Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/net/rds/iw_rdma.c
15109 views
1
/*
2
* Copyright (c) 2006 Oracle. All rights reserved.
3
*
4
* This software is available to you under a choice of one of two
5
* licenses. You may choose to be licensed under the terms of the GNU
6
* General Public License (GPL) Version 2, available from the file
7
* COPYING in the main directory of this source tree, or the
8
* OpenIB.org BSD license below:
9
*
10
* Redistribution and use in source and binary forms, with or
11
* without modification, are permitted provided that the following
12
* conditions are met:
13
*
14
* - Redistributions of source code must retain the above
15
* copyright notice, this list of conditions and the following
16
* disclaimer.
17
*
18
* - Redistributions in binary form must reproduce the above
19
* copyright notice, this list of conditions and the following
20
* disclaimer in the documentation and/or other materials
21
* provided with the distribution.
22
*
23
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30
* SOFTWARE.
31
*
32
*/
33
#include <linux/kernel.h>
34
#include <linux/slab.h>
35
36
#include "rds.h"
37
#include "iw.h"
38
39
40
/*
41
* This is stored as mr->r_trans_private.
42
*/
43
struct rds_iw_mr {
44
struct rds_iw_device *device;
45
struct rds_iw_mr_pool *pool;
46
struct rdma_cm_id *cm_id;
47
48
struct ib_mr *mr;
49
struct ib_fast_reg_page_list *page_list;
50
51
struct rds_iw_mapping mapping;
52
unsigned char remap_count;
53
};
54
55
/*
56
* Our own little MR pool
57
*/
58
struct rds_iw_mr_pool {
59
struct rds_iw_device *device; /* back ptr to the device that owns us */
60
61
struct mutex flush_lock; /* serialize fmr invalidate */
62
struct work_struct flush_worker; /* flush worker */
63
64
spinlock_t list_lock; /* protect variables below */
65
atomic_t item_count; /* total # of MRs */
66
atomic_t dirty_count; /* # dirty of MRs */
67
struct list_head dirty_list; /* dirty mappings */
68
struct list_head clean_list; /* unused & unamapped MRs */
69
atomic_t free_pinned; /* memory pinned by free MRs */
70
unsigned long max_message_size; /* in pages */
71
unsigned long max_items;
72
unsigned long max_items_soft;
73
unsigned long max_free_pinned;
74
int max_pages;
75
};
76
77
static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all);
78
static void rds_iw_mr_pool_flush_worker(struct work_struct *work);
79
static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
80
static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
81
struct rds_iw_mr *ibmr,
82
struct scatterlist *sg, unsigned int nents);
83
static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
84
static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
85
struct list_head *unmap_list,
86
struct list_head *kill_list);
87
static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
88
89
static int rds_iw_get_device(struct rds_sock *rs, struct rds_iw_device **rds_iwdev, struct rdma_cm_id **cm_id)
90
{
91
struct rds_iw_device *iwdev;
92
struct rds_iw_cm_id *i_cm_id;
93
94
*rds_iwdev = NULL;
95
*cm_id = NULL;
96
97
list_for_each_entry(iwdev, &rds_iw_devices, list) {
98
spin_lock_irq(&iwdev->spinlock);
99
list_for_each_entry(i_cm_id, &iwdev->cm_id_list, list) {
100
struct sockaddr_in *src_addr, *dst_addr;
101
102
src_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.src_addr;
103
dst_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.dst_addr;
104
105
rdsdebug("local ipaddr = %x port %d, "
106
"remote ipaddr = %x port %d"
107
"..looking for %x port %d, "
108
"remote ipaddr = %x port %d\n",
109
src_addr->sin_addr.s_addr,
110
src_addr->sin_port,
111
dst_addr->sin_addr.s_addr,
112
dst_addr->sin_port,
113
rs->rs_bound_addr,
114
rs->rs_bound_port,
115
rs->rs_conn_addr,
116
rs->rs_conn_port);
117
#ifdef WORKING_TUPLE_DETECTION
118
if (src_addr->sin_addr.s_addr == rs->rs_bound_addr &&
119
src_addr->sin_port == rs->rs_bound_port &&
120
dst_addr->sin_addr.s_addr == rs->rs_conn_addr &&
121
dst_addr->sin_port == rs->rs_conn_port) {
122
#else
123
/* FIXME - needs to compare the local and remote
124
* ipaddr/port tuple, but the ipaddr is the only
125
* available information in the rds_sock (as the rest are
126
* zero'ed. It doesn't appear to be properly populated
127
* during connection setup...
128
*/
129
if (src_addr->sin_addr.s_addr == rs->rs_bound_addr) {
130
#endif
131
spin_unlock_irq(&iwdev->spinlock);
132
*rds_iwdev = iwdev;
133
*cm_id = i_cm_id->cm_id;
134
return 0;
135
}
136
}
137
spin_unlock_irq(&iwdev->spinlock);
138
}
139
140
return 1;
141
}
142
143
static int rds_iw_add_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
144
{
145
struct rds_iw_cm_id *i_cm_id;
146
147
i_cm_id = kmalloc(sizeof *i_cm_id, GFP_KERNEL);
148
if (!i_cm_id)
149
return -ENOMEM;
150
151
i_cm_id->cm_id = cm_id;
152
153
spin_lock_irq(&rds_iwdev->spinlock);
154
list_add_tail(&i_cm_id->list, &rds_iwdev->cm_id_list);
155
spin_unlock_irq(&rds_iwdev->spinlock);
156
157
return 0;
158
}
159
160
static void rds_iw_remove_cm_id(struct rds_iw_device *rds_iwdev,
161
struct rdma_cm_id *cm_id)
162
{
163
struct rds_iw_cm_id *i_cm_id;
164
165
spin_lock_irq(&rds_iwdev->spinlock);
166
list_for_each_entry(i_cm_id, &rds_iwdev->cm_id_list, list) {
167
if (i_cm_id->cm_id == cm_id) {
168
list_del(&i_cm_id->list);
169
kfree(i_cm_id);
170
break;
171
}
172
}
173
spin_unlock_irq(&rds_iwdev->spinlock);
174
}
175
176
177
int rds_iw_update_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
178
{
179
struct sockaddr_in *src_addr, *dst_addr;
180
struct rds_iw_device *rds_iwdev_old;
181
struct rds_sock rs;
182
struct rdma_cm_id *pcm_id;
183
int rc;
184
185
src_addr = (struct sockaddr_in *)&cm_id->route.addr.src_addr;
186
dst_addr = (struct sockaddr_in *)&cm_id->route.addr.dst_addr;
187
188
rs.rs_bound_addr = src_addr->sin_addr.s_addr;
189
rs.rs_bound_port = src_addr->sin_port;
190
rs.rs_conn_addr = dst_addr->sin_addr.s_addr;
191
rs.rs_conn_port = dst_addr->sin_port;
192
193
rc = rds_iw_get_device(&rs, &rds_iwdev_old, &pcm_id);
194
if (rc)
195
rds_iw_remove_cm_id(rds_iwdev, cm_id);
196
197
return rds_iw_add_cm_id(rds_iwdev, cm_id);
198
}
199
200
void rds_iw_add_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
201
{
202
struct rds_iw_connection *ic = conn->c_transport_data;
203
204
/* conn was previously on the nodev_conns_list */
205
spin_lock_irq(&iw_nodev_conns_lock);
206
BUG_ON(list_empty(&iw_nodev_conns));
207
BUG_ON(list_empty(&ic->iw_node));
208
list_del(&ic->iw_node);
209
210
spin_lock(&rds_iwdev->spinlock);
211
list_add_tail(&ic->iw_node, &rds_iwdev->conn_list);
212
spin_unlock(&rds_iwdev->spinlock);
213
spin_unlock_irq(&iw_nodev_conns_lock);
214
215
ic->rds_iwdev = rds_iwdev;
216
}
217
218
void rds_iw_remove_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
219
{
220
struct rds_iw_connection *ic = conn->c_transport_data;
221
222
/* place conn on nodev_conns_list */
223
spin_lock(&iw_nodev_conns_lock);
224
225
spin_lock_irq(&rds_iwdev->spinlock);
226
BUG_ON(list_empty(&ic->iw_node));
227
list_del(&ic->iw_node);
228
spin_unlock_irq(&rds_iwdev->spinlock);
229
230
list_add_tail(&ic->iw_node, &iw_nodev_conns);
231
232
spin_unlock(&iw_nodev_conns_lock);
233
234
rds_iw_remove_cm_id(ic->rds_iwdev, ic->i_cm_id);
235
ic->rds_iwdev = NULL;
236
}
237
238
void __rds_iw_destroy_conns(struct list_head *list, spinlock_t *list_lock)
239
{
240
struct rds_iw_connection *ic, *_ic;
241
LIST_HEAD(tmp_list);
242
243
/* avoid calling conn_destroy with irqs off */
244
spin_lock_irq(list_lock);
245
list_splice(list, &tmp_list);
246
INIT_LIST_HEAD(list);
247
spin_unlock_irq(list_lock);
248
249
list_for_each_entry_safe(ic, _ic, &tmp_list, iw_node)
250
rds_conn_destroy(ic->conn);
251
}
252
253
static void rds_iw_set_scatterlist(struct rds_iw_scatterlist *sg,
254
struct scatterlist *list, unsigned int sg_len)
255
{
256
sg->list = list;
257
sg->len = sg_len;
258
sg->dma_len = 0;
259
sg->dma_npages = 0;
260
sg->bytes = 0;
261
}
262
263
static u64 *rds_iw_map_scatterlist(struct rds_iw_device *rds_iwdev,
264
struct rds_iw_scatterlist *sg)
265
{
266
struct ib_device *dev = rds_iwdev->dev;
267
u64 *dma_pages = NULL;
268
int i, j, ret;
269
270
WARN_ON(sg->dma_len);
271
272
sg->dma_len = ib_dma_map_sg(dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
273
if (unlikely(!sg->dma_len)) {
274
printk(KERN_WARNING "RDS/IW: dma_map_sg failed!\n");
275
return ERR_PTR(-EBUSY);
276
}
277
278
sg->bytes = 0;
279
sg->dma_npages = 0;
280
281
ret = -EINVAL;
282
for (i = 0; i < sg->dma_len; ++i) {
283
unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
284
u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
285
u64 end_addr;
286
287
sg->bytes += dma_len;
288
289
end_addr = dma_addr + dma_len;
290
if (dma_addr & PAGE_MASK) {
291
if (i > 0)
292
goto out_unmap;
293
dma_addr &= ~PAGE_MASK;
294
}
295
if (end_addr & PAGE_MASK) {
296
if (i < sg->dma_len - 1)
297
goto out_unmap;
298
end_addr = (end_addr + PAGE_MASK) & ~PAGE_MASK;
299
}
300
301
sg->dma_npages += (end_addr - dma_addr) >> PAGE_SHIFT;
302
}
303
304
/* Now gather the dma addrs into one list */
305
if (sg->dma_npages > fastreg_message_size)
306
goto out_unmap;
307
308
dma_pages = kmalloc(sizeof(u64) * sg->dma_npages, GFP_ATOMIC);
309
if (!dma_pages) {
310
ret = -ENOMEM;
311
goto out_unmap;
312
}
313
314
for (i = j = 0; i < sg->dma_len; ++i) {
315
unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
316
u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
317
u64 end_addr;
318
319
end_addr = dma_addr + dma_len;
320
dma_addr &= ~PAGE_MASK;
321
for (; dma_addr < end_addr; dma_addr += PAGE_SIZE)
322
dma_pages[j++] = dma_addr;
323
BUG_ON(j > sg->dma_npages);
324
}
325
326
return dma_pages;
327
328
out_unmap:
329
ib_dma_unmap_sg(rds_iwdev->dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
330
sg->dma_len = 0;
331
kfree(dma_pages);
332
return ERR_PTR(ret);
333
}
334
335
336
struct rds_iw_mr_pool *rds_iw_create_mr_pool(struct rds_iw_device *rds_iwdev)
337
{
338
struct rds_iw_mr_pool *pool;
339
340
pool = kzalloc(sizeof(*pool), GFP_KERNEL);
341
if (!pool) {
342
printk(KERN_WARNING "RDS/IW: rds_iw_create_mr_pool alloc error\n");
343
return ERR_PTR(-ENOMEM);
344
}
345
346
pool->device = rds_iwdev;
347
INIT_LIST_HEAD(&pool->dirty_list);
348
INIT_LIST_HEAD(&pool->clean_list);
349
mutex_init(&pool->flush_lock);
350
spin_lock_init(&pool->list_lock);
351
INIT_WORK(&pool->flush_worker, rds_iw_mr_pool_flush_worker);
352
353
pool->max_message_size = fastreg_message_size;
354
pool->max_items = fastreg_pool_size;
355
pool->max_free_pinned = pool->max_items * pool->max_message_size / 4;
356
pool->max_pages = fastreg_message_size;
357
358
/* We never allow more than max_items MRs to be allocated.
359
* When we exceed more than max_items_soft, we start freeing
360
* items more aggressively.
361
* Make sure that max_items > max_items_soft > max_items / 2
362
*/
363
pool->max_items_soft = pool->max_items * 3 / 4;
364
365
return pool;
366
}
367
368
void rds_iw_get_mr_info(struct rds_iw_device *rds_iwdev, struct rds_info_rdma_connection *iinfo)
369
{
370
struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
371
372
iinfo->rdma_mr_max = pool->max_items;
373
iinfo->rdma_mr_size = pool->max_pages;
374
}
375
376
void rds_iw_destroy_mr_pool(struct rds_iw_mr_pool *pool)
377
{
378
flush_workqueue(rds_wq);
379
rds_iw_flush_mr_pool(pool, 1);
380
BUG_ON(atomic_read(&pool->item_count));
381
BUG_ON(atomic_read(&pool->free_pinned));
382
kfree(pool);
383
}
384
385
static inline struct rds_iw_mr *rds_iw_reuse_fmr(struct rds_iw_mr_pool *pool)
386
{
387
struct rds_iw_mr *ibmr = NULL;
388
unsigned long flags;
389
390
spin_lock_irqsave(&pool->list_lock, flags);
391
if (!list_empty(&pool->clean_list)) {
392
ibmr = list_entry(pool->clean_list.next, struct rds_iw_mr, mapping.m_list);
393
list_del_init(&ibmr->mapping.m_list);
394
}
395
spin_unlock_irqrestore(&pool->list_lock, flags);
396
397
return ibmr;
398
}
399
400
static struct rds_iw_mr *rds_iw_alloc_mr(struct rds_iw_device *rds_iwdev)
401
{
402
struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
403
struct rds_iw_mr *ibmr = NULL;
404
int err = 0, iter = 0;
405
406
while (1) {
407
ibmr = rds_iw_reuse_fmr(pool);
408
if (ibmr)
409
return ibmr;
410
411
/* No clean MRs - now we have the choice of either
412
* allocating a fresh MR up to the limit imposed by the
413
* driver, or flush any dirty unused MRs.
414
* We try to avoid stalling in the send path if possible,
415
* so we allocate as long as we're allowed to.
416
*
417
* We're fussy with enforcing the FMR limit, though. If the driver
418
* tells us we can't use more than N fmrs, we shouldn't start
419
* arguing with it */
420
if (atomic_inc_return(&pool->item_count) <= pool->max_items)
421
break;
422
423
atomic_dec(&pool->item_count);
424
425
if (++iter > 2) {
426
rds_iw_stats_inc(s_iw_rdma_mr_pool_depleted);
427
return ERR_PTR(-EAGAIN);
428
}
429
430
/* We do have some empty MRs. Flush them out. */
431
rds_iw_stats_inc(s_iw_rdma_mr_pool_wait);
432
rds_iw_flush_mr_pool(pool, 0);
433
}
434
435
ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL);
436
if (!ibmr) {
437
err = -ENOMEM;
438
goto out_no_cigar;
439
}
440
441
spin_lock_init(&ibmr->mapping.m_lock);
442
INIT_LIST_HEAD(&ibmr->mapping.m_list);
443
ibmr->mapping.m_mr = ibmr;
444
445
err = rds_iw_init_fastreg(pool, ibmr);
446
if (err)
447
goto out_no_cigar;
448
449
rds_iw_stats_inc(s_iw_rdma_mr_alloc);
450
return ibmr;
451
452
out_no_cigar:
453
if (ibmr) {
454
rds_iw_destroy_fastreg(pool, ibmr);
455
kfree(ibmr);
456
}
457
atomic_dec(&pool->item_count);
458
return ERR_PTR(err);
459
}
460
461
void rds_iw_sync_mr(void *trans_private, int direction)
462
{
463
struct rds_iw_mr *ibmr = trans_private;
464
struct rds_iw_device *rds_iwdev = ibmr->device;
465
466
switch (direction) {
467
case DMA_FROM_DEVICE:
468
ib_dma_sync_sg_for_cpu(rds_iwdev->dev, ibmr->mapping.m_sg.list,
469
ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
470
break;
471
case DMA_TO_DEVICE:
472
ib_dma_sync_sg_for_device(rds_iwdev->dev, ibmr->mapping.m_sg.list,
473
ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
474
break;
475
}
476
}
477
478
static inline unsigned int rds_iw_flush_goal(struct rds_iw_mr_pool *pool, int free_all)
479
{
480
unsigned int item_count;
481
482
item_count = atomic_read(&pool->item_count);
483
if (free_all)
484
return item_count;
485
486
return 0;
487
}
488
489
/*
490
* Flush our pool of MRs.
491
* At a minimum, all currently unused MRs are unmapped.
492
* If the number of MRs allocated exceeds the limit, we also try
493
* to free as many MRs as needed to get back to this limit.
494
*/
495
static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all)
496
{
497
struct rds_iw_mr *ibmr, *next;
498
LIST_HEAD(unmap_list);
499
LIST_HEAD(kill_list);
500
unsigned long flags;
501
unsigned int nfreed = 0, ncleaned = 0, free_goal;
502
int ret = 0;
503
504
rds_iw_stats_inc(s_iw_rdma_mr_pool_flush);
505
506
mutex_lock(&pool->flush_lock);
507
508
spin_lock_irqsave(&pool->list_lock, flags);
509
/* Get the list of all mappings to be destroyed */
510
list_splice_init(&pool->dirty_list, &unmap_list);
511
if (free_all)
512
list_splice_init(&pool->clean_list, &kill_list);
513
spin_unlock_irqrestore(&pool->list_lock, flags);
514
515
free_goal = rds_iw_flush_goal(pool, free_all);
516
517
/* Batched invalidate of dirty MRs.
518
* For FMR based MRs, the mappings on the unmap list are
519
* actually members of an ibmr (ibmr->mapping). They either
520
* migrate to the kill_list, or have been cleaned and should be
521
* moved to the clean_list.
522
* For fastregs, they will be dynamically allocated, and
523
* will be destroyed by the unmap function.
524
*/
525
if (!list_empty(&unmap_list)) {
526
ncleaned = rds_iw_unmap_fastreg_list(pool, &unmap_list, &kill_list);
527
/* If we've been asked to destroy all MRs, move those
528
* that were simply cleaned to the kill list */
529
if (free_all)
530
list_splice_init(&unmap_list, &kill_list);
531
}
532
533
/* Destroy any MRs that are past their best before date */
534
list_for_each_entry_safe(ibmr, next, &kill_list, mapping.m_list) {
535
rds_iw_stats_inc(s_iw_rdma_mr_free);
536
list_del(&ibmr->mapping.m_list);
537
rds_iw_destroy_fastreg(pool, ibmr);
538
kfree(ibmr);
539
nfreed++;
540
}
541
542
/* Anything that remains are laundered ibmrs, which we can add
543
* back to the clean list. */
544
if (!list_empty(&unmap_list)) {
545
spin_lock_irqsave(&pool->list_lock, flags);
546
list_splice(&unmap_list, &pool->clean_list);
547
spin_unlock_irqrestore(&pool->list_lock, flags);
548
}
549
550
atomic_sub(ncleaned, &pool->dirty_count);
551
atomic_sub(nfreed, &pool->item_count);
552
553
mutex_unlock(&pool->flush_lock);
554
return ret;
555
}
556
557
static void rds_iw_mr_pool_flush_worker(struct work_struct *work)
558
{
559
struct rds_iw_mr_pool *pool = container_of(work, struct rds_iw_mr_pool, flush_worker);
560
561
rds_iw_flush_mr_pool(pool, 0);
562
}
563
564
void rds_iw_free_mr(void *trans_private, int invalidate)
565
{
566
struct rds_iw_mr *ibmr = trans_private;
567
struct rds_iw_mr_pool *pool = ibmr->device->mr_pool;
568
569
rdsdebug("RDS/IW: free_mr nents %u\n", ibmr->mapping.m_sg.len);
570
if (!pool)
571
return;
572
573
/* Return it to the pool's free list */
574
rds_iw_free_fastreg(pool, ibmr);
575
576
/* If we've pinned too many pages, request a flush */
577
if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
578
atomic_read(&pool->dirty_count) >= pool->max_items / 10)
579
queue_work(rds_wq, &pool->flush_worker);
580
581
if (invalidate) {
582
if (likely(!in_interrupt())) {
583
rds_iw_flush_mr_pool(pool, 0);
584
} else {
585
/* We get here if the user created a MR marked
586
* as use_once and invalidate at the same time. */
587
queue_work(rds_wq, &pool->flush_worker);
588
}
589
}
590
}
591
592
void rds_iw_flush_mrs(void)
593
{
594
struct rds_iw_device *rds_iwdev;
595
596
list_for_each_entry(rds_iwdev, &rds_iw_devices, list) {
597
struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
598
599
if (pool)
600
rds_iw_flush_mr_pool(pool, 0);
601
}
602
}
603
604
void *rds_iw_get_mr(struct scatterlist *sg, unsigned long nents,
605
struct rds_sock *rs, u32 *key_ret)
606
{
607
struct rds_iw_device *rds_iwdev;
608
struct rds_iw_mr *ibmr = NULL;
609
struct rdma_cm_id *cm_id;
610
int ret;
611
612
ret = rds_iw_get_device(rs, &rds_iwdev, &cm_id);
613
if (ret || !cm_id) {
614
ret = -ENODEV;
615
goto out;
616
}
617
618
if (!rds_iwdev->mr_pool) {
619
ret = -ENODEV;
620
goto out;
621
}
622
623
ibmr = rds_iw_alloc_mr(rds_iwdev);
624
if (IS_ERR(ibmr))
625
return ibmr;
626
627
ibmr->cm_id = cm_id;
628
ibmr->device = rds_iwdev;
629
630
ret = rds_iw_map_fastreg(rds_iwdev->mr_pool, ibmr, sg, nents);
631
if (ret == 0)
632
*key_ret = ibmr->mr->rkey;
633
else
634
printk(KERN_WARNING "RDS/IW: failed to map mr (errno=%d)\n", ret);
635
636
out:
637
if (ret) {
638
if (ibmr)
639
rds_iw_free_mr(ibmr, 0);
640
ibmr = ERR_PTR(ret);
641
}
642
return ibmr;
643
}
644
645
/*
646
* iWARP fastreg handling
647
*
648
* The life cycle of a fastreg registration is a bit different from
649
* FMRs.
650
* The idea behind fastreg is to have one MR, to which we bind different
651
* mappings over time. To avoid stalling on the expensive map and invalidate
652
* operations, these operations are pipelined on the same send queue on
653
* which we want to send the message containing the r_key.
654
*
655
* This creates a bit of a problem for us, as we do not have the destination
656
* IP in GET_MR, so the connection must be setup prior to the GET_MR call for
657
* RDMA to be correctly setup. If a fastreg request is present, rds_iw_xmit
658
* will try to queue a LOCAL_INV (if needed) and a FAST_REG_MR work request
659
* before queuing the SEND. When completions for these arrive, they are
660
* dispatched to the MR has a bit set showing that RDMa can be performed.
661
*
662
* There is another interesting aspect that's related to invalidation.
663
* The application can request that a mapping is invalidated in FREE_MR.
664
* The expectation there is that this invalidation step includes ALL
665
* PREVIOUSLY FREED MRs.
666
*/
667
static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool,
668
struct rds_iw_mr *ibmr)
669
{
670
struct rds_iw_device *rds_iwdev = pool->device;
671
struct ib_fast_reg_page_list *page_list = NULL;
672
struct ib_mr *mr;
673
int err;
674
675
mr = ib_alloc_fast_reg_mr(rds_iwdev->pd, pool->max_message_size);
676
if (IS_ERR(mr)) {
677
err = PTR_ERR(mr);
678
679
printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_mr failed (err=%d)\n", err);
680
return err;
681
}
682
683
/* FIXME - this is overkill, but mapping->m_sg.dma_len/mapping->m_sg.dma_npages
684
* is not filled in.
685
*/
686
page_list = ib_alloc_fast_reg_page_list(rds_iwdev->dev, pool->max_message_size);
687
if (IS_ERR(page_list)) {
688
err = PTR_ERR(page_list);
689
690
printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_page_list failed (err=%d)\n", err);
691
ib_dereg_mr(mr);
692
return err;
693
}
694
695
ibmr->page_list = page_list;
696
ibmr->mr = mr;
697
return 0;
698
}
699
700
static int rds_iw_rdma_build_fastreg(struct rds_iw_mapping *mapping)
701
{
702
struct rds_iw_mr *ibmr = mapping->m_mr;
703
struct ib_send_wr f_wr, *failed_wr;
704
int ret;
705
706
/*
707
* Perform a WR for the fast_reg_mr. Each individual page
708
* in the sg list is added to the fast reg page list and placed
709
* inside the fast_reg_mr WR. The key used is a rolling 8bit
710
* counter, which should guarantee uniqueness.
711
*/
712
ib_update_fast_reg_key(ibmr->mr, ibmr->remap_count++);
713
mapping->m_rkey = ibmr->mr->rkey;
714
715
memset(&f_wr, 0, sizeof(f_wr));
716
f_wr.wr_id = RDS_IW_FAST_REG_WR_ID;
717
f_wr.opcode = IB_WR_FAST_REG_MR;
718
f_wr.wr.fast_reg.length = mapping->m_sg.bytes;
719
f_wr.wr.fast_reg.rkey = mapping->m_rkey;
720
f_wr.wr.fast_reg.page_list = ibmr->page_list;
721
f_wr.wr.fast_reg.page_list_len = mapping->m_sg.dma_len;
722
f_wr.wr.fast_reg.page_shift = PAGE_SHIFT;
723
f_wr.wr.fast_reg.access_flags = IB_ACCESS_LOCAL_WRITE |
724
IB_ACCESS_REMOTE_READ |
725
IB_ACCESS_REMOTE_WRITE;
726
f_wr.wr.fast_reg.iova_start = 0;
727
f_wr.send_flags = IB_SEND_SIGNALED;
728
729
failed_wr = &f_wr;
730
ret = ib_post_send(ibmr->cm_id->qp, &f_wr, &failed_wr);
731
BUG_ON(failed_wr != &f_wr);
732
if (ret && printk_ratelimit())
733
printk(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
734
__func__, __LINE__, ret);
735
return ret;
736
}
737
738
static int rds_iw_rdma_fastreg_inv(struct rds_iw_mr *ibmr)
739
{
740
struct ib_send_wr s_wr, *failed_wr;
741
int ret = 0;
742
743
if (!ibmr->cm_id->qp || !ibmr->mr)
744
goto out;
745
746
memset(&s_wr, 0, sizeof(s_wr));
747
s_wr.wr_id = RDS_IW_LOCAL_INV_WR_ID;
748
s_wr.opcode = IB_WR_LOCAL_INV;
749
s_wr.ex.invalidate_rkey = ibmr->mr->rkey;
750
s_wr.send_flags = IB_SEND_SIGNALED;
751
752
failed_wr = &s_wr;
753
ret = ib_post_send(ibmr->cm_id->qp, &s_wr, &failed_wr);
754
if (ret && printk_ratelimit()) {
755
printk(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
756
__func__, __LINE__, ret);
757
goto out;
758
}
759
out:
760
return ret;
761
}
762
763
static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
764
struct rds_iw_mr *ibmr,
765
struct scatterlist *sg,
766
unsigned int sg_len)
767
{
768
struct rds_iw_device *rds_iwdev = pool->device;
769
struct rds_iw_mapping *mapping = &ibmr->mapping;
770
u64 *dma_pages;
771
int i, ret = 0;
772
773
rds_iw_set_scatterlist(&mapping->m_sg, sg, sg_len);
774
775
dma_pages = rds_iw_map_scatterlist(rds_iwdev, &mapping->m_sg);
776
if (IS_ERR(dma_pages)) {
777
ret = PTR_ERR(dma_pages);
778
dma_pages = NULL;
779
goto out;
780
}
781
782
if (mapping->m_sg.dma_len > pool->max_message_size) {
783
ret = -EMSGSIZE;
784
goto out;
785
}
786
787
for (i = 0; i < mapping->m_sg.dma_npages; ++i)
788
ibmr->page_list->page_list[i] = dma_pages[i];
789
790
ret = rds_iw_rdma_build_fastreg(mapping);
791
if (ret)
792
goto out;
793
794
rds_iw_stats_inc(s_iw_rdma_mr_used);
795
796
out:
797
kfree(dma_pages);
798
799
return ret;
800
}
801
802
/*
803
* "Free" a fastreg MR.
804
*/
805
static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool,
806
struct rds_iw_mr *ibmr)
807
{
808
unsigned long flags;
809
int ret;
810
811
if (!ibmr->mapping.m_sg.dma_len)
812
return;
813
814
ret = rds_iw_rdma_fastreg_inv(ibmr);
815
if (ret)
816
return;
817
818
/* Try to post the LOCAL_INV WR to the queue. */
819
spin_lock_irqsave(&pool->list_lock, flags);
820
821
list_add_tail(&ibmr->mapping.m_list, &pool->dirty_list);
822
atomic_add(ibmr->mapping.m_sg.len, &pool->free_pinned);
823
atomic_inc(&pool->dirty_count);
824
825
spin_unlock_irqrestore(&pool->list_lock, flags);
826
}
827
828
static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
829
struct list_head *unmap_list,
830
struct list_head *kill_list)
831
{
832
struct rds_iw_mapping *mapping, *next;
833
unsigned int ncleaned = 0;
834
LIST_HEAD(laundered);
835
836
/* Batched invalidation of fastreg MRs.
837
* Why do we do it this way, even though we could pipeline unmap
838
* and remap? The reason is the application semantics - when the
839
* application requests an invalidation of MRs, it expects all
840
* previously released R_Keys to become invalid.
841
*
842
* If we implement MR reuse naively, we risk memory corruption
843
* (this has actually been observed). So the default behavior
844
* requires that a MR goes through an explicit unmap operation before
845
* we can reuse it again.
846
*
847
* We could probably improve on this a little, by allowing immediate
848
* reuse of a MR on the same socket (eg you could add small
849
* cache of unused MRs to strct rds_socket - GET_MR could grab one
850
* of these without requiring an explicit invalidate).
851
*/
852
while (!list_empty(unmap_list)) {
853
unsigned long flags;
854
855
spin_lock_irqsave(&pool->list_lock, flags);
856
list_for_each_entry_safe(mapping, next, unmap_list, m_list) {
857
list_move(&mapping->m_list, &laundered);
858
ncleaned++;
859
}
860
spin_unlock_irqrestore(&pool->list_lock, flags);
861
}
862
863
/* Move all laundered mappings back to the unmap list.
864
* We do not kill any WRs right now - it doesn't seem the
865
* fastreg API has a max_remap limit. */
866
list_splice_init(&laundered, unmap_list);
867
868
return ncleaned;
869
}
870
871
static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool,
872
struct rds_iw_mr *ibmr)
873
{
874
if (ibmr->page_list)
875
ib_free_fast_reg_page_list(ibmr->page_list);
876
if (ibmr->mr)
877
ib_dereg_mr(ibmr->mr);
878
}
879
880