Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/net/sched/cls_flow.c
15109 views
1
/*
2
* net/sched/cls_flow.c Generic flow classifier
3
*
4
* Copyright (c) 2007, 2008 Patrick McHardy <[email protected]>
5
*
6
* This program is free software; you can redistribute it and/or
7
* modify it under the terms of the GNU General Public License
8
* as published by the Free Software Foundation; either version 2
9
* of the License, or (at your option) any later version.
10
*/
11
12
#include <linux/kernel.h>
13
#include <linux/init.h>
14
#include <linux/list.h>
15
#include <linux/jhash.h>
16
#include <linux/random.h>
17
#include <linux/pkt_cls.h>
18
#include <linux/skbuff.h>
19
#include <linux/in.h>
20
#include <linux/ip.h>
21
#include <linux/ipv6.h>
22
#include <linux/if_vlan.h>
23
#include <linux/slab.h>
24
25
#include <net/pkt_cls.h>
26
#include <net/ip.h>
27
#include <net/route.h>
28
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
29
#include <net/netfilter/nf_conntrack.h>
30
#endif
31
32
struct flow_head {
33
struct list_head filters;
34
};
35
36
struct flow_filter {
37
struct list_head list;
38
struct tcf_exts exts;
39
struct tcf_ematch_tree ematches;
40
struct timer_list perturb_timer;
41
u32 perturb_period;
42
u32 handle;
43
44
u32 nkeys;
45
u32 keymask;
46
u32 mode;
47
u32 mask;
48
u32 xor;
49
u32 rshift;
50
u32 addend;
51
u32 divisor;
52
u32 baseclass;
53
u32 hashrnd;
54
};
55
56
static const struct tcf_ext_map flow_ext_map = {
57
.action = TCA_FLOW_ACT,
58
.police = TCA_FLOW_POLICE,
59
};
60
61
static inline u32 addr_fold(void *addr)
62
{
63
unsigned long a = (unsigned long)addr;
64
65
return (a & 0xFFFFFFFF) ^ (BITS_PER_LONG > 32 ? a >> 32 : 0);
66
}
67
68
static u32 flow_get_src(struct sk_buff *skb)
69
{
70
switch (skb->protocol) {
71
case htons(ETH_P_IP):
72
if (pskb_network_may_pull(skb, sizeof(struct iphdr)))
73
return ntohl(ip_hdr(skb)->saddr);
74
break;
75
case htons(ETH_P_IPV6):
76
if (pskb_network_may_pull(skb, sizeof(struct ipv6hdr)))
77
return ntohl(ipv6_hdr(skb)->saddr.s6_addr32[3]);
78
break;
79
}
80
81
return addr_fold(skb->sk);
82
}
83
84
static u32 flow_get_dst(struct sk_buff *skb)
85
{
86
switch (skb->protocol) {
87
case htons(ETH_P_IP):
88
if (pskb_network_may_pull(skb, sizeof(struct iphdr)))
89
return ntohl(ip_hdr(skb)->daddr);
90
break;
91
case htons(ETH_P_IPV6):
92
if (pskb_network_may_pull(skb, sizeof(struct ipv6hdr)))
93
return ntohl(ipv6_hdr(skb)->daddr.s6_addr32[3]);
94
break;
95
}
96
97
return addr_fold(skb_dst(skb)) ^ (__force u16)skb->protocol;
98
}
99
100
static u32 flow_get_proto(struct sk_buff *skb)
101
{
102
switch (skb->protocol) {
103
case htons(ETH_P_IP):
104
return pskb_network_may_pull(skb, sizeof(struct iphdr)) ?
105
ip_hdr(skb)->protocol : 0;
106
case htons(ETH_P_IPV6):
107
return pskb_network_may_pull(skb, sizeof(struct ipv6hdr)) ?
108
ipv6_hdr(skb)->nexthdr : 0;
109
default:
110
return 0;
111
}
112
}
113
114
static u32 flow_get_proto_src(struct sk_buff *skb)
115
{
116
switch (skb->protocol) {
117
case htons(ETH_P_IP): {
118
struct iphdr *iph;
119
int poff;
120
121
if (!pskb_network_may_pull(skb, sizeof(*iph)))
122
break;
123
iph = ip_hdr(skb);
124
if (iph->frag_off & htons(IP_MF | IP_OFFSET))
125
break;
126
poff = proto_ports_offset(iph->protocol);
127
if (poff >= 0 &&
128
pskb_network_may_pull(skb, iph->ihl * 4 + 2 + poff)) {
129
iph = ip_hdr(skb);
130
return ntohs(*(__be16 *)((void *)iph + iph->ihl * 4 +
131
poff));
132
}
133
break;
134
}
135
case htons(ETH_P_IPV6): {
136
struct ipv6hdr *iph;
137
int poff;
138
139
if (!pskb_network_may_pull(skb, sizeof(*iph)))
140
break;
141
iph = ipv6_hdr(skb);
142
poff = proto_ports_offset(iph->nexthdr);
143
if (poff >= 0 &&
144
pskb_network_may_pull(skb, sizeof(*iph) + poff + 2)) {
145
iph = ipv6_hdr(skb);
146
return ntohs(*(__be16 *)((void *)iph + sizeof(*iph) +
147
poff));
148
}
149
break;
150
}
151
}
152
153
return addr_fold(skb->sk);
154
}
155
156
static u32 flow_get_proto_dst(struct sk_buff *skb)
157
{
158
switch (skb->protocol) {
159
case htons(ETH_P_IP): {
160
struct iphdr *iph;
161
int poff;
162
163
if (!pskb_network_may_pull(skb, sizeof(*iph)))
164
break;
165
iph = ip_hdr(skb);
166
if (iph->frag_off & htons(IP_MF | IP_OFFSET))
167
break;
168
poff = proto_ports_offset(iph->protocol);
169
if (poff >= 0 &&
170
pskb_network_may_pull(skb, iph->ihl * 4 + 4 + poff)) {
171
iph = ip_hdr(skb);
172
return ntohs(*(__be16 *)((void *)iph + iph->ihl * 4 +
173
2 + poff));
174
}
175
break;
176
}
177
case htons(ETH_P_IPV6): {
178
struct ipv6hdr *iph;
179
int poff;
180
181
if (!pskb_network_may_pull(skb, sizeof(*iph)))
182
break;
183
iph = ipv6_hdr(skb);
184
poff = proto_ports_offset(iph->nexthdr);
185
if (poff >= 0 &&
186
pskb_network_may_pull(skb, sizeof(*iph) + poff + 4)) {
187
iph = ipv6_hdr(skb);
188
return ntohs(*(__be16 *)((void *)iph + sizeof(*iph) +
189
poff + 2));
190
}
191
break;
192
}
193
}
194
195
return addr_fold(skb_dst(skb)) ^ (__force u16)skb->protocol;
196
}
197
198
static u32 flow_get_iif(const struct sk_buff *skb)
199
{
200
return skb->skb_iif;
201
}
202
203
static u32 flow_get_priority(const struct sk_buff *skb)
204
{
205
return skb->priority;
206
}
207
208
static u32 flow_get_mark(const struct sk_buff *skb)
209
{
210
return skb->mark;
211
}
212
213
static u32 flow_get_nfct(const struct sk_buff *skb)
214
{
215
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
216
return addr_fold(skb->nfct);
217
#else
218
return 0;
219
#endif
220
}
221
222
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
223
#define CTTUPLE(skb, member) \
224
({ \
225
enum ip_conntrack_info ctinfo; \
226
struct nf_conn *ct = nf_ct_get(skb, &ctinfo); \
227
if (ct == NULL) \
228
goto fallback; \
229
ct->tuplehash[CTINFO2DIR(ctinfo)].tuple.member; \
230
})
231
#else
232
#define CTTUPLE(skb, member) \
233
({ \
234
goto fallback; \
235
0; \
236
})
237
#endif
238
239
static u32 flow_get_nfct_src(struct sk_buff *skb)
240
{
241
switch (skb->protocol) {
242
case htons(ETH_P_IP):
243
return ntohl(CTTUPLE(skb, src.u3.ip));
244
case htons(ETH_P_IPV6):
245
return ntohl(CTTUPLE(skb, src.u3.ip6[3]));
246
}
247
fallback:
248
return flow_get_src(skb);
249
}
250
251
static u32 flow_get_nfct_dst(struct sk_buff *skb)
252
{
253
switch (skb->protocol) {
254
case htons(ETH_P_IP):
255
return ntohl(CTTUPLE(skb, dst.u3.ip));
256
case htons(ETH_P_IPV6):
257
return ntohl(CTTUPLE(skb, dst.u3.ip6[3]));
258
}
259
fallback:
260
return flow_get_dst(skb);
261
}
262
263
static u32 flow_get_nfct_proto_src(struct sk_buff *skb)
264
{
265
return ntohs(CTTUPLE(skb, src.u.all));
266
fallback:
267
return flow_get_proto_src(skb);
268
}
269
270
static u32 flow_get_nfct_proto_dst(struct sk_buff *skb)
271
{
272
return ntohs(CTTUPLE(skb, dst.u.all));
273
fallback:
274
return flow_get_proto_dst(skb);
275
}
276
277
static u32 flow_get_rtclassid(const struct sk_buff *skb)
278
{
279
#ifdef CONFIG_IP_ROUTE_CLASSID
280
if (skb_dst(skb))
281
return skb_dst(skb)->tclassid;
282
#endif
283
return 0;
284
}
285
286
static u32 flow_get_skuid(const struct sk_buff *skb)
287
{
288
if (skb->sk && skb->sk->sk_socket && skb->sk->sk_socket->file)
289
return skb->sk->sk_socket->file->f_cred->fsuid;
290
return 0;
291
}
292
293
static u32 flow_get_skgid(const struct sk_buff *skb)
294
{
295
if (skb->sk && skb->sk->sk_socket && skb->sk->sk_socket->file)
296
return skb->sk->sk_socket->file->f_cred->fsgid;
297
return 0;
298
}
299
300
static u32 flow_get_vlan_tag(const struct sk_buff *skb)
301
{
302
u16 uninitialized_var(tag);
303
304
if (vlan_get_tag(skb, &tag) < 0)
305
return 0;
306
return tag & VLAN_VID_MASK;
307
}
308
309
static u32 flow_get_rxhash(struct sk_buff *skb)
310
{
311
return skb_get_rxhash(skb);
312
}
313
314
static u32 flow_key_get(struct sk_buff *skb, int key)
315
{
316
switch (key) {
317
case FLOW_KEY_SRC:
318
return flow_get_src(skb);
319
case FLOW_KEY_DST:
320
return flow_get_dst(skb);
321
case FLOW_KEY_PROTO:
322
return flow_get_proto(skb);
323
case FLOW_KEY_PROTO_SRC:
324
return flow_get_proto_src(skb);
325
case FLOW_KEY_PROTO_DST:
326
return flow_get_proto_dst(skb);
327
case FLOW_KEY_IIF:
328
return flow_get_iif(skb);
329
case FLOW_KEY_PRIORITY:
330
return flow_get_priority(skb);
331
case FLOW_KEY_MARK:
332
return flow_get_mark(skb);
333
case FLOW_KEY_NFCT:
334
return flow_get_nfct(skb);
335
case FLOW_KEY_NFCT_SRC:
336
return flow_get_nfct_src(skb);
337
case FLOW_KEY_NFCT_DST:
338
return flow_get_nfct_dst(skb);
339
case FLOW_KEY_NFCT_PROTO_SRC:
340
return flow_get_nfct_proto_src(skb);
341
case FLOW_KEY_NFCT_PROTO_DST:
342
return flow_get_nfct_proto_dst(skb);
343
case FLOW_KEY_RTCLASSID:
344
return flow_get_rtclassid(skb);
345
case FLOW_KEY_SKUID:
346
return flow_get_skuid(skb);
347
case FLOW_KEY_SKGID:
348
return flow_get_skgid(skb);
349
case FLOW_KEY_VLAN_TAG:
350
return flow_get_vlan_tag(skb);
351
case FLOW_KEY_RXHASH:
352
return flow_get_rxhash(skb);
353
default:
354
WARN_ON(1);
355
return 0;
356
}
357
}
358
359
static int flow_classify(struct sk_buff *skb, struct tcf_proto *tp,
360
struct tcf_result *res)
361
{
362
struct flow_head *head = tp->root;
363
struct flow_filter *f;
364
u32 keymask;
365
u32 classid;
366
unsigned int n, key;
367
int r;
368
369
list_for_each_entry(f, &head->filters, list) {
370
u32 keys[f->nkeys];
371
372
if (!tcf_em_tree_match(skb, &f->ematches, NULL))
373
continue;
374
375
keymask = f->keymask;
376
377
for (n = 0; n < f->nkeys; n++) {
378
key = ffs(keymask) - 1;
379
keymask &= ~(1 << key);
380
keys[n] = flow_key_get(skb, key);
381
}
382
383
if (f->mode == FLOW_MODE_HASH)
384
classid = jhash2(keys, f->nkeys, f->hashrnd);
385
else {
386
classid = keys[0];
387
classid = (classid & f->mask) ^ f->xor;
388
classid = (classid >> f->rshift) + f->addend;
389
}
390
391
if (f->divisor)
392
classid %= f->divisor;
393
394
res->class = 0;
395
res->classid = TC_H_MAKE(f->baseclass, f->baseclass + classid);
396
397
r = tcf_exts_exec(skb, &f->exts, res);
398
if (r < 0)
399
continue;
400
return r;
401
}
402
return -1;
403
}
404
405
static void flow_perturbation(unsigned long arg)
406
{
407
struct flow_filter *f = (struct flow_filter *)arg;
408
409
get_random_bytes(&f->hashrnd, 4);
410
if (f->perturb_period)
411
mod_timer(&f->perturb_timer, jiffies + f->perturb_period);
412
}
413
414
static const struct nla_policy flow_policy[TCA_FLOW_MAX + 1] = {
415
[TCA_FLOW_KEYS] = { .type = NLA_U32 },
416
[TCA_FLOW_MODE] = { .type = NLA_U32 },
417
[TCA_FLOW_BASECLASS] = { .type = NLA_U32 },
418
[TCA_FLOW_RSHIFT] = { .type = NLA_U32 },
419
[TCA_FLOW_ADDEND] = { .type = NLA_U32 },
420
[TCA_FLOW_MASK] = { .type = NLA_U32 },
421
[TCA_FLOW_XOR] = { .type = NLA_U32 },
422
[TCA_FLOW_DIVISOR] = { .type = NLA_U32 },
423
[TCA_FLOW_ACT] = { .type = NLA_NESTED },
424
[TCA_FLOW_POLICE] = { .type = NLA_NESTED },
425
[TCA_FLOW_EMATCHES] = { .type = NLA_NESTED },
426
[TCA_FLOW_PERTURB] = { .type = NLA_U32 },
427
};
428
429
static int flow_change(struct tcf_proto *tp, unsigned long base,
430
u32 handle, struct nlattr **tca,
431
unsigned long *arg)
432
{
433
struct flow_head *head = tp->root;
434
struct flow_filter *f;
435
struct nlattr *opt = tca[TCA_OPTIONS];
436
struct nlattr *tb[TCA_FLOW_MAX + 1];
437
struct tcf_exts e;
438
struct tcf_ematch_tree t;
439
unsigned int nkeys = 0;
440
unsigned int perturb_period = 0;
441
u32 baseclass = 0;
442
u32 keymask = 0;
443
u32 mode;
444
int err;
445
446
if (opt == NULL)
447
return -EINVAL;
448
449
err = nla_parse_nested(tb, TCA_FLOW_MAX, opt, flow_policy);
450
if (err < 0)
451
return err;
452
453
if (tb[TCA_FLOW_BASECLASS]) {
454
baseclass = nla_get_u32(tb[TCA_FLOW_BASECLASS]);
455
if (TC_H_MIN(baseclass) == 0)
456
return -EINVAL;
457
}
458
459
if (tb[TCA_FLOW_KEYS]) {
460
keymask = nla_get_u32(tb[TCA_FLOW_KEYS]);
461
462
nkeys = hweight32(keymask);
463
if (nkeys == 0)
464
return -EINVAL;
465
466
if (fls(keymask) - 1 > FLOW_KEY_MAX)
467
return -EOPNOTSUPP;
468
}
469
470
err = tcf_exts_validate(tp, tb, tca[TCA_RATE], &e, &flow_ext_map);
471
if (err < 0)
472
return err;
473
474
err = tcf_em_tree_validate(tp, tb[TCA_FLOW_EMATCHES], &t);
475
if (err < 0)
476
goto err1;
477
478
f = (struct flow_filter *)*arg;
479
if (f != NULL) {
480
err = -EINVAL;
481
if (f->handle != handle && handle)
482
goto err2;
483
484
mode = f->mode;
485
if (tb[TCA_FLOW_MODE])
486
mode = nla_get_u32(tb[TCA_FLOW_MODE]);
487
if (mode != FLOW_MODE_HASH && nkeys > 1)
488
goto err2;
489
490
if (mode == FLOW_MODE_HASH)
491
perturb_period = f->perturb_period;
492
if (tb[TCA_FLOW_PERTURB]) {
493
if (mode != FLOW_MODE_HASH)
494
goto err2;
495
perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
496
}
497
} else {
498
err = -EINVAL;
499
if (!handle)
500
goto err2;
501
if (!tb[TCA_FLOW_KEYS])
502
goto err2;
503
504
mode = FLOW_MODE_MAP;
505
if (tb[TCA_FLOW_MODE])
506
mode = nla_get_u32(tb[TCA_FLOW_MODE]);
507
if (mode != FLOW_MODE_HASH && nkeys > 1)
508
goto err2;
509
510
if (tb[TCA_FLOW_PERTURB]) {
511
if (mode != FLOW_MODE_HASH)
512
goto err2;
513
perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
514
}
515
516
if (TC_H_MAJ(baseclass) == 0)
517
baseclass = TC_H_MAKE(tp->q->handle, baseclass);
518
if (TC_H_MIN(baseclass) == 0)
519
baseclass = TC_H_MAKE(baseclass, 1);
520
521
err = -ENOBUFS;
522
f = kzalloc(sizeof(*f), GFP_KERNEL);
523
if (f == NULL)
524
goto err2;
525
526
f->handle = handle;
527
f->mask = ~0U;
528
529
get_random_bytes(&f->hashrnd, 4);
530
f->perturb_timer.function = flow_perturbation;
531
f->perturb_timer.data = (unsigned long)f;
532
init_timer_deferrable(&f->perturb_timer);
533
}
534
535
tcf_exts_change(tp, &f->exts, &e);
536
tcf_em_tree_change(tp, &f->ematches, &t);
537
538
tcf_tree_lock(tp);
539
540
if (tb[TCA_FLOW_KEYS]) {
541
f->keymask = keymask;
542
f->nkeys = nkeys;
543
}
544
545
f->mode = mode;
546
547
if (tb[TCA_FLOW_MASK])
548
f->mask = nla_get_u32(tb[TCA_FLOW_MASK]);
549
if (tb[TCA_FLOW_XOR])
550
f->xor = nla_get_u32(tb[TCA_FLOW_XOR]);
551
if (tb[TCA_FLOW_RSHIFT])
552
f->rshift = nla_get_u32(tb[TCA_FLOW_RSHIFT]);
553
if (tb[TCA_FLOW_ADDEND])
554
f->addend = nla_get_u32(tb[TCA_FLOW_ADDEND]);
555
556
if (tb[TCA_FLOW_DIVISOR])
557
f->divisor = nla_get_u32(tb[TCA_FLOW_DIVISOR]);
558
if (baseclass)
559
f->baseclass = baseclass;
560
561
f->perturb_period = perturb_period;
562
del_timer(&f->perturb_timer);
563
if (perturb_period)
564
mod_timer(&f->perturb_timer, jiffies + perturb_period);
565
566
if (*arg == 0)
567
list_add_tail(&f->list, &head->filters);
568
569
tcf_tree_unlock(tp);
570
571
*arg = (unsigned long)f;
572
return 0;
573
574
err2:
575
tcf_em_tree_destroy(tp, &t);
576
err1:
577
tcf_exts_destroy(tp, &e);
578
return err;
579
}
580
581
static void flow_destroy_filter(struct tcf_proto *tp, struct flow_filter *f)
582
{
583
del_timer_sync(&f->perturb_timer);
584
tcf_exts_destroy(tp, &f->exts);
585
tcf_em_tree_destroy(tp, &f->ematches);
586
kfree(f);
587
}
588
589
static int flow_delete(struct tcf_proto *tp, unsigned long arg)
590
{
591
struct flow_filter *f = (struct flow_filter *)arg;
592
593
tcf_tree_lock(tp);
594
list_del(&f->list);
595
tcf_tree_unlock(tp);
596
flow_destroy_filter(tp, f);
597
return 0;
598
}
599
600
static int flow_init(struct tcf_proto *tp)
601
{
602
struct flow_head *head;
603
604
head = kzalloc(sizeof(*head), GFP_KERNEL);
605
if (head == NULL)
606
return -ENOBUFS;
607
INIT_LIST_HEAD(&head->filters);
608
tp->root = head;
609
return 0;
610
}
611
612
static void flow_destroy(struct tcf_proto *tp)
613
{
614
struct flow_head *head = tp->root;
615
struct flow_filter *f, *next;
616
617
list_for_each_entry_safe(f, next, &head->filters, list) {
618
list_del(&f->list);
619
flow_destroy_filter(tp, f);
620
}
621
kfree(head);
622
}
623
624
static unsigned long flow_get(struct tcf_proto *tp, u32 handle)
625
{
626
struct flow_head *head = tp->root;
627
struct flow_filter *f;
628
629
list_for_each_entry(f, &head->filters, list)
630
if (f->handle == handle)
631
return (unsigned long)f;
632
return 0;
633
}
634
635
static void flow_put(struct tcf_proto *tp, unsigned long f)
636
{
637
}
638
639
static int flow_dump(struct tcf_proto *tp, unsigned long fh,
640
struct sk_buff *skb, struct tcmsg *t)
641
{
642
struct flow_filter *f = (struct flow_filter *)fh;
643
struct nlattr *nest;
644
645
if (f == NULL)
646
return skb->len;
647
648
t->tcm_handle = f->handle;
649
650
nest = nla_nest_start(skb, TCA_OPTIONS);
651
if (nest == NULL)
652
goto nla_put_failure;
653
654
NLA_PUT_U32(skb, TCA_FLOW_KEYS, f->keymask);
655
NLA_PUT_U32(skb, TCA_FLOW_MODE, f->mode);
656
657
if (f->mask != ~0 || f->xor != 0) {
658
NLA_PUT_U32(skb, TCA_FLOW_MASK, f->mask);
659
NLA_PUT_U32(skb, TCA_FLOW_XOR, f->xor);
660
}
661
if (f->rshift)
662
NLA_PUT_U32(skb, TCA_FLOW_RSHIFT, f->rshift);
663
if (f->addend)
664
NLA_PUT_U32(skb, TCA_FLOW_ADDEND, f->addend);
665
666
if (f->divisor)
667
NLA_PUT_U32(skb, TCA_FLOW_DIVISOR, f->divisor);
668
if (f->baseclass)
669
NLA_PUT_U32(skb, TCA_FLOW_BASECLASS, f->baseclass);
670
671
if (f->perturb_period)
672
NLA_PUT_U32(skb, TCA_FLOW_PERTURB, f->perturb_period / HZ);
673
674
if (tcf_exts_dump(skb, &f->exts, &flow_ext_map) < 0)
675
goto nla_put_failure;
676
#ifdef CONFIG_NET_EMATCH
677
if (f->ematches.hdr.nmatches &&
678
tcf_em_tree_dump(skb, &f->ematches, TCA_FLOW_EMATCHES) < 0)
679
goto nla_put_failure;
680
#endif
681
nla_nest_end(skb, nest);
682
683
if (tcf_exts_dump_stats(skb, &f->exts, &flow_ext_map) < 0)
684
goto nla_put_failure;
685
686
return skb->len;
687
688
nla_put_failure:
689
nlmsg_trim(skb, nest);
690
return -1;
691
}
692
693
static void flow_walk(struct tcf_proto *tp, struct tcf_walker *arg)
694
{
695
struct flow_head *head = tp->root;
696
struct flow_filter *f;
697
698
list_for_each_entry(f, &head->filters, list) {
699
if (arg->count < arg->skip)
700
goto skip;
701
if (arg->fn(tp, (unsigned long)f, arg) < 0) {
702
arg->stop = 1;
703
break;
704
}
705
skip:
706
arg->count++;
707
}
708
}
709
710
static struct tcf_proto_ops cls_flow_ops __read_mostly = {
711
.kind = "flow",
712
.classify = flow_classify,
713
.init = flow_init,
714
.destroy = flow_destroy,
715
.change = flow_change,
716
.delete = flow_delete,
717
.get = flow_get,
718
.put = flow_put,
719
.dump = flow_dump,
720
.walk = flow_walk,
721
.owner = THIS_MODULE,
722
};
723
724
static int __init cls_flow_init(void)
725
{
726
return register_tcf_proto_ops(&cls_flow_ops);
727
}
728
729
static void __exit cls_flow_exit(void)
730
{
731
unregister_tcf_proto_ops(&cls_flow_ops);
732
}
733
734
module_init(cls_flow_init);
735
module_exit(cls_flow_exit);
736
737
MODULE_LICENSE("GPL");
738
MODULE_AUTHOR("Patrick McHardy <[email protected]>");
739
MODULE_DESCRIPTION("TC flow classifier");
740
741