Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/net/rds/iw_recv.c
15111 views
1
/*
2
* Copyright (c) 2006 Oracle. All rights reserved.
3
*
4
* This software is available to you under a choice of one of two
5
* licenses. You may choose to be licensed under the terms of the GNU
6
* General Public License (GPL) Version 2, available from the file
7
* COPYING in the main directory of this source tree, or the
8
* OpenIB.org BSD license below:
9
*
10
* Redistribution and use in source and binary forms, with or
11
* without modification, are permitted provided that the following
12
* conditions are met:
13
*
14
* - Redistributions of source code must retain the above
15
* copyright notice, this list of conditions and the following
16
* disclaimer.
17
*
18
* - Redistributions in binary form must reproduce the above
19
* copyright notice, this list of conditions and the following
20
* disclaimer in the documentation and/or other materials
21
* provided with the distribution.
22
*
23
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30
* SOFTWARE.
31
*
32
*/
33
#include <linux/kernel.h>
34
#include <linux/slab.h>
35
#include <linux/pci.h>
36
#include <linux/dma-mapping.h>
37
#include <rdma/rdma_cm.h>
38
39
#include "rds.h"
40
#include "iw.h"
41
42
static struct kmem_cache *rds_iw_incoming_slab;
43
static struct kmem_cache *rds_iw_frag_slab;
44
static atomic_t rds_iw_allocation = ATOMIC_INIT(0);
45
46
static void rds_iw_frag_drop_page(struct rds_page_frag *frag)
47
{
48
rdsdebug("frag %p page %p\n", frag, frag->f_page);
49
__free_page(frag->f_page);
50
frag->f_page = NULL;
51
}
52
53
static void rds_iw_frag_free(struct rds_page_frag *frag)
54
{
55
rdsdebug("frag %p page %p\n", frag, frag->f_page);
56
BUG_ON(frag->f_page);
57
kmem_cache_free(rds_iw_frag_slab, frag);
58
}
59
60
/*
61
* We map a page at a time. Its fragments are posted in order. This
62
* is called in fragment order as the fragments get send completion events.
63
* Only the last frag in the page performs the unmapping.
64
*
65
* It's OK for ring cleanup to call this in whatever order it likes because
66
* DMA is not in flight and so we can unmap while other ring entries still
67
* hold page references in their frags.
68
*/
69
static void rds_iw_recv_unmap_page(struct rds_iw_connection *ic,
70
struct rds_iw_recv_work *recv)
71
{
72
struct rds_page_frag *frag = recv->r_frag;
73
74
rdsdebug("recv %p frag %p page %p\n", recv, frag, frag->f_page);
75
if (frag->f_mapped)
76
ib_dma_unmap_page(ic->i_cm_id->device,
77
frag->f_mapped,
78
RDS_FRAG_SIZE, DMA_FROM_DEVICE);
79
frag->f_mapped = 0;
80
}
81
82
void rds_iw_recv_init_ring(struct rds_iw_connection *ic)
83
{
84
struct rds_iw_recv_work *recv;
85
u32 i;
86
87
for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
88
struct ib_sge *sge;
89
90
recv->r_iwinc = NULL;
91
recv->r_frag = NULL;
92
93
recv->r_wr.next = NULL;
94
recv->r_wr.wr_id = i;
95
recv->r_wr.sg_list = recv->r_sge;
96
recv->r_wr.num_sge = RDS_IW_RECV_SGE;
97
98
sge = rds_iw_data_sge(ic, recv->r_sge);
99
sge->addr = 0;
100
sge->length = RDS_FRAG_SIZE;
101
sge->lkey = 0;
102
103
sge = rds_iw_header_sge(ic, recv->r_sge);
104
sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
105
sge->length = sizeof(struct rds_header);
106
sge->lkey = 0;
107
}
108
}
109
110
static void rds_iw_recv_clear_one(struct rds_iw_connection *ic,
111
struct rds_iw_recv_work *recv)
112
{
113
if (recv->r_iwinc) {
114
rds_inc_put(&recv->r_iwinc->ii_inc);
115
recv->r_iwinc = NULL;
116
}
117
if (recv->r_frag) {
118
rds_iw_recv_unmap_page(ic, recv);
119
if (recv->r_frag->f_page)
120
rds_iw_frag_drop_page(recv->r_frag);
121
rds_iw_frag_free(recv->r_frag);
122
recv->r_frag = NULL;
123
}
124
}
125
126
void rds_iw_recv_clear_ring(struct rds_iw_connection *ic)
127
{
128
u32 i;
129
130
for (i = 0; i < ic->i_recv_ring.w_nr; i++)
131
rds_iw_recv_clear_one(ic, &ic->i_recvs[i]);
132
133
if (ic->i_frag.f_page)
134
rds_iw_frag_drop_page(&ic->i_frag);
135
}
136
137
static int rds_iw_recv_refill_one(struct rds_connection *conn,
138
struct rds_iw_recv_work *recv,
139
gfp_t kptr_gfp, gfp_t page_gfp)
140
{
141
struct rds_iw_connection *ic = conn->c_transport_data;
142
dma_addr_t dma_addr;
143
struct ib_sge *sge;
144
int ret = -ENOMEM;
145
146
if (!recv->r_iwinc) {
147
if (!atomic_add_unless(&rds_iw_allocation, 1, rds_iw_sysctl_max_recv_allocation)) {
148
rds_iw_stats_inc(s_iw_rx_alloc_limit);
149
goto out;
150
}
151
recv->r_iwinc = kmem_cache_alloc(rds_iw_incoming_slab,
152
kptr_gfp);
153
if (!recv->r_iwinc) {
154
atomic_dec(&rds_iw_allocation);
155
goto out;
156
}
157
INIT_LIST_HEAD(&recv->r_iwinc->ii_frags);
158
rds_inc_init(&recv->r_iwinc->ii_inc, conn, conn->c_faddr);
159
}
160
161
if (!recv->r_frag) {
162
recv->r_frag = kmem_cache_alloc(rds_iw_frag_slab, kptr_gfp);
163
if (!recv->r_frag)
164
goto out;
165
INIT_LIST_HEAD(&recv->r_frag->f_item);
166
recv->r_frag->f_page = NULL;
167
}
168
169
if (!ic->i_frag.f_page) {
170
ic->i_frag.f_page = alloc_page(page_gfp);
171
if (!ic->i_frag.f_page)
172
goto out;
173
ic->i_frag.f_offset = 0;
174
}
175
176
dma_addr = ib_dma_map_page(ic->i_cm_id->device,
177
ic->i_frag.f_page,
178
ic->i_frag.f_offset,
179
RDS_FRAG_SIZE,
180
DMA_FROM_DEVICE);
181
if (ib_dma_mapping_error(ic->i_cm_id->device, dma_addr))
182
goto out;
183
184
/*
185
* Once we get the RDS_PAGE_LAST_OFF frag then rds_iw_frag_unmap()
186
* must be called on this recv. This happens as completions hit
187
* in order or on connection shutdown.
188
*/
189
recv->r_frag->f_page = ic->i_frag.f_page;
190
recv->r_frag->f_offset = ic->i_frag.f_offset;
191
recv->r_frag->f_mapped = dma_addr;
192
193
sge = rds_iw_data_sge(ic, recv->r_sge);
194
sge->addr = dma_addr;
195
sge->length = RDS_FRAG_SIZE;
196
197
sge = rds_iw_header_sge(ic, recv->r_sge);
198
sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
199
sge->length = sizeof(struct rds_header);
200
201
get_page(recv->r_frag->f_page);
202
203
if (ic->i_frag.f_offset < RDS_PAGE_LAST_OFF) {
204
ic->i_frag.f_offset += RDS_FRAG_SIZE;
205
} else {
206
put_page(ic->i_frag.f_page);
207
ic->i_frag.f_page = NULL;
208
ic->i_frag.f_offset = 0;
209
}
210
211
ret = 0;
212
out:
213
return ret;
214
}
215
216
/*
217
* This tries to allocate and post unused work requests after making sure that
218
* they have all the allocations they need to queue received fragments into
219
* sockets. The i_recv_mutex is held here so that ring_alloc and _unalloc
220
* pairs don't go unmatched.
221
*
222
* -1 is returned if posting fails due to temporary resource exhaustion.
223
*/
224
int rds_iw_recv_refill(struct rds_connection *conn, gfp_t kptr_gfp,
225
gfp_t page_gfp, int prefill)
226
{
227
struct rds_iw_connection *ic = conn->c_transport_data;
228
struct rds_iw_recv_work *recv;
229
struct ib_recv_wr *failed_wr;
230
unsigned int posted = 0;
231
int ret = 0;
232
u32 pos;
233
234
while ((prefill || rds_conn_up(conn)) &&
235
rds_iw_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
236
if (pos >= ic->i_recv_ring.w_nr) {
237
printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
238
pos);
239
ret = -EINVAL;
240
break;
241
}
242
243
recv = &ic->i_recvs[pos];
244
ret = rds_iw_recv_refill_one(conn, recv, kptr_gfp, page_gfp);
245
if (ret) {
246
ret = -1;
247
break;
248
}
249
250
/* XXX when can this fail? */
251
ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
252
rdsdebug("recv %p iwinc %p page %p addr %lu ret %d\n", recv,
253
recv->r_iwinc, recv->r_frag->f_page,
254
(long) recv->r_frag->f_mapped, ret);
255
if (ret) {
256
rds_iw_conn_error(conn, "recv post on "
257
"%pI4 returned %d, disconnecting and "
258
"reconnecting\n", &conn->c_faddr,
259
ret);
260
ret = -1;
261
break;
262
}
263
264
posted++;
265
}
266
267
/* We're doing flow control - update the window. */
268
if (ic->i_flowctl && posted)
269
rds_iw_advertise_credits(conn, posted);
270
271
if (ret)
272
rds_iw_ring_unalloc(&ic->i_recv_ring, 1);
273
return ret;
274
}
275
276
static void rds_iw_inc_purge(struct rds_incoming *inc)
277
{
278
struct rds_iw_incoming *iwinc;
279
struct rds_page_frag *frag;
280
struct rds_page_frag *pos;
281
282
iwinc = container_of(inc, struct rds_iw_incoming, ii_inc);
283
rdsdebug("purging iwinc %p inc %p\n", iwinc, inc);
284
285
list_for_each_entry_safe(frag, pos, &iwinc->ii_frags, f_item) {
286
list_del_init(&frag->f_item);
287
rds_iw_frag_drop_page(frag);
288
rds_iw_frag_free(frag);
289
}
290
}
291
292
void rds_iw_inc_free(struct rds_incoming *inc)
293
{
294
struct rds_iw_incoming *iwinc;
295
296
iwinc = container_of(inc, struct rds_iw_incoming, ii_inc);
297
298
rds_iw_inc_purge(inc);
299
rdsdebug("freeing iwinc %p inc %p\n", iwinc, inc);
300
BUG_ON(!list_empty(&iwinc->ii_frags));
301
kmem_cache_free(rds_iw_incoming_slab, iwinc);
302
atomic_dec(&rds_iw_allocation);
303
BUG_ON(atomic_read(&rds_iw_allocation) < 0);
304
}
305
306
int rds_iw_inc_copy_to_user(struct rds_incoming *inc, struct iovec *first_iov,
307
size_t size)
308
{
309
struct rds_iw_incoming *iwinc;
310
struct rds_page_frag *frag;
311
struct iovec *iov = first_iov;
312
unsigned long to_copy;
313
unsigned long frag_off = 0;
314
unsigned long iov_off = 0;
315
int copied = 0;
316
int ret;
317
u32 len;
318
319
iwinc = container_of(inc, struct rds_iw_incoming, ii_inc);
320
frag = list_entry(iwinc->ii_frags.next, struct rds_page_frag, f_item);
321
len = be32_to_cpu(inc->i_hdr.h_len);
322
323
while (copied < size && copied < len) {
324
if (frag_off == RDS_FRAG_SIZE) {
325
frag = list_entry(frag->f_item.next,
326
struct rds_page_frag, f_item);
327
frag_off = 0;
328
}
329
while (iov_off == iov->iov_len) {
330
iov_off = 0;
331
iov++;
332
}
333
334
to_copy = min(iov->iov_len - iov_off, RDS_FRAG_SIZE - frag_off);
335
to_copy = min_t(size_t, to_copy, size - copied);
336
to_copy = min_t(unsigned long, to_copy, len - copied);
337
338
rdsdebug("%lu bytes to user [%p, %zu] + %lu from frag "
339
"[%p, %lu] + %lu\n",
340
to_copy, iov->iov_base, iov->iov_len, iov_off,
341
frag->f_page, frag->f_offset, frag_off);
342
343
/* XXX needs + offset for multiple recvs per page */
344
ret = rds_page_copy_to_user(frag->f_page,
345
frag->f_offset + frag_off,
346
iov->iov_base + iov_off,
347
to_copy);
348
if (ret) {
349
copied = ret;
350
break;
351
}
352
353
iov_off += to_copy;
354
frag_off += to_copy;
355
copied += to_copy;
356
}
357
358
return copied;
359
}
360
361
/* ic starts out kzalloc()ed */
362
void rds_iw_recv_init_ack(struct rds_iw_connection *ic)
363
{
364
struct ib_send_wr *wr = &ic->i_ack_wr;
365
struct ib_sge *sge = &ic->i_ack_sge;
366
367
sge->addr = ic->i_ack_dma;
368
sge->length = sizeof(struct rds_header);
369
sge->lkey = rds_iw_local_dma_lkey(ic);
370
371
wr->sg_list = sge;
372
wr->num_sge = 1;
373
wr->opcode = IB_WR_SEND;
374
wr->wr_id = RDS_IW_ACK_WR_ID;
375
wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
376
}
377
378
/*
379
* You'd think that with reliable IB connections you wouldn't need to ack
380
* messages that have been received. The problem is that IB hardware generates
381
* an ack message before it has DMAed the message into memory. This creates a
382
* potential message loss if the HCA is disabled for any reason between when it
383
* sends the ack and before the message is DMAed and processed. This is only a
384
* potential issue if another HCA is available for fail-over.
385
*
386
* When the remote host receives our ack they'll free the sent message from
387
* their send queue. To decrease the latency of this we always send an ack
388
* immediately after we've received messages.
389
*
390
* For simplicity, we only have one ack in flight at a time. This puts
391
* pressure on senders to have deep enough send queues to absorb the latency of
392
* a single ack frame being in flight. This might not be good enough.
393
*
394
* This is implemented by have a long-lived send_wr and sge which point to a
395
* statically allocated ack frame. This ack wr does not fall under the ring
396
* accounting that the tx and rx wrs do. The QP attribute specifically makes
397
* room for it beyond the ring size. Send completion notices its special
398
* wr_id and avoids working with the ring in that case.
399
*/
400
#ifndef KERNEL_HAS_ATOMIC64
401
static void rds_iw_set_ack(struct rds_iw_connection *ic, u64 seq,
402
int ack_required)
403
{
404
unsigned long flags;
405
406
spin_lock_irqsave(&ic->i_ack_lock, flags);
407
ic->i_ack_next = seq;
408
if (ack_required)
409
set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
410
spin_unlock_irqrestore(&ic->i_ack_lock, flags);
411
}
412
413
static u64 rds_iw_get_ack(struct rds_iw_connection *ic)
414
{
415
unsigned long flags;
416
u64 seq;
417
418
clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
419
420
spin_lock_irqsave(&ic->i_ack_lock, flags);
421
seq = ic->i_ack_next;
422
spin_unlock_irqrestore(&ic->i_ack_lock, flags);
423
424
return seq;
425
}
426
#else
427
static void rds_iw_set_ack(struct rds_iw_connection *ic, u64 seq,
428
int ack_required)
429
{
430
atomic64_set(&ic->i_ack_next, seq);
431
if (ack_required) {
432
smp_mb__before_clear_bit();
433
set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
434
}
435
}
436
437
static u64 rds_iw_get_ack(struct rds_iw_connection *ic)
438
{
439
clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
440
smp_mb__after_clear_bit();
441
442
return atomic64_read(&ic->i_ack_next);
443
}
444
#endif
445
446
447
static void rds_iw_send_ack(struct rds_iw_connection *ic, unsigned int adv_credits)
448
{
449
struct rds_header *hdr = ic->i_ack;
450
struct ib_send_wr *failed_wr;
451
u64 seq;
452
int ret;
453
454
seq = rds_iw_get_ack(ic);
455
456
rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
457
rds_message_populate_header(hdr, 0, 0, 0);
458
hdr->h_ack = cpu_to_be64(seq);
459
hdr->h_credit = adv_credits;
460
rds_message_make_checksum(hdr);
461
ic->i_ack_queued = jiffies;
462
463
ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
464
if (unlikely(ret)) {
465
/* Failed to send. Release the WR, and
466
* force another ACK.
467
*/
468
clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
469
set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
470
471
rds_iw_stats_inc(s_iw_ack_send_failure);
472
473
rds_iw_conn_error(ic->conn, "sending ack failed\n");
474
} else
475
rds_iw_stats_inc(s_iw_ack_sent);
476
}
477
478
/*
479
* There are 3 ways of getting acknowledgements to the peer:
480
* 1. We call rds_iw_attempt_ack from the recv completion handler
481
* to send an ACK-only frame.
482
* However, there can be only one such frame in the send queue
483
* at any time, so we may have to postpone it.
484
* 2. When another (data) packet is transmitted while there's
485
* an ACK in the queue, we piggyback the ACK sequence number
486
* on the data packet.
487
* 3. If the ACK WR is done sending, we get called from the
488
* send queue completion handler, and check whether there's
489
* another ACK pending (postponed because the WR was on the
490
* queue). If so, we transmit it.
491
*
492
* We maintain 2 variables:
493
* - i_ack_flags, which keeps track of whether the ACK WR
494
* is currently in the send queue or not (IB_ACK_IN_FLIGHT)
495
* - i_ack_next, which is the last sequence number we received
496
*
497
* Potentially, send queue and receive queue handlers can run concurrently.
498
* It would be nice to not have to use a spinlock to synchronize things,
499
* but the one problem that rules this out is that 64bit updates are
500
* not atomic on all platforms. Things would be a lot simpler if
501
* we had atomic64 or maybe cmpxchg64 everywhere.
502
*
503
* Reconnecting complicates this picture just slightly. When we
504
* reconnect, we may be seeing duplicate packets. The peer
505
* is retransmitting them, because it hasn't seen an ACK for
506
* them. It is important that we ACK these.
507
*
508
* ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
509
* this flag set *MUST* be acknowledged immediately.
510
*/
511
512
/*
513
* When we get here, we're called from the recv queue handler.
514
* Check whether we ought to transmit an ACK.
515
*/
516
void rds_iw_attempt_ack(struct rds_iw_connection *ic)
517
{
518
unsigned int adv_credits;
519
520
if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
521
return;
522
523
if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
524
rds_iw_stats_inc(s_iw_ack_send_delayed);
525
return;
526
}
527
528
/* Can we get a send credit? */
529
if (!rds_iw_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
530
rds_iw_stats_inc(s_iw_tx_throttle);
531
clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
532
return;
533
}
534
535
clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
536
rds_iw_send_ack(ic, adv_credits);
537
}
538
539
/*
540
* We get here from the send completion handler, when the
541
* adapter tells us the ACK frame was sent.
542
*/
543
void rds_iw_ack_send_complete(struct rds_iw_connection *ic)
544
{
545
clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
546
rds_iw_attempt_ack(ic);
547
}
548
549
/*
550
* This is called by the regular xmit code when it wants to piggyback
551
* an ACK on an outgoing frame.
552
*/
553
u64 rds_iw_piggyb_ack(struct rds_iw_connection *ic)
554
{
555
if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
556
rds_iw_stats_inc(s_iw_ack_send_piggybacked);
557
return rds_iw_get_ack(ic);
558
}
559
560
/*
561
* It's kind of lame that we're copying from the posted receive pages into
562
* long-lived bitmaps. We could have posted the bitmaps and rdma written into
563
* them. But receiving new congestion bitmaps should be a *rare* event, so
564
* hopefully we won't need to invest that complexity in making it more
565
* efficient. By copying we can share a simpler core with TCP which has to
566
* copy.
567
*/
568
static void rds_iw_cong_recv(struct rds_connection *conn,
569
struct rds_iw_incoming *iwinc)
570
{
571
struct rds_cong_map *map;
572
unsigned int map_off;
573
unsigned int map_page;
574
struct rds_page_frag *frag;
575
unsigned long frag_off;
576
unsigned long to_copy;
577
unsigned long copied;
578
uint64_t uncongested = 0;
579
void *addr;
580
581
/* catch completely corrupt packets */
582
if (be32_to_cpu(iwinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
583
return;
584
585
map = conn->c_fcong;
586
map_page = 0;
587
map_off = 0;
588
589
frag = list_entry(iwinc->ii_frags.next, struct rds_page_frag, f_item);
590
frag_off = 0;
591
592
copied = 0;
593
594
while (copied < RDS_CONG_MAP_BYTES) {
595
uint64_t *src, *dst;
596
unsigned int k;
597
598
to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
599
BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
600
601
addr = kmap_atomic(frag->f_page, KM_SOFTIRQ0);
602
603
src = addr + frag_off;
604
dst = (void *)map->m_page_addrs[map_page] + map_off;
605
for (k = 0; k < to_copy; k += 8) {
606
/* Record ports that became uncongested, ie
607
* bits that changed from 0 to 1. */
608
uncongested |= ~(*src) & *dst;
609
*dst++ = *src++;
610
}
611
kunmap_atomic(addr, KM_SOFTIRQ0);
612
613
copied += to_copy;
614
615
map_off += to_copy;
616
if (map_off == PAGE_SIZE) {
617
map_off = 0;
618
map_page++;
619
}
620
621
frag_off += to_copy;
622
if (frag_off == RDS_FRAG_SIZE) {
623
frag = list_entry(frag->f_item.next,
624
struct rds_page_frag, f_item);
625
frag_off = 0;
626
}
627
}
628
629
/* the congestion map is in little endian order */
630
uncongested = le64_to_cpu(uncongested);
631
632
rds_cong_map_updated(map, uncongested);
633
}
634
635
/*
636
* Rings are posted with all the allocations they'll need to queue the
637
* incoming message to the receiving socket so this can't fail.
638
* All fragments start with a header, so we can make sure we're not receiving
639
* garbage, and we can tell a small 8 byte fragment from an ACK frame.
640
*/
641
struct rds_iw_ack_state {
642
u64 ack_next;
643
u64 ack_recv;
644
unsigned int ack_required:1;
645
unsigned int ack_next_valid:1;
646
unsigned int ack_recv_valid:1;
647
};
648
649
static void rds_iw_process_recv(struct rds_connection *conn,
650
struct rds_iw_recv_work *recv, u32 byte_len,
651
struct rds_iw_ack_state *state)
652
{
653
struct rds_iw_connection *ic = conn->c_transport_data;
654
struct rds_iw_incoming *iwinc = ic->i_iwinc;
655
struct rds_header *ihdr, *hdr;
656
657
/* XXX shut down the connection if port 0,0 are seen? */
658
659
rdsdebug("ic %p iwinc %p recv %p byte len %u\n", ic, iwinc, recv,
660
byte_len);
661
662
if (byte_len < sizeof(struct rds_header)) {
663
rds_iw_conn_error(conn, "incoming message "
664
"from %pI4 didn't inclue a "
665
"header, disconnecting and "
666
"reconnecting\n",
667
&conn->c_faddr);
668
return;
669
}
670
byte_len -= sizeof(struct rds_header);
671
672
ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];
673
674
/* Validate the checksum. */
675
if (!rds_message_verify_checksum(ihdr)) {
676
rds_iw_conn_error(conn, "incoming message "
677
"from %pI4 has corrupted header - "
678
"forcing a reconnect\n",
679
&conn->c_faddr);
680
rds_stats_inc(s_recv_drop_bad_checksum);
681
return;
682
}
683
684
/* Process the ACK sequence which comes with every packet */
685
state->ack_recv = be64_to_cpu(ihdr->h_ack);
686
state->ack_recv_valid = 1;
687
688
/* Process the credits update if there was one */
689
if (ihdr->h_credit)
690
rds_iw_send_add_credits(conn, ihdr->h_credit);
691
692
if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && byte_len == 0) {
693
/* This is an ACK-only packet. The fact that it gets
694
* special treatment here is that historically, ACKs
695
* were rather special beasts.
696
*/
697
rds_iw_stats_inc(s_iw_ack_received);
698
699
/*
700
* Usually the frags make their way on to incs and are then freed as
701
* the inc is freed. We don't go that route, so we have to drop the
702
* page ref ourselves. We can't just leave the page on the recv
703
* because that confuses the dma mapping of pages and each recv's use
704
* of a partial page. We can leave the frag, though, it will be
705
* reused.
706
*
707
* FIXME: Fold this into the code path below.
708
*/
709
rds_iw_frag_drop_page(recv->r_frag);
710
return;
711
}
712
713
/*
714
* If we don't already have an inc on the connection then this
715
* fragment has a header and starts a message.. copy its header
716
* into the inc and save the inc so we can hang upcoming fragments
717
* off its list.
718
*/
719
if (!iwinc) {
720
iwinc = recv->r_iwinc;
721
recv->r_iwinc = NULL;
722
ic->i_iwinc = iwinc;
723
724
hdr = &iwinc->ii_inc.i_hdr;
725
memcpy(hdr, ihdr, sizeof(*hdr));
726
ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
727
728
rdsdebug("ic %p iwinc %p rem %u flag 0x%x\n", ic, iwinc,
729
ic->i_recv_data_rem, hdr->h_flags);
730
} else {
731
hdr = &iwinc->ii_inc.i_hdr;
732
/* We can't just use memcmp here; fragments of a
733
* single message may carry different ACKs */
734
if (hdr->h_sequence != ihdr->h_sequence ||
735
hdr->h_len != ihdr->h_len ||
736
hdr->h_sport != ihdr->h_sport ||
737
hdr->h_dport != ihdr->h_dport) {
738
rds_iw_conn_error(conn,
739
"fragment header mismatch; forcing reconnect\n");
740
return;
741
}
742
}
743
744
list_add_tail(&recv->r_frag->f_item, &iwinc->ii_frags);
745
recv->r_frag = NULL;
746
747
if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
748
ic->i_recv_data_rem -= RDS_FRAG_SIZE;
749
else {
750
ic->i_recv_data_rem = 0;
751
ic->i_iwinc = NULL;
752
753
if (iwinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
754
rds_iw_cong_recv(conn, iwinc);
755
else {
756
rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
757
&iwinc->ii_inc, GFP_ATOMIC,
758
KM_SOFTIRQ0);
759
state->ack_next = be64_to_cpu(hdr->h_sequence);
760
state->ack_next_valid = 1;
761
}
762
763
/* Evaluate the ACK_REQUIRED flag *after* we received
764
* the complete frame, and after bumping the next_rx
765
* sequence. */
766
if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
767
rds_stats_inc(s_recv_ack_required);
768
state->ack_required = 1;
769
}
770
771
rds_inc_put(&iwinc->ii_inc);
772
}
773
}
774
775
/*
776
* Plucking the oldest entry from the ring can be done concurrently with
777
* the thread refilling the ring. Each ring operation is protected by
778
* spinlocks and the transient state of refilling doesn't change the
779
* recording of which entry is oldest.
780
*
781
* This relies on IB only calling one cq comp_handler for each cq so that
782
* there will only be one caller of rds_recv_incoming() per RDS connection.
783
*/
784
void rds_iw_recv_cq_comp_handler(struct ib_cq *cq, void *context)
785
{
786
struct rds_connection *conn = context;
787
struct rds_iw_connection *ic = conn->c_transport_data;
788
789
rdsdebug("conn %p cq %p\n", conn, cq);
790
791
rds_iw_stats_inc(s_iw_rx_cq_call);
792
793
tasklet_schedule(&ic->i_recv_tasklet);
794
}
795
796
static inline void rds_poll_cq(struct rds_iw_connection *ic,
797
struct rds_iw_ack_state *state)
798
{
799
struct rds_connection *conn = ic->conn;
800
struct ib_wc wc;
801
struct rds_iw_recv_work *recv;
802
803
while (ib_poll_cq(ic->i_recv_cq, 1, &wc) > 0) {
804
rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
805
(unsigned long long)wc.wr_id, wc.status, wc.byte_len,
806
be32_to_cpu(wc.ex.imm_data));
807
rds_iw_stats_inc(s_iw_rx_cq_event);
808
809
recv = &ic->i_recvs[rds_iw_ring_oldest(&ic->i_recv_ring)];
810
811
rds_iw_recv_unmap_page(ic, recv);
812
813
/*
814
* Also process recvs in connecting state because it is possible
815
* to get a recv completion _before_ the rdmacm ESTABLISHED
816
* event is processed.
817
*/
818
if (rds_conn_up(conn) || rds_conn_connecting(conn)) {
819
/* We expect errors as the qp is drained during shutdown */
820
if (wc.status == IB_WC_SUCCESS) {
821
rds_iw_process_recv(conn, recv, wc.byte_len, state);
822
} else {
823
rds_iw_conn_error(conn, "recv completion on "
824
"%pI4 had status %u, disconnecting and "
825
"reconnecting\n", &conn->c_faddr,
826
wc.status);
827
}
828
}
829
830
rds_iw_ring_free(&ic->i_recv_ring, 1);
831
}
832
}
833
834
void rds_iw_recv_tasklet_fn(unsigned long data)
835
{
836
struct rds_iw_connection *ic = (struct rds_iw_connection *) data;
837
struct rds_connection *conn = ic->conn;
838
struct rds_iw_ack_state state = { 0, };
839
840
rds_poll_cq(ic, &state);
841
ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED);
842
rds_poll_cq(ic, &state);
843
844
if (state.ack_next_valid)
845
rds_iw_set_ack(ic, state.ack_next, state.ack_required);
846
if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) {
847
rds_send_drop_acked(conn, state.ack_recv, NULL);
848
ic->i_ack_recv = state.ack_recv;
849
}
850
if (rds_conn_up(conn))
851
rds_iw_attempt_ack(ic);
852
853
/* If we ever end up with a really empty receive ring, we're
854
* in deep trouble, as the sender will definitely see RNR
855
* timeouts. */
856
if (rds_iw_ring_empty(&ic->i_recv_ring))
857
rds_iw_stats_inc(s_iw_rx_ring_empty);
858
859
/*
860
* If the ring is running low, then schedule the thread to refill.
861
*/
862
if (rds_iw_ring_low(&ic->i_recv_ring))
863
queue_delayed_work(rds_wq, &conn->c_recv_w, 0);
864
}
865
866
int rds_iw_recv(struct rds_connection *conn)
867
{
868
struct rds_iw_connection *ic = conn->c_transport_data;
869
int ret = 0;
870
871
rdsdebug("conn %p\n", conn);
872
873
/*
874
* If we get a temporary posting failure in this context then
875
* we're really low and we want the caller to back off for a bit.
876
*/
877
mutex_lock(&ic->i_recv_mutex);
878
if (rds_iw_recv_refill(conn, GFP_KERNEL, GFP_HIGHUSER, 0))
879
ret = -ENOMEM;
880
else
881
rds_iw_stats_inc(s_iw_rx_refill_from_thread);
882
mutex_unlock(&ic->i_recv_mutex);
883
884
if (rds_conn_up(conn))
885
rds_iw_attempt_ack(ic);
886
887
return ret;
888
}
889
890
int rds_iw_recv_init(void)
891
{
892
struct sysinfo si;
893
int ret = -ENOMEM;
894
895
/* Default to 30% of all available RAM for recv memory */
896
si_meminfo(&si);
897
rds_iw_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
898
899
rds_iw_incoming_slab = kmem_cache_create("rds_iw_incoming",
900
sizeof(struct rds_iw_incoming),
901
0, 0, NULL);
902
if (!rds_iw_incoming_slab)
903
goto out;
904
905
rds_iw_frag_slab = kmem_cache_create("rds_iw_frag",
906
sizeof(struct rds_page_frag),
907
0, 0, NULL);
908
if (!rds_iw_frag_slab)
909
kmem_cache_destroy(rds_iw_incoming_slab);
910
else
911
ret = 0;
912
out:
913
return ret;
914
}
915
916
void rds_iw_recv_exit(void)
917
{
918
kmem_cache_destroy(rds_iw_incoming_slab);
919
kmem_cache_destroy(rds_iw_frag_slab);
920
}
921
922