Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/net/rds/send.c
15109 views
1
/*
2
* Copyright (c) 2006 Oracle. All rights reserved.
3
*
4
* This software is available to you under a choice of one of two
5
* licenses. You may choose to be licensed under the terms of the GNU
6
* General Public License (GPL) Version 2, available from the file
7
* COPYING in the main directory of this source tree, or the
8
* OpenIB.org BSD license below:
9
*
10
* Redistribution and use in source and binary forms, with or
11
* without modification, are permitted provided that the following
12
* conditions are met:
13
*
14
* - Redistributions of source code must retain the above
15
* copyright notice, this list of conditions and the following
16
* disclaimer.
17
*
18
* - Redistributions in binary form must reproduce the above
19
* copyright notice, this list of conditions and the following
20
* disclaimer in the documentation and/or other materials
21
* provided with the distribution.
22
*
23
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30
* SOFTWARE.
31
*
32
*/
33
#include <linux/kernel.h>
34
#include <linux/gfp.h>
35
#include <net/sock.h>
36
#include <linux/in.h>
37
#include <linux/list.h>
38
39
#include "rds.h"
40
41
/* When transmitting messages in rds_send_xmit, we need to emerge from
42
* time to time and briefly release the CPU. Otherwise the softlock watchdog
43
* will kick our shin.
44
* Also, it seems fairer to not let one busy connection stall all the
45
* others.
46
*
47
* send_batch_count is the number of times we'll loop in send_xmit. Setting
48
* it to 0 will restore the old behavior (where we looped until we had
49
* drained the queue).
50
*/
51
static int send_batch_count = 64;
52
module_param(send_batch_count, int, 0444);
53
MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
54
55
static void rds_send_remove_from_sock(struct list_head *messages, int status);
56
57
/*
58
* Reset the send state. Callers must ensure that this doesn't race with
59
* rds_send_xmit().
60
*/
61
void rds_send_reset(struct rds_connection *conn)
62
{
63
struct rds_message *rm, *tmp;
64
unsigned long flags;
65
66
if (conn->c_xmit_rm) {
67
rm = conn->c_xmit_rm;
68
conn->c_xmit_rm = NULL;
69
/* Tell the user the RDMA op is no longer mapped by the
70
* transport. This isn't entirely true (it's flushed out
71
* independently) but as the connection is down, there's
72
* no ongoing RDMA to/from that memory */
73
rds_message_unmapped(rm);
74
rds_message_put(rm);
75
}
76
77
conn->c_xmit_sg = 0;
78
conn->c_xmit_hdr_off = 0;
79
conn->c_xmit_data_off = 0;
80
conn->c_xmit_atomic_sent = 0;
81
conn->c_xmit_rdma_sent = 0;
82
conn->c_xmit_data_sent = 0;
83
84
conn->c_map_queued = 0;
85
86
conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
87
conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
88
89
/* Mark messages as retransmissions, and move them to the send q */
90
spin_lock_irqsave(&conn->c_lock, flags);
91
list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
92
set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
93
set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
94
}
95
list_splice_init(&conn->c_retrans, &conn->c_send_queue);
96
spin_unlock_irqrestore(&conn->c_lock, flags);
97
}
98
99
static int acquire_in_xmit(struct rds_connection *conn)
100
{
101
return test_and_set_bit(RDS_IN_XMIT, &conn->c_flags) == 0;
102
}
103
104
static void release_in_xmit(struct rds_connection *conn)
105
{
106
clear_bit(RDS_IN_XMIT, &conn->c_flags);
107
smp_mb__after_clear_bit();
108
/*
109
* We don't use wait_on_bit()/wake_up_bit() because our waking is in a
110
* hot path and finding waiters is very rare. We don't want to walk
111
* the system-wide hashed waitqueue buckets in the fast path only to
112
* almost never find waiters.
113
*/
114
if (waitqueue_active(&conn->c_waitq))
115
wake_up_all(&conn->c_waitq);
116
}
117
118
/*
119
* We're making the conscious trade-off here to only send one message
120
* down the connection at a time.
121
* Pro:
122
* - tx queueing is a simple fifo list
123
* - reassembly is optional and easily done by transports per conn
124
* - no per flow rx lookup at all, straight to the socket
125
* - less per-frag memory and wire overhead
126
* Con:
127
* - queued acks can be delayed behind large messages
128
* Depends:
129
* - small message latency is higher behind queued large messages
130
* - large message latency isn't starved by intervening small sends
131
*/
132
int rds_send_xmit(struct rds_connection *conn)
133
{
134
struct rds_message *rm;
135
unsigned long flags;
136
unsigned int tmp;
137
struct scatterlist *sg;
138
int ret = 0;
139
LIST_HEAD(to_be_dropped);
140
141
restart:
142
143
/*
144
* sendmsg calls here after having queued its message on the send
145
* queue. We only have one task feeding the connection at a time. If
146
* another thread is already feeding the queue then we back off. This
147
* avoids blocking the caller and trading per-connection data between
148
* caches per message.
149
*/
150
if (!acquire_in_xmit(conn)) {
151
rds_stats_inc(s_send_lock_contention);
152
ret = -ENOMEM;
153
goto out;
154
}
155
156
/*
157
* rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
158
* we do the opposite to avoid races.
159
*/
160
if (!rds_conn_up(conn)) {
161
release_in_xmit(conn);
162
ret = 0;
163
goto out;
164
}
165
166
if (conn->c_trans->xmit_prepare)
167
conn->c_trans->xmit_prepare(conn);
168
169
/*
170
* spin trying to push headers and data down the connection until
171
* the connection doesn't make forward progress.
172
*/
173
while (1) {
174
175
rm = conn->c_xmit_rm;
176
177
/*
178
* If between sending messages, we can send a pending congestion
179
* map update.
180
*/
181
if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
182
rm = rds_cong_update_alloc(conn);
183
if (IS_ERR(rm)) {
184
ret = PTR_ERR(rm);
185
break;
186
}
187
rm->data.op_active = 1;
188
189
conn->c_xmit_rm = rm;
190
}
191
192
/*
193
* If not already working on one, grab the next message.
194
*
195
* c_xmit_rm holds a ref while we're sending this message down
196
* the connction. We can use this ref while holding the
197
* send_sem.. rds_send_reset() is serialized with it.
198
*/
199
if (!rm) {
200
unsigned int len;
201
202
spin_lock_irqsave(&conn->c_lock, flags);
203
204
if (!list_empty(&conn->c_send_queue)) {
205
rm = list_entry(conn->c_send_queue.next,
206
struct rds_message,
207
m_conn_item);
208
rds_message_addref(rm);
209
210
/*
211
* Move the message from the send queue to the retransmit
212
* list right away.
213
*/
214
list_move_tail(&rm->m_conn_item, &conn->c_retrans);
215
}
216
217
spin_unlock_irqrestore(&conn->c_lock, flags);
218
219
if (!rm)
220
break;
221
222
/* Unfortunately, the way Infiniband deals with
223
* RDMA to a bad MR key is by moving the entire
224
* queue pair to error state. We cold possibly
225
* recover from that, but right now we drop the
226
* connection.
227
* Therefore, we never retransmit messages with RDMA ops.
228
*/
229
if (rm->rdma.op_active &&
230
test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) {
231
spin_lock_irqsave(&conn->c_lock, flags);
232
if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
233
list_move(&rm->m_conn_item, &to_be_dropped);
234
spin_unlock_irqrestore(&conn->c_lock, flags);
235
continue;
236
}
237
238
/* Require an ACK every once in a while */
239
len = ntohl(rm->m_inc.i_hdr.h_len);
240
if (conn->c_unacked_packets == 0 ||
241
conn->c_unacked_bytes < len) {
242
__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
243
244
conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
245
conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
246
rds_stats_inc(s_send_ack_required);
247
} else {
248
conn->c_unacked_bytes -= len;
249
conn->c_unacked_packets--;
250
}
251
252
conn->c_xmit_rm = rm;
253
}
254
255
/* The transport either sends the whole rdma or none of it */
256
if (rm->rdma.op_active && !conn->c_xmit_rdma_sent) {
257
rm->m_final_op = &rm->rdma;
258
ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
259
if (ret)
260
break;
261
conn->c_xmit_rdma_sent = 1;
262
263
/* The transport owns the mapped memory for now.
264
* You can't unmap it while it's on the send queue */
265
set_bit(RDS_MSG_MAPPED, &rm->m_flags);
266
}
267
268
if (rm->atomic.op_active && !conn->c_xmit_atomic_sent) {
269
rm->m_final_op = &rm->atomic;
270
ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
271
if (ret)
272
break;
273
conn->c_xmit_atomic_sent = 1;
274
275
/* The transport owns the mapped memory for now.
276
* You can't unmap it while it's on the send queue */
277
set_bit(RDS_MSG_MAPPED, &rm->m_flags);
278
}
279
280
/*
281
* A number of cases require an RDS header to be sent
282
* even if there is no data.
283
* We permit 0-byte sends; rds-ping depends on this.
284
* However, if there are exclusively attached silent ops,
285
* we skip the hdr/data send, to enable silent operation.
286
*/
287
if (rm->data.op_nents == 0) {
288
int ops_present;
289
int all_ops_are_silent = 1;
290
291
ops_present = (rm->atomic.op_active || rm->rdma.op_active);
292
if (rm->atomic.op_active && !rm->atomic.op_silent)
293
all_ops_are_silent = 0;
294
if (rm->rdma.op_active && !rm->rdma.op_silent)
295
all_ops_are_silent = 0;
296
297
if (ops_present && all_ops_are_silent
298
&& !rm->m_rdma_cookie)
299
rm->data.op_active = 0;
300
}
301
302
if (rm->data.op_active && !conn->c_xmit_data_sent) {
303
rm->m_final_op = &rm->data;
304
ret = conn->c_trans->xmit(conn, rm,
305
conn->c_xmit_hdr_off,
306
conn->c_xmit_sg,
307
conn->c_xmit_data_off);
308
if (ret <= 0)
309
break;
310
311
if (conn->c_xmit_hdr_off < sizeof(struct rds_header)) {
312
tmp = min_t(int, ret,
313
sizeof(struct rds_header) -
314
conn->c_xmit_hdr_off);
315
conn->c_xmit_hdr_off += tmp;
316
ret -= tmp;
317
}
318
319
sg = &rm->data.op_sg[conn->c_xmit_sg];
320
while (ret) {
321
tmp = min_t(int, ret, sg->length -
322
conn->c_xmit_data_off);
323
conn->c_xmit_data_off += tmp;
324
ret -= tmp;
325
if (conn->c_xmit_data_off == sg->length) {
326
conn->c_xmit_data_off = 0;
327
sg++;
328
conn->c_xmit_sg++;
329
BUG_ON(ret != 0 &&
330
conn->c_xmit_sg == rm->data.op_nents);
331
}
332
}
333
334
if (conn->c_xmit_hdr_off == sizeof(struct rds_header) &&
335
(conn->c_xmit_sg == rm->data.op_nents))
336
conn->c_xmit_data_sent = 1;
337
}
338
339
/*
340
* A rm will only take multiple times through this loop
341
* if there is a data op. Thus, if the data is sent (or there was
342
* none), then we're done with the rm.
343
*/
344
if (!rm->data.op_active || conn->c_xmit_data_sent) {
345
conn->c_xmit_rm = NULL;
346
conn->c_xmit_sg = 0;
347
conn->c_xmit_hdr_off = 0;
348
conn->c_xmit_data_off = 0;
349
conn->c_xmit_rdma_sent = 0;
350
conn->c_xmit_atomic_sent = 0;
351
conn->c_xmit_data_sent = 0;
352
353
rds_message_put(rm);
354
}
355
}
356
357
if (conn->c_trans->xmit_complete)
358
conn->c_trans->xmit_complete(conn);
359
360
release_in_xmit(conn);
361
362
/* Nuke any messages we decided not to retransmit. */
363
if (!list_empty(&to_be_dropped)) {
364
/* irqs on here, so we can put(), unlike above */
365
list_for_each_entry(rm, &to_be_dropped, m_conn_item)
366
rds_message_put(rm);
367
rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
368
}
369
370
/*
371
* Other senders can queue a message after we last test the send queue
372
* but before we clear RDS_IN_XMIT. In that case they'd back off and
373
* not try and send their newly queued message. We need to check the
374
* send queue after having cleared RDS_IN_XMIT so that their message
375
* doesn't get stuck on the send queue.
376
*
377
* If the transport cannot continue (i.e ret != 0), then it must
378
* call us when more room is available, such as from the tx
379
* completion handler.
380
*/
381
if (ret == 0) {
382
smp_mb();
383
if (!list_empty(&conn->c_send_queue)) {
384
rds_stats_inc(s_send_lock_queue_raced);
385
goto restart;
386
}
387
}
388
out:
389
return ret;
390
}
391
392
static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
393
{
394
u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
395
396
assert_spin_locked(&rs->rs_lock);
397
398
BUG_ON(rs->rs_snd_bytes < len);
399
rs->rs_snd_bytes -= len;
400
401
if (rs->rs_snd_bytes == 0)
402
rds_stats_inc(s_send_queue_empty);
403
}
404
405
static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
406
is_acked_func is_acked)
407
{
408
if (is_acked)
409
return is_acked(rm, ack);
410
return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
411
}
412
413
/*
414
* This is pretty similar to what happens below in the ACK
415
* handling code - except that we call here as soon as we get
416
* the IB send completion on the RDMA op and the accompanying
417
* message.
418
*/
419
void rds_rdma_send_complete(struct rds_message *rm, int status)
420
{
421
struct rds_sock *rs = NULL;
422
struct rm_rdma_op *ro;
423
struct rds_notifier *notifier;
424
unsigned long flags;
425
426
spin_lock_irqsave(&rm->m_rs_lock, flags);
427
428
ro = &rm->rdma;
429
if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
430
ro->op_active && ro->op_notify && ro->op_notifier) {
431
notifier = ro->op_notifier;
432
rs = rm->m_rs;
433
sock_hold(rds_rs_to_sk(rs));
434
435
notifier->n_status = status;
436
spin_lock(&rs->rs_lock);
437
list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
438
spin_unlock(&rs->rs_lock);
439
440
ro->op_notifier = NULL;
441
}
442
443
spin_unlock_irqrestore(&rm->m_rs_lock, flags);
444
445
if (rs) {
446
rds_wake_sk_sleep(rs);
447
sock_put(rds_rs_to_sk(rs));
448
}
449
}
450
EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
451
452
/*
453
* Just like above, except looks at atomic op
454
*/
455
void rds_atomic_send_complete(struct rds_message *rm, int status)
456
{
457
struct rds_sock *rs = NULL;
458
struct rm_atomic_op *ao;
459
struct rds_notifier *notifier;
460
unsigned long flags;
461
462
spin_lock_irqsave(&rm->m_rs_lock, flags);
463
464
ao = &rm->atomic;
465
if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
466
&& ao->op_active && ao->op_notify && ao->op_notifier) {
467
notifier = ao->op_notifier;
468
rs = rm->m_rs;
469
sock_hold(rds_rs_to_sk(rs));
470
471
notifier->n_status = status;
472
spin_lock(&rs->rs_lock);
473
list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
474
spin_unlock(&rs->rs_lock);
475
476
ao->op_notifier = NULL;
477
}
478
479
spin_unlock_irqrestore(&rm->m_rs_lock, flags);
480
481
if (rs) {
482
rds_wake_sk_sleep(rs);
483
sock_put(rds_rs_to_sk(rs));
484
}
485
}
486
EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
487
488
/*
489
* This is the same as rds_rdma_send_complete except we
490
* don't do any locking - we have all the ingredients (message,
491
* socket, socket lock) and can just move the notifier.
492
*/
493
static inline void
494
__rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
495
{
496
struct rm_rdma_op *ro;
497
struct rm_atomic_op *ao;
498
499
ro = &rm->rdma;
500
if (ro->op_active && ro->op_notify && ro->op_notifier) {
501
ro->op_notifier->n_status = status;
502
list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
503
ro->op_notifier = NULL;
504
}
505
506
ao = &rm->atomic;
507
if (ao->op_active && ao->op_notify && ao->op_notifier) {
508
ao->op_notifier->n_status = status;
509
list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
510
ao->op_notifier = NULL;
511
}
512
513
/* No need to wake the app - caller does this */
514
}
515
516
/*
517
* This is called from the IB send completion when we detect
518
* a RDMA operation that failed with remote access error.
519
* So speed is not an issue here.
520
*/
521
struct rds_message *rds_send_get_message(struct rds_connection *conn,
522
struct rm_rdma_op *op)
523
{
524
struct rds_message *rm, *tmp, *found = NULL;
525
unsigned long flags;
526
527
spin_lock_irqsave(&conn->c_lock, flags);
528
529
list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
530
if (&rm->rdma == op) {
531
atomic_inc(&rm->m_refcount);
532
found = rm;
533
goto out;
534
}
535
}
536
537
list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) {
538
if (&rm->rdma == op) {
539
atomic_inc(&rm->m_refcount);
540
found = rm;
541
break;
542
}
543
}
544
545
out:
546
spin_unlock_irqrestore(&conn->c_lock, flags);
547
548
return found;
549
}
550
EXPORT_SYMBOL_GPL(rds_send_get_message);
551
552
/*
553
* This removes messages from the socket's list if they're on it. The list
554
* argument must be private to the caller, we must be able to modify it
555
* without locks. The messages must have a reference held for their
556
* position on the list. This function will drop that reference after
557
* removing the messages from the 'messages' list regardless of if it found
558
* the messages on the socket list or not.
559
*/
560
static void rds_send_remove_from_sock(struct list_head *messages, int status)
561
{
562
unsigned long flags;
563
struct rds_sock *rs = NULL;
564
struct rds_message *rm;
565
566
while (!list_empty(messages)) {
567
int was_on_sock = 0;
568
569
rm = list_entry(messages->next, struct rds_message,
570
m_conn_item);
571
list_del_init(&rm->m_conn_item);
572
573
/*
574
* If we see this flag cleared then we're *sure* that someone
575
* else beat us to removing it from the sock. If we race
576
* with their flag update we'll get the lock and then really
577
* see that the flag has been cleared.
578
*
579
* The message spinlock makes sure nobody clears rm->m_rs
580
* while we're messing with it. It does not prevent the
581
* message from being removed from the socket, though.
582
*/
583
spin_lock_irqsave(&rm->m_rs_lock, flags);
584
if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
585
goto unlock_and_drop;
586
587
if (rs != rm->m_rs) {
588
if (rs) {
589
rds_wake_sk_sleep(rs);
590
sock_put(rds_rs_to_sk(rs));
591
}
592
rs = rm->m_rs;
593
sock_hold(rds_rs_to_sk(rs));
594
}
595
spin_lock(&rs->rs_lock);
596
597
if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
598
struct rm_rdma_op *ro = &rm->rdma;
599
struct rds_notifier *notifier;
600
601
list_del_init(&rm->m_sock_item);
602
rds_send_sndbuf_remove(rs, rm);
603
604
if (ro->op_active && ro->op_notifier &&
605
(ro->op_notify || (ro->op_recverr && status))) {
606
notifier = ro->op_notifier;
607
list_add_tail(&notifier->n_list,
608
&rs->rs_notify_queue);
609
if (!notifier->n_status)
610
notifier->n_status = status;
611
rm->rdma.op_notifier = NULL;
612
}
613
was_on_sock = 1;
614
rm->m_rs = NULL;
615
}
616
spin_unlock(&rs->rs_lock);
617
618
unlock_and_drop:
619
spin_unlock_irqrestore(&rm->m_rs_lock, flags);
620
rds_message_put(rm);
621
if (was_on_sock)
622
rds_message_put(rm);
623
}
624
625
if (rs) {
626
rds_wake_sk_sleep(rs);
627
sock_put(rds_rs_to_sk(rs));
628
}
629
}
630
631
/*
632
* Transports call here when they've determined that the receiver queued
633
* messages up to, and including, the given sequence number. Messages are
634
* moved to the retrans queue when rds_send_xmit picks them off the send
635
* queue. This means that in the TCP case, the message may not have been
636
* assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
637
* checks the RDS_MSG_HAS_ACK_SEQ bit.
638
*
639
* XXX It's not clear to me how this is safely serialized with socket
640
* destruction. Maybe it should bail if it sees SOCK_DEAD.
641
*/
642
void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
643
is_acked_func is_acked)
644
{
645
struct rds_message *rm, *tmp;
646
unsigned long flags;
647
LIST_HEAD(list);
648
649
spin_lock_irqsave(&conn->c_lock, flags);
650
651
list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
652
if (!rds_send_is_acked(rm, ack, is_acked))
653
break;
654
655
list_move(&rm->m_conn_item, &list);
656
clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
657
}
658
659
/* order flag updates with spin locks */
660
if (!list_empty(&list))
661
smp_mb__after_clear_bit();
662
663
spin_unlock_irqrestore(&conn->c_lock, flags);
664
665
/* now remove the messages from the sock list as needed */
666
rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
667
}
668
EXPORT_SYMBOL_GPL(rds_send_drop_acked);
669
670
void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest)
671
{
672
struct rds_message *rm, *tmp;
673
struct rds_connection *conn;
674
unsigned long flags;
675
LIST_HEAD(list);
676
677
/* get all the messages we're dropping under the rs lock */
678
spin_lock_irqsave(&rs->rs_lock, flags);
679
680
list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
681
if (dest && (dest->sin_addr.s_addr != rm->m_daddr ||
682
dest->sin_port != rm->m_inc.i_hdr.h_dport))
683
continue;
684
685
list_move(&rm->m_sock_item, &list);
686
rds_send_sndbuf_remove(rs, rm);
687
clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
688
}
689
690
/* order flag updates with the rs lock */
691
smp_mb__after_clear_bit();
692
693
spin_unlock_irqrestore(&rs->rs_lock, flags);
694
695
if (list_empty(&list))
696
return;
697
698
/* Remove the messages from the conn */
699
list_for_each_entry(rm, &list, m_sock_item) {
700
701
conn = rm->m_inc.i_conn;
702
703
spin_lock_irqsave(&conn->c_lock, flags);
704
/*
705
* Maybe someone else beat us to removing rm from the conn.
706
* If we race with their flag update we'll get the lock and
707
* then really see that the flag has been cleared.
708
*/
709
if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
710
spin_unlock_irqrestore(&conn->c_lock, flags);
711
continue;
712
}
713
list_del_init(&rm->m_conn_item);
714
spin_unlock_irqrestore(&conn->c_lock, flags);
715
716
/*
717
* Couldn't grab m_rs_lock in top loop (lock ordering),
718
* but we can now.
719
*/
720
spin_lock_irqsave(&rm->m_rs_lock, flags);
721
722
spin_lock(&rs->rs_lock);
723
__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
724
spin_unlock(&rs->rs_lock);
725
726
rm->m_rs = NULL;
727
spin_unlock_irqrestore(&rm->m_rs_lock, flags);
728
729
rds_message_put(rm);
730
}
731
732
rds_wake_sk_sleep(rs);
733
734
while (!list_empty(&list)) {
735
rm = list_entry(list.next, struct rds_message, m_sock_item);
736
list_del_init(&rm->m_sock_item);
737
738
rds_message_wait(rm);
739
rds_message_put(rm);
740
}
741
}
742
743
/*
744
* we only want this to fire once so we use the callers 'queued'. It's
745
* possible that another thread can race with us and remove the
746
* message from the flow with RDS_CANCEL_SENT_TO.
747
*/
748
static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
749
struct rds_message *rm, __be16 sport,
750
__be16 dport, int *queued)
751
{
752
unsigned long flags;
753
u32 len;
754
755
if (*queued)
756
goto out;
757
758
len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
759
760
/* this is the only place which holds both the socket's rs_lock
761
* and the connection's c_lock */
762
spin_lock_irqsave(&rs->rs_lock, flags);
763
764
/*
765
* If there is a little space in sndbuf, we don't queue anything,
766
* and userspace gets -EAGAIN. But poll() indicates there's send
767
* room. This can lead to bad behavior (spinning) if snd_bytes isn't
768
* freed up by incoming acks. So we check the *old* value of
769
* rs_snd_bytes here to allow the last msg to exceed the buffer,
770
* and poll() now knows no more data can be sent.
771
*/
772
if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
773
rs->rs_snd_bytes += len;
774
775
/* let recv side know we are close to send space exhaustion.
776
* This is probably not the optimal way to do it, as this
777
* means we set the flag on *all* messages as soon as our
778
* throughput hits a certain threshold.
779
*/
780
if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
781
__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
782
783
list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
784
set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
785
rds_message_addref(rm);
786
rm->m_rs = rs;
787
788
/* The code ordering is a little weird, but we're
789
trying to minimize the time we hold c_lock */
790
rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
791
rm->m_inc.i_conn = conn;
792
rds_message_addref(rm);
793
794
spin_lock(&conn->c_lock);
795
rm->m_inc.i_hdr.h_sequence = cpu_to_be64(conn->c_next_tx_seq++);
796
list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
797
set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
798
spin_unlock(&conn->c_lock);
799
800
rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
801
rm, len, rs, rs->rs_snd_bytes,
802
(unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
803
804
*queued = 1;
805
}
806
807
spin_unlock_irqrestore(&rs->rs_lock, flags);
808
out:
809
return *queued;
810
}
811
812
/*
813
* rds_message is getting to be quite complicated, and we'd like to allocate
814
* it all in one go. This figures out how big it needs to be up front.
815
*/
816
static int rds_rm_size(struct msghdr *msg, int data_len)
817
{
818
struct cmsghdr *cmsg;
819
int size = 0;
820
int cmsg_groups = 0;
821
int retval;
822
823
for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
824
if (!CMSG_OK(msg, cmsg))
825
return -EINVAL;
826
827
if (cmsg->cmsg_level != SOL_RDS)
828
continue;
829
830
switch (cmsg->cmsg_type) {
831
case RDS_CMSG_RDMA_ARGS:
832
cmsg_groups |= 1;
833
retval = rds_rdma_extra_size(CMSG_DATA(cmsg));
834
if (retval < 0)
835
return retval;
836
size += retval;
837
838
break;
839
840
case RDS_CMSG_RDMA_DEST:
841
case RDS_CMSG_RDMA_MAP:
842
cmsg_groups |= 2;
843
/* these are valid but do no add any size */
844
break;
845
846
case RDS_CMSG_ATOMIC_CSWP:
847
case RDS_CMSG_ATOMIC_FADD:
848
case RDS_CMSG_MASKED_ATOMIC_CSWP:
849
case RDS_CMSG_MASKED_ATOMIC_FADD:
850
cmsg_groups |= 1;
851
size += sizeof(struct scatterlist);
852
break;
853
854
default:
855
return -EINVAL;
856
}
857
858
}
859
860
size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist);
861
862
/* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
863
if (cmsg_groups == 3)
864
return -EINVAL;
865
866
return size;
867
}
868
869
static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
870
struct msghdr *msg, int *allocated_mr)
871
{
872
struct cmsghdr *cmsg;
873
int ret = 0;
874
875
for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
876
if (!CMSG_OK(msg, cmsg))
877
return -EINVAL;
878
879
if (cmsg->cmsg_level != SOL_RDS)
880
continue;
881
882
/* As a side effect, RDMA_DEST and RDMA_MAP will set
883
* rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
884
*/
885
switch (cmsg->cmsg_type) {
886
case RDS_CMSG_RDMA_ARGS:
887
ret = rds_cmsg_rdma_args(rs, rm, cmsg);
888
break;
889
890
case RDS_CMSG_RDMA_DEST:
891
ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
892
break;
893
894
case RDS_CMSG_RDMA_MAP:
895
ret = rds_cmsg_rdma_map(rs, rm, cmsg);
896
if (!ret)
897
*allocated_mr = 1;
898
break;
899
case RDS_CMSG_ATOMIC_CSWP:
900
case RDS_CMSG_ATOMIC_FADD:
901
case RDS_CMSG_MASKED_ATOMIC_CSWP:
902
case RDS_CMSG_MASKED_ATOMIC_FADD:
903
ret = rds_cmsg_atomic(rs, rm, cmsg);
904
break;
905
906
default:
907
return -EINVAL;
908
}
909
910
if (ret)
911
break;
912
}
913
914
return ret;
915
}
916
917
int rds_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
918
size_t payload_len)
919
{
920
struct sock *sk = sock->sk;
921
struct rds_sock *rs = rds_sk_to_rs(sk);
922
struct sockaddr_in *usin = (struct sockaddr_in *)msg->msg_name;
923
__be32 daddr;
924
__be16 dport;
925
struct rds_message *rm = NULL;
926
struct rds_connection *conn;
927
int ret = 0;
928
int queued = 0, allocated_mr = 0;
929
int nonblock = msg->msg_flags & MSG_DONTWAIT;
930
long timeo = sock_sndtimeo(sk, nonblock);
931
932
/* Mirror Linux UDP mirror of BSD error message compatibility */
933
/* XXX: Perhaps MSG_MORE someday */
934
if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) {
935
printk(KERN_INFO "msg_flags 0x%08X\n", msg->msg_flags);
936
ret = -EOPNOTSUPP;
937
goto out;
938
}
939
940
if (msg->msg_namelen) {
941
/* XXX fail non-unicast destination IPs? */
942
if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) {
943
ret = -EINVAL;
944
goto out;
945
}
946
daddr = usin->sin_addr.s_addr;
947
dport = usin->sin_port;
948
} else {
949
/* We only care about consistency with ->connect() */
950
lock_sock(sk);
951
daddr = rs->rs_conn_addr;
952
dport = rs->rs_conn_port;
953
release_sock(sk);
954
}
955
956
/* racing with another thread binding seems ok here */
957
if (daddr == 0 || rs->rs_bound_addr == 0) {
958
ret = -ENOTCONN; /* XXX not a great errno */
959
goto out;
960
}
961
962
/* size of rm including all sgs */
963
ret = rds_rm_size(msg, payload_len);
964
if (ret < 0)
965
goto out;
966
967
rm = rds_message_alloc(ret, GFP_KERNEL);
968
if (!rm) {
969
ret = -ENOMEM;
970
goto out;
971
}
972
973
/* Attach data to the rm */
974
if (payload_len) {
975
rm->data.op_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE));
976
if (!rm->data.op_sg) {
977
ret = -ENOMEM;
978
goto out;
979
}
980
ret = rds_message_copy_from_user(rm, msg->msg_iov, payload_len);
981
if (ret)
982
goto out;
983
}
984
rm->data.op_active = 1;
985
986
rm->m_daddr = daddr;
987
988
/* rds_conn_create has a spinlock that runs with IRQ off.
989
* Caching the conn in the socket helps a lot. */
990
if (rs->rs_conn && rs->rs_conn->c_faddr == daddr)
991
conn = rs->rs_conn;
992
else {
993
conn = rds_conn_create_outgoing(rs->rs_bound_addr, daddr,
994
rs->rs_transport,
995
sock->sk->sk_allocation);
996
if (IS_ERR(conn)) {
997
ret = PTR_ERR(conn);
998
goto out;
999
}
1000
rs->rs_conn = conn;
1001
}
1002
1003
/* Parse any control messages the user may have included. */
1004
ret = rds_cmsg_send(rs, rm, msg, &allocated_mr);
1005
if (ret)
1006
goto out;
1007
1008
if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
1009
if (printk_ratelimit())
1010
printk(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
1011
&rm->rdma, conn->c_trans->xmit_rdma);
1012
ret = -EOPNOTSUPP;
1013
goto out;
1014
}
1015
1016
if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
1017
if (printk_ratelimit())
1018
printk(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
1019
&rm->atomic, conn->c_trans->xmit_atomic);
1020
ret = -EOPNOTSUPP;
1021
goto out;
1022
}
1023
1024
rds_conn_connect_if_down(conn);
1025
1026
ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
1027
if (ret) {
1028
rs->rs_seen_congestion = 1;
1029
goto out;
1030
}
1031
1032
while (!rds_send_queue_rm(rs, conn, rm, rs->rs_bound_port,
1033
dport, &queued)) {
1034
rds_stats_inc(s_send_queue_full);
1035
/* XXX make sure this is reasonable */
1036
if (payload_len > rds_sk_sndbuf(rs)) {
1037
ret = -EMSGSIZE;
1038
goto out;
1039
}
1040
if (nonblock) {
1041
ret = -EAGAIN;
1042
goto out;
1043
}
1044
1045
timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
1046
rds_send_queue_rm(rs, conn, rm,
1047
rs->rs_bound_port,
1048
dport,
1049
&queued),
1050
timeo);
1051
rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
1052
if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
1053
continue;
1054
1055
ret = timeo;
1056
if (ret == 0)
1057
ret = -ETIMEDOUT;
1058
goto out;
1059
}
1060
1061
/*
1062
* By now we've committed to the send. We reuse rds_send_worker()
1063
* to retry sends in the rds thread if the transport asks us to.
1064
*/
1065
rds_stats_inc(s_send_queued);
1066
1067
if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags))
1068
rds_send_xmit(conn);
1069
1070
rds_message_put(rm);
1071
return payload_len;
1072
1073
out:
1074
/* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1075
* If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1076
* or in any other way, we need to destroy the MR again */
1077
if (allocated_mr)
1078
rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
1079
1080
if (rm)
1081
rds_message_put(rm);
1082
return ret;
1083
}
1084
1085
/*
1086
* Reply to a ping packet.
1087
*/
1088
int
1089
rds_send_pong(struct rds_connection *conn, __be16 dport)
1090
{
1091
struct rds_message *rm;
1092
unsigned long flags;
1093
int ret = 0;
1094
1095
rm = rds_message_alloc(0, GFP_ATOMIC);
1096
if (!rm) {
1097
ret = -ENOMEM;
1098
goto out;
1099
}
1100
1101
rm->m_daddr = conn->c_faddr;
1102
rm->data.op_active = 1;
1103
1104
rds_conn_connect_if_down(conn);
1105
1106
ret = rds_cong_wait(conn->c_fcong, dport, 1, NULL);
1107
if (ret)
1108
goto out;
1109
1110
spin_lock_irqsave(&conn->c_lock, flags);
1111
list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
1112
set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
1113
rds_message_addref(rm);
1114
rm->m_inc.i_conn = conn;
1115
1116
rds_message_populate_header(&rm->m_inc.i_hdr, 0, dport,
1117
conn->c_next_tx_seq);
1118
conn->c_next_tx_seq++;
1119
spin_unlock_irqrestore(&conn->c_lock, flags);
1120
1121
rds_stats_inc(s_send_queued);
1122
rds_stats_inc(s_send_pong);
1123
1124
if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags))
1125
rds_send_xmit(conn);
1126
1127
rds_message_put(rm);
1128
return 0;
1129
1130
out:
1131
if (rm)
1132
rds_message_put(rm);
1133
return ret;
1134
}
1135
1136