == value)
break;
return i;
}
static inline __u32 index_value(int index, __u32 *array)
{
return array[index];
}
static int msb_index (__u16 word)
{
__u16 msb = 0x8000;
int index = 15;
if (word == 0) {
IRDA_WARNING("%s(), Detected buggy peer, adjust null PV to 0x1!\n",
__func__);
word = 0x1;
}
while (msb) {
if (word & msb)
break;
msb >>=1;
index--;
}
return index;
}
static inline int value_lower_bits(__u32 value, __u32 *array, int size, __u16 *field)
{
int i;
__u16 mask = 0x1;
__u16 result = 0x0;
for (i=0; i < size; i++) {
result |= mask;
mask <<= 1;
if (array[i] >= value)
break;
}
if(i >= size)
i = size - 1;
*field = result;
return i;
}
static inline int value_highest_bit(__u32 value, __u32 *array, int size, __u16 *field)
{
int i;
__u16 mask = 0x1;
__u16 result = 0x0;
for (i=0; i < size; i++) {
if (array[i] <= value)
break;
mask <<= 1;
}
result |= mask;
if(i >= size)
i = size - 1;
*field = result;
return i;
}
void irda_qos_compute_intersection(struct qos_info *qos, struct qos_info *new)
{
IRDA_ASSERT(qos != NULL, return;);
IRDA_ASSERT(new != NULL, return;);
qos->baud_rate.bits &= new->baud_rate.bits;
qos->window_size.bits &= new->window_size.bits;
qos->min_turn_time.bits &= new->min_turn_time.bits;
qos->max_turn_time.bits &= new->max_turn_time.bits;
qos->data_size.bits &= new->data_size.bits;
qos->link_disc_time.bits &= new->link_disc_time.bits;
qos->additional_bofs.bits &= new->additional_bofs.bits;
irda_qos_bits_to_value(qos);
}
void irda_init_max_qos_capabilies(struct qos_info *qos)
{
int i;
i = value_lower_bits(sysctl_max_baud_rate, baud_rates, 10,
&qos->baud_rate.bits);
sysctl_max_baud_rate = index_value(i, baud_rates);
i = value_lower_bits(sysctl_max_noreply_time, link_disc_times, 8,
&qos->link_disc_time.bits);
sysctl_max_noreply_time = index_value(i, link_disc_times);
qos->baud_rate.bits &= 0x03ff;
qos->window_size.bits = 0x7f;
qos->min_turn_time.bits = 0xff;
qos->max_turn_time.bits = 0x0f;
qos->data_size.bits = 0x3f;
qos->link_disc_time.bits &= 0xff;
qos->additional_bofs.bits = 0xff;
}
EXPORT_SYMBOL(irda_init_max_qos_capabilies);
static void irlap_adjust_qos_settings(struct qos_info *qos)
{
__u32 line_capacity;
int index;
IRDA_DEBUG(2, "%s()\n", __func__);
if (sysctl_min_tx_turn_time > qos->min_turn_time.value) {
int i;
IRDA_WARNING("%s(), Detected buggy peer, adjust mtt to %dus!\n",
__func__, sysctl_min_tx_turn_time);
i = value_highest_bit(sysctl_min_tx_turn_time, min_turn_times,
8, &qos->min_turn_time.bits);
sysctl_min_tx_turn_time = index_value(i, min_turn_times);
qos->min_turn_time.value = sysctl_min_tx_turn_time;
}
if ((qos->baud_rate.value < 115200) &&
(qos->max_turn_time.value < 500))
{
IRDA_DEBUG(0,
"%s(), adjusting max turn time from %d to 500 ms\n",
__func__, qos->max_turn_time.value);
qos->max_turn_time.value = 500;
}
index = value_index(qos->data_size.value, data_sizes, 6);
line_capacity = irlap_max_line_capacity(qos->baud_rate.value,
qos->max_turn_time.value);
#ifdef CONFIG_IRDA_DYNAMIC_WINDOW
while ((qos->data_size.value > line_capacity) && (index > 0)) {
qos->data_size.value = data_sizes[index--];
IRDA_DEBUG(2, "%s(), reducing data size to %d\n",
__func__, qos->data_size.value);
}
#else
while (irlap_requested_line_capacity(qos) > line_capacity) {
IRDA_ASSERT(index != 0, return;);
if (qos->window_size.value > 1) {
qos->window_size.value--;
IRDA_DEBUG(2, "%s(), reducing window size to %d\n",
__func__, qos->window_size.value);
} else if (index > 1) {
qos->data_size.value = data_sizes[index--];
IRDA_DEBUG(2, "%s(), reducing data size to %d\n",
__func__, qos->data_size.value);
} else {
IRDA_WARNING("%s(), nothing more we can do!\n",
__func__);
}
}
#endif
if (qos->data_size.value > sysctl_max_tx_data_size)
qos->data_size.value = sysctl_max_tx_data_size;
if (qos->window_size.value > sysctl_max_tx_window)
qos->window_size.value = sysctl_max_tx_window;
}
int irlap_qos_negotiate(struct irlap_cb *self, struct sk_buff *skb)
{
int ret;
ret = irda_param_extract_all(self, skb->data, skb->len,
&irlap_param_info);
irda_qos_bits_to_value(&self->qos_tx);
irda_qos_bits_to_value(&self->qos_rx);
irlap_adjust_qos_settings(&self->qos_tx);
IRDA_DEBUG(2, "Setting BAUD_RATE to %d bps.\n",
self->qos_tx.baud_rate.value);
IRDA_DEBUG(2, "Setting DATA_SIZE to %d bytes\n",
self->qos_tx.data_size.value);
IRDA_DEBUG(2, "Setting WINDOW_SIZE to %d\n",
self->qos_tx.window_size.value);
IRDA_DEBUG(2, "Setting XBOFS to %d\n",
self->qos_tx.additional_bofs.value);
IRDA_DEBUG(2, "Setting MAX_TURN_TIME to %d ms.\n",
self->qos_tx.max_turn_time.value);
IRDA_DEBUG(2, "Setting MIN_TURN_TIME to %d usecs.\n",
self->qos_tx.min_turn_time.value);
IRDA_DEBUG(2, "Setting LINK_DISC to %d secs.\n",
self->qos_tx.link_disc_time.value);
return ret;
}
int irlap_insert_qos_negotiation_params(struct irlap_cb *self,
struct sk_buff *skb)
{
int ret;
ret = irda_param_insert(self, PI_BAUD_RATE, skb_tail_pointer(skb),
skb_tailroom(skb), &irlap_param_info);
if (ret < 0)
return ret;
skb_put(skb, ret);
ret = irda_param_insert(self, PI_MAX_TURN_TIME, skb_tail_pointer(skb),
skb_tailroom(skb), &irlap_param_info);
if (ret < 0)
return ret;
skb_put(skb, ret);
ret = irda_param_insert(self, PI_DATA_SIZE, skb_tail_pointer(skb),
skb_tailroom(skb), &irlap_param_info);
if (ret < 0)
return ret;
skb_put(skb, ret);
ret = irda_param_insert(self, PI_WINDOW_SIZE, skb_tail_pointer(skb),
skb_tailroom(skb), &irlap_param_info);
if (ret < 0)
return ret;
skb_put(skb, ret);
ret = irda_param_insert(self, PI_ADD_BOFS, skb_tail_pointer(skb),
skb_tailroom(skb), &irlap_param_info);
if (ret < 0)
return ret;
skb_put(skb, ret);
ret = irda_param_insert(self, PI_MIN_TURN_TIME, skb_tail_pointer(skb),
skb_tailroom(skb), &irlap_param_info);
if (ret < 0)
return ret;
skb_put(skb, ret);
ret = irda_param_insert(self, PI_LINK_DISC, skb_tail_pointer(skb),
skb_tailroom(skb), &irlap_param_info);
if (ret < 0)
return ret;
skb_put(skb, ret);
return 0;
}
static int irlap_param_baud_rate(void *instance, irda_param_t *param, int get)
{
__u16 final;
struct irlap_cb *self = (struct irlap_cb *) instance;
IRDA_ASSERT(self != NULL, return -1;);
IRDA_ASSERT(self->magic == LAP_MAGIC, return -1;);
if (get) {
param->pv.i = self->qos_rx.baud_rate.bits;
IRDA_DEBUG(2, "%s(), baud rate = 0x%02x\n",
__func__, param->pv.i);
} else {
IRDA_DEBUG(2, "Requested BAUD_RATE: 0x%04x\n", (__u16) param->pv.i);
final = (__u16) param->pv.i & self->qos_rx.baud_rate.bits;
IRDA_DEBUG(2, "Final BAUD_RATE: 0x%04x\n", final);
self->qos_tx.baud_rate.bits = final;
self->qos_rx.baud_rate.bits = final;
}
return 0;
}
static int irlap_param_link_disconnect(void *instance, irda_param_t *param,
int get)
{
__u16 final;
struct irlap_cb *self = (struct irlap_cb *) instance;
IRDA_ASSERT(self != NULL, return -1;);
IRDA_ASSERT(self->magic == LAP_MAGIC, return -1;);
if (get)
param->pv.i = self->qos_rx.link_disc_time.bits;
else {
IRDA_DEBUG(2, "LINK_DISC: %02x\n", (__u8) param->pv.i);
final = (__u8) param->pv.i & self->qos_rx.link_disc_time.bits;
IRDA_DEBUG(2, "Final LINK_DISC: %02x\n", final);
self->qos_tx.link_disc_time.bits = final;
self->qos_rx.link_disc_time.bits = final;
}
return 0;
}
static int irlap_param_max_turn_time(void *instance, irda_param_t *param,
int get)
{
struct irlap_cb *self = (struct irlap_cb *) instance;
IRDA_ASSERT(self != NULL, return -1;);
IRDA_ASSERT(self->magic == LAP_MAGIC, return -1;);
if (get)
param->pv.i = self->qos_rx.max_turn_time.bits;
else
self->qos_tx.max_turn_time.bits = (__u8) param->pv.i;
return 0;
}
static int irlap_param_data_size(void *instance, irda_param_t *param, int get)
{
struct irlap_cb *self = (struct irlap_cb *) instance;
IRDA_ASSERT(self != NULL, return -1;);
IRDA_ASSERT(self->magic == LAP_MAGIC, return -1;);
if (get)
param->pv.i = self->qos_rx.data_size.bits;
else
self->qos_tx.data_size.bits = (__u8) param->pv.i;
return 0;
}
static int irlap_param_window_size(void *instance, irda_param_t *param,
int get)
{
struct irlap_cb *self = (struct irlap_cb *) instance;
IRDA_ASSERT(self != NULL, return -1;);
IRDA_ASSERT(self->magic == LAP_MAGIC, return -1;);
if (get)
param->pv.i = self->qos_rx.window_size.bits;
else
self->qos_tx.window_size.bits = (__u8) param->pv.i;
return 0;
}
static int irlap_param_additional_bofs(void *instance, irda_param_t *param, int get)
{
struct irlap_cb *self = (struct irlap_cb *) instance;
IRDA_ASSERT(self != NULL, return -1;);
IRDA_ASSERT(self->magic == LAP_MAGIC, return -1;);
if (get)
param->pv.i = self->qos_rx.additional_bofs.bits;
else
self->qos_tx.additional_bofs.bits = (__u8) param->pv.i;
return 0;
}
static int irlap_param_min_turn_time(void *instance, irda_param_t *param,
int get)
{
struct irlap_cb *self = (struct irlap_cb *) instance;
IRDA_ASSERT(self != NULL, return -1;);
IRDA_ASSERT(self->magic == LAP_MAGIC, return -1;);
if (get)
param->pv.i = self->qos_rx.min_turn_time.bits;
else
self->qos_tx.min_turn_time.bits = (__u8) param->pv.i;
return 0;
}
__u32 irlap_max_line_capacity(__u32 speed, __u32 max_turn_time)
{
__u32 line_capacity;
int i,j;
IRDA_DEBUG(2, "%s(), speed=%d, max_turn_time=%d\n",
__func__, speed, max_turn_time);
i = value_index(speed, baud_rates, 10);
j = value_index(max_turn_time, max_turn_times, 4);
IRDA_ASSERT(((i >=0) && (i <10)), return 0;);
IRDA_ASSERT(((j >=0) && (j <4)), return 0;);
line_capacity = max_line_capacities[i][j];
IRDA_DEBUG(2, "%s(), line capacity=%d bytes\n",
__func__, line_capacity);
return line_capacity;
}
#ifndef CONFIG_IRDA_DYNAMIC_WINDOW
static __u32 irlap_requested_line_capacity(struct qos_info *qos)
{
__u32 line_capacity;
line_capacity = qos->window_size.value *
(qos->data_size.value + 6 + qos->additional_bofs.value) +
irlap_min_turn_time_in_bytes(qos->baud_rate.value,
qos->min_turn_time.value);
IRDA_DEBUG(2, "%s(), requested line capacity=%d\n",
__func__, line_capacity);
return line_capacity;
}
#endif
void irda_qos_bits_to_value(struct qos_info *qos)
{
int index;
IRDA_ASSERT(qos != NULL, return;);
index = msb_index(qos->baud_rate.bits);
qos->baud_rate.value = baud_rates[index];
index = msb_index(qos->data_size.bits);
qos->data_size.value = data_sizes[index];
index = msb_index(qos->window_size.bits);
qos->window_size.value = index+1;
index = msb_index(qos->min_turn_time.bits);
qos->min_turn_time.value = min_turn_times[index];
index = msb_index(qos->max_turn_time.bits);
qos->max_turn_time.value = max_turn_times[index];
index = msb_index(qos->link_disc_time.bits);
qos->link_disc_time.value = link_disc_times[index];
index = msb_index(qos->additional_bofs.bits);
qos->additional_bofs.value = add_bofs[index];
}
EXPORT_SYMBOL(irda_qos_bits_to_value);