Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/net/sched/sch_hfsc.c
15109 views
1
/*
2
* Copyright (c) 2003 Patrick McHardy, <[email protected]>
3
*
4
* This program is free software; you can redistribute it and/or
5
* modify it under the terms of the GNU General Public License
6
* as published by the Free Software Foundation; either version 2
7
* of the License, or (at your option) any later version.
8
*
9
* 2003-10-17 - Ported from altq
10
*/
11
/*
12
* Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
13
*
14
* Permission to use, copy, modify, and distribute this software and
15
* its documentation is hereby granted (including for commercial or
16
* for-profit use), provided that both the copyright notice and this
17
* permission notice appear in all copies of the software, derivative
18
* works, or modified versions, and any portions thereof.
19
*
20
* THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
21
* WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON PROVIDES THIS
22
* SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
23
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
25
* DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
26
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
28
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
29
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
30
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
32
* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
33
* DAMAGE.
34
*
35
* Carnegie Mellon encourages (but does not require) users of this
36
* software to return any improvements or extensions that they make,
37
* and to grant Carnegie Mellon the rights to redistribute these
38
* changes without encumbrance.
39
*/
40
/*
41
* H-FSC is described in Proceedings of SIGCOMM'97,
42
* "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
43
* Real-Time and Priority Service"
44
* by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
45
*
46
* Oleg Cherevko <[email protected]> added the upperlimit for link-sharing.
47
* when a class has an upperlimit, the fit-time is computed from the
48
* upperlimit service curve. the link-sharing scheduler does not schedule
49
* a class whose fit-time exceeds the current time.
50
*/
51
52
#include <linux/kernel.h>
53
#include <linux/module.h>
54
#include <linux/types.h>
55
#include <linux/errno.h>
56
#include <linux/compiler.h>
57
#include <linux/spinlock.h>
58
#include <linux/skbuff.h>
59
#include <linux/string.h>
60
#include <linux/slab.h>
61
#include <linux/list.h>
62
#include <linux/rbtree.h>
63
#include <linux/init.h>
64
#include <linux/rtnetlink.h>
65
#include <linux/pkt_sched.h>
66
#include <net/netlink.h>
67
#include <net/pkt_sched.h>
68
#include <net/pkt_cls.h>
69
#include <asm/div64.h>
70
71
/*
72
* kernel internal service curve representation:
73
* coordinates are given by 64 bit unsigned integers.
74
* x-axis: unit is clock count.
75
* y-axis: unit is byte.
76
*
77
* The service curve parameters are converted to the internal
78
* representation. The slope values are scaled to avoid overflow.
79
* the inverse slope values as well as the y-projection of the 1st
80
* segment are kept in order to avoid 64-bit divide operations
81
* that are expensive on 32-bit architectures.
82
*/
83
84
struct internal_sc {
85
u64 sm1; /* scaled slope of the 1st segment */
86
u64 ism1; /* scaled inverse-slope of the 1st segment */
87
u64 dx; /* the x-projection of the 1st segment */
88
u64 dy; /* the y-projection of the 1st segment */
89
u64 sm2; /* scaled slope of the 2nd segment */
90
u64 ism2; /* scaled inverse-slope of the 2nd segment */
91
};
92
93
/* runtime service curve */
94
struct runtime_sc {
95
u64 x; /* current starting position on x-axis */
96
u64 y; /* current starting position on y-axis */
97
u64 sm1; /* scaled slope of the 1st segment */
98
u64 ism1; /* scaled inverse-slope of the 1st segment */
99
u64 dx; /* the x-projection of the 1st segment */
100
u64 dy; /* the y-projection of the 1st segment */
101
u64 sm2; /* scaled slope of the 2nd segment */
102
u64 ism2; /* scaled inverse-slope of the 2nd segment */
103
};
104
105
enum hfsc_class_flags {
106
HFSC_RSC = 0x1,
107
HFSC_FSC = 0x2,
108
HFSC_USC = 0x4
109
};
110
111
struct hfsc_class {
112
struct Qdisc_class_common cl_common;
113
unsigned int refcnt; /* usage count */
114
115
struct gnet_stats_basic_packed bstats;
116
struct gnet_stats_queue qstats;
117
struct gnet_stats_rate_est rate_est;
118
unsigned int level; /* class level in hierarchy */
119
struct tcf_proto *filter_list; /* filter list */
120
unsigned int filter_cnt; /* filter count */
121
122
struct hfsc_sched *sched; /* scheduler data */
123
struct hfsc_class *cl_parent; /* parent class */
124
struct list_head siblings; /* sibling classes */
125
struct list_head children; /* child classes */
126
struct Qdisc *qdisc; /* leaf qdisc */
127
128
struct rb_node el_node; /* qdisc's eligible tree member */
129
struct rb_root vt_tree; /* active children sorted by cl_vt */
130
struct rb_node vt_node; /* parent's vt_tree member */
131
struct rb_root cf_tree; /* active children sorted by cl_f */
132
struct rb_node cf_node; /* parent's cf_heap member */
133
struct list_head dlist; /* drop list member */
134
135
u64 cl_total; /* total work in bytes */
136
u64 cl_cumul; /* cumulative work in bytes done by
137
real-time criteria */
138
139
u64 cl_d; /* deadline*/
140
u64 cl_e; /* eligible time */
141
u64 cl_vt; /* virtual time */
142
u64 cl_f; /* time when this class will fit for
143
link-sharing, max(myf, cfmin) */
144
u64 cl_myf; /* my fit-time (calculated from this
145
class's own upperlimit curve) */
146
u64 cl_myfadj; /* my fit-time adjustment (to cancel
147
history dependence) */
148
u64 cl_cfmin; /* earliest children's fit-time (used
149
with cl_myf to obtain cl_f) */
150
u64 cl_cvtmin; /* minimal virtual time among the
151
children fit for link-sharing
152
(monotonic within a period) */
153
u64 cl_vtadj; /* intra-period cumulative vt
154
adjustment */
155
u64 cl_vtoff; /* inter-period cumulative vt offset */
156
u64 cl_cvtmax; /* max child's vt in the last period */
157
u64 cl_cvtoff; /* cumulative cvtmax of all periods */
158
u64 cl_pcvtoff; /* parent's cvtoff at initialization
159
time */
160
161
struct internal_sc cl_rsc; /* internal real-time service curve */
162
struct internal_sc cl_fsc; /* internal fair service curve */
163
struct internal_sc cl_usc; /* internal upperlimit service curve */
164
struct runtime_sc cl_deadline; /* deadline curve */
165
struct runtime_sc cl_eligible; /* eligible curve */
166
struct runtime_sc cl_virtual; /* virtual curve */
167
struct runtime_sc cl_ulimit; /* upperlimit curve */
168
169
unsigned long cl_flags; /* which curves are valid */
170
unsigned long cl_vtperiod; /* vt period sequence number */
171
unsigned long cl_parentperiod;/* parent's vt period sequence number*/
172
unsigned long cl_nactive; /* number of active children */
173
};
174
175
struct hfsc_sched {
176
u16 defcls; /* default class id */
177
struct hfsc_class root; /* root class */
178
struct Qdisc_class_hash clhash; /* class hash */
179
struct rb_root eligible; /* eligible tree */
180
struct list_head droplist; /* active leaf class list (for
181
dropping) */
182
struct qdisc_watchdog watchdog; /* watchdog timer */
183
};
184
185
#define HT_INFINITY 0xffffffffffffffffULL /* infinite time value */
186
187
188
/*
189
* eligible tree holds backlogged classes being sorted by their eligible times.
190
* there is one eligible tree per hfsc instance.
191
*/
192
193
static void
194
eltree_insert(struct hfsc_class *cl)
195
{
196
struct rb_node **p = &cl->sched->eligible.rb_node;
197
struct rb_node *parent = NULL;
198
struct hfsc_class *cl1;
199
200
while (*p != NULL) {
201
parent = *p;
202
cl1 = rb_entry(parent, struct hfsc_class, el_node);
203
if (cl->cl_e >= cl1->cl_e)
204
p = &parent->rb_right;
205
else
206
p = &parent->rb_left;
207
}
208
rb_link_node(&cl->el_node, parent, p);
209
rb_insert_color(&cl->el_node, &cl->sched->eligible);
210
}
211
212
static inline void
213
eltree_remove(struct hfsc_class *cl)
214
{
215
rb_erase(&cl->el_node, &cl->sched->eligible);
216
}
217
218
static inline void
219
eltree_update(struct hfsc_class *cl)
220
{
221
eltree_remove(cl);
222
eltree_insert(cl);
223
}
224
225
/* find the class with the minimum deadline among the eligible classes */
226
static inline struct hfsc_class *
227
eltree_get_mindl(struct hfsc_sched *q, u64 cur_time)
228
{
229
struct hfsc_class *p, *cl = NULL;
230
struct rb_node *n;
231
232
for (n = rb_first(&q->eligible); n != NULL; n = rb_next(n)) {
233
p = rb_entry(n, struct hfsc_class, el_node);
234
if (p->cl_e > cur_time)
235
break;
236
if (cl == NULL || p->cl_d < cl->cl_d)
237
cl = p;
238
}
239
return cl;
240
}
241
242
/* find the class with minimum eligible time among the eligible classes */
243
static inline struct hfsc_class *
244
eltree_get_minel(struct hfsc_sched *q)
245
{
246
struct rb_node *n;
247
248
n = rb_first(&q->eligible);
249
if (n == NULL)
250
return NULL;
251
return rb_entry(n, struct hfsc_class, el_node);
252
}
253
254
/*
255
* vttree holds holds backlogged child classes being sorted by their virtual
256
* time. each intermediate class has one vttree.
257
*/
258
static void
259
vttree_insert(struct hfsc_class *cl)
260
{
261
struct rb_node **p = &cl->cl_parent->vt_tree.rb_node;
262
struct rb_node *parent = NULL;
263
struct hfsc_class *cl1;
264
265
while (*p != NULL) {
266
parent = *p;
267
cl1 = rb_entry(parent, struct hfsc_class, vt_node);
268
if (cl->cl_vt >= cl1->cl_vt)
269
p = &parent->rb_right;
270
else
271
p = &parent->rb_left;
272
}
273
rb_link_node(&cl->vt_node, parent, p);
274
rb_insert_color(&cl->vt_node, &cl->cl_parent->vt_tree);
275
}
276
277
static inline void
278
vttree_remove(struct hfsc_class *cl)
279
{
280
rb_erase(&cl->vt_node, &cl->cl_parent->vt_tree);
281
}
282
283
static inline void
284
vttree_update(struct hfsc_class *cl)
285
{
286
vttree_remove(cl);
287
vttree_insert(cl);
288
}
289
290
static inline struct hfsc_class *
291
vttree_firstfit(struct hfsc_class *cl, u64 cur_time)
292
{
293
struct hfsc_class *p;
294
struct rb_node *n;
295
296
for (n = rb_first(&cl->vt_tree); n != NULL; n = rb_next(n)) {
297
p = rb_entry(n, struct hfsc_class, vt_node);
298
if (p->cl_f <= cur_time)
299
return p;
300
}
301
return NULL;
302
}
303
304
/*
305
* get the leaf class with the minimum vt in the hierarchy
306
*/
307
static struct hfsc_class *
308
vttree_get_minvt(struct hfsc_class *cl, u64 cur_time)
309
{
310
/* if root-class's cfmin is bigger than cur_time nothing to do */
311
if (cl->cl_cfmin > cur_time)
312
return NULL;
313
314
while (cl->level > 0) {
315
cl = vttree_firstfit(cl, cur_time);
316
if (cl == NULL)
317
return NULL;
318
/*
319
* update parent's cl_cvtmin.
320
*/
321
if (cl->cl_parent->cl_cvtmin < cl->cl_vt)
322
cl->cl_parent->cl_cvtmin = cl->cl_vt;
323
}
324
return cl;
325
}
326
327
static void
328
cftree_insert(struct hfsc_class *cl)
329
{
330
struct rb_node **p = &cl->cl_parent->cf_tree.rb_node;
331
struct rb_node *parent = NULL;
332
struct hfsc_class *cl1;
333
334
while (*p != NULL) {
335
parent = *p;
336
cl1 = rb_entry(parent, struct hfsc_class, cf_node);
337
if (cl->cl_f >= cl1->cl_f)
338
p = &parent->rb_right;
339
else
340
p = &parent->rb_left;
341
}
342
rb_link_node(&cl->cf_node, parent, p);
343
rb_insert_color(&cl->cf_node, &cl->cl_parent->cf_tree);
344
}
345
346
static inline void
347
cftree_remove(struct hfsc_class *cl)
348
{
349
rb_erase(&cl->cf_node, &cl->cl_parent->cf_tree);
350
}
351
352
static inline void
353
cftree_update(struct hfsc_class *cl)
354
{
355
cftree_remove(cl);
356
cftree_insert(cl);
357
}
358
359
/*
360
* service curve support functions
361
*
362
* external service curve parameters
363
* m: bps
364
* d: us
365
* internal service curve parameters
366
* sm: (bytes/psched_us) << SM_SHIFT
367
* ism: (psched_us/byte) << ISM_SHIFT
368
* dx: psched_us
369
*
370
* The clock source resolution with ktime and PSCHED_SHIFT 10 is 1.024us.
371
*
372
* sm and ism are scaled in order to keep effective digits.
373
* SM_SHIFT and ISM_SHIFT are selected to keep at least 4 effective
374
* digits in decimal using the following table.
375
*
376
* bits/sec 100Kbps 1Mbps 10Mbps 100Mbps 1Gbps
377
* ------------+-------------------------------------------------------
378
* bytes/1.024us 12.8e-3 128e-3 1280e-3 12800e-3 128000e-3
379
*
380
* 1.024us/byte 78.125 7.8125 0.78125 0.078125 0.0078125
381
*
382
* So, for PSCHED_SHIFT 10 we need: SM_SHIFT 20, ISM_SHIFT 18.
383
*/
384
#define SM_SHIFT (30 - PSCHED_SHIFT)
385
#define ISM_SHIFT (8 + PSCHED_SHIFT)
386
387
#define SM_MASK ((1ULL << SM_SHIFT) - 1)
388
#define ISM_MASK ((1ULL << ISM_SHIFT) - 1)
389
390
static inline u64
391
seg_x2y(u64 x, u64 sm)
392
{
393
u64 y;
394
395
/*
396
* compute
397
* y = x * sm >> SM_SHIFT
398
* but divide it for the upper and lower bits to avoid overflow
399
*/
400
y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT);
401
return y;
402
}
403
404
static inline u64
405
seg_y2x(u64 y, u64 ism)
406
{
407
u64 x;
408
409
if (y == 0)
410
x = 0;
411
else if (ism == HT_INFINITY)
412
x = HT_INFINITY;
413
else {
414
x = (y >> ISM_SHIFT) * ism
415
+ (((y & ISM_MASK) * ism) >> ISM_SHIFT);
416
}
417
return x;
418
}
419
420
/* Convert m (bps) into sm (bytes/psched us) */
421
static u64
422
m2sm(u32 m)
423
{
424
u64 sm;
425
426
sm = ((u64)m << SM_SHIFT);
427
sm += PSCHED_TICKS_PER_SEC - 1;
428
do_div(sm, PSCHED_TICKS_PER_SEC);
429
return sm;
430
}
431
432
/* convert m (bps) into ism (psched us/byte) */
433
static u64
434
m2ism(u32 m)
435
{
436
u64 ism;
437
438
if (m == 0)
439
ism = HT_INFINITY;
440
else {
441
ism = ((u64)PSCHED_TICKS_PER_SEC << ISM_SHIFT);
442
ism += m - 1;
443
do_div(ism, m);
444
}
445
return ism;
446
}
447
448
/* convert d (us) into dx (psched us) */
449
static u64
450
d2dx(u32 d)
451
{
452
u64 dx;
453
454
dx = ((u64)d * PSCHED_TICKS_PER_SEC);
455
dx += USEC_PER_SEC - 1;
456
do_div(dx, USEC_PER_SEC);
457
return dx;
458
}
459
460
/* convert sm (bytes/psched us) into m (bps) */
461
static u32
462
sm2m(u64 sm)
463
{
464
u64 m;
465
466
m = (sm * PSCHED_TICKS_PER_SEC) >> SM_SHIFT;
467
return (u32)m;
468
}
469
470
/* convert dx (psched us) into d (us) */
471
static u32
472
dx2d(u64 dx)
473
{
474
u64 d;
475
476
d = dx * USEC_PER_SEC;
477
do_div(d, PSCHED_TICKS_PER_SEC);
478
return (u32)d;
479
}
480
481
static void
482
sc2isc(struct tc_service_curve *sc, struct internal_sc *isc)
483
{
484
isc->sm1 = m2sm(sc->m1);
485
isc->ism1 = m2ism(sc->m1);
486
isc->dx = d2dx(sc->d);
487
isc->dy = seg_x2y(isc->dx, isc->sm1);
488
isc->sm2 = m2sm(sc->m2);
489
isc->ism2 = m2ism(sc->m2);
490
}
491
492
/*
493
* initialize the runtime service curve with the given internal
494
* service curve starting at (x, y).
495
*/
496
static void
497
rtsc_init(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y)
498
{
499
rtsc->x = x;
500
rtsc->y = y;
501
rtsc->sm1 = isc->sm1;
502
rtsc->ism1 = isc->ism1;
503
rtsc->dx = isc->dx;
504
rtsc->dy = isc->dy;
505
rtsc->sm2 = isc->sm2;
506
rtsc->ism2 = isc->ism2;
507
}
508
509
/*
510
* calculate the y-projection of the runtime service curve by the
511
* given x-projection value
512
*/
513
static u64
514
rtsc_y2x(struct runtime_sc *rtsc, u64 y)
515
{
516
u64 x;
517
518
if (y < rtsc->y)
519
x = rtsc->x;
520
else if (y <= rtsc->y + rtsc->dy) {
521
/* x belongs to the 1st segment */
522
if (rtsc->dy == 0)
523
x = rtsc->x + rtsc->dx;
524
else
525
x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1);
526
} else {
527
/* x belongs to the 2nd segment */
528
x = rtsc->x + rtsc->dx
529
+ seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2);
530
}
531
return x;
532
}
533
534
static u64
535
rtsc_x2y(struct runtime_sc *rtsc, u64 x)
536
{
537
u64 y;
538
539
if (x <= rtsc->x)
540
y = rtsc->y;
541
else if (x <= rtsc->x + rtsc->dx)
542
/* y belongs to the 1st segment */
543
y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1);
544
else
545
/* y belongs to the 2nd segment */
546
y = rtsc->y + rtsc->dy
547
+ seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2);
548
return y;
549
}
550
551
/*
552
* update the runtime service curve by taking the minimum of the current
553
* runtime service curve and the service curve starting at (x, y).
554
*/
555
static void
556
rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y)
557
{
558
u64 y1, y2, dx, dy;
559
u32 dsm;
560
561
if (isc->sm1 <= isc->sm2) {
562
/* service curve is convex */
563
y1 = rtsc_x2y(rtsc, x);
564
if (y1 < y)
565
/* the current rtsc is smaller */
566
return;
567
rtsc->x = x;
568
rtsc->y = y;
569
return;
570
}
571
572
/*
573
* service curve is concave
574
* compute the two y values of the current rtsc
575
* y1: at x
576
* y2: at (x + dx)
577
*/
578
y1 = rtsc_x2y(rtsc, x);
579
if (y1 <= y) {
580
/* rtsc is below isc, no change to rtsc */
581
return;
582
}
583
584
y2 = rtsc_x2y(rtsc, x + isc->dx);
585
if (y2 >= y + isc->dy) {
586
/* rtsc is above isc, replace rtsc by isc */
587
rtsc->x = x;
588
rtsc->y = y;
589
rtsc->dx = isc->dx;
590
rtsc->dy = isc->dy;
591
return;
592
}
593
594
/*
595
* the two curves intersect
596
* compute the offsets (dx, dy) using the reverse
597
* function of seg_x2y()
598
* seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
599
*/
600
dx = (y1 - y) << SM_SHIFT;
601
dsm = isc->sm1 - isc->sm2;
602
do_div(dx, dsm);
603
/*
604
* check if (x, y1) belongs to the 1st segment of rtsc.
605
* if so, add the offset.
606
*/
607
if (rtsc->x + rtsc->dx > x)
608
dx += rtsc->x + rtsc->dx - x;
609
dy = seg_x2y(dx, isc->sm1);
610
611
rtsc->x = x;
612
rtsc->y = y;
613
rtsc->dx = dx;
614
rtsc->dy = dy;
615
}
616
617
static void
618
init_ed(struct hfsc_class *cl, unsigned int next_len)
619
{
620
u64 cur_time = psched_get_time();
621
622
/* update the deadline curve */
623
rtsc_min(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul);
624
625
/*
626
* update the eligible curve.
627
* for concave, it is equal to the deadline curve.
628
* for convex, it is a linear curve with slope m2.
629
*/
630
cl->cl_eligible = cl->cl_deadline;
631
if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) {
632
cl->cl_eligible.dx = 0;
633
cl->cl_eligible.dy = 0;
634
}
635
636
/* compute e and d */
637
cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
638
cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
639
640
eltree_insert(cl);
641
}
642
643
static void
644
update_ed(struct hfsc_class *cl, unsigned int next_len)
645
{
646
cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
647
cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
648
649
eltree_update(cl);
650
}
651
652
static inline void
653
update_d(struct hfsc_class *cl, unsigned int next_len)
654
{
655
cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
656
}
657
658
static inline void
659
update_cfmin(struct hfsc_class *cl)
660
{
661
struct rb_node *n = rb_first(&cl->cf_tree);
662
struct hfsc_class *p;
663
664
if (n == NULL) {
665
cl->cl_cfmin = 0;
666
return;
667
}
668
p = rb_entry(n, struct hfsc_class, cf_node);
669
cl->cl_cfmin = p->cl_f;
670
}
671
672
static void
673
init_vf(struct hfsc_class *cl, unsigned int len)
674
{
675
struct hfsc_class *max_cl;
676
struct rb_node *n;
677
u64 vt, f, cur_time;
678
int go_active;
679
680
cur_time = 0;
681
go_active = 1;
682
for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
683
if (go_active && cl->cl_nactive++ == 0)
684
go_active = 1;
685
else
686
go_active = 0;
687
688
if (go_active) {
689
n = rb_last(&cl->cl_parent->vt_tree);
690
if (n != NULL) {
691
max_cl = rb_entry(n, struct hfsc_class, vt_node);
692
/*
693
* set vt to the average of the min and max
694
* classes. if the parent's period didn't
695
* change, don't decrease vt of the class.
696
*/
697
vt = max_cl->cl_vt;
698
if (cl->cl_parent->cl_cvtmin != 0)
699
vt = (cl->cl_parent->cl_cvtmin + vt)/2;
700
701
if (cl->cl_parent->cl_vtperiod !=
702
cl->cl_parentperiod || vt > cl->cl_vt)
703
cl->cl_vt = vt;
704
} else {
705
/*
706
* first child for a new parent backlog period.
707
* add parent's cvtmax to cvtoff to make a new
708
* vt (vtoff + vt) larger than the vt in the
709
* last period for all children.
710
*/
711
vt = cl->cl_parent->cl_cvtmax;
712
cl->cl_parent->cl_cvtoff += vt;
713
cl->cl_parent->cl_cvtmax = 0;
714
cl->cl_parent->cl_cvtmin = 0;
715
cl->cl_vt = 0;
716
}
717
718
cl->cl_vtoff = cl->cl_parent->cl_cvtoff -
719
cl->cl_pcvtoff;
720
721
/* update the virtual curve */
722
vt = cl->cl_vt + cl->cl_vtoff;
723
rtsc_min(&cl->cl_virtual, &cl->cl_fsc, vt,
724
cl->cl_total);
725
if (cl->cl_virtual.x == vt) {
726
cl->cl_virtual.x -= cl->cl_vtoff;
727
cl->cl_vtoff = 0;
728
}
729
cl->cl_vtadj = 0;
730
731
cl->cl_vtperiod++; /* increment vt period */
732
cl->cl_parentperiod = cl->cl_parent->cl_vtperiod;
733
if (cl->cl_parent->cl_nactive == 0)
734
cl->cl_parentperiod++;
735
cl->cl_f = 0;
736
737
vttree_insert(cl);
738
cftree_insert(cl);
739
740
if (cl->cl_flags & HFSC_USC) {
741
/* class has upper limit curve */
742
if (cur_time == 0)
743
cur_time = psched_get_time();
744
745
/* update the ulimit curve */
746
rtsc_min(&cl->cl_ulimit, &cl->cl_usc, cur_time,
747
cl->cl_total);
748
/* compute myf */
749
cl->cl_myf = rtsc_y2x(&cl->cl_ulimit,
750
cl->cl_total);
751
cl->cl_myfadj = 0;
752
}
753
}
754
755
f = max(cl->cl_myf, cl->cl_cfmin);
756
if (f != cl->cl_f) {
757
cl->cl_f = f;
758
cftree_update(cl);
759
}
760
update_cfmin(cl->cl_parent);
761
}
762
}
763
764
static void
765
update_vf(struct hfsc_class *cl, unsigned int len, u64 cur_time)
766
{
767
u64 f; /* , myf_bound, delta; */
768
int go_passive = 0;
769
770
if (cl->qdisc->q.qlen == 0 && cl->cl_flags & HFSC_FSC)
771
go_passive = 1;
772
773
for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
774
cl->cl_total += len;
775
776
if (!(cl->cl_flags & HFSC_FSC) || cl->cl_nactive == 0)
777
continue;
778
779
if (go_passive && --cl->cl_nactive == 0)
780
go_passive = 1;
781
else
782
go_passive = 0;
783
784
if (go_passive) {
785
/* no more active child, going passive */
786
787
/* update cvtmax of the parent class */
788
if (cl->cl_vt > cl->cl_parent->cl_cvtmax)
789
cl->cl_parent->cl_cvtmax = cl->cl_vt;
790
791
/* remove this class from the vt tree */
792
vttree_remove(cl);
793
794
cftree_remove(cl);
795
update_cfmin(cl->cl_parent);
796
797
continue;
798
}
799
800
/*
801
* update vt and f
802
*/
803
cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total)
804
- cl->cl_vtoff + cl->cl_vtadj;
805
806
/*
807
* if vt of the class is smaller than cvtmin,
808
* the class was skipped in the past due to non-fit.
809
* if so, we need to adjust vtadj.
810
*/
811
if (cl->cl_vt < cl->cl_parent->cl_cvtmin) {
812
cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt;
813
cl->cl_vt = cl->cl_parent->cl_cvtmin;
814
}
815
816
/* update the vt tree */
817
vttree_update(cl);
818
819
if (cl->cl_flags & HFSC_USC) {
820
cl->cl_myf = cl->cl_myfadj + rtsc_y2x(&cl->cl_ulimit,
821
cl->cl_total);
822
#if 0
823
/*
824
* This code causes classes to stay way under their
825
* limit when multiple classes are used at gigabit
826
* speed. needs investigation. -kaber
827
*/
828
/*
829
* if myf lags behind by more than one clock tick
830
* from the current time, adjust myfadj to prevent
831
* a rate-limited class from going greedy.
832
* in a steady state under rate-limiting, myf
833
* fluctuates within one clock tick.
834
*/
835
myf_bound = cur_time - PSCHED_JIFFIE2US(1);
836
if (cl->cl_myf < myf_bound) {
837
delta = cur_time - cl->cl_myf;
838
cl->cl_myfadj += delta;
839
cl->cl_myf += delta;
840
}
841
#endif
842
}
843
844
f = max(cl->cl_myf, cl->cl_cfmin);
845
if (f != cl->cl_f) {
846
cl->cl_f = f;
847
cftree_update(cl);
848
update_cfmin(cl->cl_parent);
849
}
850
}
851
}
852
853
static void
854
set_active(struct hfsc_class *cl, unsigned int len)
855
{
856
if (cl->cl_flags & HFSC_RSC)
857
init_ed(cl, len);
858
if (cl->cl_flags & HFSC_FSC)
859
init_vf(cl, len);
860
861
list_add_tail(&cl->dlist, &cl->sched->droplist);
862
}
863
864
static void
865
set_passive(struct hfsc_class *cl)
866
{
867
if (cl->cl_flags & HFSC_RSC)
868
eltree_remove(cl);
869
870
list_del(&cl->dlist);
871
872
/*
873
* vttree is now handled in update_vf() so that update_vf(cl, 0, 0)
874
* needs to be called explicitly to remove a class from vttree.
875
*/
876
}
877
878
static unsigned int
879
qdisc_peek_len(struct Qdisc *sch)
880
{
881
struct sk_buff *skb;
882
unsigned int len;
883
884
skb = sch->ops->peek(sch);
885
if (skb == NULL) {
886
qdisc_warn_nonwc("qdisc_peek_len", sch);
887
return 0;
888
}
889
len = qdisc_pkt_len(skb);
890
891
return len;
892
}
893
894
static void
895
hfsc_purge_queue(struct Qdisc *sch, struct hfsc_class *cl)
896
{
897
unsigned int len = cl->qdisc->q.qlen;
898
899
qdisc_reset(cl->qdisc);
900
qdisc_tree_decrease_qlen(cl->qdisc, len);
901
}
902
903
static void
904
hfsc_adjust_levels(struct hfsc_class *cl)
905
{
906
struct hfsc_class *p;
907
unsigned int level;
908
909
do {
910
level = 0;
911
list_for_each_entry(p, &cl->children, siblings) {
912
if (p->level >= level)
913
level = p->level + 1;
914
}
915
cl->level = level;
916
} while ((cl = cl->cl_parent) != NULL);
917
}
918
919
static inline struct hfsc_class *
920
hfsc_find_class(u32 classid, struct Qdisc *sch)
921
{
922
struct hfsc_sched *q = qdisc_priv(sch);
923
struct Qdisc_class_common *clc;
924
925
clc = qdisc_class_find(&q->clhash, classid);
926
if (clc == NULL)
927
return NULL;
928
return container_of(clc, struct hfsc_class, cl_common);
929
}
930
931
static void
932
hfsc_change_rsc(struct hfsc_class *cl, struct tc_service_curve *rsc,
933
u64 cur_time)
934
{
935
sc2isc(rsc, &cl->cl_rsc);
936
rtsc_init(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul);
937
cl->cl_eligible = cl->cl_deadline;
938
if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) {
939
cl->cl_eligible.dx = 0;
940
cl->cl_eligible.dy = 0;
941
}
942
cl->cl_flags |= HFSC_RSC;
943
}
944
945
static void
946
hfsc_change_fsc(struct hfsc_class *cl, struct tc_service_curve *fsc)
947
{
948
sc2isc(fsc, &cl->cl_fsc);
949
rtsc_init(&cl->cl_virtual, &cl->cl_fsc, cl->cl_vt, cl->cl_total);
950
cl->cl_flags |= HFSC_FSC;
951
}
952
953
static void
954
hfsc_change_usc(struct hfsc_class *cl, struct tc_service_curve *usc,
955
u64 cur_time)
956
{
957
sc2isc(usc, &cl->cl_usc);
958
rtsc_init(&cl->cl_ulimit, &cl->cl_usc, cur_time, cl->cl_total);
959
cl->cl_flags |= HFSC_USC;
960
}
961
962
static const struct nla_policy hfsc_policy[TCA_HFSC_MAX + 1] = {
963
[TCA_HFSC_RSC] = { .len = sizeof(struct tc_service_curve) },
964
[TCA_HFSC_FSC] = { .len = sizeof(struct tc_service_curve) },
965
[TCA_HFSC_USC] = { .len = sizeof(struct tc_service_curve) },
966
};
967
968
static int
969
hfsc_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
970
struct nlattr **tca, unsigned long *arg)
971
{
972
struct hfsc_sched *q = qdisc_priv(sch);
973
struct hfsc_class *cl = (struct hfsc_class *)*arg;
974
struct hfsc_class *parent = NULL;
975
struct nlattr *opt = tca[TCA_OPTIONS];
976
struct nlattr *tb[TCA_HFSC_MAX + 1];
977
struct tc_service_curve *rsc = NULL, *fsc = NULL, *usc = NULL;
978
u64 cur_time;
979
int err;
980
981
if (opt == NULL)
982
return -EINVAL;
983
984
err = nla_parse_nested(tb, TCA_HFSC_MAX, opt, hfsc_policy);
985
if (err < 0)
986
return err;
987
988
if (tb[TCA_HFSC_RSC]) {
989
rsc = nla_data(tb[TCA_HFSC_RSC]);
990
if (rsc->m1 == 0 && rsc->m2 == 0)
991
rsc = NULL;
992
}
993
994
if (tb[TCA_HFSC_FSC]) {
995
fsc = nla_data(tb[TCA_HFSC_FSC]);
996
if (fsc->m1 == 0 && fsc->m2 == 0)
997
fsc = NULL;
998
}
999
1000
if (tb[TCA_HFSC_USC]) {
1001
usc = nla_data(tb[TCA_HFSC_USC]);
1002
if (usc->m1 == 0 && usc->m2 == 0)
1003
usc = NULL;
1004
}
1005
1006
if (cl != NULL) {
1007
if (parentid) {
1008
if (cl->cl_parent &&
1009
cl->cl_parent->cl_common.classid != parentid)
1010
return -EINVAL;
1011
if (cl->cl_parent == NULL && parentid != TC_H_ROOT)
1012
return -EINVAL;
1013
}
1014
cur_time = psched_get_time();
1015
1016
if (tca[TCA_RATE]) {
1017
err = gen_replace_estimator(&cl->bstats, &cl->rate_est,
1018
qdisc_root_sleeping_lock(sch),
1019
tca[TCA_RATE]);
1020
if (err)
1021
return err;
1022
}
1023
1024
sch_tree_lock(sch);
1025
if (rsc != NULL)
1026
hfsc_change_rsc(cl, rsc, cur_time);
1027
if (fsc != NULL)
1028
hfsc_change_fsc(cl, fsc);
1029
if (usc != NULL)
1030
hfsc_change_usc(cl, usc, cur_time);
1031
1032
if (cl->qdisc->q.qlen != 0) {
1033
if (cl->cl_flags & HFSC_RSC)
1034
update_ed(cl, qdisc_peek_len(cl->qdisc));
1035
if (cl->cl_flags & HFSC_FSC)
1036
update_vf(cl, 0, cur_time);
1037
}
1038
sch_tree_unlock(sch);
1039
1040
return 0;
1041
}
1042
1043
if (parentid == TC_H_ROOT)
1044
return -EEXIST;
1045
1046
parent = &q->root;
1047
if (parentid) {
1048
parent = hfsc_find_class(parentid, sch);
1049
if (parent == NULL)
1050
return -ENOENT;
1051
}
1052
1053
if (classid == 0 || TC_H_MAJ(classid ^ sch->handle) != 0)
1054
return -EINVAL;
1055
if (hfsc_find_class(classid, sch))
1056
return -EEXIST;
1057
1058
if (rsc == NULL && fsc == NULL)
1059
return -EINVAL;
1060
1061
cl = kzalloc(sizeof(struct hfsc_class), GFP_KERNEL);
1062
if (cl == NULL)
1063
return -ENOBUFS;
1064
1065
if (tca[TCA_RATE]) {
1066
err = gen_new_estimator(&cl->bstats, &cl->rate_est,
1067
qdisc_root_sleeping_lock(sch),
1068
tca[TCA_RATE]);
1069
if (err) {
1070
kfree(cl);
1071
return err;
1072
}
1073
}
1074
1075
if (rsc != NULL)
1076
hfsc_change_rsc(cl, rsc, 0);
1077
if (fsc != NULL)
1078
hfsc_change_fsc(cl, fsc);
1079
if (usc != NULL)
1080
hfsc_change_usc(cl, usc, 0);
1081
1082
cl->cl_common.classid = classid;
1083
cl->refcnt = 1;
1084
cl->sched = q;
1085
cl->cl_parent = parent;
1086
cl->qdisc = qdisc_create_dflt(sch->dev_queue,
1087
&pfifo_qdisc_ops, classid);
1088
if (cl->qdisc == NULL)
1089
cl->qdisc = &noop_qdisc;
1090
INIT_LIST_HEAD(&cl->children);
1091
cl->vt_tree = RB_ROOT;
1092
cl->cf_tree = RB_ROOT;
1093
1094
sch_tree_lock(sch);
1095
qdisc_class_hash_insert(&q->clhash, &cl->cl_common);
1096
list_add_tail(&cl->siblings, &parent->children);
1097
if (parent->level == 0)
1098
hfsc_purge_queue(sch, parent);
1099
hfsc_adjust_levels(parent);
1100
cl->cl_pcvtoff = parent->cl_cvtoff;
1101
sch_tree_unlock(sch);
1102
1103
qdisc_class_hash_grow(sch, &q->clhash);
1104
1105
*arg = (unsigned long)cl;
1106
return 0;
1107
}
1108
1109
static void
1110
hfsc_destroy_class(struct Qdisc *sch, struct hfsc_class *cl)
1111
{
1112
struct hfsc_sched *q = qdisc_priv(sch);
1113
1114
tcf_destroy_chain(&cl->filter_list);
1115
qdisc_destroy(cl->qdisc);
1116
gen_kill_estimator(&cl->bstats, &cl->rate_est);
1117
if (cl != &q->root)
1118
kfree(cl);
1119
}
1120
1121
static int
1122
hfsc_delete_class(struct Qdisc *sch, unsigned long arg)
1123
{
1124
struct hfsc_sched *q = qdisc_priv(sch);
1125
struct hfsc_class *cl = (struct hfsc_class *)arg;
1126
1127
if (cl->level > 0 || cl->filter_cnt > 0 || cl == &q->root)
1128
return -EBUSY;
1129
1130
sch_tree_lock(sch);
1131
1132
list_del(&cl->siblings);
1133
hfsc_adjust_levels(cl->cl_parent);
1134
1135
hfsc_purge_queue(sch, cl);
1136
qdisc_class_hash_remove(&q->clhash, &cl->cl_common);
1137
1138
BUG_ON(--cl->refcnt == 0);
1139
/*
1140
* This shouldn't happen: we "hold" one cops->get() when called
1141
* from tc_ctl_tclass; the destroy method is done from cops->put().
1142
*/
1143
1144
sch_tree_unlock(sch);
1145
return 0;
1146
}
1147
1148
static struct hfsc_class *
1149
hfsc_classify(struct sk_buff *skb, struct Qdisc *sch, int *qerr)
1150
{
1151
struct hfsc_sched *q = qdisc_priv(sch);
1152
struct hfsc_class *head, *cl;
1153
struct tcf_result res;
1154
struct tcf_proto *tcf;
1155
int result;
1156
1157
if (TC_H_MAJ(skb->priority ^ sch->handle) == 0 &&
1158
(cl = hfsc_find_class(skb->priority, sch)) != NULL)
1159
if (cl->level == 0)
1160
return cl;
1161
1162
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
1163
head = &q->root;
1164
tcf = q->root.filter_list;
1165
while (tcf && (result = tc_classify(skb, tcf, &res)) >= 0) {
1166
#ifdef CONFIG_NET_CLS_ACT
1167
switch (result) {
1168
case TC_ACT_QUEUED:
1169
case TC_ACT_STOLEN:
1170
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
1171
case TC_ACT_SHOT:
1172
return NULL;
1173
}
1174
#endif
1175
cl = (struct hfsc_class *)res.class;
1176
if (!cl) {
1177
cl = hfsc_find_class(res.classid, sch);
1178
if (!cl)
1179
break; /* filter selected invalid classid */
1180
if (cl->level >= head->level)
1181
break; /* filter may only point downwards */
1182
}
1183
1184
if (cl->level == 0)
1185
return cl; /* hit leaf class */
1186
1187
/* apply inner filter chain */
1188
tcf = cl->filter_list;
1189
head = cl;
1190
}
1191
1192
/* classification failed, try default class */
1193
cl = hfsc_find_class(TC_H_MAKE(TC_H_MAJ(sch->handle), q->defcls), sch);
1194
if (cl == NULL || cl->level > 0)
1195
return NULL;
1196
1197
return cl;
1198
}
1199
1200
static int
1201
hfsc_graft_class(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1202
struct Qdisc **old)
1203
{
1204
struct hfsc_class *cl = (struct hfsc_class *)arg;
1205
1206
if (cl->level > 0)
1207
return -EINVAL;
1208
if (new == NULL) {
1209
new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
1210
cl->cl_common.classid);
1211
if (new == NULL)
1212
new = &noop_qdisc;
1213
}
1214
1215
sch_tree_lock(sch);
1216
hfsc_purge_queue(sch, cl);
1217
*old = cl->qdisc;
1218
cl->qdisc = new;
1219
sch_tree_unlock(sch);
1220
return 0;
1221
}
1222
1223
static struct Qdisc *
1224
hfsc_class_leaf(struct Qdisc *sch, unsigned long arg)
1225
{
1226
struct hfsc_class *cl = (struct hfsc_class *)arg;
1227
1228
if (cl->level == 0)
1229
return cl->qdisc;
1230
1231
return NULL;
1232
}
1233
1234
static void
1235
hfsc_qlen_notify(struct Qdisc *sch, unsigned long arg)
1236
{
1237
struct hfsc_class *cl = (struct hfsc_class *)arg;
1238
1239
if (cl->qdisc->q.qlen == 0) {
1240
update_vf(cl, 0, 0);
1241
set_passive(cl);
1242
}
1243
}
1244
1245
static unsigned long
1246
hfsc_get_class(struct Qdisc *sch, u32 classid)
1247
{
1248
struct hfsc_class *cl = hfsc_find_class(classid, sch);
1249
1250
if (cl != NULL)
1251
cl->refcnt++;
1252
1253
return (unsigned long)cl;
1254
}
1255
1256
static void
1257
hfsc_put_class(struct Qdisc *sch, unsigned long arg)
1258
{
1259
struct hfsc_class *cl = (struct hfsc_class *)arg;
1260
1261
if (--cl->refcnt == 0)
1262
hfsc_destroy_class(sch, cl);
1263
}
1264
1265
static unsigned long
1266
hfsc_bind_tcf(struct Qdisc *sch, unsigned long parent, u32 classid)
1267
{
1268
struct hfsc_class *p = (struct hfsc_class *)parent;
1269
struct hfsc_class *cl = hfsc_find_class(classid, sch);
1270
1271
if (cl != NULL) {
1272
if (p != NULL && p->level <= cl->level)
1273
return 0;
1274
cl->filter_cnt++;
1275
}
1276
1277
return (unsigned long)cl;
1278
}
1279
1280
static void
1281
hfsc_unbind_tcf(struct Qdisc *sch, unsigned long arg)
1282
{
1283
struct hfsc_class *cl = (struct hfsc_class *)arg;
1284
1285
cl->filter_cnt--;
1286
}
1287
1288
static struct tcf_proto **
1289
hfsc_tcf_chain(struct Qdisc *sch, unsigned long arg)
1290
{
1291
struct hfsc_sched *q = qdisc_priv(sch);
1292
struct hfsc_class *cl = (struct hfsc_class *)arg;
1293
1294
if (cl == NULL)
1295
cl = &q->root;
1296
1297
return &cl->filter_list;
1298
}
1299
1300
static int
1301
hfsc_dump_sc(struct sk_buff *skb, int attr, struct internal_sc *sc)
1302
{
1303
struct tc_service_curve tsc;
1304
1305
tsc.m1 = sm2m(sc->sm1);
1306
tsc.d = dx2d(sc->dx);
1307
tsc.m2 = sm2m(sc->sm2);
1308
NLA_PUT(skb, attr, sizeof(tsc), &tsc);
1309
1310
return skb->len;
1311
1312
nla_put_failure:
1313
return -1;
1314
}
1315
1316
static int
1317
hfsc_dump_curves(struct sk_buff *skb, struct hfsc_class *cl)
1318
{
1319
if ((cl->cl_flags & HFSC_RSC) &&
1320
(hfsc_dump_sc(skb, TCA_HFSC_RSC, &cl->cl_rsc) < 0))
1321
goto nla_put_failure;
1322
1323
if ((cl->cl_flags & HFSC_FSC) &&
1324
(hfsc_dump_sc(skb, TCA_HFSC_FSC, &cl->cl_fsc) < 0))
1325
goto nla_put_failure;
1326
1327
if ((cl->cl_flags & HFSC_USC) &&
1328
(hfsc_dump_sc(skb, TCA_HFSC_USC, &cl->cl_usc) < 0))
1329
goto nla_put_failure;
1330
1331
return skb->len;
1332
1333
nla_put_failure:
1334
return -1;
1335
}
1336
1337
static int
1338
hfsc_dump_class(struct Qdisc *sch, unsigned long arg, struct sk_buff *skb,
1339
struct tcmsg *tcm)
1340
{
1341
struct hfsc_class *cl = (struct hfsc_class *)arg;
1342
struct nlattr *nest;
1343
1344
tcm->tcm_parent = cl->cl_parent ? cl->cl_parent->cl_common.classid :
1345
TC_H_ROOT;
1346
tcm->tcm_handle = cl->cl_common.classid;
1347
if (cl->level == 0)
1348
tcm->tcm_info = cl->qdisc->handle;
1349
1350
nest = nla_nest_start(skb, TCA_OPTIONS);
1351
if (nest == NULL)
1352
goto nla_put_failure;
1353
if (hfsc_dump_curves(skb, cl) < 0)
1354
goto nla_put_failure;
1355
nla_nest_end(skb, nest);
1356
return skb->len;
1357
1358
nla_put_failure:
1359
nla_nest_cancel(skb, nest);
1360
return -EMSGSIZE;
1361
}
1362
1363
static int
1364
hfsc_dump_class_stats(struct Qdisc *sch, unsigned long arg,
1365
struct gnet_dump *d)
1366
{
1367
struct hfsc_class *cl = (struct hfsc_class *)arg;
1368
struct tc_hfsc_stats xstats;
1369
1370
cl->qstats.qlen = cl->qdisc->q.qlen;
1371
xstats.level = cl->level;
1372
xstats.period = cl->cl_vtperiod;
1373
xstats.work = cl->cl_total;
1374
xstats.rtwork = cl->cl_cumul;
1375
1376
if (gnet_stats_copy_basic(d, &cl->bstats) < 0 ||
1377
gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 ||
1378
gnet_stats_copy_queue(d, &cl->qstats) < 0)
1379
return -1;
1380
1381
return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
1382
}
1383
1384
1385
1386
static void
1387
hfsc_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1388
{
1389
struct hfsc_sched *q = qdisc_priv(sch);
1390
struct hlist_node *n;
1391
struct hfsc_class *cl;
1392
unsigned int i;
1393
1394
if (arg->stop)
1395
return;
1396
1397
for (i = 0; i < q->clhash.hashsize; i++) {
1398
hlist_for_each_entry(cl, n, &q->clhash.hash[i],
1399
cl_common.hnode) {
1400
if (arg->count < arg->skip) {
1401
arg->count++;
1402
continue;
1403
}
1404
if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
1405
arg->stop = 1;
1406
return;
1407
}
1408
arg->count++;
1409
}
1410
}
1411
}
1412
1413
static void
1414
hfsc_schedule_watchdog(struct Qdisc *sch)
1415
{
1416
struct hfsc_sched *q = qdisc_priv(sch);
1417
struct hfsc_class *cl;
1418
u64 next_time = 0;
1419
1420
cl = eltree_get_minel(q);
1421
if (cl)
1422
next_time = cl->cl_e;
1423
if (q->root.cl_cfmin != 0) {
1424
if (next_time == 0 || next_time > q->root.cl_cfmin)
1425
next_time = q->root.cl_cfmin;
1426
}
1427
WARN_ON(next_time == 0);
1428
qdisc_watchdog_schedule(&q->watchdog, next_time);
1429
}
1430
1431
static int
1432
hfsc_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
1433
{
1434
struct hfsc_sched *q = qdisc_priv(sch);
1435
struct tc_hfsc_qopt *qopt;
1436
int err;
1437
1438
if (opt == NULL || nla_len(opt) < sizeof(*qopt))
1439
return -EINVAL;
1440
qopt = nla_data(opt);
1441
1442
q->defcls = qopt->defcls;
1443
err = qdisc_class_hash_init(&q->clhash);
1444
if (err < 0)
1445
return err;
1446
q->eligible = RB_ROOT;
1447
INIT_LIST_HEAD(&q->droplist);
1448
1449
q->root.cl_common.classid = sch->handle;
1450
q->root.refcnt = 1;
1451
q->root.sched = q;
1452
q->root.qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
1453
sch->handle);
1454
if (q->root.qdisc == NULL)
1455
q->root.qdisc = &noop_qdisc;
1456
INIT_LIST_HEAD(&q->root.children);
1457
q->root.vt_tree = RB_ROOT;
1458
q->root.cf_tree = RB_ROOT;
1459
1460
qdisc_class_hash_insert(&q->clhash, &q->root.cl_common);
1461
qdisc_class_hash_grow(sch, &q->clhash);
1462
1463
qdisc_watchdog_init(&q->watchdog, sch);
1464
1465
return 0;
1466
}
1467
1468
static int
1469
hfsc_change_qdisc(struct Qdisc *sch, struct nlattr *opt)
1470
{
1471
struct hfsc_sched *q = qdisc_priv(sch);
1472
struct tc_hfsc_qopt *qopt;
1473
1474
if (opt == NULL || nla_len(opt) < sizeof(*qopt))
1475
return -EINVAL;
1476
qopt = nla_data(opt);
1477
1478
sch_tree_lock(sch);
1479
q->defcls = qopt->defcls;
1480
sch_tree_unlock(sch);
1481
1482
return 0;
1483
}
1484
1485
static void
1486
hfsc_reset_class(struct hfsc_class *cl)
1487
{
1488
cl->cl_total = 0;
1489
cl->cl_cumul = 0;
1490
cl->cl_d = 0;
1491
cl->cl_e = 0;
1492
cl->cl_vt = 0;
1493
cl->cl_vtadj = 0;
1494
cl->cl_vtoff = 0;
1495
cl->cl_cvtmin = 0;
1496
cl->cl_cvtmax = 0;
1497
cl->cl_cvtoff = 0;
1498
cl->cl_pcvtoff = 0;
1499
cl->cl_vtperiod = 0;
1500
cl->cl_parentperiod = 0;
1501
cl->cl_f = 0;
1502
cl->cl_myf = 0;
1503
cl->cl_myfadj = 0;
1504
cl->cl_cfmin = 0;
1505
cl->cl_nactive = 0;
1506
1507
cl->vt_tree = RB_ROOT;
1508
cl->cf_tree = RB_ROOT;
1509
qdisc_reset(cl->qdisc);
1510
1511
if (cl->cl_flags & HFSC_RSC)
1512
rtsc_init(&cl->cl_deadline, &cl->cl_rsc, 0, 0);
1513
if (cl->cl_flags & HFSC_FSC)
1514
rtsc_init(&cl->cl_virtual, &cl->cl_fsc, 0, 0);
1515
if (cl->cl_flags & HFSC_USC)
1516
rtsc_init(&cl->cl_ulimit, &cl->cl_usc, 0, 0);
1517
}
1518
1519
static void
1520
hfsc_reset_qdisc(struct Qdisc *sch)
1521
{
1522
struct hfsc_sched *q = qdisc_priv(sch);
1523
struct hfsc_class *cl;
1524
struct hlist_node *n;
1525
unsigned int i;
1526
1527
for (i = 0; i < q->clhash.hashsize; i++) {
1528
hlist_for_each_entry(cl, n, &q->clhash.hash[i], cl_common.hnode)
1529
hfsc_reset_class(cl);
1530
}
1531
q->eligible = RB_ROOT;
1532
INIT_LIST_HEAD(&q->droplist);
1533
qdisc_watchdog_cancel(&q->watchdog);
1534
sch->q.qlen = 0;
1535
}
1536
1537
static void
1538
hfsc_destroy_qdisc(struct Qdisc *sch)
1539
{
1540
struct hfsc_sched *q = qdisc_priv(sch);
1541
struct hlist_node *n, *next;
1542
struct hfsc_class *cl;
1543
unsigned int i;
1544
1545
for (i = 0; i < q->clhash.hashsize; i++) {
1546
hlist_for_each_entry(cl, n, &q->clhash.hash[i], cl_common.hnode)
1547
tcf_destroy_chain(&cl->filter_list);
1548
}
1549
for (i = 0; i < q->clhash.hashsize; i++) {
1550
hlist_for_each_entry_safe(cl, n, next, &q->clhash.hash[i],
1551
cl_common.hnode)
1552
hfsc_destroy_class(sch, cl);
1553
}
1554
qdisc_class_hash_destroy(&q->clhash);
1555
qdisc_watchdog_cancel(&q->watchdog);
1556
}
1557
1558
static int
1559
hfsc_dump_qdisc(struct Qdisc *sch, struct sk_buff *skb)
1560
{
1561
struct hfsc_sched *q = qdisc_priv(sch);
1562
unsigned char *b = skb_tail_pointer(skb);
1563
struct tc_hfsc_qopt qopt;
1564
1565
qopt.defcls = q->defcls;
1566
NLA_PUT(skb, TCA_OPTIONS, sizeof(qopt), &qopt);
1567
return skb->len;
1568
1569
nla_put_failure:
1570
nlmsg_trim(skb, b);
1571
return -1;
1572
}
1573
1574
static int
1575
hfsc_enqueue(struct sk_buff *skb, struct Qdisc *sch)
1576
{
1577
struct hfsc_class *cl;
1578
int uninitialized_var(err);
1579
1580
cl = hfsc_classify(skb, sch, &err);
1581
if (cl == NULL) {
1582
if (err & __NET_XMIT_BYPASS)
1583
sch->qstats.drops++;
1584
kfree_skb(skb);
1585
return err;
1586
}
1587
1588
err = qdisc_enqueue(skb, cl->qdisc);
1589
if (unlikely(err != NET_XMIT_SUCCESS)) {
1590
if (net_xmit_drop_count(err)) {
1591
cl->qstats.drops++;
1592
sch->qstats.drops++;
1593
}
1594
return err;
1595
}
1596
1597
if (cl->qdisc->q.qlen == 1)
1598
set_active(cl, qdisc_pkt_len(skb));
1599
1600
bstats_update(&cl->bstats, skb);
1601
sch->q.qlen++;
1602
1603
return NET_XMIT_SUCCESS;
1604
}
1605
1606
static struct sk_buff *
1607
hfsc_dequeue(struct Qdisc *sch)
1608
{
1609
struct hfsc_sched *q = qdisc_priv(sch);
1610
struct hfsc_class *cl;
1611
struct sk_buff *skb;
1612
u64 cur_time;
1613
unsigned int next_len;
1614
int realtime = 0;
1615
1616
if (sch->q.qlen == 0)
1617
return NULL;
1618
1619
cur_time = psched_get_time();
1620
1621
/*
1622
* if there are eligible classes, use real-time criteria.
1623
* find the class with the minimum deadline among
1624
* the eligible classes.
1625
*/
1626
cl = eltree_get_mindl(q, cur_time);
1627
if (cl) {
1628
realtime = 1;
1629
} else {
1630
/*
1631
* use link-sharing criteria
1632
* get the class with the minimum vt in the hierarchy
1633
*/
1634
cl = vttree_get_minvt(&q->root, cur_time);
1635
if (cl == NULL) {
1636
sch->qstats.overlimits++;
1637
hfsc_schedule_watchdog(sch);
1638
return NULL;
1639
}
1640
}
1641
1642
skb = qdisc_dequeue_peeked(cl->qdisc);
1643
if (skb == NULL) {
1644
qdisc_warn_nonwc("HFSC", cl->qdisc);
1645
return NULL;
1646
}
1647
1648
update_vf(cl, qdisc_pkt_len(skb), cur_time);
1649
if (realtime)
1650
cl->cl_cumul += qdisc_pkt_len(skb);
1651
1652
if (cl->qdisc->q.qlen != 0) {
1653
if (cl->cl_flags & HFSC_RSC) {
1654
/* update ed */
1655
next_len = qdisc_peek_len(cl->qdisc);
1656
if (realtime)
1657
update_ed(cl, next_len);
1658
else
1659
update_d(cl, next_len);
1660
}
1661
} else {
1662
/* the class becomes passive */
1663
set_passive(cl);
1664
}
1665
1666
qdisc_unthrottled(sch);
1667
qdisc_bstats_update(sch, skb);
1668
sch->q.qlen--;
1669
1670
return skb;
1671
}
1672
1673
static unsigned int
1674
hfsc_drop(struct Qdisc *sch)
1675
{
1676
struct hfsc_sched *q = qdisc_priv(sch);
1677
struct hfsc_class *cl;
1678
unsigned int len;
1679
1680
list_for_each_entry(cl, &q->droplist, dlist) {
1681
if (cl->qdisc->ops->drop != NULL &&
1682
(len = cl->qdisc->ops->drop(cl->qdisc)) > 0) {
1683
if (cl->qdisc->q.qlen == 0) {
1684
update_vf(cl, 0, 0);
1685
set_passive(cl);
1686
} else {
1687
list_move_tail(&cl->dlist, &q->droplist);
1688
}
1689
cl->qstats.drops++;
1690
sch->qstats.drops++;
1691
sch->q.qlen--;
1692
return len;
1693
}
1694
}
1695
return 0;
1696
}
1697
1698
static const struct Qdisc_class_ops hfsc_class_ops = {
1699
.change = hfsc_change_class,
1700
.delete = hfsc_delete_class,
1701
.graft = hfsc_graft_class,
1702
.leaf = hfsc_class_leaf,
1703
.qlen_notify = hfsc_qlen_notify,
1704
.get = hfsc_get_class,
1705
.put = hfsc_put_class,
1706
.bind_tcf = hfsc_bind_tcf,
1707
.unbind_tcf = hfsc_unbind_tcf,
1708
.tcf_chain = hfsc_tcf_chain,
1709
.dump = hfsc_dump_class,
1710
.dump_stats = hfsc_dump_class_stats,
1711
.walk = hfsc_walk
1712
};
1713
1714
static struct Qdisc_ops hfsc_qdisc_ops __read_mostly = {
1715
.id = "hfsc",
1716
.init = hfsc_init_qdisc,
1717
.change = hfsc_change_qdisc,
1718
.reset = hfsc_reset_qdisc,
1719
.destroy = hfsc_destroy_qdisc,
1720
.dump = hfsc_dump_qdisc,
1721
.enqueue = hfsc_enqueue,
1722
.dequeue = hfsc_dequeue,
1723
.peek = qdisc_peek_dequeued,
1724
.drop = hfsc_drop,
1725
.cl_ops = &hfsc_class_ops,
1726
.priv_size = sizeof(struct hfsc_sched),
1727
.owner = THIS_MODULE
1728
};
1729
1730
static int __init
1731
hfsc_init(void)
1732
{
1733
return register_qdisc(&hfsc_qdisc_ops);
1734
}
1735
1736
static void __exit
1737
hfsc_cleanup(void)
1738
{
1739
unregister_qdisc(&hfsc_qdisc_ops);
1740
}
1741
1742
MODULE_LICENSE("GPL");
1743
module_init(hfsc_init);
1744
module_exit(hfsc_cleanup);
1745
1746