Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/net/rds/iw_send.c
15112 views
1
/*
2
* Copyright (c) 2006 Oracle. All rights reserved.
3
*
4
* This software is available to you under a choice of one of two
5
* licenses. You may choose to be licensed under the terms of the GNU
6
* General Public License (GPL) Version 2, available from the file
7
* COPYING in the main directory of this source tree, or the
8
* OpenIB.org BSD license below:
9
*
10
* Redistribution and use in source and binary forms, with or
11
* without modification, are permitted provided that the following
12
* conditions are met:
13
*
14
* - Redistributions of source code must retain the above
15
* copyright notice, this list of conditions and the following
16
* disclaimer.
17
*
18
* - Redistributions in binary form must reproduce the above
19
* copyright notice, this list of conditions and the following
20
* disclaimer in the documentation and/or other materials
21
* provided with the distribution.
22
*
23
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30
* SOFTWARE.
31
*
32
*/
33
#include <linux/kernel.h>
34
#include <linux/in.h>
35
#include <linux/device.h>
36
#include <linux/dmapool.h>
37
38
#include "rds.h"
39
#include "iw.h"
40
41
static void rds_iw_send_rdma_complete(struct rds_message *rm,
42
int wc_status)
43
{
44
int notify_status;
45
46
switch (wc_status) {
47
case IB_WC_WR_FLUSH_ERR:
48
return;
49
50
case IB_WC_SUCCESS:
51
notify_status = RDS_RDMA_SUCCESS;
52
break;
53
54
case IB_WC_REM_ACCESS_ERR:
55
notify_status = RDS_RDMA_REMOTE_ERROR;
56
break;
57
58
default:
59
notify_status = RDS_RDMA_OTHER_ERROR;
60
break;
61
}
62
rds_rdma_send_complete(rm, notify_status);
63
}
64
65
static void rds_iw_send_unmap_rdma(struct rds_iw_connection *ic,
66
struct rm_rdma_op *op)
67
{
68
if (op->op_mapped) {
69
ib_dma_unmap_sg(ic->i_cm_id->device,
70
op->op_sg, op->op_nents,
71
op->op_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
72
op->op_mapped = 0;
73
}
74
}
75
76
static void rds_iw_send_unmap_rm(struct rds_iw_connection *ic,
77
struct rds_iw_send_work *send,
78
int wc_status)
79
{
80
struct rds_message *rm = send->s_rm;
81
82
rdsdebug("ic %p send %p rm %p\n", ic, send, rm);
83
84
ib_dma_unmap_sg(ic->i_cm_id->device,
85
rm->data.op_sg, rm->data.op_nents,
86
DMA_TO_DEVICE);
87
88
if (rm->rdma.op_active) {
89
rds_iw_send_unmap_rdma(ic, &rm->rdma);
90
91
/* If the user asked for a completion notification on this
92
* message, we can implement three different semantics:
93
* 1. Notify when we received the ACK on the RDS message
94
* that was queued with the RDMA. This provides reliable
95
* notification of RDMA status at the expense of a one-way
96
* packet delay.
97
* 2. Notify when the IB stack gives us the completion event for
98
* the RDMA operation.
99
* 3. Notify when the IB stack gives us the completion event for
100
* the accompanying RDS messages.
101
* Here, we implement approach #3. To implement approach #2,
102
* call rds_rdma_send_complete from the cq_handler. To implement #1,
103
* don't call rds_rdma_send_complete at all, and fall back to the notify
104
* handling in the ACK processing code.
105
*
106
* Note: There's no need to explicitly sync any RDMA buffers using
107
* ib_dma_sync_sg_for_cpu - the completion for the RDMA
108
* operation itself unmapped the RDMA buffers, which takes care
109
* of synching.
110
*/
111
rds_iw_send_rdma_complete(rm, wc_status);
112
113
if (rm->rdma.op_write)
114
rds_stats_add(s_send_rdma_bytes, rm->rdma.op_bytes);
115
else
116
rds_stats_add(s_recv_rdma_bytes, rm->rdma.op_bytes);
117
}
118
119
/* If anyone waited for this message to get flushed out, wake
120
* them up now */
121
rds_message_unmapped(rm);
122
123
rds_message_put(rm);
124
send->s_rm = NULL;
125
}
126
127
void rds_iw_send_init_ring(struct rds_iw_connection *ic)
128
{
129
struct rds_iw_send_work *send;
130
u32 i;
131
132
for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
133
struct ib_sge *sge;
134
135
send->s_rm = NULL;
136
send->s_op = NULL;
137
send->s_mapping = NULL;
138
139
send->s_wr.next = NULL;
140
send->s_wr.wr_id = i;
141
send->s_wr.sg_list = send->s_sge;
142
send->s_wr.num_sge = 1;
143
send->s_wr.opcode = IB_WR_SEND;
144
send->s_wr.send_flags = 0;
145
send->s_wr.ex.imm_data = 0;
146
147
sge = rds_iw_data_sge(ic, send->s_sge);
148
sge->lkey = 0;
149
150
sge = rds_iw_header_sge(ic, send->s_sge);
151
sge->addr = ic->i_send_hdrs_dma + (i * sizeof(struct rds_header));
152
sge->length = sizeof(struct rds_header);
153
sge->lkey = 0;
154
155
send->s_mr = ib_alloc_fast_reg_mr(ic->i_pd, fastreg_message_size);
156
if (IS_ERR(send->s_mr)) {
157
printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_mr failed\n");
158
break;
159
}
160
161
send->s_page_list = ib_alloc_fast_reg_page_list(
162
ic->i_cm_id->device, fastreg_message_size);
163
if (IS_ERR(send->s_page_list)) {
164
printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_page_list failed\n");
165
break;
166
}
167
}
168
}
169
170
void rds_iw_send_clear_ring(struct rds_iw_connection *ic)
171
{
172
struct rds_iw_send_work *send;
173
u32 i;
174
175
for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
176
BUG_ON(!send->s_mr);
177
ib_dereg_mr(send->s_mr);
178
BUG_ON(!send->s_page_list);
179
ib_free_fast_reg_page_list(send->s_page_list);
180
if (send->s_wr.opcode == 0xdead)
181
continue;
182
if (send->s_rm)
183
rds_iw_send_unmap_rm(ic, send, IB_WC_WR_FLUSH_ERR);
184
if (send->s_op)
185
rds_iw_send_unmap_rdma(ic, send->s_op);
186
}
187
}
188
189
/*
190
* The _oldest/_free ring operations here race cleanly with the alloc/unalloc
191
* operations performed in the send path. As the sender allocs and potentially
192
* unallocs the next free entry in the ring it doesn't alter which is
193
* the next to be freed, which is what this is concerned with.
194
*/
195
void rds_iw_send_cq_comp_handler(struct ib_cq *cq, void *context)
196
{
197
struct rds_connection *conn = context;
198
struct rds_iw_connection *ic = conn->c_transport_data;
199
struct ib_wc wc;
200
struct rds_iw_send_work *send;
201
u32 completed;
202
u32 oldest;
203
u32 i;
204
int ret;
205
206
rdsdebug("cq %p conn %p\n", cq, conn);
207
rds_iw_stats_inc(s_iw_tx_cq_call);
208
ret = ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
209
if (ret)
210
rdsdebug("ib_req_notify_cq send failed: %d\n", ret);
211
212
while (ib_poll_cq(cq, 1, &wc) > 0) {
213
rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
214
(unsigned long long)wc.wr_id, wc.status, wc.byte_len,
215
be32_to_cpu(wc.ex.imm_data));
216
rds_iw_stats_inc(s_iw_tx_cq_event);
217
218
if (wc.status != IB_WC_SUCCESS) {
219
printk(KERN_ERR "WC Error: status = %d opcode = %d\n", wc.status, wc.opcode);
220
break;
221
}
222
223
if (wc.opcode == IB_WC_LOCAL_INV && wc.wr_id == RDS_IW_LOCAL_INV_WR_ID) {
224
ic->i_fastreg_posted = 0;
225
continue;
226
}
227
228
if (wc.opcode == IB_WC_FAST_REG_MR && wc.wr_id == RDS_IW_FAST_REG_WR_ID) {
229
ic->i_fastreg_posted = 1;
230
continue;
231
}
232
233
if (wc.wr_id == RDS_IW_ACK_WR_ID) {
234
if (ic->i_ack_queued + HZ/2 < jiffies)
235
rds_iw_stats_inc(s_iw_tx_stalled);
236
rds_iw_ack_send_complete(ic);
237
continue;
238
}
239
240
oldest = rds_iw_ring_oldest(&ic->i_send_ring);
241
242
completed = rds_iw_ring_completed(&ic->i_send_ring, wc.wr_id, oldest);
243
244
for (i = 0; i < completed; i++) {
245
send = &ic->i_sends[oldest];
246
247
/* In the error case, wc.opcode sometimes contains garbage */
248
switch (send->s_wr.opcode) {
249
case IB_WR_SEND:
250
if (send->s_rm)
251
rds_iw_send_unmap_rm(ic, send, wc.status);
252
break;
253
case IB_WR_FAST_REG_MR:
254
case IB_WR_RDMA_WRITE:
255
case IB_WR_RDMA_READ:
256
case IB_WR_RDMA_READ_WITH_INV:
257
/* Nothing to be done - the SG list will be unmapped
258
* when the SEND completes. */
259
break;
260
default:
261
if (printk_ratelimit())
262
printk(KERN_NOTICE
263
"RDS/IW: %s: unexpected opcode 0x%x in WR!\n",
264
__func__, send->s_wr.opcode);
265
break;
266
}
267
268
send->s_wr.opcode = 0xdead;
269
send->s_wr.num_sge = 1;
270
if (send->s_queued + HZ/2 < jiffies)
271
rds_iw_stats_inc(s_iw_tx_stalled);
272
273
/* If a RDMA operation produced an error, signal this right
274
* away. If we don't, the subsequent SEND that goes with this
275
* RDMA will be canceled with ERR_WFLUSH, and the application
276
* never learn that the RDMA failed. */
277
if (unlikely(wc.status == IB_WC_REM_ACCESS_ERR && send->s_op)) {
278
struct rds_message *rm;
279
280
rm = rds_send_get_message(conn, send->s_op);
281
if (rm)
282
rds_iw_send_rdma_complete(rm, wc.status);
283
}
284
285
oldest = (oldest + 1) % ic->i_send_ring.w_nr;
286
}
287
288
rds_iw_ring_free(&ic->i_send_ring, completed);
289
290
if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags) ||
291
test_bit(0, &conn->c_map_queued))
292
queue_delayed_work(rds_wq, &conn->c_send_w, 0);
293
294
/* We expect errors as the qp is drained during shutdown */
295
if (wc.status != IB_WC_SUCCESS && rds_conn_up(conn)) {
296
rds_iw_conn_error(conn,
297
"send completion on %pI4 "
298
"had status %u, disconnecting and reconnecting\n",
299
&conn->c_faddr, wc.status);
300
}
301
}
302
}
303
304
/*
305
* This is the main function for allocating credits when sending
306
* messages.
307
*
308
* Conceptually, we have two counters:
309
* - send credits: this tells us how many WRs we're allowed
310
* to submit without overruning the receiver's queue. For
311
* each SEND WR we post, we decrement this by one.
312
*
313
* - posted credits: this tells us how many WRs we recently
314
* posted to the receive queue. This value is transferred
315
* to the peer as a "credit update" in a RDS header field.
316
* Every time we transmit credits to the peer, we subtract
317
* the amount of transferred credits from this counter.
318
*
319
* It is essential that we avoid situations where both sides have
320
* exhausted their send credits, and are unable to send new credits
321
* to the peer. We achieve this by requiring that we send at least
322
* one credit update to the peer before exhausting our credits.
323
* When new credits arrive, we subtract one credit that is withheld
324
* until we've posted new buffers and are ready to transmit these
325
* credits (see rds_iw_send_add_credits below).
326
*
327
* The RDS send code is essentially single-threaded; rds_send_xmit
328
* grabs c_send_lock to ensure exclusive access to the send ring.
329
* However, the ACK sending code is independent and can race with
330
* message SENDs.
331
*
332
* In the send path, we need to update the counters for send credits
333
* and the counter of posted buffers atomically - when we use the
334
* last available credit, we cannot allow another thread to race us
335
* and grab the posted credits counter. Hence, we have to use a
336
* spinlock to protect the credit counter, or use atomics.
337
*
338
* Spinlocks shared between the send and the receive path are bad,
339
* because they create unnecessary delays. An early implementation
340
* using a spinlock showed a 5% degradation in throughput at some
341
* loads.
342
*
343
* This implementation avoids spinlocks completely, putting both
344
* counters into a single atomic, and updating that atomic using
345
* atomic_add (in the receive path, when receiving fresh credits),
346
* and using atomic_cmpxchg when updating the two counters.
347
*/
348
int rds_iw_send_grab_credits(struct rds_iw_connection *ic,
349
u32 wanted, u32 *adv_credits, int need_posted, int max_posted)
350
{
351
unsigned int avail, posted, got = 0, advertise;
352
long oldval, newval;
353
354
*adv_credits = 0;
355
if (!ic->i_flowctl)
356
return wanted;
357
358
try_again:
359
advertise = 0;
360
oldval = newval = atomic_read(&ic->i_credits);
361
posted = IB_GET_POST_CREDITS(oldval);
362
avail = IB_GET_SEND_CREDITS(oldval);
363
364
rdsdebug("rds_iw_send_grab_credits(%u): credits=%u posted=%u\n",
365
wanted, avail, posted);
366
367
/* The last credit must be used to send a credit update. */
368
if (avail && !posted)
369
avail--;
370
371
if (avail < wanted) {
372
struct rds_connection *conn = ic->i_cm_id->context;
373
374
/* Oops, there aren't that many credits left! */
375
set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
376
got = avail;
377
} else {
378
/* Sometimes you get what you want, lalala. */
379
got = wanted;
380
}
381
newval -= IB_SET_SEND_CREDITS(got);
382
383
/*
384
* If need_posted is non-zero, then the caller wants
385
* the posted regardless of whether any send credits are
386
* available.
387
*/
388
if (posted && (got || need_posted)) {
389
advertise = min_t(unsigned int, posted, max_posted);
390
newval -= IB_SET_POST_CREDITS(advertise);
391
}
392
393
/* Finally bill everything */
394
if (atomic_cmpxchg(&ic->i_credits, oldval, newval) != oldval)
395
goto try_again;
396
397
*adv_credits = advertise;
398
return got;
399
}
400
401
void rds_iw_send_add_credits(struct rds_connection *conn, unsigned int credits)
402
{
403
struct rds_iw_connection *ic = conn->c_transport_data;
404
405
if (credits == 0)
406
return;
407
408
rdsdebug("rds_iw_send_add_credits(%u): current=%u%s\n",
409
credits,
410
IB_GET_SEND_CREDITS(atomic_read(&ic->i_credits)),
411
test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ? ", ll_send_full" : "");
412
413
atomic_add(IB_SET_SEND_CREDITS(credits), &ic->i_credits);
414
if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags))
415
queue_delayed_work(rds_wq, &conn->c_send_w, 0);
416
417
WARN_ON(IB_GET_SEND_CREDITS(credits) >= 16384);
418
419
rds_iw_stats_inc(s_iw_rx_credit_updates);
420
}
421
422
void rds_iw_advertise_credits(struct rds_connection *conn, unsigned int posted)
423
{
424
struct rds_iw_connection *ic = conn->c_transport_data;
425
426
if (posted == 0)
427
return;
428
429
atomic_add(IB_SET_POST_CREDITS(posted), &ic->i_credits);
430
431
/* Decide whether to send an update to the peer now.
432
* If we would send a credit update for every single buffer we
433
* post, we would end up with an ACK storm (ACK arrives,
434
* consumes buffer, we refill the ring, send ACK to remote
435
* advertising the newly posted buffer... ad inf)
436
*
437
* Performance pretty much depends on how often we send
438
* credit updates - too frequent updates mean lots of ACKs.
439
* Too infrequent updates, and the peer will run out of
440
* credits and has to throttle.
441
* For the time being, 16 seems to be a good compromise.
442
*/
443
if (IB_GET_POST_CREDITS(atomic_read(&ic->i_credits)) >= 16)
444
set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
445
}
446
447
static inline void
448
rds_iw_xmit_populate_wr(struct rds_iw_connection *ic,
449
struct rds_iw_send_work *send, unsigned int pos,
450
unsigned long buffer, unsigned int length,
451
int send_flags)
452
{
453
struct ib_sge *sge;
454
455
WARN_ON(pos != send - ic->i_sends);
456
457
send->s_wr.send_flags = send_flags;
458
send->s_wr.opcode = IB_WR_SEND;
459
send->s_wr.num_sge = 2;
460
send->s_wr.next = NULL;
461
send->s_queued = jiffies;
462
send->s_op = NULL;
463
464
if (length != 0) {
465
sge = rds_iw_data_sge(ic, send->s_sge);
466
sge->addr = buffer;
467
sge->length = length;
468
sge->lkey = rds_iw_local_dma_lkey(ic);
469
470
sge = rds_iw_header_sge(ic, send->s_sge);
471
} else {
472
/* We're sending a packet with no payload. There is only
473
* one SGE */
474
send->s_wr.num_sge = 1;
475
sge = &send->s_sge[0];
476
}
477
478
sge->addr = ic->i_send_hdrs_dma + (pos * sizeof(struct rds_header));
479
sge->length = sizeof(struct rds_header);
480
sge->lkey = rds_iw_local_dma_lkey(ic);
481
}
482
483
/*
484
* This can be called multiple times for a given message. The first time
485
* we see a message we map its scatterlist into the IB device so that
486
* we can provide that mapped address to the IB scatter gather entries
487
* in the IB work requests. We translate the scatterlist into a series
488
* of work requests that fragment the message. These work requests complete
489
* in order so we pass ownership of the message to the completion handler
490
* once we send the final fragment.
491
*
492
* The RDS core uses the c_send_lock to only enter this function once
493
* per connection. This makes sure that the tx ring alloc/unalloc pairs
494
* don't get out of sync and confuse the ring.
495
*/
496
int rds_iw_xmit(struct rds_connection *conn, struct rds_message *rm,
497
unsigned int hdr_off, unsigned int sg, unsigned int off)
498
{
499
struct rds_iw_connection *ic = conn->c_transport_data;
500
struct ib_device *dev = ic->i_cm_id->device;
501
struct rds_iw_send_work *send = NULL;
502
struct rds_iw_send_work *first;
503
struct rds_iw_send_work *prev;
504
struct ib_send_wr *failed_wr;
505
struct scatterlist *scat;
506
u32 pos;
507
u32 i;
508
u32 work_alloc;
509
u32 credit_alloc;
510
u32 posted;
511
u32 adv_credits = 0;
512
int send_flags = 0;
513
int sent;
514
int ret;
515
int flow_controlled = 0;
516
517
BUG_ON(off % RDS_FRAG_SIZE);
518
BUG_ON(hdr_off != 0 && hdr_off != sizeof(struct rds_header));
519
520
/* Fastreg support */
521
if (rds_rdma_cookie_key(rm->m_rdma_cookie) && !ic->i_fastreg_posted) {
522
ret = -EAGAIN;
523
goto out;
524
}
525
526
/* FIXME we may overallocate here */
527
if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0)
528
i = 1;
529
else
530
i = ceil(be32_to_cpu(rm->m_inc.i_hdr.h_len), RDS_FRAG_SIZE);
531
532
work_alloc = rds_iw_ring_alloc(&ic->i_send_ring, i, &pos);
533
if (work_alloc == 0) {
534
set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
535
rds_iw_stats_inc(s_iw_tx_ring_full);
536
ret = -ENOMEM;
537
goto out;
538
}
539
540
credit_alloc = work_alloc;
541
if (ic->i_flowctl) {
542
credit_alloc = rds_iw_send_grab_credits(ic, work_alloc, &posted, 0, RDS_MAX_ADV_CREDIT);
543
adv_credits += posted;
544
if (credit_alloc < work_alloc) {
545
rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc - credit_alloc);
546
work_alloc = credit_alloc;
547
flow_controlled++;
548
}
549
if (work_alloc == 0) {
550
set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
551
rds_iw_stats_inc(s_iw_tx_throttle);
552
ret = -ENOMEM;
553
goto out;
554
}
555
}
556
557
/* map the message the first time we see it */
558
if (!ic->i_rm) {
559
/*
560
printk(KERN_NOTICE "rds_iw_xmit prep msg dport=%u flags=0x%x len=%d\n",
561
be16_to_cpu(rm->m_inc.i_hdr.h_dport),
562
rm->m_inc.i_hdr.h_flags,
563
be32_to_cpu(rm->m_inc.i_hdr.h_len));
564
*/
565
if (rm->data.op_nents) {
566
rm->data.op_count = ib_dma_map_sg(dev,
567
rm->data.op_sg,
568
rm->data.op_nents,
569
DMA_TO_DEVICE);
570
rdsdebug("ic %p mapping rm %p: %d\n", ic, rm, rm->data.op_count);
571
if (rm->data.op_count == 0) {
572
rds_iw_stats_inc(s_iw_tx_sg_mapping_failure);
573
rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc);
574
ret = -ENOMEM; /* XXX ? */
575
goto out;
576
}
577
} else {
578
rm->data.op_count = 0;
579
}
580
581
ic->i_unsignaled_wrs = rds_iw_sysctl_max_unsig_wrs;
582
ic->i_unsignaled_bytes = rds_iw_sysctl_max_unsig_bytes;
583
rds_message_addref(rm);
584
ic->i_rm = rm;
585
586
/* Finalize the header */
587
if (test_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags))
588
rm->m_inc.i_hdr.h_flags |= RDS_FLAG_ACK_REQUIRED;
589
if (test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))
590
rm->m_inc.i_hdr.h_flags |= RDS_FLAG_RETRANSMITTED;
591
592
/* If it has a RDMA op, tell the peer we did it. This is
593
* used by the peer to release use-once RDMA MRs. */
594
if (rm->rdma.op_active) {
595
struct rds_ext_header_rdma ext_hdr;
596
597
ext_hdr.h_rdma_rkey = cpu_to_be32(rm->rdma.op_rkey);
598
rds_message_add_extension(&rm->m_inc.i_hdr,
599
RDS_EXTHDR_RDMA, &ext_hdr, sizeof(ext_hdr));
600
}
601
if (rm->m_rdma_cookie) {
602
rds_message_add_rdma_dest_extension(&rm->m_inc.i_hdr,
603
rds_rdma_cookie_key(rm->m_rdma_cookie),
604
rds_rdma_cookie_offset(rm->m_rdma_cookie));
605
}
606
607
/* Note - rds_iw_piggyb_ack clears the ACK_REQUIRED bit, so
608
* we should not do this unless we have a chance of at least
609
* sticking the header into the send ring. Which is why we
610
* should call rds_iw_ring_alloc first. */
611
rm->m_inc.i_hdr.h_ack = cpu_to_be64(rds_iw_piggyb_ack(ic));
612
rds_message_make_checksum(&rm->m_inc.i_hdr);
613
614
/*
615
* Update adv_credits since we reset the ACK_REQUIRED bit.
616
*/
617
rds_iw_send_grab_credits(ic, 0, &posted, 1, RDS_MAX_ADV_CREDIT - adv_credits);
618
adv_credits += posted;
619
BUG_ON(adv_credits > 255);
620
}
621
622
send = &ic->i_sends[pos];
623
first = send;
624
prev = NULL;
625
scat = &rm->data.op_sg[sg];
626
sent = 0;
627
i = 0;
628
629
/* Sometimes you want to put a fence between an RDMA
630
* READ and the following SEND.
631
* We could either do this all the time
632
* or when requested by the user. Right now, we let
633
* the application choose.
634
*/
635
if (rm->rdma.op_active && rm->rdma.op_fence)
636
send_flags = IB_SEND_FENCE;
637
638
/*
639
* We could be copying the header into the unused tail of the page.
640
* That would need to be changed in the future when those pages might
641
* be mapped userspace pages or page cache pages. So instead we always
642
* use a second sge and our long-lived ring of mapped headers. We send
643
* the header after the data so that the data payload can be aligned on
644
* the receiver.
645
*/
646
647
/* handle a 0-len message */
648
if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0) {
649
rds_iw_xmit_populate_wr(ic, send, pos, 0, 0, send_flags);
650
goto add_header;
651
}
652
653
/* if there's data reference it with a chain of work reqs */
654
for (; i < work_alloc && scat != &rm->data.op_sg[rm->data.op_count]; i++) {
655
unsigned int len;
656
657
send = &ic->i_sends[pos];
658
659
len = min(RDS_FRAG_SIZE, ib_sg_dma_len(dev, scat) - off);
660
rds_iw_xmit_populate_wr(ic, send, pos,
661
ib_sg_dma_address(dev, scat) + off, len,
662
send_flags);
663
664
/*
665
* We want to delay signaling completions just enough to get
666
* the batching benefits but not so much that we create dead time
667
* on the wire.
668
*/
669
if (ic->i_unsignaled_wrs-- == 0) {
670
ic->i_unsignaled_wrs = rds_iw_sysctl_max_unsig_wrs;
671
send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
672
}
673
674
ic->i_unsignaled_bytes -= len;
675
if (ic->i_unsignaled_bytes <= 0) {
676
ic->i_unsignaled_bytes = rds_iw_sysctl_max_unsig_bytes;
677
send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
678
}
679
680
/*
681
* Always signal the last one if we're stopping due to flow control.
682
*/
683
if (flow_controlled && i == (work_alloc-1))
684
send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
685
686
rdsdebug("send %p wr %p num_sge %u next %p\n", send,
687
&send->s_wr, send->s_wr.num_sge, send->s_wr.next);
688
689
sent += len;
690
off += len;
691
if (off == ib_sg_dma_len(dev, scat)) {
692
scat++;
693
off = 0;
694
}
695
696
add_header:
697
/* Tack on the header after the data. The header SGE should already
698
* have been set up to point to the right header buffer. */
699
memcpy(&ic->i_send_hdrs[pos], &rm->m_inc.i_hdr, sizeof(struct rds_header));
700
701
if (0) {
702
struct rds_header *hdr = &ic->i_send_hdrs[pos];
703
704
printk(KERN_NOTICE "send WR dport=%u flags=0x%x len=%d\n",
705
be16_to_cpu(hdr->h_dport),
706
hdr->h_flags,
707
be32_to_cpu(hdr->h_len));
708
}
709
if (adv_credits) {
710
struct rds_header *hdr = &ic->i_send_hdrs[pos];
711
712
/* add credit and redo the header checksum */
713
hdr->h_credit = adv_credits;
714
rds_message_make_checksum(hdr);
715
adv_credits = 0;
716
rds_iw_stats_inc(s_iw_tx_credit_updates);
717
}
718
719
if (prev)
720
prev->s_wr.next = &send->s_wr;
721
prev = send;
722
723
pos = (pos + 1) % ic->i_send_ring.w_nr;
724
}
725
726
/* Account the RDS header in the number of bytes we sent, but just once.
727
* The caller has no concept of fragmentation. */
728
if (hdr_off == 0)
729
sent += sizeof(struct rds_header);
730
731
/* if we finished the message then send completion owns it */
732
if (scat == &rm->data.op_sg[rm->data.op_count]) {
733
prev->s_rm = ic->i_rm;
734
prev->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
735
ic->i_rm = NULL;
736
}
737
738
if (i < work_alloc) {
739
rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc - i);
740
work_alloc = i;
741
}
742
if (ic->i_flowctl && i < credit_alloc)
743
rds_iw_send_add_credits(conn, credit_alloc - i);
744
745
/* XXX need to worry about failed_wr and partial sends. */
746
failed_wr = &first->s_wr;
747
ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr);
748
rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
749
first, &first->s_wr, ret, failed_wr);
750
BUG_ON(failed_wr != &first->s_wr);
751
if (ret) {
752
printk(KERN_WARNING "RDS/IW: ib_post_send to %pI4 "
753
"returned %d\n", &conn->c_faddr, ret);
754
rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc);
755
if (prev->s_rm) {
756
ic->i_rm = prev->s_rm;
757
prev->s_rm = NULL;
758
}
759
goto out;
760
}
761
762
ret = sent;
763
out:
764
BUG_ON(adv_credits);
765
return ret;
766
}
767
768
static void rds_iw_build_send_fastreg(struct rds_iw_device *rds_iwdev, struct rds_iw_connection *ic, struct rds_iw_send_work *send, int nent, int len, u64 sg_addr)
769
{
770
BUG_ON(nent > send->s_page_list->max_page_list_len);
771
/*
772
* Perform a WR for the fast_reg_mr. Each individual page
773
* in the sg list is added to the fast reg page list and placed
774
* inside the fast_reg_mr WR.
775
*/
776
send->s_wr.opcode = IB_WR_FAST_REG_MR;
777
send->s_wr.wr.fast_reg.length = len;
778
send->s_wr.wr.fast_reg.rkey = send->s_mr->rkey;
779
send->s_wr.wr.fast_reg.page_list = send->s_page_list;
780
send->s_wr.wr.fast_reg.page_list_len = nent;
781
send->s_wr.wr.fast_reg.page_shift = PAGE_SHIFT;
782
send->s_wr.wr.fast_reg.access_flags = IB_ACCESS_REMOTE_WRITE;
783
send->s_wr.wr.fast_reg.iova_start = sg_addr;
784
785
ib_update_fast_reg_key(send->s_mr, send->s_remap_count++);
786
}
787
788
int rds_iw_xmit_rdma(struct rds_connection *conn, struct rm_rdma_op *op)
789
{
790
struct rds_iw_connection *ic = conn->c_transport_data;
791
struct rds_iw_send_work *send = NULL;
792
struct rds_iw_send_work *first;
793
struct rds_iw_send_work *prev;
794
struct ib_send_wr *failed_wr;
795
struct rds_iw_device *rds_iwdev;
796
struct scatterlist *scat;
797
unsigned long len;
798
u64 remote_addr = op->op_remote_addr;
799
u32 pos, fr_pos;
800
u32 work_alloc;
801
u32 i;
802
u32 j;
803
int sent;
804
int ret;
805
int num_sge;
806
807
rds_iwdev = ib_get_client_data(ic->i_cm_id->device, &rds_iw_client);
808
809
/* map the message the first time we see it */
810
if (!op->op_mapped) {
811
op->op_count = ib_dma_map_sg(ic->i_cm_id->device,
812
op->op_sg, op->op_nents, (op->op_write) ?
813
DMA_TO_DEVICE : DMA_FROM_DEVICE);
814
rdsdebug("ic %p mapping op %p: %d\n", ic, op, op->op_count);
815
if (op->op_count == 0) {
816
rds_iw_stats_inc(s_iw_tx_sg_mapping_failure);
817
ret = -ENOMEM; /* XXX ? */
818
goto out;
819
}
820
821
op->op_mapped = 1;
822
}
823
824
if (!op->op_write) {
825
/* Alloc space on the send queue for the fastreg */
826
work_alloc = rds_iw_ring_alloc(&ic->i_send_ring, 1, &fr_pos);
827
if (work_alloc != 1) {
828
rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc);
829
rds_iw_stats_inc(s_iw_tx_ring_full);
830
ret = -ENOMEM;
831
goto out;
832
}
833
}
834
835
/*
836
* Instead of knowing how to return a partial rdma read/write we insist that there
837
* be enough work requests to send the entire message.
838
*/
839
i = ceil(op->op_count, rds_iwdev->max_sge);
840
841
work_alloc = rds_iw_ring_alloc(&ic->i_send_ring, i, &pos);
842
if (work_alloc != i) {
843
rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc);
844
rds_iw_stats_inc(s_iw_tx_ring_full);
845
ret = -ENOMEM;
846
goto out;
847
}
848
849
send = &ic->i_sends[pos];
850
if (!op->op_write) {
851
first = prev = &ic->i_sends[fr_pos];
852
} else {
853
first = send;
854
prev = NULL;
855
}
856
scat = &op->op_sg[0];
857
sent = 0;
858
num_sge = op->op_count;
859
860
for (i = 0; i < work_alloc && scat != &op->op_sg[op->op_count]; i++) {
861
send->s_wr.send_flags = 0;
862
send->s_queued = jiffies;
863
864
/*
865
* We want to delay signaling completions just enough to get
866
* the batching benefits but not so much that we create dead time on the wire.
867
*/
868
if (ic->i_unsignaled_wrs-- == 0) {
869
ic->i_unsignaled_wrs = rds_iw_sysctl_max_unsig_wrs;
870
send->s_wr.send_flags = IB_SEND_SIGNALED;
871
}
872
873
/* To avoid the need to have the plumbing to invalidate the fastreg_mr used
874
* for local access after RDS is finished with it, using
875
* IB_WR_RDMA_READ_WITH_INV will invalidate it after the read has completed.
876
*/
877
if (op->op_write)
878
send->s_wr.opcode = IB_WR_RDMA_WRITE;
879
else
880
send->s_wr.opcode = IB_WR_RDMA_READ_WITH_INV;
881
882
send->s_wr.wr.rdma.remote_addr = remote_addr;
883
send->s_wr.wr.rdma.rkey = op->op_rkey;
884
send->s_op = op;
885
886
if (num_sge > rds_iwdev->max_sge) {
887
send->s_wr.num_sge = rds_iwdev->max_sge;
888
num_sge -= rds_iwdev->max_sge;
889
} else
890
send->s_wr.num_sge = num_sge;
891
892
send->s_wr.next = NULL;
893
894
if (prev)
895
prev->s_wr.next = &send->s_wr;
896
897
for (j = 0; j < send->s_wr.num_sge && scat != &op->op_sg[op->op_count]; j++) {
898
len = ib_sg_dma_len(ic->i_cm_id->device, scat);
899
900
if (send->s_wr.opcode == IB_WR_RDMA_READ_WITH_INV)
901
send->s_page_list->page_list[j] = ib_sg_dma_address(ic->i_cm_id->device, scat);
902
else {
903
send->s_sge[j].addr = ib_sg_dma_address(ic->i_cm_id->device, scat);
904
send->s_sge[j].length = len;
905
send->s_sge[j].lkey = rds_iw_local_dma_lkey(ic);
906
}
907
908
sent += len;
909
rdsdebug("ic %p sent %d remote_addr %llu\n", ic, sent, remote_addr);
910
remote_addr += len;
911
912
scat++;
913
}
914
915
if (send->s_wr.opcode == IB_WR_RDMA_READ_WITH_INV) {
916
send->s_wr.num_sge = 1;
917
send->s_sge[0].addr = conn->c_xmit_rm->m_rs->rs_user_addr;
918
send->s_sge[0].length = conn->c_xmit_rm->m_rs->rs_user_bytes;
919
send->s_sge[0].lkey = ic->i_sends[fr_pos].s_mr->lkey;
920
}
921
922
rdsdebug("send %p wr %p num_sge %u next %p\n", send,
923
&send->s_wr, send->s_wr.num_sge, send->s_wr.next);
924
925
prev = send;
926
if (++send == &ic->i_sends[ic->i_send_ring.w_nr])
927
send = ic->i_sends;
928
}
929
930
/* if we finished the message then send completion owns it */
931
if (scat == &op->op_sg[op->op_count])
932
first->s_wr.send_flags = IB_SEND_SIGNALED;
933
934
if (i < work_alloc) {
935
rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc - i);
936
work_alloc = i;
937
}
938
939
/* On iWARP, local memory access by a remote system (ie, RDMA Read) is not
940
* recommended. Putting the lkey on the wire is a security hole, as it can
941
* allow for memory access to all of memory on the remote system. Some
942
* adapters do not allow using the lkey for this at all. To bypass this use a
943
* fastreg_mr (or possibly a dma_mr)
944
*/
945
if (!op->op_write) {
946
rds_iw_build_send_fastreg(rds_iwdev, ic, &ic->i_sends[fr_pos],
947
op->op_count, sent, conn->c_xmit_rm->m_rs->rs_user_addr);
948
work_alloc++;
949
}
950
951
failed_wr = &first->s_wr;
952
ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr);
953
rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
954
first, &first->s_wr, ret, failed_wr);
955
BUG_ON(failed_wr != &first->s_wr);
956
if (ret) {
957
printk(KERN_WARNING "RDS/IW: rdma ib_post_send to %pI4 "
958
"returned %d\n", &conn->c_faddr, ret);
959
rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc);
960
goto out;
961
}
962
963
out:
964
return ret;
965
}
966
967
void rds_iw_xmit_complete(struct rds_connection *conn)
968
{
969
struct rds_iw_connection *ic = conn->c_transport_data;
970
971
/* We may have a pending ACK or window update we were unable
972
* to send previously (due to flow control). Try again. */
973
rds_iw_attempt_ack(ic);
974
}
975
976